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Fractal thermodynamics and ninionic statistics of coherent rotational states:
realization via imaginary angular rotation in imaginary time formalism

M. N. Chernodub
Institut Denis Poisson UMR 7013, Université de Tours, 37200, Tours, France

(Dated: December 13, 2022)

We suggest the existence of systems in which the statistics of a particle changes with the quan-
tum level it occupies. The occupation numbers in thermal equilibrium depend on a continuous
statistical parameter that interpolates between bosonic or fermionic and ghost-like statistical dis-
tributions. We call such particle states “ninions”: they are different from anyons and can exist
in 3+1 dimensions. We suggest that ninions can be associated with coherent angular momentum
states. In the Euclidean imaginary-time formalism, the ninionic statistics can be implemented via
the rotwisted boundary conditions, which are associated with the rigid global rotation of the system
with an imaginary angular frequency. The imaginary rotation is characterized by a PT -symmetric
non-Hermitian Hamiltonian and possesses a well-defined thermodynamic limit. The physics of nin-
ions in thermal equilibrium is accessible for numerical simulations on Euclidean lattices. We provide
a no-go theorem on the absence of analytical continuation between real and imaginary rotations in
the thermodynamic limit. The ground state of ninions shares similarity with the θ-vacuum in QCD.
The ninions can produce negative pressure and energy, similar to the Casimir effect and the cosmo-
logical dark energy. In the thermodynamic limit, the dependence of thermal energy of free ninions
on the statistical parameter is a fractal.

I. INTRODUCTION

The spin-statistics theorem implies that, in three spa-
tial dimensions, local particle fields can possess only
two types of statistics. Integer spins are associated
with bosonic particles characterized by commuting fields,
while half-integer spins describe fermionic particles de-
scribed by anti-commuting fields [1]. In two spatial di-
mensions, the spin-statistics theorem does not work, and
the value of particle spin can take any value [2] thus sup-
porting the existence of the third kind of particles, the
anyons [3]. The statistics of particles is of crucial impor-
tance as it plays a principal role in the physical properties
of any many-particle systems.

The rotation is at the heart of the statistical proper-
ties of particles. Under the full 2π rotation, the boson
wavefunction stays the same; the fermion wavefunction
picks a minus sign while the anyon wavefunction gets
multiplied by the phase eiθ which interpolates between
the bosonic, θ = 0 and fermionic, θ = π cases (and there-
fore one often says that the anyons possess the fractional
statistics). The same phases appear under the exchange
of two indistinguishable particles.

This paper considers imaginary rotation, which corre-
sponds to quantum systems that rotate with imaginary
angular frequency. The imaginary rotation can naturally
be formulated in the Euclidean imaginary-time formal-
ism, which describes thermodynamic systems residing in
thermal equilibrium1. The imaginary rotation serves as

1The Euclidean formulation of a theory is usually obtained after a
Wick transformation which is also called “the Wick rotation”. To
avoid confusion with the main topic of this article, we use the term
“the Wick transformation”.

an analytical tool often used in description of thermody-
namics of real rotating quantum systems [4–10].
Here we concentrate on the effects of the rotation with

imaginary frequency on particle statistics. In Section II
we describe how the imaginary rotation can be formu-
lated in terms of a simple rotwisted boundary condi-
tion in the compactified imaginary time direction (Sec-
tion IIA). We also show that the imaginary rotation
introduces the statistical parameter χ, which stipulates
the surprising fractal properties of thermodynamics (Sec-
tion II B). The latter fact leads to a no-go theorem for
analytical continuation from imaginary to real angular
frequencies (Section IIC) if the rotation is understood as
a boundary condition. Section III demonstrates that the
imaginary rotation leads to the statistical transmutations
of particles and the appearance of a new, ninionic-type of
statistics, which is different from anyons. In Section IV,
we argue that the ninions are the coherent states of the
angular momentum operator, which share similarity with
the coherent spin states and coherent angular momentum
stats [11] that, in turn, are similar to the coherent states
of the linear harmonic oscillator [12]. The coherent spin
states play an important role in quantum optics [13]. The
last Section is devoted to our conclusions.

II. IMAGINARY ROTATION:
THERMODYNAMICS

A. Imaginary rotation as a boundary condition

Consider a quantum-mechanical system of bosonic or
fermionic particles which rotates rigidly with the con-
stant angular velocity Ω = Ωn about the axis n. Due to
the rigid nature of rotation, the maximal spatial size R of
the system must be bounded in the xy plane, |Ω|R < 1,
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in order to avoid a clash with causality [14, 15]. The
system resides in thermal equilibrium characterized by
temperature T = 1/β, defined, along with the chemi-
cal potential µ, in the frame, which co-rotates with the
system. In the co-rotating frame, the thermal parts of
bosonic and fermionic free energies take, respectively, the
following forms:

F
(b)
β =

V

2β

∑∫
α,m

∑
c,r=±1

ln
(
1− e−β(ωα,m−rµ−cmΩ)

)
, (1)

F
(f)
β =

V

2β

∑∫
α,m

∑
c,r=±1

ln
(
1 + e−β(ωα,m−rµ−c(m+ 1

2 )Ω)
)−1

, (2)

where V is the spatial volume of the system, ω = ωα,m is
the energy spectrum of the particles, and α is a collective
notation of quantum numbers other than the projection
of angular momentum, m ∈ Z, on the axis of rotation n.
Without loss of generality, we will assume that n is di-
rected along the z axis while using from time to time
n to keep the generality of the expressions. For Dirac
fermions, the index α includes also spin polarizations,
sz = ±1/2. The particle/anti-particle branches are rep-
resented by the index r. Throughout the paper, we work
with units ℏ = c = kB = 1.

The free energies also contain the zero-point contri-

butions, F
(b)
0 = V f0 for bosons and F

(f)
0 = −2V f0 for

fermions, with f0 = 1
2Σα

∫
ωα,m. These quantities depend

neither on chemical potential, temperature, or angular
frequency Ω; therefore, we will ignore them below.

In the standard imaginary time formalism, the Wick
transformation substitutes the time variable t by the
imaginary time τ = it. Thus, the quantum theory in
thermal equilibrium is formulated in Euclidean space
with coordinates (x, τ). At finite temperature T , the
imaginary time direction is compactified to a circle of
the length β = 1/T .

The partition functions (1) and (2) can be represented
as traces over all quantum states of the statistical density

matrix, Z = Tr e−β(ĤΩ−µN̂ ), which includes the Hamil-
tonian in the co-rotating frame:

ĤΩ = Ĥ0 − Ω̂ · Ĵ , (3)

where Ĥ0 is the Hamiltonian in the laboratory frame.
The spectrum of the Hamiltonian (3), both for fermionic
and bosons systems, is bounded from below provided the
causality constraint is respected, |Ω|R < 1. The corre-
sponding partition function, at real angular frequency, is
a well-defined quantity in the Euclidean imaginary time
formalism.

Since the angular frequency, Ω has the dimension of
angle per unit of time, one can also map it, under the
Wick transformation, to a purely imaginary quantity:

Ω = iΩI . (4)

The imaginary angular frequency ΩI ̸= 0 corresponds
to the uniform rotation of the whole spatial timeslice of

the Euclidean spacetime [7]. As the imaginary time vari-
able τ advances for a full period from τ = 0 to τ = β,
the space experiences the rotation by the angle

χ = βΩI , (5)

about the same axis n = ΩI/ΩI . The imaginary Eu-
clidean rotation modifies the boundary conditions of the
fields as illustrated in Fig. 1.

O
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A

FIG. 1. Illustration of (a) standard (7) and (b) rotwisted (8)
boundary conditions with the segments O′A′ at τ = 0 and
OA at τ = β identified. The axis of rotation z is not shown.
The value of the rotwisted angle χ depends on the imaginary
angular frequency (5) and plays a role of the statistical pa-
rameter.

The rotation with the imaginary frequency corre-
sponds to the Hamiltonian

ĤΩI
= Ĥ0 − iΩ̂I · Ĵ , (6)

which follows directly from Eqs. (3) and (4). Despite
the resemblance of real and imaginary rotations, they
correspond to different physical environments [7, 8].
In the absence of rotation, the bosonic (fermionic)

wavefunction ϕ (ψ) is a periodic (anti-periodic) function
of the imaginary time τ :

ΩI = 0 :

{
ϕ(x, τ) = +ϕ(x, τ + β) ,

ψ(x, τ) = −ψ(x, τ + β) .
(7)

Under the imaginary rotation, the boundary conditions
become as follows:

ϕ(x, τ) = +ϕ
(
R̂χx, τ + β

)
, (8a)

ψ(x, τ) = − Λ̂χψ
(
R̂χx, τ + β

)
, (8b)

where the 3× 3 matrix R̂χ rotates rigidly the whole spa-

cial Euclidean subspace, x → x′ = R̂χx, by the angle (5)
χ = βΩI around the axis n = χ/χ = ΩI/ΩI which cor-
responds to the axis of the real rotation, as shown in
Fig. 1. The matrix Λ̂χ represents the rotation in the
spinor space. A similar factor should appear for a vec-
tor boson. The rotwisted (from “rotation” and “twist”)
boundary conditions (8) can be implemented in the Eu-
clidean lattice simulations of field theories [8, 10].
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For definiteness, we consider below the rotation around
the z axis, which can be written in the cylindrical coordi-
nates as follows: (ρ, φ, z, τ) → (ρ, φ−ΩIβ, z, τ +β). The
boundary conditions (8) are visualized in Fig. 1. The
imaginary rotation in the whole spacetime does not lead
to causality problems [4] and can be formulated in the
thermodynamic limit in the whole Euclidean space [8].

The free energy of bosonic and fermionic systems under
the imaginary rotation are straightforwardly obtained by
identifying the angular frequencies (4) in the free energy
in the co-rotating frame (1) and (2), respectively.

Below we consider free gases of bosonic and fermionic
particles subjected to imaginary rotation. The latter is
formulated in terms of the boundary condition (8) in the
imaginary time formalism. In the thermodynamic limit,
these gases possess a fractal structure in their thermo-
dynamic properties and host exotic excitations with oc-
cupation numbers different from those for bosons and
fermions.

B. Fractal thermodynamics of imaginary rotation

1. Hints from classical bosonic solutions

Analysis of classical solutions in Yang-Mills theory
has shown that the imaginary rotation with the rational
nonzero values of the angular frequency (5) corresponds
to the thermal bath with uniform temperature [9]:

T =
1

qβ
for

ΩIβ

2π
≡ χ

2π
=
p

q
, (9)

where β is the length of the lattice in the imaginary-
time direction and the rational number p/q, with positive
integers p, q = 1, 2, . . . , represents an irreducible fraction.

Equation (9) provides us with two hints on the be-
havior of systems under imaginary rotation. First, it
suggests that temperature changes in a non-analytical
way2 with the imaginary frequency ΩI thus prohibiting
an analytical continuation from imaginary to real-valued
angular frequencies. Second, it stresses the significance
of rational numbers which is particular for fractal struc-
tures [16]. Thus, Eq. (9) provides us with a signature of a
fractal behavior of imaginary rotation, which we explore
further below.

2. Free bosons at imaginary rotation

Let us now consider free bosons in thermal equilibrium
in the thermodynamic limit. In the cylindrical coordi-
nates, the Hamiltonian for a scalar particle possesses the

2For example, two close values of the imaginary frequency,
ΩIβ/(2π) = 1/2 and 999/2000, correspond, respectively, to the
temperature values (9) T = 1/(2β) and T = 1/(2000β) that differ
from each other by three orders of magnitude.

following eigenfunctions,

ϕkρ,kz,m(ρ, z, φ) = N1e
imφeikzzJm(kρρ) , (10)

where Jm is the Bessel function andN1 is a normalization
factor. The corresponding energy eigenvalues are

ωkρ,kz
=

√
k2ρ + k2z +M2 , (11)

where kρ ⩾ 0 and kz ∈ R are the momenta along the
radial direction ρ and the z axis, respectively. The pro-
jection of the angular momentum on the z axis, m ∈ Z,
does not enter the expression for the eigenenergy (11)
thus corresponding to a degeneracy factor of the eigen-
states. The integration measure in Eq. (1) takes the form:∑∫

α,m

≡
∫ ∞

0

kρdkρ
2π

∫ ∞

−∞

dkz
2π

∑
m∈Z

. (12)

For the rational angular momentum ΩIβ/(2π) = p/q,
we combine the elements of the sum over the angular
quantum number m in Eq. (12) in the groups of q:

∑
m∈Z

f(m) =
∑
m∈Z

q−1∑
a=0

f(qm+ a) , q = 1, 2, . . . . (13)

Then the bosonic partition function (1) at the imaginary
angular frequency (4) can be identically rewritten as

F
(b)
β =

V

β

∫ ∞

0

kρdkρ
2π

∫ ∞

−∞

dkz
2π

∑
m∈Z

∑
r=±1

× ln
(
1− e−qβ(ωkρ,kz−rµ)

)
. (14)

where we have used the identity (taking γ > 0):

1

2

∑
c=±1

q−1∑
m=0

ln
(
1− e−γ+2πicm p

q

)
= ln

(
1− e−qγ

)
. (15)

Due to the degeneracy of the energy eigenvalues (11) with
respect to the angular momentumm, this identity can be
applied to Eq. (14). Special care is needed to match the
infinite sums over m and m which require a regulariza-
tion. Introducing the ultraviolet regulator in Eq. (13),
e−ϵ|m| with ϵ > 0, one finds in the limit ϵ → 0 that the
sums over m and m are not equivalent but differ by the
factor of 1/q, implying

∑
m∈Z = (1/q)

∑
m∈Z.

Thus, free bosonic gas subjected to the rational imag-
inary angular frequency (9) at temperature T in the ab-
sence of background potential has the same free energy as
the non-rotating gas at lower temperature T/q ≡ 1/(qβ):

F
(b)
β

∣∣∣∣
ΩI=

2π
β

p
q

= F
(b)
qβ

∣∣∣∣
Ω=0

. (16)

This relation complies with Eq. (9) obtained for classical
bosonic solutions. Notice that Eq. (16) does not depend
on the numerator p of the irreducible fraction p/q.
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The equivalence (16) is easy to understand. The rota-
tion with the angular frequency ΩI = 2π

β
p
q rotates the x-

space by the angle χ = 2π p
q per one period β of the imag-

inary time τ . After q periods, the spatial x-space returns
to the original position, thus signaling the qβ periodic-
ity in the imaginary time3. This periodicity length pro-
vides us with the temperature of the system, T = 1/(qβ).
While the extended imaginary time contains q copies of
original space, the number of particles per one copy re-
mains the same. In short, the rotation of a bosonic ther-
mal gas with an imaginary angular frequency reduces the
temperature of the gas by a q-factor related to the ratio-
nal frequency (9).

3. Fractal thermodynamics for bosons

The thermodynamics of the particles under imaginary
rotations is curious. In the absence of rotation, ΩI =
Ω = 0, the density of free energy f = F/V of massless
(for simplicity) neutral real-valued scalars at temperature
T = 1/β is as follows:

f
(b)
0 ≡ f

(b)
β

∣∣∣∣
Ω=0

= − π2

90β4
. (17)

Therefore, for the black-body scalar gas, the energy den-
sity ε0 = ∂(βf0)/∂β, the pressure P0 = −f0, and the
entropy density s0 = β(ε0 + P0), are:

ε0 = 3P0 =
π2

30β4
, s0 =

2π2

45β3
, (18)

where we drop the superscript “(b)” for brevity. We also
set the chemical potential to zero, µ = 0, in the rest of
the article.

The bosonic equivalence (16) implies that the thermo-
dynamic quantities (18) are affected by the rotation with
the imaginary angular momentum ΩI as follows:(

εΩI

ε0

) 1
4

=

(
PΩI

P0

) 1
4

=

(
sΩI

s0

) 1
3

= fT

(
βΩI

2π

)
, (19)

where

fT(x) =

{
1
q if x = p

q ∈ Q, with p, q ∈ N coprimes,

0 if x /∈ Q ,
(20)

is the Thomae function. It is equal to 1/q if its argument
is a rational number given by an irreducible fraction, x =

3Here, we do not consider irrational imaginary frequencies ΩI for
which the periodicity does not exist. Irrational frequencies (in units
of 2π/β) correspond to a zero temperature according to our discus-
sion below, based on the Thomae function (20). The analogy is
similar to dynamics of an electron on a square lattice exposed to
rational and irrational magnetic fields that have very different ef-
fects on the electron dynamics [16].

p/q ∈ Q, and zero otherwise. We would like to stress that
the scaling behavior of thermodynamic quantities (19) is
determined solely by the denominator q of the rational
ratio βΩI/(2π) and not by its numerator.
In Fig. 2, we show the energy density of a massless bo-

son gas as a function of the statistical angle χ, which is
related to the imaginary angular velocity ΩI in Eq. (5).
According to Eq. (19), this thermodynamic quantity is
normalized to the non-rotating boson gas value at a fixed
temperature (18). Thermodynamics exhibits an explicit
fractal behavior characterized by a self-repeating struc-
ture at all temperature scales. If plotted on the loga-
rithmic scale, the visual appearance of thermodynamic
quantities resembles (fractal) water fountains. The self-
similarity patterns in this fractal structure, generated by
the Thomae function (20), are given by the denominators
of the successive Farey sequences of fractions [17].
We have also found the fractal-like behavior of free-

fermion thermodynamics, similar to the bosonic fractal
fountains shown in Fig. 2.

C. A no-go theorem for analytical continuation

The absence of analytical continuation is evident from
the non-analytical nature of the fractal behavior of ther-
modynamics (19) at imaginary angular frequencies ΩI .
The fractal is generated by the Thomae function (20)
which is discontinuous at every rational point because
irrational numbers come infinitely close to any given ra-
tional number. Thus, at every value of ΩI , the thermo-
dynamic quantities are non-differential, non-analytical
functions of the imaginary angular frequency ΩI .
The no-go statement is illustrated in Fig. 3 where the

energy density is shown as the function of the imagi-
nary angular momentum ΩI for various sequences p/q =
Pm/Pn, withm > n, of the prime numbers Pi. The slopes
of these sequences are different, thus demonstrating the
ambiguity of the analytical continuation (or invalidity of
any analytical method based, for example, on a Taylor
expansion). Since the fractal properties of imaginary ro-
tations are common for bosons and fermions, the same
no-go argument is also valid for both types of particles.
In concluding this section, we would like to add four

comments. First of all, we notice that although our no-go
arguments are based on the behavior of free theories and
the properties of classical solutions, they should also work
in interacting models (at least, in perturbation theory
over classical backgrounds).
Second, the analytical continuation can exist for non-

local quantities. For example, the Polyakov loop in gauge
field theories [10] allows us to formulate a Euclidean ana-
log of the Tolman-Ehrenfest law in rotating systems. The
Minkowski and Euclidean Tolman-Ehrenfest laws appear
to be connected by an analytical continuation between
real and imaginary angular frequencies. One can show
that this analytical continuation has a pure kinematic
origin.
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FIG. 2. Fractal thermodynamics under imaginary rotation
in thermodynamic limit: the characteristics of free massless
boson gas as function of the statistical angle χ related to
imaginary angular frequency ΩI in Eq. (5). We show only
the energy density as it is connected to other thermodynamic
quantities via Eq. (19). The normalization to the non-rotating
gas is implied (18). The plots show various zoom scales from
100 to 10−3 which show the self-similar pattern generated by
the Thomae function (20).
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FIG. 3. Absence of analytical continuation from imaginary to
real rotation for free bosonic system: the energy density vs.
the imaginary angular frequency for different prime-number
sequences, ΩI = 2πβ−1Pm/Pn in units of Ω0 = 2πT .

Third, the absence of analytical continuation between
real and imaginary rotations for local thermodynamic
quantities implies that the imaginary rotation is prin-
cipally different and disconnected from the rotation with
real-valued angular momentum. This conclusion is valid
in the thermodynamic limit. Below, we show that the
imaginary rotation leads to a new type of particle statis-
tics.
Fourth, our conclusions are valid in the strict ther-

modynamic limit where the system under the imaginary
rotation is considered in the infinite volume.

III. STATISTICAL TRANSMUTATION

A. Examples of statistic transmutations

1. Transmutation of fermions to bosonic ghosts

To illustrate the concept of our idea, let us start with
a few examples. In Ref. [9], we have shown that the ro-
tation with the imaginary frequency ΩI = 2π/β converts
fermions into ghost-like particles that behave as bosons
but contribute to the free energy with the wrong, for
bosons, sign. Here, we explore this property further for
a generic rational frequency by repeating the above ar-
guments for fermionic particles. We skip most of the
derivation, which is trivial. Instead of the bosonic iden-
tity (15), we use the following relation for fermions:

1

2

∑
c=±1

q−1∑
m=0

ln
(
1 + e−γ+2πic(m+ 1

2 )
p
q

)
= ln

[
1− (−1)p+qe−qγ

]
, (21)

which leads us to the identities:

F
(f)
β

∣∣∣∣
ΩI=

2π
β

p
q

=


F

(f)
qβ

∣∣∣
Ω=0

, p+ q ∈ odd,

−2F
(b)
qβ

∣∣∣
Ω=0

, p+ q ∈ even.
(22)
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The effect of the imaginary angular frequency on tem-
perature and degeneracy is exactly the same as for the
bosons: an imaginary-rotated fermion ensemble gets tem-
perature T = 1/(qβ), as in Eq. (9).

The mapping (22) shows that for odd numbers p + q,
the rotating gas is described by fermions, as expected.
However, for even p+q, the rotation produces ghosts out
of fermions. The ghosts obey bosonic statistics but have
free energy with the wrong (fermionic) sign:

F
(gh)
β ≡ −F (b)

β . (23)

The factor 2 in Eq. (22) at even p + q corresponds to a
spin degeneracy: under the imaginary rotation, one Dirac
fermion produces two bosonic ghosts.

The thermodynamics of fermions under the imaginary
rotation also has the “fractal fountain” structure similar
to the one of Fig. 2. The fractal fountains, however, ac-
quire a two-color pattern due to even/odd partitioning
of the free energy (22). The relations (22) can be under-
stood along the same analysis that we performed in the
case of bosons, taking into account the anti-periodicity
of fermions in the τ direction.
For fermions, the rotation with the imaginary fre-

quency ΩI = 2π/β corresponds to an exceptional case
due to anti-periodicity of fermionic fields. Therefore, for
fermions, the irreducibility of p/q is allowed for p = q = 1.
A full rotation of the system at the angle χ = 2π after one
period changes the sign of the fermionic wavefunction,
which, together with the original anti-periodicity (8b),
gives the periodic boundary conditions for the fermionic
fields at temperature T = 1/β. Thus, the imaginary ro-
tation at the frequency ΩI = 2π/β transmutes fermions
into bosonic ghosts that have bosonic statistics but enter
the free energy with the wrong, “fermionic” sign.

2. Transmutation of bosons to fermionic ghosts

The ghosts can emerge not only in fermionic (23) but
also in bosonic systems. Let us consider, for example, a
massless boson ϕ in the space with two crossing infinitely
large walls as shown in Fig. 4. The walls are oriented in
the xz and yz planes and intersect along the z axis. We
impose that these xz and yz walls set the Dirichlet and
Neumann (DN) boundary conditions, respectively:

DN : ϕ(x, τ)

∣∣∣∣
y=0

= 0,
∂ϕ(x, τ)

∂x

∣∣∣∣
x=0

= 0 , (24)

In the cylindrical system of coordinates (ρ, φ, z),
the wavefunctions consistent with the boundary condi-
tions (24) are as follows:

ϕkρ,kz,m(ρ, z, φ) = N2 sin(mφ)e
ikzzJm(kρρ) . (25)

where N2 is a normalization factor. The energy spectrum
takes the form (11) with one important modification: the
walls diminish the level of the degeneracy of the states by

z
xy Dirichlet

Neumann

FIG. 4. Intersecting Dirichlet and Neumann walls (24). The
potential set by the walls is consistent with the imaginary-
time boundary conditions (8a) set by the imaginary rotation
ΩI = π/β (the statistical parameter χ = π). Subjected
to imaginary rotation, this system converts a boson into a
fermionic ghost with the free energy (27) and thermodynamic
characteristics given in Eqs. (28).

restricting the angular momentum to odd positive num-
bers: m = 2m + 1 with m = 0, 1, . . . . This restriction
leads to a factor of “1/4” in thermodynamic quantities.
In the absence of rotation, the energy density, pressure,
and entropy of the crossed wall system of Fig. 4 (denoted
by “✛”) can be derived from the generic expression for
the bosonic free energy (1). One gets:

ε
(✛)
ΩI=0 = 3P

(✛)
ΩI=0 =

π2

120β4
, s

(✛)
ΩI=0 =

π2

90β3
. (26)

These quantities are, expectedly, four times smaller than
their counterparts in the system without walls (18).
Consider now the imaginary rotation about the axis z

with the imaginary angular frequency ΩI = π/β. Setting
Ω = iπ/β in the expression for the free energy (1), one
gets eβcmΩ = −1 for odd angular momentum m. This
sign flip changes (“transmutes”) effectively the statistics
in the bosonic free energy (1):

F
(b)
β

∣∣∣∣
ΩI=

π
β

=
2V

β

∑∫
α

∞∑
m=0

ln
(
1 + e−βωα,2m+1

)
. (27)

The free energy of the imaginary rotating system (27)
becomes similar to the free energy of fermions (2) but
with the wrong, “bosonic” sign. Thus, according to our
definition above (23), the bosons have been transmuted
into fermionic ghosts.
Apart from the transmutation of statistics, the rota-

tion with the imaginary angular frequency ΩI = π/β
leads, according to Eq. (9), to the decrease of tempera-
ture by the factor of 2 with β → 2β. Finally, taking into
account the mentioned reduction factor 1/4 due to the
presence of the walls, we obtain that the bosonic gas un-
der the cross potential of Fig. (4) subjected to the imag-
inary rotation with the frequency ΩI = π/β becomes the
gas of fermionic ghosts characterized by the exotic ther-
modynamics:

ε
(✛)
ΩI=

π
β
=3P

(✛)
ΩI=

π
β
=− π2

1920β4
, s

(✛)
ΩI=

π
β
=− π2

1440β3
. (28)
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Notice that for the statistical transmutation of free
bosons to the fermionic ghosts, one needs the presence of
both a background potential and an imaginary rotation.
The previous subsection shows that free fermions can be
transmuted into bosonic ghosts only under an imaginary
rotation without a background potential.

3. Thermodynamics of ghosts: examples

According to relations (17), (18), (22) and (23), the
ghosts possess rather exotic thermodynamic features
characterized by negative energy density, negative pres-
sure, and negative entropy. These quantities should de-
crease with the temperature increase (while being nega-
tive, they increase in absolute value).

The unusual properties of the thermodynamic ensem-
ble, generated by the rotwisted boundary conditions (8),
can be probed in first-principle Monte Carlo calculations.
One can mention simulations of Yang-Mills theory at the
imaginary angular momentum ΩI = 1

4 × 2π/β which is
consistent with symmetries of the hypercubic lattice [10].
The theoretical considerations on the same imaginary fre-
quency have also been presented in Ref. [8].

In principle, the lattice field theory can also be formu-
lated at a triangular lattice which also admits the value
of the imaginary angular frequency ΩI = 1

3 × 2π/β. Ac-
cording to Eq. (22), such imaginary rotation leads to the
transmutation of one free Dirac fermion into two bosonic
ghosts at temperature T = 1/(3β) with the energy den-
sity, pressure and entropy becoming negative quantities:

ΩI =
2π

3β
→

 ε
(gh)
ΩI

=3PΩI
= − π2

1215β4 ,

s
(gh)
ΩI

=− 4π2

1215β3 .
(29)

The meaning of negative energy and entropy remains to
be understood. One of the interpretations is that these
ghosts could be interpreted as collective excitations in
a many-body system. While, formally, the entropy of
specific excitations can take negative values, the whole
many-body system should possess a positive entropy.

These bosonic and fermionic ghosts can also play a
distinctive role as a candidate of the cosmological dark
energy used to explain the observed acceleration of the
expansion of the Universe [18].

The negative values of thermodynamic quantities (29)
can be interpreted as a signature of the object to carry
a negative number of degrees of freedom. Therefore, we
employ the term “ghost” in our paper. The same ter-
minology has been used in a different context but with
a similar purpose. These are the Faddeev-Popov ghosts
that appear in a gauge-fixing procedure in gauge theo-
ries [19] and are utilized to subtract the unphysical de-
grees of freedom from the gauge bosons.

The negative values of the thermodynamic quantities
for the ghost particles (29) do not imply the emergence of
any (tachyonic) instability in the system. For example,
in systems with a finite spatial size, the vacuum pressure

can take negative values while the system is perfectly
stable. This phenomenon is associated with the Casimir
effect [20] which appears due to the presence of physical
objects that affect fluctuations of quantum fields around
them. The latter effect changes both energy and pressure
of zero-point vacuum fluctuations [21, 22] and produces
experimentally observable forces [23].
Our ghosts have the same effect on the vacuum energy

as the Casimir phenomenon. At particular statistical pa-
rameter values, the ghosts can make energy density and
pressure negative. Moreover, the ghosts also contribute
negatively to the entropy of the system (29). This nega-
tive entropy phenomenon has also been noticed to appear
in certain Casimir systems [24–27].

B. Level-dependent statistics under imaginary
rotation

1. Ninion thermodynamics

The fermionic and bosonic ghosts represent particular
cases of a more general excitation which we call a “nin-
ion”4. Similarly to the ghost particle, the signature of a
ninion statistics can be seen in its thermodynamic con-
tribution to the free energy of the system.
Let us consider a boson or a fermion with free energy,

Eq. (1) or (2), at the imaginary angular frequency (4).
We subject the particle to a background potential V (x),
which (partially) lifts the degeneracy of the energy spec-
trum on the angular momentum m. We do not specify
the form of the potential but require that it should

(i) be consistent with the rotwisted boundary con-
ditions (8) corresponding to the imaginary fre-
quency ΩI , and

(ii) admit the quantization of the wavefunctions in
terms of the angular quantum number m.5

The corresponding free energy (1) takes the following
form:

F
(a)
β = ± V

2β

∑∫
α,m

∑
r=±1

ln
(
1∓ 2e−β(ωα,m−rµ) cos ξ(a)m

+e−2β(ωα,m−rµ)
)
, a = b, f, (30)

where upper (lower) sign corresponds to bosons, a = b
(fermions, a = f). The auxiliary statistical parameters,

ξ(b)m = mχ , ξ(f)m =

(
m+

1

2

)
χ , (31)

4 From “neither bosons nor fermions”, with the use of the negative
conjunction construction “ni . . .ni . . . ” (neither . . .nor . . . ) which
exists in French and certain Slavic languages.

5The latter requirement does not imply the invariance of the poten-
tial V (x) under a group of continuous rotations about the z axis.
An example is given by the non-axially-symmetric background (24),
visualized in Fig. 4, which possess eigenfunctions (25) labeled by
the angular momentum m.
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depend on the angle χ ≡ βΩI ∈ (−π, π] set by the
rotwisted boundary condition (5). We remind that the
collective index α in Eq. (30) includes all labels of the
quantum states except for the angular momentum m and
that the Dirac fermionic index α also contains a sum over
the spin projection sz = ±1/2.

In free space, the particle energy does not depend on
the angular momentum m. Therefore, all levels sum up
in the free energy (30), which reduces, via the identi-
ties (15) and (21), to its bosonic (16) and fermionic (22)
representations, that exhibit fractal thermodynamics. If
the particles interact with a background potential, the
contributions of different levels at a nonvanishing statis-
tical angle χ ̸= 0 become distinguishable.
The total particle density,

N (a) = − 1

β

∂F (a)

∂µ
≡

∑∫
α,m

n(a)ωα,m
(ξ(b,f)m ), a = b, f, (32)

is determined by the sum over the occupation numbers
over energy levels characterized by the angular momen-
tum m and the collective quantum number α. Using
the expression for the free energy (30) with the rotwisted
boundary conditions, we get the following expression for
the “ninionic” occupation numbers:

n(a)ω (ξ) =
eβ(ω−µ) cos ξ ∓ 1

1∓ 2eβ(ω−µ) cos ξ + e2β(ω−µ)
, a = b, f. (33)

The upper and lower signs indicate that the ninion statis-
tics originate from bosonic (a = b) and fermionic (a = f)
particles, respectively. The continuous parameter ξ, de-
fined for bosons and fermions in Eq. (31), controls the
population of states and interpolates between different
kinds of statistics. For example, using the notation
ε = β(ω − µ), for brevity:

• at the angle ξ = 0, the population numbers (33)
correspond to standard bosonic, n(b) = 1/(eε − 1),
and fermionic, n(f) = 1/(eε + 1), distributions.

• at the angle ξ = π/2, the bosons become fermionic
ghosts n(b) = −1/(e2ε + 1) while the fermions re-
main fermions n(f) = 1/(e2ε + 1), albeit, in both
cases, at twice lower temperature, T = 1/(2β);

• at the angle ξ = π, the bosons become fermionic
ghosts n(b) = −1/(eε+1) and the fermions become
bosonic ghosts n(f) = −1/(eε − 1) at T = 1/β.

The examples of the particle occupation numbers (33)
are shown in Fig. 5.

The occupation numbers (33) can take negative val-
ues. For example, the ninionic occupation number, which
originates from bosons, tends to the universal value in the
high-temperature limit:

lim
β→0

n(b)ω (ξ) = −1

2
, ξ ̸= 0 mod 2π . (34)

ξ = 0

ξ = π
2

ξ = 2π
3

ξ = 3π
4

βμ = 10
fermions

0 5 10 15
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

βω
n ω(b

)
(b)

ξ = 0
ξ = π /8

ξ = π /4

ξ = π /2
ξ = π

μ = 0
bosons

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
-0.5

0.0

0.5

1.0

βω

n ω(f
)

(a)

n(b)
ω

n(f)
ω

βω

βω

FIG. 5. The examples of the ninionic (33) thermal occupa-
tion numbers corresponding to (a) bosons and (b) fermions
in the thermal equilibrium for a set of the parameters ξ. The
latter are related to the imaginary angular frequency and the
statistical parameter χ via Eqs. (5) and (31). The case ξ = 0
corresponds to the standard Bose-Einstein and Fermi-Dirac
distributions, respectively.

This property is seen in Fig. 5(a). On the other hand,
under the imaginary rotation, the fermions give rise to
the ninions that have a negative occupation number just
above the Fermi surface. This effect is visible in Fig. 5(b).

We suggest that ninions can appear in the many-body
systems where the negative occupation number from a
ninion is accompanied by a larger positive contribution
from other states so that the total particle density re-
mains non-negative. The physical circumstances of the
negative density of ninions should be similar to the
physics of holes that live below Fermi surfaces in elec-
tronic systems. In the latter case, removing an electron
from a fermionic sea does not lead to the “negative den-
sity of electrons”. Instead, this process creates a positive
density of the holes. In other words, the absence of a neg-
atively charged electron can be understood as the pres-
ence of a positively charged hole. In the particle physics
context, a similar analogy is given by Dirac’s positron,
which can be associated with an electron removed from
the Dirac sea. We expect that the same idea also applies
to the ninions.
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2. Ninions, anyons, and spin-statistics

For a non-trivial value of parameter ξ, the ninionic
statistical distribution (33) is different from occupation
numbers of bosons and fermions. Since the thermal dis-
tribution of particle states is inherently connected to the
type of statistics of the particle, one could attempt to
associate the ninions with particles possessing unconven-
tional statistics. However, this attempt faces a contradic-
tion with the spin-statistics theorem in 3+1 dimensions.

Indeed, the existence of ninions is a generic property of
any system that admits spatial rotations; therefore, the
ninions can emerge in d ⩾ 2 spatial dimensions. In par-
ticular, the ninion can exist in d = 3 spatial dimensions
where the spin-statistics theorem forbids any statistics
different from bosonic or fermionic [1]. Therefore, let us
reiterate that the ninion cannot be associated with a par-
ticle possessing a definite statistics different from the one
of bosonic or fermionic particles.

Our results demonstrate that the ninionic property is
associated with the energy level of the system rather than
with the particle itself. While the occupation number of
a ninion (33) carries a trace of information about the
original statistics of this particle, the form of the statis-
tical distribution depends on the quantum level occupied
by the particle. For example, a fermionic particle can be
a ghost occupation number at one quantum level, and it
can again acquire a fermionic occupation number at the
other level.

To illustrate this property, let us consider the occupa-
tion number (33) for a bosonic particle at the statistical
parameter χ = π. Let us subject the particle to a poten-
tial that lifts the degeneracy of the energy levels with re-
spect to the angular momentum (a remaining degeneracy
of reflections, m → −m, does not play any role). Then,
according to our discussion after Eq. (33), the thermal
occupation number corresponds to

(i) a boson at temperature T = 1/β for m = 4k;

(ii) a fermionic ghost at T = 1/(2β) for m = 2k + 1,

(iii) a fermionic ghost at T = 1/β for m = 4k + 2,

with k ∈ Z. The form of thermal distribution depends
on the energy level occupied by the particle.

The non-trivial fractional statistics is often attributed
to anyons which are particle-like objects associated with
charge-flux composites [28] that also have various possi-
ble realizations in solid-state systems (for a recent review,
see Ref. [29]). However, the anyons are different from the
ninions due to the following three reasons:

1. The anyons, as locally defined fields, exist only in
two spatial dimensions since the spin-statistics the-
orem does not apply to (2+1)d, and particles can
be of any spin. The ninions, on the contrary, exist
in d ⩾ 2 spatial dimensions.

2. An anyon is a local object that remains the anyon
at any quantum level of the system. However,

the statistics of ninions –seen via the thermal
distributions– depends on the level of the system.

3. The commutation relations of a particle field re-
flect its statistics. For an anyon, the commutation
relation differs from its bosonic and fermionic coun-
terparts. In short, for an anyonic field c, one has
c(x)c(x′) = eiθc(x′)c(x) with θ ∈ (−π, π]. However,
as we show below, the commutation relation for the
ninion fields corresponds to conventional bosonic or
fermionic relations, thus excluding an identification
of a ninion with an anyon.

IV. COHERENT ROTATIONAL STATES

A. Rotwisted boundary in path-integral formalism

In the standard approach to a field theory in thermal
equilibrium, bosonic and fermionic fields should satisfy
the periodic and anti-periodic boundary conditions in the
imaginary time direction. What is the thermodynamic
sense behind the rotwisted boundary conditions (8) that
differ from both mentioned boundary conditions? Here
we follow Ref. [30] where the same question has been
addressed with the translationally shifted boundaries.
Consider the grand canonical ensemble of a finite-tem-

perature finite-density spin-0 bosonic system described
by the Hamiltonian Ĥ with the particle number operator
N̂ . The relative contribution to the partition function Z
coming from the states with the definite projection of the
total angular momentum m on a fixed axis n is given by
the following expectation value:

Rn

(
β, µ;m

)
=

〈
P̂(m)
n

〉
=

Tr{e−β(Ĥ−µN̂ )P̂
(m)
n }

Z(β, µ)
, (35)

where P̂
(m)
n is the projector onto these states and

Z(β, µ) = Tr{e−β(Ĥ−µN̂ )} is the path integral of the
system. The traces are taken over all the states of the
Hilbert space. Inessential volume factors are neglected.
The generating functionKn, associated with the angu-

lar momentum distribution around the axis n, is defined
by the Fourier transform of the relative contribution (35):

e−Kn(β,µ;χ) =
∑
m∈Z

eiχmRn(β, µ;m) , (36)

where the compact quantity χ ∈ (−π, π] is the conjugated
variable with respect to the momentum m.
Reversing Eq. (36) we get the relative contribution

coming from the states with the fixed angular momen-
tum m:

Rn(β, µ;m) =

∫ π

−π

dχ

2π

Z(β, µ;χn/β)

Z(β, µ)
e−iχm, (37)

where

Z(β, µ;ΩI) = Tr
{
e−β(Ĥ−µN̂−iΩ̂I ·Ĵ )

}
, (38)
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is a partition function in which the states carrying the

angular momentumm are weighted by the phase eiβΩI ·Ĵ .
Here Ĵ is the total angular momentum operator which,
for a particle with a nonzero spin, also includes the spin
contribution. For our spin-0 bosonic states |m⟩ with the

definite value of m, one has eiβΩI ·Ĵ |m⟩ = eiβΩIm|m⟩
and, therefore, we recover the phase factor in Eq. (37).

The “rotated” partition function

Z(β, µ;ΩI) =
∑
m∈Z

eiβΩImZm(β, µ) , (39)

is the path integral in Euclidean time with the rotwisted
boundary conditions in the imaginary time (8). Notice
that the angle βΩI ≡ χ, which determines the phase
eiχm attributed to different m sectors in the path inte-
gral (39), is nothing but the statistical angle (5)! More-
over, we immediately arrive to the conclusion that the
partition function (39) can be represented as a sum over
contributions Zm(β, µ) coming from different “topologi-
cal sectors” characterized by the total angular momen-
tum with respect to the axis n = ΩI/ΩI . Evidently,
Z(β, µ) ≡ Z(β, µ; ΩI = 0).
Consequently, the generating function for the relative

contributions of the angular-momentum states can be
written as the ratio of two partition functions,

e−Kn(β,µ;ΩI) ≡
〈
eiβΩ̂I ·Ĵ

〉
=

Z(β, µ;ΩI)

Z(β, µ)
, (40)

corresponding to the rotwisted (8) and standard (7)
boundary conditions of the same theory. The quan-
tity (40) has a well-defined thermodynamic limit.

Therefore, at the level of the path integral, the
rotwisted boundary conditions (8) produce the generat-
ing functional (40) for the states with the definite pro-
jection of the angular momentum number m. The statis-
tical angle χ, related to the imaginary angular rotation
frequency ΩI via Eq. (5), plays a role of the conjugate
variable with respect to the angular momentum m.

The partition function for a field theory can also be
formulated as a path integral over the fields [31]. For a
scalar field theory in d + 1 dimensional time, the finite-
temperature partition function (38) can be written as:

Z(β, µ;ΩI) =

∫
Dπ

∫
rotwisted(ΩI)

Dϕ exp

{∫ β

0

dτ

×
∫
ddx

[
iπ(x)

∂ϕ(x)

∂τ
−H

(
π, ϕ

)
+µN

(
π, ϕ

)]}
. (41)

The term “rotwisted(ΩI)” indicates that the integra-
tion is performed over the scalar field ϕ(x) subjected
to the rotwisted boundary condition (8a) with the angle
χ = βΩI . The integration over the conjugate momentum
π(x) is not restricted.
For a fermionic system, the angular momentum in

the phase factors of Eqs. (36), (37), and (39) should
be shifted, m → m + 1/2. This change reflects the

anti-periodicity of the fermionic fields under 2π spatial
rotations which also enters the corresponding rotwisted
boundary conditions (8b). The partition function can be
formulated similarly to Eq. (41).

B. Commutation relations for ninions

The standard imaginary-time formalism implies that
the bosonic and fermionic) fields are periodic (anti-
periodic) functions of the imaginary time (7). This re-
quirement is closely related to the spin-statistics theorem,
which implies, in 3+1 dimensions, that bosonic fields ϕ
(fermionic fields ψ) are represented by commuting (anti-
commuting) operators, respectively:

[ϕ(x), ϕ(x′)] = 0, {ψ(x), ψ(x′)} = 0 . (42)

Here equal times (t = t′) and different spatial coordinates
(x ̸= x′) are implictly imposed.
Since the spin-statistical properties in (3+1)d deter-

mine the boundary conditions (7) in the 4d Euclidean
space with imaginary time, one could naturally ask our-
selves whether the rotwisted boundary conditions (8)
bring a modification to the commutation relations be-
tween the field operators, and thus determine a new
statistics similar to one of the anyons in (2+1)d? There
are two possible ways how to answer this question.

1. Standard commutation relations with complex-valued
Hamiltonian

The first option is to assume that the path integral
(38) corresponds to the imaginarily rotating system is
governed by the Hamiltonian (6). Then, the thermal
Green’s function is [32, 33],

Gβ(τ, τ
′) = ⟨T [ΦH(τ)ΦH(τ ′)]⟩β (43)

= Tr (ρ̂ T [ΦH(τ)ΦH(τ ′)]) ,

where we introduced, for brevity, the statistical operator:

ρ̂ = Z−1(β)e−βĤΩI , (44)

where Z = Tr e−βĤΩI . The Green’s function (43) also
involves the imaginary-time ordering operator,

T [ΦH(τ)ΦH(τ ′)] = Θ(τ − τ ′)ΦH(τ)ΦH(τ ′) (45)

±Θ(τ ′ − τ)ΦH(τ ′)ΦH(τ) ,

where the upper and lower signs correspond to bosonic
and fermionic field Φ, respectively. For simplicity, we
consider hereafter a zero-density limit, µ = 0.
In Eq. (43), the imaginary-time evolution of the field,

ΦH(τ) = eτĤΩI Φ e−τĤΩI , (46)
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is determined by the complex-valued Hamiltonian (6).
The imaginary time variables τ and τ ′ are restricted to
the principal interval: 0 < τ, τ < β.

The standard chain of the Kubo-Martin-Schwinger
(KMS) relation [32, 33] gives us:

Gβ(x,x
′; τ, τ ′)

∣∣∣∣
τ>τ ′

= Tr (ρ̂ T [ΦH(x, τ)ΦH(x′, τ ′)])

= Tr [ρ̂ΦH(x, τ)ΦH(x′, τ ′)Θ(τ − τ ′)]

= Tr [Θ(τ − τ ′)ΦH(x′, τ ′) ρ̂ΦH(x, τ)]

= Tr
[
Θ(τ − τ ′)e−βĤΩI eβĤΩI ΦH(x′, τ ′) ρ̂ΦH(x, τ)

]
= Tr

[
Θ(τ − τ ′) ρ̂ΦH(R̂χx

′, τ ′ + β)ΦH(x, τ)
]

= ±Tr
[
ρ̂Θ(τ − τ ′)ΦH(x, τ)ΦH(R̂χx

′, τ ′ + β)
]

= ±Tr
(
ρ̂ T

[
ΦH(x, τ)ΦH(R̂χx

′, τ ′ + β)
])

≡ ± Gβ

(
x, R̂χx

′; τ, τ ′ + β
)
, (47)

where we inserted the unit operator 1 = e−βĤΩI eβĤΩI ,
took into account the commutation relations (42), and
used the cyclic properties of the trace. For definiteness,
we took τ > τ ′ (see also Ref. [34] for an accurate discus-
sion of the case of real rotation).
In deriving Eq. (47), we also used the imaginary-time

evolution of the state:

ΦH(R̂χx, τ + β) = eβĤΩI ΦH(x, τ)e−βĤΩI , (48)

which follows directly from the form of the Hamilto-
nian (6). The evolution (48) translates the state for one
step along the imaginary time, τ → τ + β, and simul-
taneously rotates it by the angle (5), x → R̂χx about
the spatial axis n = ΩI/ΩI . For fermions, Eq. (48) also
includes rotation in the spinor space (8b) which is not
shown explicitly.
The KMS relations set the boundary conditions for

the fields along the compactified imaginary-time direc-
tion [32, 33]. In our case, the chain of the relations (47)
for the rotwisted boundary conditions (8) gives us the
standard commutation relations (42) for bosonic, Φ = ϕ
and fermionic, Φ = ψ, fields. Therefore, we conclude that
under imaginary rotation, the bosons remain bosons, and
the fermions remain fermions: no spin-statistical trans-
formation for these particles occurs. However, as we al-
ready demonstrated for a generic system with imaginary
rotation, the occupation numbers at different energy lev-
els do not correspond, at thermal equilibrium, to bosonic
or fermionic statistics.

2. Exotic commutation relations with real Hamiltonian

The second option is to assume that the system evolves
according to the real-valued Hamiltonian defined in the
laboratory frame:

ρ̂0 = Z−1
0 (β)e−βĤ0 , Z0 = Tr e−βĤ0 . (49)

Then, instead of Eq. (48), we arrive to the standard evo-
lution rule:

ΦH(x, τ + β) = eβĤ0ΦH(x, τ)e−βĤ0 , (50)

which, however, does not allow to close the KMS chain of
relations (47) with the standard commutation relations.
In order to make the evolution (50) to be consistent with
the rotwisted boundary conditions (8), one needs to ac-
cept the following commutation relations:

ΦH(x′, τ ′+β)ΦH(x, τ)=± ΦH(x, τ)ΦH(R̂χx
′, τ ′+β),

(51)

where the upper (lower) index corresponds to a ninion
originated from a boson (fermion). Equation (51) implies
that the ninion fields (let us denote them η) are subjected
to the following exotic equal-time commutation relations:

η(x, t)η(x′, t) = ±η(x′, t)η(R̂χx, t) . (52)

We interpret the commutation relations (52) as follows.
The statistics of particles reveals itself in the evolution
of the phase of a many-particle state when two of the
identical particles swap their positions. Another mani-
festation of statistics emerges in the phase gained by a
wavefunction of a single particle subjected to rotation.
The commutation relation (52) incorporates both these
concepts: as particles exchange their places, one of them
rotates about the axis n = χ/χ – including the spin fac-
tor for fermions (8b) – and “misses” the correct place,

x → R̂χx.
Regardless of the realization of the ninion statistics,

the ninion system has an exotic statistical property that
is different from the standard fractional statistics: the
form of the occupation numbers for bosonic and fermionic
particles depend on the level they occupy. In general, the
level-dependent thermal distribution (33) is related, via
Eq. (31), to a continuous statistical parameter χ which
interpolates between different types of statistical distri-
butions. In the limiting cases, the thermal distribution
takes either the standard bosonic or fermionic form.

C. Non-Hermiticity, PT -invariance, and unitarity
of imaginary rotation

As we have already noticed, the form of the statistical
operator (44) implies that the evolution of the imaginary
rotating system is described by the “rotwisted” Hamilto-
nian (6). One can easily prove that, due to the presence
of the purely imaginary term, this Hamiltonian is a non-

Hermitian operator, Ĥ†
ΩI

̸= ĤΩI
, which could potentially

lead to dissipation or instability in the system. However,
it is somewhat amusing to recognize that so far we did
not find any trace of these unwanted artificial features in
the imaginary-time formulation of thermodynamics.

The reason behind this unusual property can be rooted
in the invariance of the Hamiltonian (6) under the com-
mon action of the parity transformation, P : x → −x,
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and the time reversal, T : t → −t. Indeed, the to-
tal angular momentum Ĵ is a parity even (P ĴP = Ĵ )

and time-reversal odd (T Ĵ T = −Ĵ ) operator. Given
the anti-linearity of the time reversal, T i T = −i, one
finds that the rotwisted term of the Hamiltonian (6) is a
PT -invariant operator:

PT (iΩ̂I · Ĵ )PT = iΩ̂I · Ĵ . (53)

In the PT -unbroken regime, the PT -symmetric non-
Hamiltonians share the properties of the usual Hermitian
Hamiltonians: they have a real-valued energy spectrum,
describe the unitary evolution system and exhibit a well-
defined thermodynamic limit [35]. Perhaps, we observe a
somewhat similar effect in the imaginary time formalism:
despite the non-Hermiticity of the Hamiltonian (6), the
imaginary rotation appears to be a well-defined concept
in thermodynamics.

D. Analogies with Quantum Chromodynamics

1. θ-angle in QCD in the path-integral formulation

The last term of the rotwisted Hamiltonian (6) shares
similarity with the θ term in the theory of strong funda-
mental interactions, Quantum Chromodynamics (QCD).
The θ term in QCD has a topological origin,

J θ
QCD = −θq(x) , (54)

where

q(x) =
g2

16π2
Tr

[
GµνG̃

µν
]
, (55)

is the topological charge density expressed via the gluonic
field strength tensor Gµν = ∂µAν − ∂νAµ + i[Aµ, Aν ]

and its dual G̃µν = 1
2ϵµνρσG

ρσ. The integral over the
topological density (55),

ν[A] =

∫
d4xw(x) ∈ Z , (56)

is an integer which determines the topological winding
number ν of the gluonic configuration Aµ. The potential
existence of the θ term in the theory leads to “strong
CP -problem” (for a review, see Ref. [36]).
The vacuum structure of QCD depends on the distri-

bution of the topological winding number (56) which de-
termines important properties of QCD vacuum [37, 38].
The Euclidean action of QCD with the θ term is

SQCD(θ) = SQCD
0 − iθν[A] , (57)

where

SQCD
0 = SG +

∫
d4xq̄

(
−i /D +M

)
q , (58)

is the standard Euclidean action which contains the
gauge Yang-Mills term,

SG =

∫
d4x

1

2
Tr [GµνGµν ] , (59)

and the quark sector with the spinor fields q, the mass
matrix M , and the covariant derivative /D = γµDµ(A).
The QCD partition function involves the sum over all

gauge-field configurations which are characterized by the
winding number ν. Therefore, the partition function is
a sum over different topological sectors ν weighted with
the phase which depends on the θ angle:

ZQCD(θ) =
∑
ν∈Z

eiθνZQCD
ν . (60)

In the partition function,

ZQCD
ν =

∫
[DAµ]ν det

(
−i /D +M

)
e−SG , (61)

the integration over the gluons Aµ restricted to the sec-
tor with the fixed topological winding number ν. The
functional determinant in Eq. (61) comes as a result of
the integration over the quark fields q.
One notices the striking similarity between the parti-

tion function of QCD (60) and the partition function of
the generic field theory (39) subjected to the rotwisted
boundary conditions (8): both functions are determined
by the sums of the respective topological sectors. The
similarity is enforced by the observation that the topo-
logical term in Eq. (57) is an analog of the last term in the
rotwisted Hamiltonian (6) which determines the imagi-
nary rotation. The θ-angle parameter in QCD is anal-
ogous to the statistical parameter χ which defines the
rotwisted boundary conditions. Moreover, the integer-
valued topological winding number ν corresponds to the
angular momentum quantum number m (in a certain
sense, the analogy is even more expressive in the physical
sense since the angular momentum counts how fast the
system “winds” about the given axis).

2. θ-vacuum in QCD

The analogy between topology in QCD and imaginary
rotation goes further. Below we consider the QCD θ-
vacuum encoded in the topological properties of the gluon
fields. We consider Yang-Mills theory which describes the
gluonic sector of the theory.
The lowest-energy state of the classical Yang-Mills the-

ory is an infinitely degenerate state due to the presence
of the infinitely many classical minima [39]. The min-
ima are topologically inequivalent gluon configurations
labeled by the topological number n ∈ Z. This number is
usually associated with the difference between so-called
Chern-Simons numbers nCS ≡ NCS[A] of the given vac-
uum state and a “fiducial” vacuum state.
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In a semi-classical Yang-Mills theory, the transition be-
tween vacuum states is described by instantons [40] which
are gluonic configurations Aµ that are interpreted as tun-
neling events. An instanton event changes the topological
number of the state, nCS → nCS+ν, by the integer-valued
topological number (56) ν = ν[A] of the instanton.

In quantum theory, the tunneling between neighbor-
ing vacuum states removes the classical degeneracy of
the ground state. The quantum ground state is now de-
scribed by the θ vacuum:

|θ⟩ =
∑
ν∈Z

eiθν |ν⟩ . (62)

The value of θ labels different vacuum states and, thus,
removes the classical degeneracy in the quantized non-
Abelian Yang-Mills gauge theory. The θ angle serves as
an independent physical parameter of the theory [39].

This situation, of course, is not pertinent only to Yang-
Mills theory. Examples include quantum mechanics of a
particle in a periodic potential, where the role of θ is
played by a quasimomentum in the Bloch phase, and a
charged particle on a ring, where the particle states feel
the Aharonov-Bohm phase [39]. In analogy with quan-
tum mechanical properties of a harmonic oscillator, the
θ-vacuum state (62) can be represented, up to a global
phase, as a sum of the extended coherent states [41]:

|ν⟩θ = eiθN̂CS |ν⟩ , (63)

with distinct vacua |ν⟩ serving as fiducial vectors. Below,
we will show that the ninions are the coherent states of
the rotation operators similar to the topological coherent
states in QCD (63).

E. Coherent states and imaginary rotation

Coming back to the rotwisted boundary conditions, we
define the coherent rotational “χ-state” in similarity with
the θ-vacuum in QCD (62):

|α;χ⟩n =
∑

m∈Mα

eiχm |α,m⟩n ≡
∑

m∈Mα

eiχĴn |α,m⟩n, (64)

where |α,m⟩n is a vector in the Hilbert space represent-
ing a state which carries the angular momentum m with
respect to a fixed axis n and Ĵn ≡ n · Ĵ is the operator
of projection of the angular momentum onto the axis n.
As usual, the collective index α denotes the quantum
numbers other than m. The set Mα in the sum (64) in-
corporates all values of the angular momenta m with the
same value of energy, εα,m1

= εα,m2
= εα form1,2 ∈ Mα.

Therefore, the state (64) is a coherent state given by the
superpositions of all energy-degenerate angular momen-
tum modes:

Ĥ |α;χ⟩n = εα |α;χ⟩n . (65)

In the absence of degeneracy, the state (64) is repre-
sented by a coherent state of the rotation operator:

|α;χ⟩n = eiχĴn |α,m⟩n , (66)

where the state |α,m⟩n serves as a fiducial vector in the
Hilbert space.
In quantum optics, the vectors (66) are known as the

“coherent spin states” [12, 13]: the quantum numberm is
associated with the spin of a particle sz and the operator
Ĵn becomes the operator of the spin projection Ŝz on the
z axis, with n ≡ ez. In the context of imaginary rotation,
the state (66) is an elementary ninion state in which the
coherence parameter χ coincides exactly with the sta-
tistical parameter χ encoded in the rotwisted boundary
conditions along the imaginary time direction (8).

Consider now the case of free quantum theory which
we studied earlier. The eigenenergies of a free boson (11)
are infinitely degenerate with respect to the angular mo-
mentum m similarly to the infinitely degenerate ground
states of classical Yang-Mills theory that are labeled by
the topological index ν. Thus, the rotational χ-state (64)
for the free scalar theory can be written in the following
suggestive form:

|pρ, pz;χ⟩n =
∑
m∈Z

eiχm |m; pρ, pz⟩n , (67)

where the vector |m; pρ, pz⟩n represents the state (10)
and the vector n points along the z axis. For the ground
state with a vanishing momentum, pρ = pz = 0, the
ground state can be called the χ-vacuum state (64) in
analogy with the θ-vacuum in QCD (62).
Extending further the analogy with the physics of

QCD, let us notice that the instantonic transition from
one vacuum |ν⟩ to the other, |ν + 1⟩, can be represented
as a change of the phase of the θ-vacuum by eiθ. There-
fore, this phase factor is the eigenfunction of the corre-
sponding instanton transition operator [39].

To maintain the above analogy for the imaginary ro-

tation, let us introduce the operator T̂ which increases
the angular momentum of the rotating system by one,

T̂|m⟩n = |m+ 1⟩n. In the free theory, the infinite degen-
eracy of the energy states (11) implies that the Hamil-
tonian and the shift operator commute with each other,

[Ĥ, T̂] = 0. Therefore, these operators share the eigen-
states. The statistical parameter χ defines the eigenvalue
of the angular-momentum-increasing operator,

T̂ |pρ, pz;χ⟩n = eiχ |pρ, pz;χ⟩n . (68)

It is the pure phase, eiχ, similarly to the eigenvalue eiθ of
the instanton operator acting on the QCD θ-vacuum [39].

If the field is interacting with a background potential,
then the infinite degeneracy of the states with respect
to the angular momentum m is partially lifted out (an
example is given in Section IIIA 2 on page 6). Therefore,
for interacting systems, the sum in Eq. (67) goes only
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over the m-degenerate eigenenergies, m ∈ Mα, leading
to the series of the degenerate coherent χ-states (64).
In summary, the ninions can be associated with the

coherent angular momentum states (66). In a free theory,
such states possess an infinite degeneracy which makes
their ground state similar to the θ-vacuum of QCD.

V. CONCLUSIONS

We discussed quantum field theories in thermal equi-
librium in the modified Euclidean imaginary time formal-
ism. The standard (anti-)periodicity of fields in the com-
pactified imaginary time direction is generalized to the
“rotwisted” boundary condition (8) which supplements
the advance along the imaginary time with a global spa-
tial rotation (illustrated in Fig. 1). We demonstrated
that the fields satisfying such a condition –which for-
mally corresponds to rotation with an imaginary angular
momentum– evolve according to a PT -symmetric non-
Hermitian Hamiltonian, which points to the unitary evo-
lution of the underlying physical system.

The rotwisted boundary conditions describe new exci-
tations that we call “ninions” (the etymology of this word
is given in footnote 4 on page 7). The ninions have in-
triguing statistical features as the functional dependence
of the ninion occupation number on temperature, and
chemical potential depends on the quantum eigenstate
that this particle occupies. As the functional form of
the occupation number determines the statistical distri-
bution of particles in the ensemble, the ninion possesses
variable, level-dependent statistics, different from bosons
and fermions. The ninions exist in three spatial dimen-
sions and are also different from anyons.

We gave an explicit example of a ninionic system for
which, at a certain eigenstate, the particle occupation
number is given by the Bose-Einstein statistics, while at
another eigenstate, the same particle becomes a fermionic
ghost. Such a ghost is described by the Fermi-Dirac
statistics but enters the system’s free energy with the

wrong, “bosonic” sign.
The ninionic occupation number (33) is labeled by the

continuous number related to the statistical angle χ. This
angle enters the rotwisted boundary condition (31) and
can be incorporated in the path integral formalism (41).
The ground state of free ninions shares similarity with
the θ-vacuum in Quantum Chromodynamics, with the
topological θ angle playing the role of the statistical pa-
rameter χ while the topological QCD charge is associated
with the angular momentum. We argue that the rotwist-
ing (statistical) angle χ is an independent coupling in
thermodynamics in the same sense as the θ angle is an
independent coupling in QCD.
Interestingly, certain ninionic states appear to be

ghosts that possess negative pressure (29). This prop-
erty could make a ninionic state an exciting candidate
for cosmological dark energy, which could play a role in
the observed acceleration of the Universe’s expansion.
We also demonstrated that the dependence of thermo-

dynamic characteristics of noninteracting ninions on the
statistical angle χ in thermodynamic limit is determined
by the Thomae function (20) which is discontinuous at
every point. This non-analyticity implies a no-go the-
orem on the absence of analytical continuation between
real and imaginary rotation if the latter is introduced via
the rotwisted boundary.
A concrete experimental realization of ninions might

exist in systems hosting coherent angular momentum
states [11] and coherent spin states [12] that play a signif-
icant role in quantum optics [13]. The exotic occupation
numbers of ninions may point to the possibility of non-
equilibrium but steady states. Furthermore, properties of
ninions are also accessible for numerical simulations on
Euclidean lattices using standard Monte Carlo methods.
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