

Intercontinental diversity of Caballeronia gut symbionts in the conifer pest bug Leptoglossus occidentalis

Tsubasa Ohbayashi, Raynald Cossard, Gaëlle Lextrait, Takahiro Hosokawa, Vincent Lesieur, Kazutaka Takeshita, Kanako Tago, Peter Mergaert, Yoshitomo Kikuchi

▶ To cite this version:

Tsubasa Ohbayashi, Raynald Cossard, Gaëlle Lextrait, Takahiro Hosokawa, Vincent Lesieur, et al.. Intercontinental diversity of Caballeronia gut symbionts in the conifer pest bug Leptoglossus occidentalis. Microbes and environments / JSME, 2022, 37 (3), pp.ME22042. 10.1264/jsme2.ME22042. hal-03833213

HAL Id: hal-03833213 https://hal.science/hal-03833213v1

Submitted on 28 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Manuscript type: Regular Paper

2	Intercontinental diversity of <i>Caballeronia</i> gut symbionts in the conifer pest bug
3	Leptoglossus occidentalis
4	
5	Tsubasa Ohbayashi ^{1,2*†} , Raynald Cossard ^{2†} , Gaëlle Lextrait ² , Takahiro Hosokawa ³ ,
6	Vincent Lesieur ⁴ , Kazutaka Takeshita ⁵ , Kanako Tago ¹ , Peter Mergaert ² , and Yoshitomo
7	Kikuchi ^{6,7}
8	¹ Institute for Agro-Environmental Sciences, National Agriculture and Food Research
9	Organization (NARO), 305-8604, Tsukuba, Japan
10	² Institute for Integrative Biology of the Cell, UMR9198, CEA, CNRS, Université Paris-
11	Saclay, 91198 Gif-sur-Yvette, France
12	³ Department of Biology, Faculty of Science, Kyushu University, 819-0395 Fukuoka,
13	Japan
14	⁴ CSIRO Health and Biosecurity, European Laboratory, Montferrier sur Lez, France
15	⁵ Faculty of Bioresource Sciences, Akita Prefectural University, 010-0195 Akita, Japan
16	⁶ Bioproduction Research Institute, National Institute of Advanced Industrial Science and
17	Technology (AIST), Hokkaido Center, Sapporo 062-8517, Japan
18	⁷ Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
19	[†] These authors contributed equally to this work
20	* Corresponding author:
21	Tsubasa Ohbayashi: obayashit472@affrc.go.jp; +81- 29-838-8309

22 Abstract (<250 words)

Many stinkbugs in the superfamily Coreoidea (Hemiptera: Heteroptera) develop crypts 23 24 in the posterior midgut, harboring Caballeronia (Burkholderia) symbionts. These 25 symbionts form a monophyletic group in *Burkholderia* sensu lato, called the "stinkbug-26 associated beneficial and environmental (SBE)" group, recently reclassified as the new 27 genus *Caballeronia*. The SBE symbionts are separated into the subclades SBE-α and 28 SBE- β . Previous studies suggested a regional effect on the symbiont infection pattern: 29 Japanese and American bug species tend to be associated with the SBE- α , while 30 European bug species are almost exclusively associated with the SBE- β . However, 31 since only a few insect species have been investigated, it remains unclear whether the 32 region-specific infection trend is general or not. We herein investigated *Caballeronia* 33 gut symbionts in diverse Japanese, European, and North American populations of a 34 cosmopolitan species, the Western conifer seed bug Leptoglossus occidentalis 35 (Coreoidea: Coreidae). Molecular phylogenetic analysis of the 16S rRNA gene 36 demonstrated that the SBE- β was the most dominant in all populations. Notably, SBE- α 37 was rarely detected in any region, while a third clade, the "Coreoidea-clade" occupied 38 one fourth of the tested populations. While aposymbiotic bugs showed a high mortality, 39 both SBE- α - and SBE- β -inoculated insects showed high survival rates, but a 40 competition assay demonstrated that the SBE- β outcompeted the SBE- α in the midgut 41 crypts of L. occidentalis. These findings suggest that the symbiont specificity in the 42 Leptoglossus-Caballeronia symbiotic association is determined by the host rather than

43	geography while in other bugs, geographic distribution of symbionts might be more
44	important.
45	
46	Key words: Caballeronia, stinkbug, obligate gut symbiosis, intercontinental diversity
47	
48	Running headline: Diversity of Caballeronia bug symbionts
49	
50	

51 Introduction

52	Recent studies have revealed that insect gut microorganisms play a pivotal role
53	in evolution and environmental adaptation of insects. Gut microorganisms provide
54	essential nutrients, digest indigestible food materials, and/or degrade phytotoxins and
55	insecticides (Engel and Moran, 2013; Kikuchi et al., 2012; Itoh et al. 2018; Moran et
56	al., 2019; Salem et al., 2014; Sudakaran et al., 2017). Many species of stinkbugs in the
57	superfamily Coreoidea (Hemiptera: Heteroptera) develop numerous crypts at the
58	posterior part of the midgut, wherein specific Caballeronia symbionts (previously
59	included in the genus Burkholderia) are densely proliferating - usually as a single
60	species - until almost full occupation of the luminal space (Acevedo et al., 2021; Garcia
61	et al., 2014; Hunter et al., 2022; Kikuchi et al., 2005, 2011a; Kuechler et al., 2016;
62	Ohbayashi et al., 2019b; Olivier-Espejel et al., 2011; Takeshita and Kikuchi 2017). The
63	Caballeronia gut symbionts play an important role for their hosts such as recycling
64	metabolic waste materials and providing essential amino acids and vitamins, thereby
65	enhancing growth and fecundity of the stinkbugs (Ohbayashi et al., 2019a; Kikuchi et
66	al., 2007; Kikuchi and Fukatsu, 2014). A particularity of this mono-species symbiosis is
67	the horizontal transmission of the symbionts. Indeed, hatchlings are symbiont-free and
68	acquire the Caballeronia symbionts from the soil during the early instar stages (Kikuchi
69	et al., 2007; 2011b; Ohbayashi et al., 2019b). This implies that the insects depend on
70	efficient and stringent selection mechanisms to sort environmental bacteria in order to
71	give access to Caballeronia symbionts only (Itoh et al 2019; Kikuchi et al 2020;

72	Ohbayashi et al 2015) but also that the geographic distribution of symbiont species
73	could be determinant for the outcome of the symbiosis (Ohbayashi et al., 2019b).
74	The genus Burkholderia was firstly separated from Pseudomonas Group II in
75	1991 (Yabuuchi et al., 1991), into a heterogeneous taxonomic group with more than
76	100 bacterial species (Eberl and Vandamme, 2016). In a recent reclassification of this
77	Burkholderia "sensu lato" taxonomic group, six new genera (Paraburkholderia,
78	Caballeronia, Robbsia, Mycetohabitans, Pararobbsia and Trinickia) have been
79	proposed next to the Burkholderia sensu strico genus (Beukes et al., 2017; Dobritsa and
80	Samadpur, 2016; Sawana et al., 2014; Estrada-de Los Santos et al., 2018; Lin et al.,
81	2020; Lopes-Santos et al., 2017). Caballeronia is also called the Stinkbug-associated
82	Beneficial and Environmental (SBE) group of Burkholderia, which is divided into two
83	subgroups, group- α (SBE- α) and group- β (SBE- β).
84	A previous survey of the Caballeronia symbionts in stinkbugs revealed a
85	regional trend of infection with species of the two subgroups: SBE- α tends to be
86	detected more in Japanese and American stinkbug species of the Coreoidea (Acevedo et
87	al., 2021; Garcia et al., 2014; Hunter et al., 2022; Kikuchi et al., 2005, 2011b; Kuechler
88	et al., 2016; Ohbayashi et al., 2019b; Olivier-Espejel et al., 2011), while the SBE-β
89	tends to be detected more in European species of the Coreoidea (Kuchler et al., 2016;
90	Ohbayashi et al., 2019b). However, since only a few insect species have been
91	investigated, and even less species from a wide geographic distribution, it remains
92	unclear whether the regional infection trend is general or not. The mechanism of the

regional trend of infection remains unclear, but it could be determined by the region-dependent composition of soil microbiota.

- 95 The Western conifer seed bug *Leptoglossus occidentalis* (Coreoidea: Coreidae) 96 (Fig. 1A), a notorious pest of conifer forests (Lesieur *et al.* 2014), originates from North 97 America (Heidemann 1910; Koerber 1963). However, this stinkbug is nowadays a 98 serious invading pest worldwide. In 1999, L. occidentalis was found in Europe for the 99 first time in Italy (Taylor *et al.* 2001) and its population has been expanding rapidly in 100 recent years to whole Europe (Dusoulier et al. 2007; Fent and Kment 2011; Gapon 101 2013; Lesieur et al., 2019; Malumphy et al. 2008; van der Heyden, 2019), and other 102 more distant regions such as North Africa (Ben Jamaa et al. 2013; Gapon 2015). It has 103 also spread to South America (Faúndez et al., 2017) and Asia (Ahn et al. 2013; 104 Ishikawa and Kikuhara 2009). In Japan, L. occidentalis was first collected in Tokyo in 105 2008 (Ishikawa and Kikuhara, 2009) and as in Europe, it has rapidly spread into almost 106 all areas of Japan including Tohoku and Kyushu districts (Tsuru et al., 2020). Thus, this 107 cosmopolitan species is ideal to clarify regional effects on the symbiotic association. In 108 this study, we investigated the diversity of *Caballeronia* symbionts of *L. occidentalis* 109 collected in Japan, North America, and Europe in order to confirm whether 110 geographical origin affects the gut symbionts of the conifer bug. Furthermore, symbiont 111 inoculation tests of insects reared in the laboratory with SBE- α and SBE- β symbionts 112 were conducted to analyze in these two *Caballeronia* subgroups gut colonization ability 113 and fitness effect on the host insect.
- 114

115 Materials and methods

116 Insects

117 Samples of *L. occidentalis* used in this study are listed in Table 1. For bacterial

- 118 inoculation tests, L. occidentalis was collected in Gif-sur-Yvette, France in 2018, and
- 119 maintained in cages by feeding on pignolia nuts and distilled water containing 0.05%
- 120 ascorbic acid (DWA) at 25°C under a long-day regime (16h light, 8h dark).

121 Symbiont inoculation tests

- 122 Reared insects were used for inoculation tests with an SBE- α and an SBE- β strain. We
- 123 used strain RPE225 (Kikuchi and Fukatsu, 2014), a GFP (green fluorescent protein)-
- 124 labeled derivative of *B. insecticola* (*Caballeronia insecticola*) strain RPE64, as a typical
- 125 strain of the SBE-α clade. RPE64 was isolated from midgut crypts of a Japanese
- 126 specimen of the bean bug *Riptortus pedestris* (Coreoidea: Alydidae) (Takeshita *et al.*,
- 127 2018). For the SBE- β strain, we selected *Caballeronia* sp. strain 1876, which was
- 128 isolated from midgut crypts of *L. occidentalis* collected in Gif-sur-Yvette, France in
- 129 2016. A GFP-labeled derivative of this SBE-β strain, labelled strain 2482, was
- 130 constructed by a mini-Tn7 transposon delivery system as described previously (Kikuchi
- 131 and Fukatsu, 2014). Insect inoculation tests with these two GFP strains were performed
- 132 essentially as described previously for other stinkbug species (Ohbayashi *et al.*, 2015;
- 133 Ohbayashi et al., 2019b). Briefly, the two bacterial strains were pre-cultured in YG
- 134 (yeast extract and glucose) medium (yeast extract 5.0 g L^{-1} , glucose 4.0 g L^{-1} , and NaCl
- 135 1.0 g L⁻¹) containing rifampicin 30 μ g/ml overnight at 28 °C and 180 rpm, and 200 μ l of
- 136 the overnight culture was inoculated into fresh 5ml YG, incubated at 28 °C, 180 rpm for

137 2h, and finally diluted to 10^7 CFU/ml in DWA. The cotton pad with DWA was removed

- 138 from the rearing container with 2^{nd} instar *L. occidentalis* nymphs, and the nymphs were
- 139 maintained overnight without water to make them thirsty. The symbiont suspensions,
- 140 prepared as above, were poured onto new cotton pads and placed into the rearing
- 141 containers. Aposymbiotic nymphs were obtained by placing a cotton pad soaked with
- 142 DWA only. Containers were maintained as above until analysis.

143 Fluorescence microscopy observation

- 144 The infection status of the inoculated nymphs was confirmed, based on the detection of
- 145 GFP signals in dissected midgut crypts of third instar nymphs. Dissections were

146 performed in phosphate-buffered saline (PBS) by using fine forceps and scissors under

- 147 a fluorescent binocular microscope (Leica, MZ FZ III). Pictures of the dissected
- 148 midguts were taken by a digital camera (Leica, EC3).

149 Insect survival

150 The survival rate of aposymbiotic insects and symbiotic insects infected with either the

- 151 SBE- α strain RPE225 or the SBE- β strain 2482 was estimated by observing regularly
- 152 insect rearing populations (n=27, 13 or 20 insects respectively) over time until the last
- adult emergence in the surviving insects. At each observation, the number of alive and
- dead insects was scored, as well as the number of emerged adults. The survival rate was
- analyzed by Fisher's exact test with Bonferroni correction. The developmental time
- 156 until adulthood in the aposymbiotic insect sample was removed from statistical analysis
- 157 due to a single surviving insect (n=1), and those in SBE- α and SBE- β inoculated insects
- 158 were analyzed by Student's *t*-test.

159 **Competition assay**

160 For the competition assay, we used the RFP (red fluorescent protein) strain RPE525

161 (SBE-α), a derivative of *C. insecticola* strain RPE64 (Itoh *et al.*, 2019) and the GFP

162 strain 2482 (SBE-β). Exponential phase cells were suspended in DWA and an inoculum

163 containing 10⁷ CFU/ml of both strains was prepared from them. The inoculation of

164 insects with the mixed inoculum was performed as above. At 7 days post inoculation,

165 when the insects became 3^{rd} instar nymphs, the midgut crypts were dissected as above.

166 For microscopy analysis, the midgut crypts were observed under a fluorescent

167 microscope (Nikon, Eclipse 80i). For quantitative determination of the two strains, the

168 midgut crypts were collected in 100 µl of PBS buffer in 1.5 ml tube and homogenized

by a sterilized pestle. The pestle was washed by $400 \ \mu l$ of PBS buffer. The relative

170 number of symbiont cells of GFP and RFP bacteria in the extracts of the midgut crypts

and in the bacterial suspension of the inoculum were analyzed by flow cytometry

172 (Beckman Coulter, Cytoflex).

173 Identification of gut symbionts of *L. occidentalis*

174 Gut symbionts were isolated from the midgut crypts of *L. occidentalis* individuals

175 collected in Japan and France (Table. 1, Fig. 1) by plating crypt contents on YG agar

176 plates. The identity of growing bacteria was determined by direct sequencing of the 16S

177 rRNA gene, as previously described (Kikuchi et al., 2011a). Since conifer bugs

178 captured in Italy, Spain, USA and Canada were preserved in 100% ethanol, their

179 dissected midgut crypts were subjected to DNA extraction, and clone library analysis of

180 the 16S rRNA gene, as described (Ohbayashi *et al.*, 2019b). Sequences obtained by the

181 bacterial isolation and clone analysis were assembled by ATSQ software ver. 5.2

182 (Software Development, Tokyo, Japan), followed by manual corrections. Then, their

- 183 most similar bacterial species/strains were identified by BLAST comparison. Sequences
- 184 showing over 99% identity were assigned to the same operational taxonomical unit
- 185 (OTU).

186 Molecular phylogenetic analysis of *L. occidentalis* gut symbionts

- 187 Multiple sequence alignment of the 16S rRNA gene was constructed with MAFFT on
- 188 the EMBL-EBI server (Li *et al.*, 2015). A molecular phylogenetic tree was generated by
- 189 the maximum likelihood (ML) method with removal of gap-including and ambiguous
- 190 sites, and with bootstrap analysis (1,000 replicates) in MEGA software version 10.1.8
- 191 (Kumar et al., 2018; Stecher et al., 2020). We selected the Tamura-Nei model of
- 192 nucleotide substitutions with gamma distributed and invariant sites (G+I) (Tamura and
- 193 Nei, 1993).

194 Nucleotide sequence accession numbers

- 195 The nucleotide sequence data of the 16S rRNA gene obtained in this study have been
- 196 deposited in the DDBJ/EMBL/GenBank public databases with the accession
- 197 numbers LC713090-LC713209 (Table 1).
- 198
- 199 **Results**

200 Identification of gut symbionts in the midgut crypts of *Leptoglossus occidentalis*

- 201 To investigate the diversity of gut symbionts in the conifer bug *L. occidentalis*,
- 202 two methods were used depending on the nature of the insect sample. In the bacterial

203	isolation method, 43 symbionts were isolated from the midgut crypts of 22 individuals
204	collected from respective 4 and 2 populations of Japan and France (Table 1). For the
205	clone library analysis of the 16S rRNA gene, 17 specimens collected in Italy, Spain,
206	USA, and Canada were used, from which 77 sequences were obtained in total (Table 1).
207	The 120 assembled sequences were assigned to 11 OTUs based on the 99% sequence
208	identity threshold (Table S1). Seven OTUs (OTU1-OTU7) were identified to be
209	members of Caballeronia by BLAST search. The OTU2 and OTU7 represented
210	respectively 69% and 22% of the total 110 sequences identified as Caballeronia,
211	indicating that the OTU2 and OTU7 are the main gut symbionts of L. occidentalis.
212	These dominant OTUs were detected in both the bacterial isolation and the cloning
213	method, which suggests that there was no method-related bias in the symbiont
214	identification. The remaining four OTUs (OTU8-OTU11), detected only in four
215	individuals of two insect populations, were identified as Rickettsia spp., which is a well-
216	known intracellular secondary symbiont of diverse insects (Kikuchi, 2009). The insect
217	specimen in which Rickettsia clones were identified, yielded nevertheless a majority of
218	Caballeronia clones (Table S1), indicating that those individuals were also colonized
219	with Caballeronia symbionts.
220	

220 Phylogenetic placement of the *Caballeronia* symbionts

Next, we performed molecular phylogenetic analysis based on the 16S rRNA
gene including sequences of the seven *Caballeronia* OTUs of the *L. occidentalis* gut
symbionts, type strains of *Burkholderia sensu lato* species (*Burkholderia sensu strico*, *Paraburkholderia*, and *Caballeronia* species) and previously reported *Caballeronia* gut

225	symbionts of various coreoid insects. Within the Caballeronia clade, based on the
226	phylogenetic divergence, four subclades were determined: SBE- α , SBE- β , SBE- γ and
227	Coreoidea-clade (Fig. 2). The most dominant OTU2, detected in specimen collected in
228	all countries, was located in the SBE- β . The SBE- β contained four other OTUs (OTU3,
229	OTU4, OTU5, and OTU6) in addition to OTU2 (Fig. 2). On the other hand, the second
230	most dominant OTU7 was placed in the Coreoidea-clade (Fig. 2). This subclade
231	contains neither environmental isolates nor type species, but formed a monophyletic
232	group with many gut symbionts of Japanese and European coreoid bugs (Fig. 2),
233	suggesting their very specialized nature for symbiosis with stinkbug species. OTU1 was
234	located to the SBE- α clade known as major gut symbionts of Japanese and American
235	coreoid stinkbugs (Fig. 2, Fig. S1).
236	The detection rate of the three subclades (SBE- α , SBE- β , and the Coreoidea-
237	clade) in the world's populations of the conifer bug is summarized in Fig. 3 and Fig. S2
238	(also see Table S2), which is based on the phylogenetic placement of the seven OTUs in
239	the subclades of Caballeronia (Fig. 2). Overall, conifer bugs were almost exclusively
240	associated with SBE- β , and SBE- α was scarcely detected (Fig. 3). The Coreoidea-clade
241	occupied one fourth of the populations, frequently detected in Japanese and European
242	populations but not in North American populations of the conifer bug (Fig. 3).
243	Colonization ability and host fitness effect of SBE- α and SBE- β symbiont strains in
244	the midgut crypts of L. occidentalis
245	SBE- α species have been found consistently in the midgut crypts of 33

stinkbug species of the superfamily Coreoidea in previous studies (Acevedo et al.,

247	2021; Garcia et al., 2014; Kikuchi et al., 2011a, 2005; Kuechler et al., 2016; Ohbayashi
248	et al., 2019b; Olivier-Espejel et al., 2011; Hunter et al., 2022). However, in the present
249	study, only one out of 120 symbiont isolates or clones from 39 specimen of L.
250	occidentalis was SBE- α (Fig. 3; Table S1). To confirm whether SBE- α and SBE- β
251	symbionts are capable of colonizing the midgut crypts of the conifer bug, GFP-labeled
252	strains, <i>C. insecticola</i> strain RPE225 (SBE- α) and <i>Caballeronia</i> sp. strain 2482 (SBE- α)
253	β), were inoculated to nymphs of <i>L. occidentalis</i> . Both the SBE- α and SBE- β strains
254	were capable of colonizing the midgut crypts of <i>L. occidentalis</i> (Fig. 4A-B, D-E), as
255	indicated by the enlarged crypts and by the presence of GFP signal. Moreover, the
256	swollen M4B midgut region, typical for symbiont colonization, also confirmed proper
257	colonization by both strains (Fig. 4A-B). On the other hand, aposymbiotic (uninfected)
258	insects showed small M4 crypts and a narrow M4B region (Fig. 4C, F).
258 259	Insects showed small M4 crypts and a narrow M4B region (Fig. 4C, F). Next, we investigated the survival of the aposymbiotic, and SBE- α or SBE- β
259	Next, we investigated the survival of the aposymbiotic, and SBE- α or SBE- β
259 260	Next, we investigated the survival of the aposymbiotic, and SBE- α or SBE- β inoculated conifer bugs. The aposymbiotic bugs showed a high mortality during their
259 260 261	Next, we investigated the survival of the aposymbiotic, and SBE- α or SBE- β inoculated conifer bugs. The aposymbiotic bugs showed a high mortality during their development (Fig. 4G). Particularly, most of the insects died during 2 nd to 3 rd instar
259 260 261 262	Next, we investigated the survival of the aposymbiotic, and SBE- α or SBE- β inoculated conifer bugs. The aposymbiotic bugs showed a high mortality during their development (Fig. 4G). Particularly, most of the insects died during 2 nd to 3 rd instar (Fig. 4G). In contrast, most nymphs inoculated with SBE- α or SBE- β strains survived
 259 260 261 262 263 	Next, we investigated the survival of the aposymbiotic, and SBE- α or SBE- β inoculated conifer bugs. The aposymbiotic bugs showed a high mortality during their development (Fig. 4G). Particularly, most of the insects died during 2 nd to 3 rd instar (Fig. 4G). In contrast, most nymphs inoculated with SBE- α or SBE- β strains survived and reached adulthood (Fig. 4G; survival percentage [adult/total investigated insects] =
 259 260 261 262 263 264 	Next, we investigated the survival of the aposymbiotic, and SBE- α or SBE- β inoculated conifer bugs. The aposymbiotic bugs showed a high mortality during their development (Fig. 4G). Particularly, most of the insects died during 2 nd to 3 rd instar (Fig. 4G). In contrast, most nymphs inoculated with SBE- α or SBE- β strains survived and reached adulthood (Fig. 4G; survival percentage [adult/total investigated insects] = 3.7% [1/27] in aposymbiotic insects; 100% [13/13] in SBE- α -inoculated insects; 90%
 259 260 261 262 263 264 265 	Next, we investigated the survival of the aposymbiotic, and SBE- α or SBE- β inoculated conifer bugs. The aposymbiotic bugs showed a high mortality during their development (Fig. 4G). Particularly, most of the insects died during 2 nd to 3 rd instar (Fig. 4G). In contrast, most nymphs inoculated with SBE- α or SBE- β strains survived and reached adulthood (Fig. 4G; survival percentage [adult/total investigated insects] = 3.7% [1/27] in aposymbiotic insects; 100% [13/13] in SBE- α -inoculated insects; 90% [18/20] in SBE- β -inoculated insects). The developmental time from hatching to adult

269 aposymbiotic insects, while there is no significant difference between SBE- α and SBE-270 β inoculated *L. occidentalis* in survival rate and developmental time (Fig. 4G, H). 271 On the other hand, a competition assay in which nymphs were inoculated with 272 an equal mixture of the SBE- α and the SBE- β strains, demonstrated that the SBE- β 273 significantly outcompeted the SBE-α in the midgut crypts of *L. occidentalis* (Fig. 5). 274 Together, these results strongly suggest that the *Caballeronia* symbiont makes a very 275 large positive contribution to survival and development of L. occidentalis, and that the 276 SBE- α has sufficient ability to colonize midgut crypts to give the same fitness effect to 277 *L. occidentalis* as SBE-β. Nevertheless, microbe-microbe competition in the midgut 278 crypts of *L. occidentalis* could contribute to the observed predominance of the SBE-β. 279 280 Discussion 281 This study revealed that, although conifer bug specimens are associated 282 with genetically diverse Caballeronia (SBE-Burkholderia) symbionts, members of the 283 subclades SBE-β are dominant in all investigated Japanese, European, and North 284 American populations of the conifer bug, and the Coreoidea-clade is also found 285 frequently in Japanese and European insects (Fig. 2, Fig. 3; Table S1, S2). Previous 286 studies found that Japanese and American species of the stinkbug superfamily 287 Coreoidea tend to harbor symbionts belonging to the SBE- α subclade (Kikuchi *et al.*) 288 2011a; Ohbayashi *et al.* 2019b), but here we show that in the conifer bug, SBE- α was

rarely detected, even in Japanese and American populations (Fig. 3; Table S1, S2).

290 From this broad survey in this cosmopolitan species, we conclude that the infection

trend is not affected by geographic origin; therefore, it is more likely determined byselection mechanisms in the host insect.

293	The experimental inoculation tests revealed no difference between SBE- α
294	and SBE- β symbionts in colonization ability and fitness effect on the host bug (Fig. 4).
295	However, the competition assay demonstrated that the SBE- β outcompeted SBE- α in
296	the midgut crypts of L. occidentalis, probably resulting in the low detection rate of
297	SBE- α in the conifer bug (Fig. 3; Table S1, S2). The infection specificity between the
298	bean bug host and the Caballeronia symbiont was demonstrated to be in large part
299	determined by the native symbiont's colonization competitiveness in the midgut. In co-
300	infection experiments, the Caballeronia symbionts always outcompeted in midgut
301	crypts the non-symbiont species Paraburkholderia and Pandoraea that were
302	nevertheless fully capable of colonizing the crypts in the absence of competition species
303	(Itoh et al. 2019). The present study is the first report of competition-based selection in
304	the stinkbug midgut between species of different SBE-clades. The details of the
305	competition-based mechanisms are still unknown and further investigation is needed to
306	better understand it.
307	Among the Caballeronia gut symbionts of L. occidentalis, the second most
308	dominant OTU7 formed a monophyletic group, the Coreoidea-clade, with gut
309	symbionts of other Coreoid species including Cletus rusticus, Plinachtus bicoloripes,

310 Hygia lativentris, Molipteryx fuliginosa, Acanthocoris sordidus (Kikuchi et al., 2011a),

311 Coreus marginatus (Ohbayashi et al., 2019b), and Dicranocephalus albipes (Kuechler

312 *et al.*, 2016). The Coreoidea-clade includes no environmental isolates/clones and no

313	named species of Caballeronia, but consists of only gut symbionts of the Coreoidea
314	(Fig. 2), strongly suggesting that these symbiont strains are highly specific to the insect
315	group. To date, two strains - one is from A. sordidus, and the other is the here described
316	OTU7 clone from L. occidentalis - have been isolated as culturable symbionts of this
317	clade. It will be of great interest to unveil in the future genomic and physiological
318	features of these Coreoidea-clade symbionts to clarify why these Coreoidea-clade
319	members are specific to this insect group. From the viewpoint of evolution, the
320	intercontinental infection pattern of the Coreoidea-clade (Fig. 3) is notable. Considering
321	that L. occidentalis originated from North America (Heidemann 1910; Koerber 1963)
322	and recently invaded to European and Asian countries, we speculate that L. occidentalis
323	was originally associated with SBE- β and may have become symbiotic with the
324	Coreoidea-clade as its distribution expanded.
324 325	Coreoidea-clade as its distribution expanded. <i>Caballeronia</i> symbionts make very large positive contribution to fitness of the
	-
325	Caballeronia symbionts make very large positive contribution to fitness of the
325 326	<i>Caballeronia</i> symbionts make very large positive contribution to fitness of the conifer bug (Fig. 4G), similarly as shown in other coreoid stinkbugs including <i>C</i> .
325 326 327	<i>Caballeronia</i> symbionts make very large positive contribution to fitness of the conifer bug (Fig. 4G), similarly as shown in other coreoid stinkbugs including <i>C</i> . <i>marginatus</i> , <i>L. zonatus</i> , <i>L. phyllopus</i> and <i>R. pedestris</i> (Ohbayashi <i>et al.</i> , 2019b; Hunter
325326327328	<i>Caballeronia</i> symbionts make very large positive contribution to fitness of the conifer bug (Fig. 4G), similarly as shown in other coreoid stinkbugs including <i>C</i> . <i>marginatus</i> , <i>L. zonatus</i> , <i>L. phyllopus</i> and <i>R. pedestris</i> (Ohbayashi <i>et al.</i> , 2019b; Hunter <i>et al.</i> , 2022; Kikuchi <i>et al.</i> , 2007, 2011a). In <i>R. pedestris</i> , our previous transcriptomic
 325 326 327 328 329 	<i>Caballeronia</i> symbionts make very large positive contribution to fitness of the conifer bug (Fig. 4G), similarly as shown in other coreoid stinkbugs including <i>C</i> . <i>marginatus</i> , <i>L. zonatus</i> , <i>L. phyllopus</i> and <i>R. pedestris</i> (Ohbayashi <i>et al.</i> , 2019b; Hunter <i>et al.</i> , 2022; Kikuchi <i>et al.</i> , 2007, 2011a). In <i>R. pedestris</i> , our previous transcriptomic study revealed that <i>Caballeronia</i> provides the host with essential amino acids and
 325 326 327 328 329 330 	<i>Caballeronia</i> symbionts make very large positive contribution to fitness of the conifer bug (Fig. 4G), similarly as shown in other coreoid stinkbugs including <i>C. marginatus</i> , <i>L. zonatus</i> , <i>L. phyllopus</i> and <i>R. pedestris</i> (Ohbayashi <i>et al.</i> , 2019b; Hunter <i>et al.</i> , 2022; Kikuchi <i>et al.</i> , 2007, 2011a). In <i>R. pedestris</i> , our previous transcriptomic study revealed that <i>Caballeronia</i> provides the host with essential amino acids and vitamins by recycling host metabolic waste materials such as sulfate, allantoin, and urea
 325 326 327 328 329 330 331 	<i>Caballeronia</i> symbionts make very large positive contribution to fitness of the conifer bug (Fig. 4G), similarly as shown in other coreoid stinkbugs including <i>C. marginatus, L. zonatus, L. phyllopus</i> and <i>R. pedestris</i> (Ohbayashi <i>et al.</i> , 2019b; Hunter <i>et al.</i> , 2022; Kikuchi <i>et al.</i> , 2007, 2011a). In <i>R. pedestris</i> , our previous transcriptomic study revealed that <i>Caballeronia</i> provides the host with essential amino acids and vitamins by recycling host metabolic waste materials such as sulfate, allantoin, and urea (Ohbayashi <i>et al.</i> , 2019a). This suggests that the <i>Caballeronia</i> symbionts critically

fecundity compared with symbiotic insects, but aposymbiotic nymphs are able to

develop to adulthood with a high survival rate (Kikuchi et al., 2007; Kikuchi and

337 Fukatsu, 2014). Feeding on soybean seeds with high nutritional value probably provides

338 sufficient, although non-optimal, nutrition for development and survival in

339 aposymbiotic *R. pedestris*. The *Caballeronia* symbionts probably play more important

340 metabolic roles for hosts that are feeding on nutritional-poor non-leguminous plants,

341 like *L. occidentalis*.

Rickettsia was detected in the USA and Canada populations of *L. occidentalis*(Table S1). Although some members are human pathogens, most members of the genus *Rickettsia* are facultative intracellular symbionts in many arthropods (Perlman et al.

345 2006), and these symbionts are maintained by vertical transmission. Since *Rickettsia* is

known as a reproductive manipulator that causes male-killing and parthenogenesis in

347 many insects (Perlman et al. 2006), a similar function could be taken into account in the

348 North America populations of the conifer seed bug. The bacterial group has rarely been

349 detected from stinkbug species except for only some species of the Miridae (Chang and

350 Musgrave 1970; Caspi-Fluger et al. 2014; Dally et al. 2020), and a more broad survey is

351 still needed to clarify in how far *Rickettsia* is prevalent in heteropteran insects.

The present study on *L. occidentalis* first demonstrated that specificity of the *Caballeronia* symbiont is determined by host species rather than biogeography. The symbiont's competitiveness in the gut symbiotic organ is probably pivotal for the specificity. Additionally, differences between species in fitness effect on host bugs, as

356 shown in *L. zonatus* and *L. phyllopus* (Hunter *et al.*, 2022), may also be involved in the

357	specificity. To identify underpinning mechanisms of the host-symbiont specificity in
358	stinkbugs in more detail, the following two points should be clarified in the future.
359	Worldwide distribution of Caballeronia in soil needs to be analyzed because the
360	microbial geography is critical in the animals that are tightly associated with
361	environmentally-transmitted beneficial microorganisms. In addition, more experimental
362	inoculation assays, particularly in vivo competition assays, are crucial to confirm and to
363	understand how host-microbe specificity is determined in each stinkbug species.
364	
365	Acknowledgements
366	We thank R. Hara, K. Matsunaga, Y. Hatanaka, S. Noriyuki, S. Chiesa, S. Lopez
367	Romero, S. Cook, S. Blatt, and W. Strong for insect sampling, and J. Lachat, and A.
368	Yokota for assistance with insect rearing. The present work has benefited from
369	Imagerie-Gif core facility supported by l'Agence Nationale de la Recherche (ANR-11-
370	EQPX-0029/Morphoscope, ANR-10-INBS-04/FranceBioImaging; ANR-11-IDEX-
371	0003-02/Saclay Plant Sciences). This study was supported by a JSPS-CNRS Bilateral
372	Open Partnership Joint Research Project and the CNRS International Research Project
373	"Ménage à Trois" to YK and PM, by the French national research agency (ANR) grant
374	ANR-19-CE20-0007 to PM, and by the JSPS Research Fellowship for Young Scientists
375	(20170267 and 19J01106) to TO, by the the MEXT KAKENHI (18KK0211 to YK and
376	TH; 20H03303 to YK and K. Takeshita), and the Moonshot project JPNP18016,
377	commissioned by the New Energy and Industrial Technology Development
378	Organization (NEDO), to TO and K. Tago.

Conflict of Interest

381 The authors declare that they have no competing interests.

383 **References**

- Acevedo, T.S., Fricker, G.P., Garcia, J.R., Alcaide, T., Berasategui, A., Stoy, K.S. and
 Gerardo, N.M. (2021) The importance of environmentally acquired bacterial
 symbionts for the squash bug (*Anasa tristis*), a significant agricultural pest. *Front*
- 387 *Microbiol* **12**: 719112.
- Ahn, S.J., Son, D., Choo, H.Y. and Park, C.G. (2013) The first record on *Leptoglossus occidentalis* (Hemiptera: Coreidae) in Korea, a potential pest of the pinaceous tree
 species. J Asia-Pac Entomol 16: 281-284.
- Ben Jamaa, M., Mejri, M., Naves, P. and Sousa, E. (2013) Detection of *Leptoglossus occidentalis* Heidemann, 1910 (Heteroptera: Coreidae) in Tunisia. *Afr Entomol*21: 165-167.
- Beukes, C.W., Palmer, M., Manyaka, P., Chan, W.Y., Avontuur, J.R., van Zyl, E., *et al.*, (2017) Genome data provides high support for generic boundaries in *Burkholderia* sensu lato. *Front Microbiol* 8: 1154.
- Caspi-Fluger, A., Inbar, M., Mozes-Daube, N., Katzir, N., Portnoy, V., Belausov, E., *et al.*, (2012) Horizontal transmission of the insect symbiont *Rickettsia* is plantmediated. *Proc R Soc B Biol Sci* 279: 1791-1796.
- 400 Chang, K.P. and Musgrave, A.J. (1970) Ultrastructure of rickettsia-like microorganisms
 401 in the midgut of a plant bug, *Stenotus binotatus Jak*. (Heteroptera: Miridae). *Can J*402 *Microbiol* 16: 621-622.
- 403 Dally, M., Lalzar, M., Belausov, E., Gottlieb, Y., Coll, M. and Zchori-Fein, E. (2020)
 404 Cellular localization of two *Rickettsia* symbionts in the digestive system and
- 405 within the ovaries of the Mirid Bug, *Macrolophous pygmaeus*. *Insects* **11**: 530.
- 406 Dobritsa, A.P. and Samadpour, M. (2016) Transfer of eleven species of the genus
- 407 *Burkholderia* to the genus *Paraburkholderia* and proposal of *Caballeronia* gen.
- 408 nov. to accommodate twelve species of the genera *Burkholderia* and
- 409 *Paraburkholderia. Int J Syst Evol Microbiol* **66**: 2836-2846.

- 410 Dusoulier, F., Lupoli, R., Aberlenc, H.P. and Streito, J.C. (2007) L'invasion orientale de
 411 *Leptoglossus occidentalis* en France: bilan de son extension biogéographique en
 412 2007 (Hemiptera Coreidae). L'Entomologiste 63: 303-308.
- 413 Eberl, L. and Vandamme, P. (2016) Members of the genus *Burkholderia*: good and bad
 414 guys. *F1000Research* 5: 1007.
- 415 Engel, P. and Moran, N.A. (2013) The gut microbiota of insects-diversity in structure
 416 and function. *FEMS Microbiol Rev* 37: 699-735.
- 417 Estrada-de Los Santos, P., Palmer, M., Chavez-Ramirez, B., Beukes, C., Steenkamp,
- 418 E.T., Briscoe, L., .et al., (2018) Whole genome analyses suggests that
- 419 Burkholderia sensu lato contains two additional novel genera (Mycetohabitans
- 420 gen. nov., and *Trinickia* gen. nov.): implications for the evolution of diazotrophy
 421 and nodulation in the Burkholderiaceae. Genes 9: 389.
- Faúndez, E.I., Rocca, J.R. and Villablanca, J. (2017) Detection of the invasive western
 conifer seed bug *Leptoglossus occidentalis* Heidemann, 1910 (Heteroptera:

424 Coreidae: Coreinae) in Chile. *Arquivos entomolóxicos*: 317-320.

- 425 Fent, M. and Kment, P. (2011) First record of the invasive western conifer seed bug
- 426 *Leptoglossus occidentalis* (Heteroptera: Coreidae) in Turkey. *North-West J Zool*427 7.
- Gapon, D. (2015) First record of *Leptoglossus occidentalis* (Heteroptera: Coreidae) in
 Morocco. *Heteropterus Rev Entomol* 15: 161-163.
- 430 Gapon, D.A. (2013) First records of the western conifer seed bug *Leptoglossus*
- 431 *occidentalis* Heid. (Heteroptera, Coreidae) from Russia and Ukraine, regularities
- 432 in its distribution and possibilities of its range expansion in the palaearctic region.
 433 *Entomol Rev* 93: 174-181.
- 434 Garcia, J.R., Laughton, A.M., Malik, Z., Parker, B.J., Trincot, C., Chiang, S.L., et al.,
- 435 (2014) Partner associations across sympatric broad-headed bug species and their
 436 environmentally acquired bacterial symbionts. *Mol Ecol* 23: 1333-1347.

437	Heidemann, O. (1910) New species of Leptoglossus from North America. Proc Entomol
438	Soc Wash 12: 191-197.
439	Hunter, M.S., Umanzor, E.F., Kelly, S.E., Whitaker, S.M. and Ravenscraft, A. (2022)
440	Development of common leaf-footed bug pests depends on the presence and
441	identity of their environmentally-acquired symbionts. Appl Environ Microbiol 88:
442	e01778-21.
443	Ishikawa, T. and Kikuhara, Y. (2009) Leptoglossus occidentalis Heidemann
444	(Hemiptera: Coreidae), a presumable recent invader to Japan. Jpn J Entomol 12:
445	115-116.
446	Itoh, H., Jang, S., Takeshita, K., Ohbayashi, T., Ohnishi, N., Meng, X.Y., et al., (2019)
447	Host-symbiont specificity determined by microbe-microbe competition in an
448	insect gut. Proc Natl Acad Sci U S A 116: 22673-22682.
449	Itoh, H., Tago, K., Hayatsu, M. and Kikuchi, Y. (2018) Detoxifying symbiosis:
450	microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat
451	<i>Prod Rep</i> 35 : 434-454.
452	Kikuchi, Y. (2009) Endosymbiotic bacteria in insects: their diversity and culturability.
453	Microbes Environ 24: 195-204.
454	Kikuchi, Y. and Fukatsu, T. (2014) Live imaging of symbiosis: spatiotemporal infection
455	dynamics of a GFP-labelled Burkholderia symbiont in the bean bug Riptortus
456	pedestris. Mol Ecol 23: 1445-1456.
457	Kikuchi, Y., Hayatsu, M., Hosokawa, T., Nagayama, A., Tago, K. and Fukatsu, T.
458	(2012) Symbiont-mediated insecticide resistance. Proc Natl Acad Sci USA 109:
459	8618-8622.
460	Kikuchi, Y., Hosokawa, T. and Fukatsu, T. (2007) Insect-microbe mutualism without
461	vertical transmission: a stinkbug acquires a beneficial gut symbiont from the
462	environment every generation. Appl Environ Microbiol 73: 4308-4316.

463	Kikuchi, Y., Hosokawa, T. and Fukatsu, T. (2011a) An ancient but promiscuous host-
464	symbiont association between Burkholderia gut symbionts and their heteropteran
465	hosts. ISME J 5: 446-460.
466	Kikuchi, Y., Hosokawa, T. and Fukatsu, T. (2011b) Specific developmental window for
467	establishment of an insect-microbe gut symbiosis. Appl Environ Microbiol 77:
468	4075-4081.
469	Kikuchi, Y., Meng, X.Y. and Fukatsu, T. (2005) Gut symbiotic bacteria of the genus
470	Burkholderia in the broad-headed bugs Riptortus clavatus and Leptocorisa
471	chinensis (Heteroptera: Alydidae). Appl Environ Microbiol 71: 4035-4043.
472	Kikuchi, Y., Ohbayashi, T., Jang, S. and Mergaert, P. (2020) Burkholderia insecticola
473	triggers midgut closure in the bean bug Riptortus pedestris to prevent secondary
474	bacterial infections of midgut crypts. ISME J 14: 1627–1638.
475	Koerber, T.W. (1963) Leptoglossus occidentalis (Hemiptera, Coreidae), a newly
476	discovered pest of coniferous seed. Ann Entomol Soc Am 56: 229-234.
477	Kuechler, S.M., Matsuura, Y., Dettner, K. and Kikuchi, Y. (2016) Phylogenetically
478	diverse Burkholderia associated with midgut crypts of spurge bugs,
479	Dicranocephalus spp. (Heteroptera: Stenocephalidae). Microbes Environ 31: 145-
480	153.
481	Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018) MEGA X: molecular
482	evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:
483	1547-1549.
484	Lesieur, V., Lombaert, E., Guillemaud, T., Courtial, B., Strong, W., Roques, A. and
485	Auger-Rozenberg, M.A. (2018) The rapid spread of Leptoglossus occidentalis in
486	Europe: a bridgehead invasion. J Pest Sci 92: 189-200.
487	Lesieur, V., Yart, A., Guilbon, S., Lorme, P., Auger-Rozenberg, MA. and Roques, A.
488	(2014) The invasive Leptoglossus seed bug, a threat for commercial seed crops,
489	but for conifer diversity? Biological Invasions 16: 1833-1849.

491	The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic
492	Acids Res 43 : W580-584.
493	Lin, Q.H., Lv, Y.Y., Gao, Z.H. and Qiu, L.H. (2020) Pararobbsia silviterrae gen. nov.,
494	sp. nov., isolated from forest soil and reclassification of Burkholderia alpina as
495	Pararobbsia alpina comb. nov. Int J Syst Evol Microbiol 70: 1412-1420.
496	Lopes-Santos, L., Castro, D.B.A., Ferreira-Tonin, M., Correa, D.B.A., Weir, B.S., Park,
497	D., et al., (2017) Reassessment of the taxonomic position of Burkholderia
498	andropogonis and description of Robbsia andropogonis gen. nov., comb. nov.
499	Antonie Van Leeuwenhoek 110: 727-736.
500	Malumphy, C., Botting, J., Bantock, T. and Reid, S. (2008). Influx of Leptoglossus
501	occidentalis Heidemann (Coreidae) in England. Het News 12: 7-9.
502	Moran, N.A., Ochman, H. and Hammer, T.J. (2019) Evolutionary and ecological
503	consequences of gut microbial communities. Annu Rev Ecol Evol Syst 50: 451-
504	475.
505	Ohbayashi, T., Futahashi, R., Terashima, M., Barriere, Q., Lamouche, F., Takeshita, K.,
506	et al., (2019a) Comparative cytology, physiology and transcriptomics of
507	Burkholderia insecticola in symbiosis with the bean bug Riptortus pedestris and
508	in culture. ISME J 13: 1469-1483.
509	Ohbayashi, T., Itoh, H., Lachat, J., Kikuchi, Y. and Mergaert, P. (2019b) Burkholderia
510	gut symbionts associated with European and Japanese populations of the dock bug
511	Coreus marginatus (Coreoidea: Coreidae). Microbes Environ 34: 219-222.
512	Ohbayashi, T., Takeshita, K., Kitagawa, W., Nikoh, N., Koga, R., Meng, X.Y., et al.,
513	(2015) Insect's intestinal organ for symbiont sorting. Proc Natl Acad Sci USA
514	112 : E5179–E5188.
515	Olivier-Espejel, S., Sabree, Z.L., Noge, K. and Becerra, J.X. (2011) Gut microbiota in
516	nymph and adults of the giant mesquite bug (Thasus neocalifornicus)

Li, W., Cowley, A., Uludag, M., Gur, T., McWilliam, H., Squizzato, S., et al., (2015)

490

517 (Heteroptera: Coreidae) is dominated by *Burkholderia* acquired de novo every

518 generation. *Environ Entomol* **40**: 1102-1110.

- 519 Perlman, S.J., Hunter, M.S. and Zchori-Fein, E. (2006) The emerging diversity of
 520 *Rickettsia. Proc Biol Sci* 273: 2097-2106.
- 521 Sawana, A., Adeolu, M. and Gupta, R.S. (2014) Molecular signatures and
- phylogenomic analysis of the genus *Burkholderia*: proposal for division of this
 genus into the emended genus *Burkholderia* containing pathogenic organisms and
 a new genus *Paraburkholderia* gen. nov. harboring environmental species. *Front*
- 525 *Genet* **5**: 429.
- Salem, H., Bauer, E., Strauss, A.S., Vogel, H., Marz, M. and Kaltenpoth, M. (2014)
 Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an
 insect host. *Proc R Soc Lond B Biol Sci* 281: 20141838.
- 529 Stecher, G., Tamura, K. and Kumar, S. (2020) Molecular Evolutionary Genetics
 530 Analysis (MEGA) for macOS. *Mol Biol Evol* 37: 1237-1239.
- Sudakaran, S., Kost, C. and Kaltenpoth, M. (2017) Symbiont acquisition and
 replacement as a source of ecological innovation. *Trends Microbiol* 25: 375-390.
- Tamura, K. and Nei, M. (1993) Estimation of the number of nucleotide substitutions in
 the control region of mitochondrial DNA in humans and chimpanzees. *Mol Biol Evol* 10: 512-526.
- Takeshita, K. and Kikuchi, Y. (2017) *Riptortus pedestris* and *Burkholderia* symbiont:
 an ideal model system for insect-microbe symbiotic associations. *Res Microbiol*168: 175-187.
- 539 Takeshita, K., Tamaki, H., Ohbayashi, T., Meng, X.-Y., Sone, T., Mitani, Y., et al.,
- 540 (2018) *Burkholderia insecticola* sp. nov., a gut symbiotic bacterium of the bean
 541 bug *Riptortus pedestris*. *Int J Syst Evol Microbiol* 68: 2370-2374.
- Taylor, S.J., Tescari, G. and Villa, M. (2001) A nearctic pest of Pinaceae accidentally
 introduced into Europe: *Leptoglossus occidentalis* (Heteroptera: Coreidae) in
 northern Italy. *Entomol News* 112: 101-103.

545 Tsuru, T.K., Yuito, O. and Akio, T. (2020) First record of alien leaf-footed bug,

- 546 *Leptoglossus occidentalis* (Insecta, Hemiptera, Coreidae) from Tottori Prefecture,
- 547 western Japan, with remarks on its range expansion in Japan. *Bulletin of the*
- 548 *Tottori Prefectural Museum* **57**: 37-43.
- 549 van der Heyden, T. (2019) Summarized data on the European distribution of
- 550 Leptoglossus occidentalis Heidemann (Heteroptera: Coreidae: Coreinae:

551 Anisoscelini). *Rev Chil Entomol* **45**: 499-502.

552 Yabuuchi, E., Kosako, Y., Oyaizu, H., Yano, I., Hotta, H., Hashimoto, Y., et al., (1992)

553 Proposal of *Burkholderia* gen. nov. and transfer of seven species of the genus

554 *Pseudomonas* homology group II to the new genus, with the type species

- 555 Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol
- 556 *Immunol* **36**: 1251-1275.

Table 1. Information of insect samples investigated in this study.

Country	State/ Prefecture	Locality	Collection year	Collector	Symbiont detection	Specimens number	Symbiot isolates/ clones number	16S rRNA Accession number
Japan	Kumatomo	Koshi	March, 2021	R. Hara, K. Matsunaga	Isolating	3	3	LC713090 - LC713092
	Yamagata	Yuza	April, 2021	Y. Hatanaka	Isolating	4	4	LC713093 - LC713096
	Akita	Akita	October, 2018	K. Takeshita	Isolating	2	2	LC713097 - LC713098
	Akita	Akita	April, 2021	S. Noriyuki	Isolating	4	4	LC713099 - LC713102
France	Essonne	Gif-sur-Yvette a	Novenber, 2016	P. Mergaert	Isolating	3	8	LC713103 - LC713110
	Essonne	Gif-sur-Yvette a	Novenber, 2021	G. Lextrait	Isolating	6	22	LC713111 - LC713132
Italy	Piedmont	Alessandria	October 2020	S. Chiesa	Cloning	2	6	LC713133 - LC713138
Spain	Catalonia	Artes	April 2021	S. Lopez Romero	Cloning	3	12	LC713139 - LC713150
USA	Idaho	Lenore	October 2020	S. Cook	Cloning	4	31	LC713151 - LC713181
Canada	Nova Scotia	Vaughan	October 2020	S. Blatt	Cloning	4	13	LC713182 - LC713194
	British Col.	Vernon	October 2020	W. Strong	Cloning	4	15	LC713195 - LC713209

^a The same collection site

559 Figures legends

560 **Fig 1.** The conifer bug *L. occidentalis* and its midgut structure. (A) An Adult of *L.*

- 561 occidentalis on leaves of a pine tree, and (B) its whole midgut structure. The shown bug
- 562 was reared in the laboratory. Symbiont inoculation was performed by feeding the insect
- 563 on a soil suspension. A symbiont native in the soil colonizes the midgut crypts (M4).
- Abbreviations of the midgut sections are the following: M1, midgut first section; M2,
- 565 midgut second section; M3, midgut third section; M4, midgut fourth section with
- 566 crypts; M4B, M4 bulb; H, hindgut.
- 567

568 Fig 2. Molecular phylogenetic analysis of *Caballeronia* gut symbionts of the conifer

569 bug L. occidentalis. A maximum-likelihood tree was generated based on 1,256 aligned

570 nucleotide sites of the 16S rRNA gene. Numbers at the tree nodes indicate the

571 maximum-likelihood bootstrap values (%) with 1,000 replicates, and bootstrap values of

572 over 50 are shown. We referred to the nucleotide sequence information reported in

573 previous studies of Caballeronia gut symbionts of coreoid insects in Japan (Kikuchi et

574 al., 2011a; Kuechler et al., 2016; Ohbayashi et al., 2019b), in America (Acevedo et al.,

575 2021; Garcia *et al.*, 2014; Hunter *et al.*, 2022; Olivier-Espejel *et al.*, 2011), and in

576 Europe (Kuechler *et al.*, 2016; Ohbayashi *et al.*, 2019b). The subtree of SBE-α group is

577 compressed. An uncompressed subtree is shown in Fig. S1. Accession numbers in the

578 DNA database (DDBJ/EMBL/GenBank) are shown in square brackets. L. occidentalis

579 gut symbionts are shown in blue color with bold case. Stars: bacterial strains used for

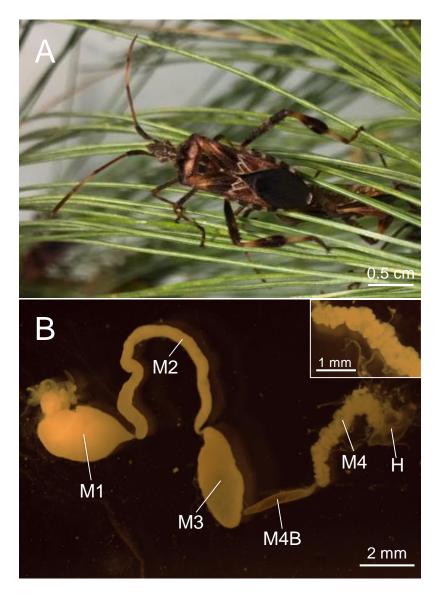
580 symbiont inoculation tests. GS: Gut symbiont.

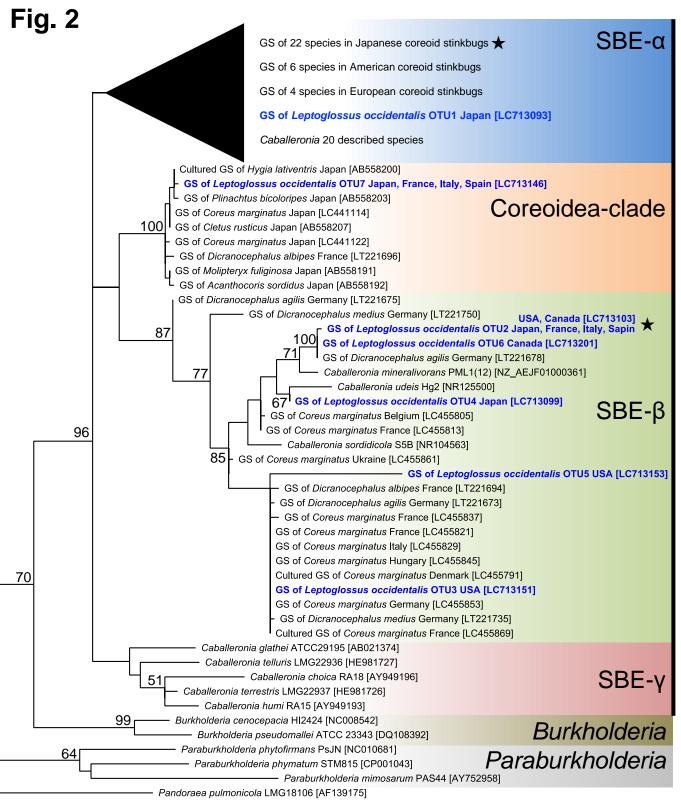
582	Fig. 3 Relative abundance of SBE- α , SBE- β , and Coreoidea-clade bacteria among gut
583	symbionts of conifer bugs normalized by one OTU per one individual at country levels.
584	Number of investigated insects in each country is shown on the graphs, and the precise
585	numbers are provided in Table S1 and Table S2. The relative abundance at local level is
586	shown in Fig. S2.
587	
588	Fig. 4 <i>L. occidentalis</i> infection with SBE- α and SBE- β strains and their host fitness
589	effect. (A-C) Whole midguts of <i>L. occidentalis</i> at 3 rd instar stage, and (D-F) enlarged
590	image of midgut crypts. A dissected midgut inoculated with (A, D) an SBE- α GFP
591	strain, with (B, E) an SBE- β GFP strain, and without (C, F) any inoculant
592	(aposymbiotic). Abbreviation of midgut section is as shown in Fig. 1. (G) Survival rate
593	of <i>L. occidentalis</i> inoculated with SBE- α (blue line, n=13) and SBE- β (green, n=20),
594	and without any inoculant (aposymbiotic: gray, n=27). The survival period indicates the
595	time from hatching to the last adult emergence. A black arrow and dotted line indicate
596	symbiont infections at 6 days post-hatching. Different letters indicate statistically
597	significant differences ($P < 0.0001$, Fisher's exact test with Bonferroni correction). (H)
598	Developmental time from hatching to adulthood in conifer bugs inoculated with SBE- α
599	(blue bar, n=13) and SBE- β (green, n=18), and without any inoculant (aposymbiotic:
600	gray line, n=1). Mean \pm SD is shown. n.s. means no statistically significant difference
601	(Student's <i>t</i> test).

602	Fig. 5 Competition assay of RFP-labeled SBE- α and GFP-labeled SBE- β strains in the
603	midgut crypts of L. occidentalis. (A) The midgut crypts of L. occidentalis at 7 dpi,
604	infected with an equal mixture of both strains. A merged GFP and RFP image is shown
605	(B) Relative abundance of GFP and RFP strains at the inoculum and at the midgut
606	crypts at 7dpi (n=10). The abundance of GFP and RFP strains at the midgut crypts is
607	significantly different (P < $1x10^{-10}$, Student's <i>t</i> test). Fluorescent microscopic images
608	and relative abundance of GFP and RFP strains in 10 individual insects are shown in
609	Fig. S3. Note that both strains resulted in 100% infection when used in control mono-
610	infections (Fig. S4).

612 Fig. S1 Uncompressed tree of the SBE- α clade shown in Fig. 2. Several sequences 613 derived from American coreoid insects were excluded from this tree due to a short available sequence length (<1,000 bp), but these sequences were confirmed as SBE- α in 614 615 the previous phylogenetic analysis (Garcia et al., 2014). Numbers at the tree nodes 616 indicate the maximum-likelihood bootstrap values (%) with 1,000 replicates, and 617 bootstrap values of over 50 are shown. L. occidentalis gut symbionts are shown in blue 618 color with bold case. Star: bacterial strain used for symbiont inoculation test in this 619 study. GS: Gut symbiont.

620


Fig. S2 Relative abundance of SBE-α, SBE-β, and Coreoidea-clade bacteria among gut
symbionts of conifer bugs normalized by one OTU per one individual at local level.


- Number of investigated insects in each city is shown on the graphs, and the precisenumbers are provided in Table S1 and Table S2.
- 625

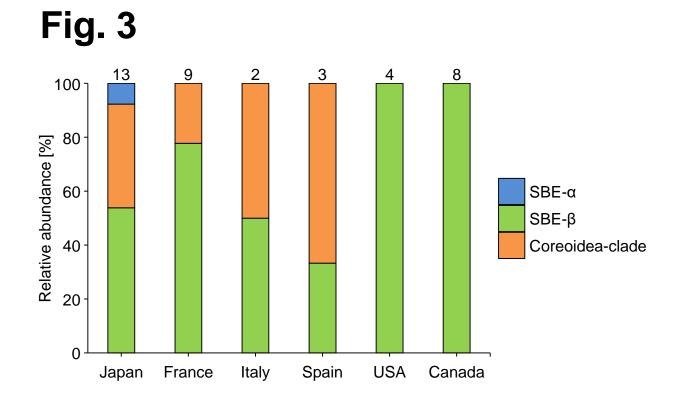
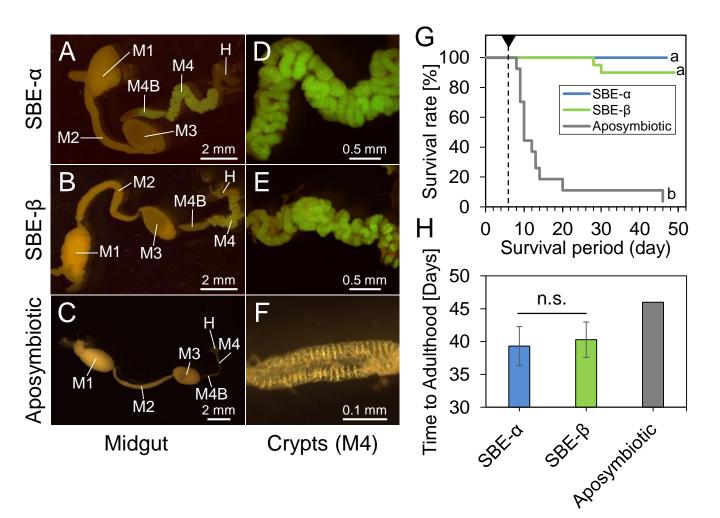
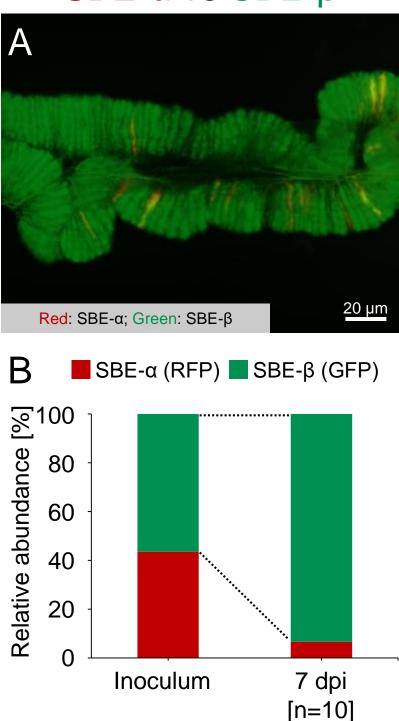
626	Fig. S3 Com	petition assay	of RFP-labeled	SBE-α and G	FP-labeled SBE-	β strains in the

- 627 midgut crypts of 10 individual *L. occidentalis*. (A) Differential interference contrast
- 628 (DIC) and fluorescence microscopy (GFP and RFP) images of the midgut crypts in 10
- 629 individual insects. Merged GFP and RFP image of the midgut crypts #1 is used in
- 630 Fig.5A. (B) Relative abundance of GFP and RFP strains in the inoculum and in the 10
- 631 individual midgut crypts at 7dpi.
- 632
- 633 **Fig. S4** Single infection of (A) RFP-labeled SBE-α and (B) GFP-labeled SBE-β strains
- 634 in the midgut crypts of *L. occidentalis*. DIC and fluorescent microscopic (RFP or RFP)
- 635 images of the midgut crypts in 4 individual midgut crypts.

Fig. 1

0.02

Caballeronia

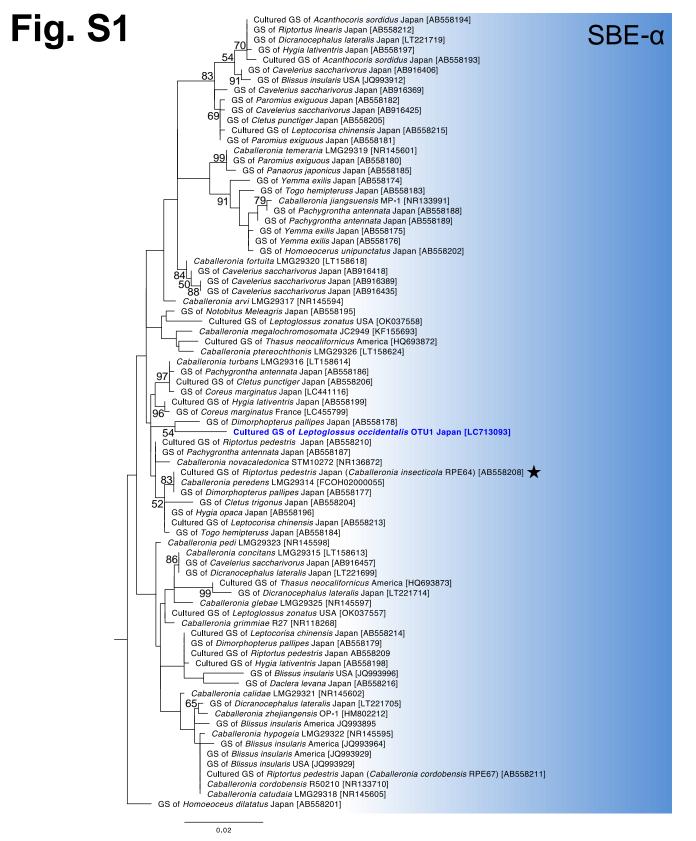
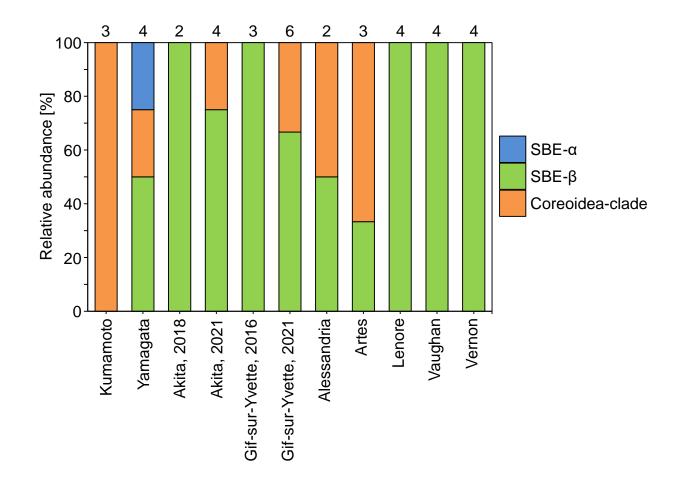
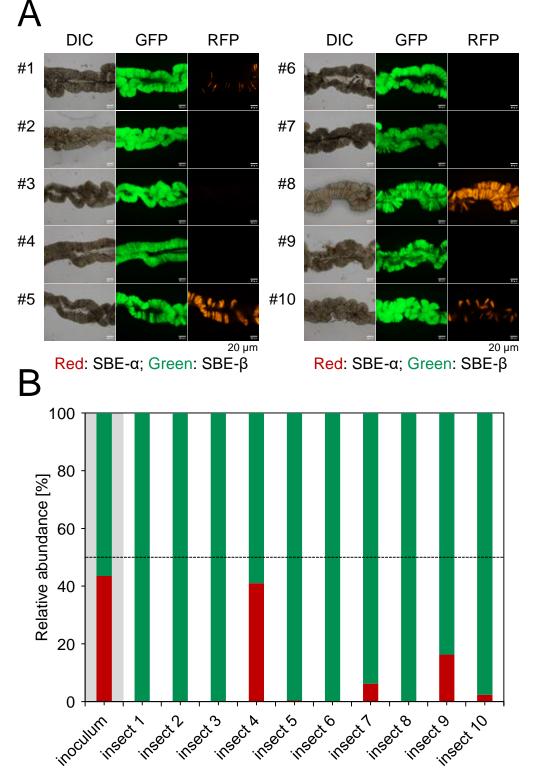

Fig. 4

Fig. 5 SBE-α vs SBE-β

Fig. 5 The competition assay of RFP-labeled SBE- α and GFP-labeled SBE- β strains in the midgut crypts of *L. occidentalis*. (A) The midgut crypts of *L. occidentalis* at 7 dpi. A merged GFP and RFP image is shown. (B) Relative abundance of GFP and RFP strains at the inoculum and at the midgut crypts at 7dpi (n=10). The abundance of GFP and RFP strains at the midgut crypts is significantly different (P < 1x10⁻¹⁰, Student's *t* test). Fluorescent microscopic images and relative abundance of GFP and RFP strains in 10 individual insects are shown in Fig. S3.

Fig. S1 Uncompressed tree of the SBE- α clade shown in Fig. 2. Several sequences derived from American coreoid insects were excluded from this tree due to a short available sequence length (<1,000 bp), but these sequences were confirmed as SBE- α in the previous phylogenetic analysis (Garcia *et al.*, 2014). Numbers at the tree nodes indicate the maximum-likelihood bootstrap values (%) with 1,000 replicates, and bootstrap values of over 50 are shown. *L. occidentalis* gut symbionts are shown in blue color with bold case. Star: bacterial strain used for symbiont inoculation test in this study. GS: Gut symbiont.

Fig. S2

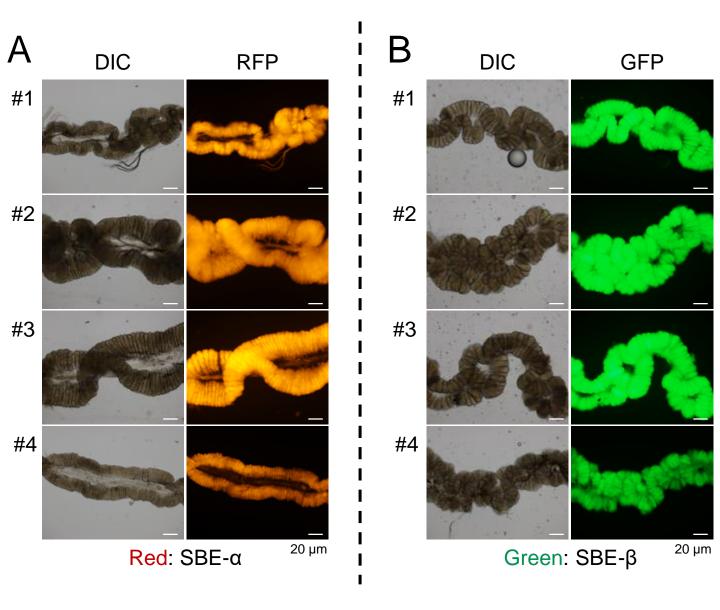

Fig. S2 Relative abundance of SBE- α , SBE- β , and Coreoidea-clade bacteria among gut symbionts of conifer bugs normalized by one OTU per one individual at local level. Number of investigated insects in each city is shown on the graphs, and the precise numbers are provided in Table S1 and Table S2.

Fig. S3

Fig. S3 The competition assay of RFP-labeled SBE- α and GFP-labeled SBE- β strains in the midgut crypts of 10 individual *L. occidentalis.* (A) Differential interference contrast (DIC) and fluorescent microscopic (GFP and RFP) images of the midgut crypts in 10 individual insects. Merged GFP and RFP image of the midgut crypts #1 is used in Fig.5A. (B) Relative abundance of GFP and RFP strains at the inoculum at the 10 individual midgut crypts at 7dpi. Microscopic images and relative abundance data were obtained from 10 insects each.

Fig. S4

Fig. S4 The single infection of (A) RFP-labeled SBE- α and (B) GFP-labeled SBE- β strains in the midgut crypts of *L. occidentalis*. DIC and fluorescent microscopic (RFP or RFP) images of the midgut crypts in each 4 individual midgut crypts.