Gourab Bhattacharya 
  
A QUANTIZATION OF SINGULAR AND HERMITIAN SPACES

A Quantization of the Hermitian Manifolds is proposed via the King-Nekrasov equation. This quantization procedure is unique in a sense that it works for certain singular spaces, we used this equation to quantize Coherent sheaves (algebraic or analytic). We worked out an example for a submanifold with one "tame" singularity at zero and calculated the corresponding partition function and described its asymptotic expansion in terms of certain coefficients.

Introduction

We introduced a new quantization condition that generalizes the usual quantization condition on phase space. Usually, the quantization procedure is valid for "non-singular" or "smooth" manifolds, hence for vector bundles over it, but, the King-Nekrasov quantization that we are going to propose in the section ( 6) is valid for algebraic or analytic coherent sheaves over singular spaces of "tamed singularities" or "singularities of a finite kind".

We collected a few examples from the author's unpublished joint work with Maxim Kontsevich [START_REF] Bhattacharya | Maxim Some Solutions of King-Nekrasov Equation[END_REF] and the author's independent work.

The quantization of a singular space is done in the section (7.3) for the ideal of polynomials vanishing at zero. There it is stated that the "singularity at 0 can be resolved" (when we say the resolution of certain singularities in our context, we mainly mean either convergence of the corresponding partition function or a "good" asymptotic expansion of the partition function is valid in a sufficiently well-behaved neighborhood of the point). This gives us hope to consider more complicated singularities and calculate the corresponding partition functions.

We also observed as a toy example, that the "Twistor quantization" of Penrose is a special case of our construction (see section (8.15)), we sketched the definition, and more will be said in a future paper.

Remark 1.1. The Twistor quantization procedure (8.2), (8.15) perfectly explains why a quantization procedure is analogous to the concept of a holomorphic function, that is, as holomorphic function gives separate status to z and z, similarly a quantization procedure is devised to free conjugate variables, for say as in the case of classical mechanics (4), the the canonical varibles (p a , q b ) of the phase space gets independence from their classical conjugal life that gives meaning to the symplectic form ω = a dp a ∧ dq a , however, after canonical quantization, they become Fourier or Pontryagin dual; now, as Cauchy-Riemann operators give the condition of holomorphicity, the King-Nekrasov equation gives the condition for a quantization.

It is interesting to see how some of the ideas of gravitational waves are related to our work, it is well-known for more than a half-century from a theory of gravitational waves [START_REF] Sachs | Gravitational Waves in General Relativity. VI. The Outgoing Radiation Condition[END_REF], [START_REF] Sachs | Structure of particles in Linearized Gravitational Theory[END_REF] that some multipole expansion of a quantity satisfying D'Alembertian with a flat or curved background requires a notion of an analytic function that "separates" conjugate variables in a certain technical way, in the complex Euclidean gravity, these ideas give rise to a complex analytic category and the notion of holomorphic quantization arises.

More explanation in this direction can be found in the remark (6.1) and the discussion in the section containing the remark In the section [START_REF] Bhattacharya | Maxim Some Solutions of King-Nekrasov Equation[END_REF] we informally introduced the notion of partition functions required for our purpose and described how they are related to other parts of mathematics and gave an informal justification of the names used in our work. We informally introduced how a statistical system can be "quantized" and how the quantization procedure is related to the number theory and noncommutative Kähler geometry that had been pursued in our previous work with M Kontsevich [START_REF] Bhattacharya | Maxim A Generalization of King's Equation[END_REF]. In the case of simple systems, different quantization procedures give equivalent answers, so we shall use the terminologies of "computation of partition function" and "quantization" interchangeably. If ambiguities arise, we shall clarify them from the context.

In the section [START_REF] Bhattacharya | Gourab Gravitational Monopoles[END_REF] we presented some remarks on some potential future work related to this paper and [START_REF] Bhattacharya | Maxim A Generalization of King's Equation[END_REF].

In section [START_REF] Arnlind | Maxim Quantum Minimal Surfaces[END_REF] we introduced some well-known definitions from classical mechanics to set up the notations.

In the section [START_REF] Penrose | Roger Twistor Quantisation and Curved Space-Time[END_REF] we defined the canonical quantization procedure and its axioms and how the inconsistencies of the axioms led to the definitions of the geometric and deformation quantization. This section is necessary as it immediately brings our attention to compare the King-Nekrasov quantization described in [START_REF] Do | Geoff An intrinsic and exterior form of the Bianchi identities[END_REF].

In the section [START_REF] Do | Geoff An intrinsic and exterior form of the Bianchi identities[END_REF] we introduced the King-Nekrasov quantization condition by examples. Some of these are consequences of joint work with M.Kontsevich and some are the author's own ideas. The examples like the complex Parabola, the complex Hyperbola and the ideal of polynomials vanishing at zero are a consequence of joint work with M. Kontsevich, but the ideas to quantize a Hermitian manifold and consequently the quantization of the Complex geometry in terms of King-Nekrasov quantization are author's own ideas (some of them the author got from certain classical calculations of gravitational waves due to blackhole collisions).

In the section [START_REF] Bismut | Demally's Asymptotic Morse Inequalities[END_REF] we used some results from the author's unpublished joint work with M. Kontsevich [START_REF] Bhattacharya | Maxim Some Solutions of King-Nekrasov Equation[END_REF] to explain how the proposed King-Nekrasov quantization might resolve a "good" singularity. The example (7.3) ideal of polynomials vanishing at zero, is a good example to show how the King-Nekrasov quantization works not only for vector bundles but for some coherent sheaves also. As we know, in the case of coherent sheaves, the "rank can drop", hence a singularity might arise, one can be very much optimistic in generalizing the quantization procedure in this direction.

In the sections (8.2), (8.15) we reviewed the Twistor quantization method due to Penrose [START_REF] Penrose | Roger Twistor Quantisation and Curved Space-Time[END_REF] and claimed it as a particular case of the more general the King-Nekrasov quantization condition of [START_REF] Do | Geoff An intrinsic and exterior form of the Bianchi identities[END_REF].

The Appendix ( 9) is a bit technical and we give some construction of operators that are required to define the quantization of the Hermitian manifolds etc in section (6.3), (6.4), (6.5).

Remark 1.2. Since the King-Nekrasov equation [see 1] is defined via a Hermitian norm, and consequently, to define the King-Nekrasov quantization we need a notion of Hermitian geometry in our context, and keeping some other data in mind, we require the notion of holomorphic functions and consequently, the functions satisfying corresponding Cauchy-Riemann operators (as already discussed in a previous remark), but they are not easy to define. In practice, it amounts to huge computational difficulties. The ultimate goal of the King-Nekrasov quantization may be stated in the following form: Let M be Lorentzian manifold, consider its counterpart, the complexified projective subvariety M C ⊂ P N for some N , it is then well-known that the Kähler metricity of the complex manifold M C with a reality condition will give back the original manifold M , so that a canonical or path integral quantization can be performed over M C and can Wick rotate back to M so that a quantization is served upon M ! One must note that without the Kähler condition one may not recover the original manifold M . This is an extremely complicated task in real life.

However, we wish to replace the Kähler geometry of M C with a Hermitian geometry. It might seem that life becomes difficult but what we will gain is the contribution of torsion tensor for free. It is also well-known the classical torsion effects don't propagate due to their algebraic nature, but we do not know what happens when they are "quantized", to understand this quantum effect of torsion, we devised a new quantization method via the King-Nekrasov quantization. In future work, we wish to quantize the effects of torsion and see their physical effect. We will only propose the definition of the King-Nekrasov quantization in this paper, but its physical and geometrical consequences will be presented in some future work.

Classical and Quantum Statistics.

Quantization came as a condition to choose a particular "orbit" (if it exists!) of a group action on the phase space of a smooth manifold. One can start with the Planck quantization condition, which says: a system may be in a state with energy E i or in a state with energy E j with i ̸ = j, i, j ∈ N but not in between, that is the states are discrete. In the following, we shall explain what is the meaning of partition function both classically and quantum mechanically, and then use the terminology in a more general context of the King-Nekrasov equation. In an analogy of Statistical physics, one can always "quantize" a partition function by discretizing a chosen parameter that is analogous to the energy of a state. One actually looks into the symmetry of the King-Nekrasov equation (in our case U (1)-invariance suffices ) and then a choice of background metric is made to solve the equation. This background metric may be noncommutative and Kähler (see the author's joint work with Kontsevich in [START_REF] Bhattacharya | Maxim A Generalization of King's Equation[END_REF]).

2.1. The Classical Maxwell-Boltzmann distribution. In the absence of external fields [START_REF] Vasilyev | An introduction to Statistical Physics[END_REF] , the distribution function f that determines the mean number dN of particles in the volume dΩ of the momentum space and the volume dτ of the coordinate space is given by [START_REF] Vasilyev | An introduction to Statistical Physics[END_REF] ,

(2.1) dN = f dτ dΩ = n (2πm 0 kT ) 3 2 exp - p 2 2m 0 kT dΩdτ,
where m 0 is the mass parameter related to the momentum p 0 = m 0 × velocity , k is Boltzmann constant, T is the absolute temperature [START_REF] Vasilyev | An introduction to Statistical Physics[END_REF]. 

∇ 2 φ = l(ρ).
The explicit form of l(ρ) depends on the context. We shall see how this idea generalises in case of evaluation of certain partition function or the generating functional of a system satisfying King-Nekrasov equation. We shall evaluate certain partition function using King-Nekrasov equation and conversely.

2.3. The Canonical Distribution in Quantum Mechanics. In the literature, the Gibbs distribution (2.2) is known as the canonical distribution. The density function allows us to find the probability of a system being in one of the states described by a point in a volume element of phase space dΓ [START_REF] Vasilyev | An introduction to Statistical Physics[END_REF]. But in case of quantum mechanics, one uses energy packets to determine the energy of states as described above, so one needs to modify the classical description of Gibbs distribution. The particle can not have intermediatory energy between energy states E i and E j for i ̸ = j, they are discrete and parametrized by positive integers.

In case of an ideal gas [START_REF] Vasilyev | An introduction to Statistical Physics[END_REF] , let ϵ i , i = 1, 2, • • • are the energy states of the individual particles with occupation numbers n i , i = 1, 2, • • • of these states, that is number of particles in a given states. One can write the total energy of the system as, (2.7)

E ν = n 1 ϵ 1 + n 2 ϵ 2 + • • • ,
where E ν is the energy of the system in the state with the number ν of which n 1 particles have the energy ϵ 1 , n 2 particles have the energy ϵ 2 , etc. We can form the following infinite vector,

(2.8) ν = (n 1 , n 2 , • • • , )
and upon a transition from one state to another, the energy takes on values differing by an integral number of quantities ϵ 1 , ϵ 2 , and so on. The Quantum Gibbs distribution has the following form: the probability of the state ν having the energy E ν is [START_REF] Vasilyev | An introduction to Statistical Physics[END_REF] (2.9)

W ν = exp F * -E ν kT .
Here F * is the free energy of the quantum system [START_REF] Vasilyev | An introduction to Statistical Physics[END_REF] . It is determined by the normalization condition,

(2.10)

ν W ν = 1.
Using equations (2.9) and (2.10), we have

(2.11) ν exp F * -E ν kT = exp F * kT ν exp - E ν kT = 1.
We know introduce again the concept of quantum statistical sum or quantum partition function [Page 190, equation (8.3) of 9] by (2.12)

Z * := ν exp - E ν kT ,
so that we can write, (2.13) F * = -kT ln Z * .

Some Remarks

Remark 3.1. [START_REF] Vasilyev | An introduction to Statistical Physics[END_REF] In principle, if we know the energies E ν of all possible states of a system, we can calculate the partition function by (2.12) and can calculate the corresponding free energy.

Remark 3.2. We used in our unpublished joint work with M. Kontsevich (and repeatedly used in [START_REF] Bhattacharya | Maxim Some Solutions of King-Nekrasov Equation[END_REF]), the philosophy described in remark (3.1) while calculating the partition function for the complex Hyperbola and the complex Parabola. The partition function there was inherently quantum being discrete on the energy eigenstates of the King-Nekrasov operators. This is a vast generalization of the usual quantum mechanics.

Remark 3.3. In case of the adele ring of rationals (3.1)

A Q = ′ p<∞ A p , Q ∞ = R,
the quantum partition function

(3.2) Z * := ν exp - E ν kT ,
can be realized as a complete zeta function (with a suitable choice of the "energy" E ν ) while the index runs on finite and infinite primes. The King-Nekrasov equation then "generates" much useful information on the Riemann zeta function. This can be compared with the classical Mass modular forms that satisfy the hyperbolic Laplace equation on the upper half-plane. One can actually generalize everything to the Lfunctions L(χ; -) with Grössencharakter χ, and can derive an explicit formula of Weil-Riemann type (note we used Weil before Riemann, it is intentional, historically Riemann used the Riemann explicit formula to prove the prime number theorem by assuming the non-trivial zeros of complete zeta function lies on the critical line, but what Weil did is the opposite, he had the idea to estimate the nontrivial zeros of the complete zeta function on the critical line by exploiting the geometry of the space of primes (finite or infinite), that is the geometry of the Adéle class space A Q /Q. One can, using our technique in [START_REF] Bhattacharya | Maxim A Generalization of King's Equation[END_REF] can discuss the Kähler geometry of A Q /Q and draw some interesting conclusions. This project is for the future.

Remark 3.4. In a future paper, the author will show how the Bohr-Sommerfeld quantization condition

(3.3) pdq = nℏ, n ∈ Z + ∪ {0}
and its generalization via the JWKB (which is the same as the WKB method, we added Jacobi's name keeping some suggestions from some authors) procedure can be used to compute certain partition functions arising from geometry and is related heavily to our construction of noncommutative Kähler geometry [START_REF] Bhattacharya | Maxim A Generalization of King's Equation[END_REF].

There are constructions done in the joint work [START_REF] Bhattacharya | Maxim A Generalization of King's Equation[END_REF], which specializes at the level of the Elliptic curves with a θ-deformation to a Noncommutative torus, generalizing many previous works.

Remark 3.5. The work [START_REF] Bhattacharya | Maxim A Generalization of King's Equation[END_REF] can be used to generalize Belyi's theorem to higher dimensions. In future work, the author will show how Belyi's theorem for surfaces our joint work [START_REF] Bhattacharya | Maxim A Generalization of King's Equation[END_REF] comes as a natural setting. The noncommutativity at the level of Ring theory naturally arises just to extend the statement of Belyi's theorem to the case of surfaces.

The Classical Mechanical System

We recall some facts to fix our notations [START_REF] Woodhouse | Geometric Quantization[END_REF]. The set of allowed configurations with n-degrees of freedom is represented by a smooth, n-dimensional manifold Q. We denote by T Q the tangent bundle, in Physics literature Q is called the configuration space, T Q the velocity phase space or simply the phase space. The coordinates of T Q are the pairs (q, v), q ∈ Q, v ∈ T q Q.

According to Hamilton's principle, the dynamical behaviour of the system is determined by a smooth function L = L(q, v) ∈ C ∞ (T Q) known as the Lagrangian of the system [START_REF] Woodhouse | Geometric Quantization[END_REF]. The variational principle of action functional gives the following equations of motion, also known as Lagrange's equation More invariantly, this is the same as [START_REF] Woodhouse | Geometric Quantization[END_REF] for

X ∈ T q Q, (4.2) ι X (ω L ) + dH = 0,
where ω L is a closed 2-form,

(4.3) ω L = ∂ 2 L ∂q a ∂v b dq a ∧ dq b + ∂ 2 L ∂v a ∂v b dv a ∧ dq b , and H is the Hamiltonian, (4.4) H = v a ∂L ∂v a -L. Definition 4.1. We call a Lagrangian regular or nondegenerate if ω L is nondegenerate on T * Q, this is equivalent to the fact that, (4.5) det ∂ 2 L ∂v a ∂v b ̸ = 0 over T Q. Proposition 1. If L is regular on T Q the ω is a symplectic form on T * Q.
Proposition 2. The Hamiltonian H determines the time evolution of the system. Proposition 3. We can find canonical coordinates (p a , q b ) on T Q, so that the equations of motion takes the following form

(4.6) qa = ∂H ∂p a , ṗa = - ∂H ∂q a .
One can show ω L = dp a ∧ dq a using Darboux's theorem. We call the coordinates (p a , q b ) conjugate to each other, p a is known as the generalised momentum conjugate to q a . Definition 4.2. Let two smooth functions f , g of Q is given, then their Poisson bracket {f, g} is a smooth function on Q such that, for three smooth functions f , g, and h on Q, and

a, b ∈ R, {f, g} = -{g, f } {af + bg, h} = a{f, h} + b{g, h} {h, af + bg} = a{h, f } + b{h, g} {f g, h} = {f, h}g + f {g, h} {f, {g, h}} + {g, {h, f }} + {h, {f, g}} = 0. (4.7)
In the canonical coordinates of Q the Poisson bracket takes the form, for two smooth functions f and g on Q

(4.8) {f, g} = N i=1 ∂f ∂q i ∂g ∂p i - ∂g ∂q i ∂f ∂p i
The Poisson brackets of the canonical coordinates are {p i , p j } = 0

{q i , q j } = 0 {p i , q j } = δ j i (4.9)
where δ ij is the Kronecker delta. One can show the following The main idea behind the canonical quantization procedure is to replace the Poisson bracket with a commutator of self-adjoint operators, where the correspondence f → f means for a smooth function on Q there corresponds a self-adjoint operator denoted either by f or Q f on the Hilbert space L 2 (Q), so the scheme is

(5.1) {f, g} → 1 iℏ [Q f , Q g ].
This procedure is not always mathematically correct [START_REF] Ali | Quantization Methods: A Guide for Physicists and Analysts[END_REF], [START_REF] Shewell | John Robert On the Formation of Quantum-Mechanical Operators[END_REF], however following two axioms are mathematically consistent: for two smooth functions f and g on Q

• f → Q f is a linear map. • [Q f , Q g ] = iℏQ {f,g} .
Historically, the following axioms are presented by Weyl, von Neumann, Dirac (see the review article [START_REF] Ali | Quantization Methods: A Guide for Physicists and Analysts[END_REF] and the references therein) (q 1 ) the smooth function f defined over Q attains the linear correspondence

f → Q f ; (q 2 ) Q 1 = id; (q 3 ) for all real-valued smooth functions g, Q g•f and g(Q f ) are well-defined, Q g•f = g(Q f );
(q 4 ) Corresponding to the canonical coordinates (p a , q b ), the representations of the operators Q pa and Q q b becomes (known as the von Neumann rule)

(5.2) Q pa ψ = - ih 2π ∂ψ ∂q a , Q q a ψ = q a ψ, ψ ∈ L 2 (Q, dq). (q 5 ) [Q f , Q g ] = iℏQ {f,g} .
The domain of definition of the mapping Q : f → Q f is known as the space of quantizable observables, in practice, we take the domain consists of infinitely differentiable C ∞ (Q) or smooth functions on Q, but it can be other suitable space. The problem was to determine the vector space of observables OBSERV ABLES over R of real-valued smooth functions f on Q and a mapping

Q : f → Q f of OBSERV ABLES → L 2 (Q) satisfying (q 1 ) -(q 5 ).
As we mentioned at the beginning of the section, only (q 1 ) and (q 5 ) together give a consistent quantum theory. It can be shown [START_REF] Ali | Quantization Methods: A Guide for Physicists and Analysts[END_REF] neither (q 4 ) nor (q 5 ) can be satisfied with (q 1 ) and (q 3 ). This gives a starting point to the geometric quantization procedure [START_REF] Ali | Quantization Methods: A Guide for Physicists and Analysts[END_REF]. If the theory is required to satisfy only (q 1 ), (q 2 ) and (q 4 ), but require (q 5 ) to hold only asymptotically as the Planck constant ℏ → 0 then what we have is known as the deformation quantization procedure [START_REF] Ali | Quantization Methods: A Guide for Physicists and Analysts[END_REF].

6. The King-Nekrasov Quantization 6.1. The King-Nekrasov Equation. Almost 20 years ago, using ideas from string theory, Michael R. Douglas and Nikita A.Nekrasov proposed (see [START_REF] Bhattacharya | Maxim A Generalization of King's Equation[END_REF] and the references therein) a non-commutative deformation of the hermitian Yang-Mills equation in the case of flat space X = C N (with constant Kähler form ω = i dz i ∧ dz i . A remarkable feature of Nekrasov's equation is its applicability to general algebraic coherent sheaves, not necessarily to locally-free sheaves (which are nothing but vector bundles).

Let

E global = Γ(E) be a finitely generated C[z 1 , z 2 , • • •, z N ]-module, corresponding to a coherent sheaf E.
The noncommutative HYM equation is the equation on positive hermitian inner product h = h global on E global considered as a countable dimensional vector space over C. Let us denote by H = H h the completion of the vector space E global with respect to h. The action of generators

z i ∈ C[z 1 , z 2 , • • •, z N ] give rise to commuting unbounded operators Z i on H. The proposed equation is, (6.1) i [Z † i , Z i ] = ℏ • N • id H
here the "Planck's constant" ℏ > 0 is only a real parameter. If one can specify the "behaviour at infinity", which is the same condition as

∀1 ≤ i, j ≤ N , (6.2) [Z † i , Z j ] = ℏδ ij • N • id H + trace class operator.
6.2. The General Ideas behind the King-Nekrasov Quantization Procedure. Since our phase space is automatically endowed with the constant Kähler form which is symplectic, we can consider the Poisson bracket {-, -} P B as the inverse of ω(-, -), schematically,

(6.3) {-, -} P B = ω(-, -) -1 .
The usual quantization would be to replace the Poisson bracket {-, -} by the commutator [-, -], and declare the commutator as iℏ. In our case, we altered the scenario a bit, we used only ℏ without the imaginary unit i. Also, in the usual Geometric Quantization procedure, one chooses a polarization on the line bundle defined over a closed manifold. This polarization is nothing but a choice of positive frequency or which is the same as a choice of a holomorphic section of the bundle in question. The holomorphicity separates z and its conjugate variable z and allows us to use them separately as functions of either z or z while calculating the partition functions of the system. In the context of King-Nekrasov quantization, we employ a hermitian norm invariant under the action of either U (n) or U (1) n depending on the context and separates z and z.

The examples we consider are all U (1)-invariant.

Informally, coherent sheaves are vector bundles outside some finite number of points, therefore, if one wants to consider the quantization of non-compact manifolds and analytic coherent sheaves over them, then one may like to use (6.2), (6.4) [- † , -] = ℏ • ("order" of the operators in question) • id H + trace class operator.

By the order of the operator, we for example can take the homogeneous degree of the operator.

Remark 6.1. Among the many difficulties in quantizing a background-independent theory is the unavailability of good "germs of analytic functions"! What do we mean by that? the answer is straightforward, usually, quantization is a process that separates conjugate variables and gives them separate identities, in a curved background the usual quantization procedure breaks down. The procedure is limited to a finite region of spacetime, and the roles of variables and the conjugate variables either get mixed up (for say becomes a function f (variables, conjugate variables) ) when one tries to extend them beyond a certain region or they swap their roles! The swapping happens in the example of classical blackhole exterior and interior solutions in terms of coordinates, the role of space coordinates and time coordinates can get swapped when one passes through the event horizon! Remark 6.2. The next example comes from Gravitational waves [START_REF] Sachs | Gravitational Waves in General Relativity. VI. The Outgoing Radiation Condition[END_REF], one can actually solve an analogue of flat space D'Alembert equation for linearized gravity (see the equation (10.2) , and the equation (10.1) of [START_REF] Sachs | Gravitational Waves in General Relativity. VI. The Outgoing Radiation Condition[END_REF] for a multipole expansion of an object around v = 0 with a suitable parameter v, and equation (4.8) of [START_REF] Sachs | Structure of particles in Linearized Gravitational Theory[END_REF] ), then one is able to evaluate the linearized Riemann tensor (see equation (10.7) of [START_REF] Sachs | Gravitational Waves in General Relativity. VI. The Outgoing Radiation Condition[END_REF]) with respect to a multipole expansion. The multipole coefficients give rise to certain gravitational invariants in a very particular fashion [START_REF] Sachs | Gravitational Waves in General Relativity. VI. The Outgoing Radiation Condition[END_REF]. If the source has multipoles of an infinitely high order, all the expansions considered in [START_REF] Sachs | Gravitational Waves in General Relativity. VI. The Outgoing Radiation Condition[END_REF] break off after a finite number of terms, and no convergence problems arise.

One can contrast the situation with respect to the following: if one were to expand the object in consideration, the multipole coefficients in the inverse powers of v along an incoming ray instead of an outgoing ray then in these linearized fields, the affine parametric distance is not constant along an incoming ray, and correspondingly some coefficients, along a fixed incoming ray is in general not an analytic function of v -1 . Therefore according to an argument from the theory of hyperbolic differential equations, the restrictions of these coefficients with respect to the analytic functions of any argument would be very artificial. The identical difficulties arise if one tries to expand incoming waves along outgoing rays (or along a line orthogonal to the world line of the source) [START_REF] Sachs | Gravitational Waves in General Relativity. VI. The Outgoing Radiation Condition[END_REF], [START_REF] Sachs | Structure of particles in Linearized Gravitational Theory[END_REF]. This example suggests any quantization procedure might fail in case of unavailability of analytic functions and how limited and subtle is the notion of canonical quantization.

The twistor quantization, although very particular, originated from the very fact that one can use an analytic function of v -1 along an outgoing ray for all calculation purposes. Keeping in mind of these facts, the author advocates the definition of the King-Nekrasov quantization condition. 6.3. The Quantization of the flat space. We declare the quantization of the phase space C[z 1 , • • • , z 2n ] is H = H h (as defined above), with corresponding condition:

(6.5) [Z † i , Z i ] = ℏ • id H .
6.4. The Quantization of the Hermitian Manifolds. We declare a Hermitian manifold (M, g) is quantized if the operators in Proposition ( 12) saisfy the following equation

(6.6) [∂ * , ∂] = ℏ • id H
where H is the completion of 0,p T M with respect to the hermitian inner product h induced from g.

6.5. The Quantization of the Complex Manifolds. Let M be a compact connected complex manifold of complex dimension l. Let V be a holomorphic hermitian bundle and L is a holomorphic hermitian line bundle. Let ∇ be the corresponding holomorphic hermitian connection on q(0,1) T * M ⊗ V ⊗ L. Let us form a Dolbeault complex (C( q(0,1) T * M ⊗ V ⊗ L) := q C q ( q(0,1) T * M ⊗ V ⊗ L), ∂). The notation C q ( q(0,1) T * M ⊗ V ⊗ L), 0 ≤ q ≤ l stands for the space of C ∞ -sections of q(0,1) T * M ⊗ V ⊗ L on which ∂ acts. Over a sufficiently "small" open set, in terms of a local coordinates, the operator ∂ has the following form, (6.7)

∂ := dz ∧ ∂ ∂z i .
C q ( q(0,1) T * M ⊗ V ⊗ L) naturally endowed with an hermitian L 2 norm. We denote by ∂ * the formal adjoint of ∂. Let ∇ L be the Levi-Civita connection on T M . Define a new affine tensor S by, (6.8)

S := ∇ L -∇ T M
where ∇ T M is the restriction of ∇ to T M . We choose an orthonormal frame e 1 , • • • , e 2l , and let X ∈ T M is represented in as, (6.9)

X = 2l i=1 S(e i )e i ,
and let Y is the orthogonal projection of X on T (0,1) M . One, therefore, gets using the construction in (9) using similar idea to (9.47) and the construction in the Proposition [START_REF] Sachs | Structure of particles in Linearized Gravitational Theory[END_REF],

∂ = dz i ∧ ∇ ∂/∂z i + 1 2 dz i ∧ dz j ∧ ι T (∂/∂z i ,∂/∂z j ) , ∂ * = -ι ∂/∂z i ∇ ∂/∂z i + ι Y - 1 2 T ∂ ∂z i , ∂ ∂z j ∧ ι ∂/∂z i ι ∂/∂z j . (6.10)
The quantization condition is,

(6.11) [∂ * , ∂] = ℏ • id H .
Here H is the completion of Γ(M, q(0,1) T * M ⊗ V ⊗ L) with respect to the hermitian norm.

Quantization as discrete integrable system

In an unpublished joint work [START_REF] Bhattacharya | Maxim Some Solutions of King-Nekrasov Equation[END_REF] Maxim Kontsevich and the author considered discrete integrable systems. These integrable systems are solutions of the King-Nekrasov equation on complex parabola, complex hyperbola, union of two and three lines and ideal of functions vanishing at zero, the ideal of functions and their lth order derivative vanishing at zero.

The case of complex hyperbola was first announced in [START_REF] Arnlind | Maxim Quantum Minimal Surfaces[END_REF] and is completely worked out in an unpublished joint work [START_REF] Bhattacharya | Maxim Some Solutions of King-Nekrasov Equation[END_REF].

The case of Parabola is worked out in the same unpublished joint work [START_REF] Bhattacharya | Maxim Some Solutions of King-Nekrasov Equation[END_REF]. We shall briefly discuss the solutions in the following subsections. This is equivalent to the King-Nekrasov quantization condition described above in [START_REF] Do | Geoff An intrinsic and exterior form of the Bianchi identities[END_REF]. As the author learned from the community, in the case of discrete integrability, "Quantization is the process of mapping continuous infinite values to a smaller set of discrete finite values" [13]. So, if we can solve the King-Nekrasov equation, then we might be able to impose the King-Nekrasov quantization condition. In the following special cases, the King-Nekrasov equation and the King-Nekrasov quantization are equivalent. [START_REF] Arnlind | Maxim Quantum Minimal Surfaces[END_REF]. We consider a Hilbert space H as the completion of the U (1)-invariant module, (7.1)

Complex Hyperbola

M = C[z 1 , z 2 ]/(z 1 z 2 -c) over the algebra C[z 1 , z 2 ]
, with respect to some hermitian norm on M, with c ∈ C is a constant. We want to solve the equation,

(7.2) [Z † 1 , Z 1 ] + [Z † 2 , Z 2 ] = ℏ • id H , where Z i , i = 1,
2 are the operators to the corresponding action of z i 's. Let us choose a linear basis (v m ) m∈Z of the module M labelled by Z, so that,

(7.3) Z 1 v m = v m+1 , Z 2 v m = cv m-1 .
Since one has an U (1)-action on the basis of the module M, namely, for a basis element (v m ) m∈Z , (7.4)

v m → e √ -1mθ v m , θ ∈ R/2πZ,
one sees the U (1)-action actually commutes with the action of the operators Z 1 and Z 2 on the basis vectors.

We are looking at the special solutions which are U (1)-invariant. A hermitian norm on M which is invariant under U (1)-action is always diagonal in the basis (v m ). We use this action to have the following situation where,

(7.5) ⟨v m , v n ⟩ = 0 for m ̸ = n,
Let us define by, (7.6)

f m = ⟨v m , v m ⟩ ∈ R >0 ,
then the corresponding orthonormal basis is,

(7.7) |m⟩ = 1 √ f m v m , m ∈ Z.
Therefore, (7.8)

Z 1 |m⟩ = 1 √ f m Z 1 v m = 1 √ f m v m+1 = f m+1 f m |m + 1⟩.
One chooses, (7.9) 

w m = f m+1 f m , then, assuming (7.10 
r n = -ℏn + δ 2 ± -ℏn + δ 2 2 + |c| 2
One can assume for n ≥ 0, (7.14)

f n = r 1 • • • r n ,
and for n ≤ 0, (7.15)

f -n = 1 r 0 r -1 • • • r n-1 .
The partition function Z(Hyperbola) is defined below:

(7.16) Z(Hyperbola) := 1 r 1 r 2 • • • r n
The result of asymptotic is described below, the details are in [START_REF] Bhattacharya | Maxim Some Solutions of King-Nekrasov Equation[END_REF], (7.17)

Z(Hyperbola) = exp(C)|c| -2n n -δ ℏ n k=1 (ℏk) -1 1 + g 1 n + g 2 n 2 + g 3 n 3 + • • • ∼ 1 n! ∞ k=0 b k n k
with C, g i , and b i 's are constants [START_REF] Bhattacharya | Maxim Some Solutions of King-Nekrasov Equation[END_REF].

7.2. Complex Parabola [START_REF] Bhattacharya | Maxim Some Solutions of King-Nekrasov Equation[END_REF]. Next we wish to consider the complex Parabolic membrane Z 2 1 = Z 2 , so in the following we consider a Hilbert space H as the completion of the U (1)-invariant module, (7.18)

M = C[z 1 , z 2 ]/(z 2 1 -z 2 ) over the algebra C[z 1 , z 2 ]
, with respect to some hermitian norm on M. The basis is labelled by positive integers namely {v i } i∈N with, (7.19)

v i = z i 1 mod(I) where I = (z 2 1 -z 2 ) ⊂ C[z 1 , z 2 ]
is the ideal in consideration for a parabolic membrane. (as Parabola, that is I is U (1) invariant in M, and so only the diagonal elements of the action survive), therefore the King's equation has the following form, (7.22), and (7.23), we get,

(7.20) [Z † 1 , Z 1 ] + [Z † 2 , Z 2 ] z i = ℏz i Now, in general, Z i z i = z i+1 (7.21) ⟨Z † i z i+1 , z i ⟩ = ⟨z i+1 , Z i z i ⟩ = ⟨z i+1 , z i+1 ⟩ = f i , therefore, we assume, Z † i z i+1 = f z i , so, (7.22) ⟨Z † i z i+1 , z i ⟩ = ⟨f z i , z i ⟩ = f f i , but, (7.23) ⟨Z † i z i+1 , z i ⟩ = ⟨z i+1 , Z i z i ⟩ = ⟨z i+1 , z i+1 ⟩ = f i+1 therefore comparing
(7.24) f = f i+1 f i . So, (7.25) [Z 1 , Z † 1 ]z i = Z 1 Z † 1 -Z † 1 Z 1 z i therefore, (7.26) Z 1 Z † 1 z i = f i f i-1 Z 1 z i-1 = f i f i-1 z i
and, (7.27)

Z † 1 Z 1 z i = Z † 1 z i+1 = f i+1 f i z i . also, (7.28) [Z 2 1 , (Z 2 1 ) † ] = Z 2 1 (Z 2 1 ) † -(Z 2 1 ) † Z 2 1 so, (7.29) Z 2 1 (Z 2 1 ) † z i = Z 2 1 (Z 1 ) † f i f i-1 z i-1 = f i f i-1 f i-1 f i-2 Z 2 1 z i-2 = f i f i-2 z i
and,

(7.30) (Z 2 1 ) † (Z 2 1 )z i = (Z 2 1 ) † z i+2 = f i+2 f i+1 f i+1 f i z i = f i+2 f i z i . So, (7.31) [Z † 1 , Z 1 ] + [Z † 2 , Z 2 ] z i = ℏz i ,
hence, putting everything together we get for n = 0, 1, 2, • • • , (7.32)

f n+1 f n - f n f n-1 + f n+2 f n - f n f n-2 = ℏ
We try to find a solution which in asymptotic form, with positive constants c > 0, const. > 0, looks like, (7.33)

f n ∼ (n!) 1 2 c n const. exp α -1 n 1 2 + α 0 log n + α 1 n 1 2 + α 2 n 2 2 + • • • asymptotic series
, which is the same as,

f n ∼ (n!) 1 2 c n const. exp α -1 n 1 2 + α 1 n 1 2 + α 1 n 2 2 + • • • n α0 (7.34)
The partition function is,

(7.35) Z(Parabola)(z, z) = n≥0 1 f n (zz) n = n≥0 |z| 2n c n √ n! exp -1 c n 1 2 n 1 2 n α0 exp n≥1 α n n n 2 ,
The result is 7.3. Ideal of functions vanishing at zero [START_REF] Bhattacharya | Maxim Some Solutions of King-Nekrasov Equation[END_REF] . Let M be an ideal in the polynomial ring

C[z 1 , z 2 , • • • , z n ] such that, a polynomial p(z 1 , z 2 , • • • , z n ) ∈ M if and only if p(0, 0, • • • , 0) = 0.
Since the polynomials vanishing at 0 are without constant terms, we have the ideal M is generated by the monomials z i , z j , • • • , z k , and is of the form

M = ⟨z i , z j , • • • , z k ⟩ with N n ∋ (i, j, • • • , k) ̸ = (0, 0, • • • , 0) .
We denote by H the completion of the module M over the algebra

C[z 1 , z 2 , • • • , z n ].
We note that, as a module over the algebra C[z 1 , z 2 , • • • , z n ] the ideal M it is invariant with respect to a U (n)-action and have the following reducible representation, (7.37)

M = I 1 ⊕ I 2 ⊕ • • • ,
where I 1 , I 2 are inequivalent irreducible representation spaces under the action of U (n) and are orthogonal to each other with respect to a choice of inner-product ⟨, ⟩ gen as defined in (7.38).

A choice of inner-product on M, namely ⟨, ⟩ gen , when restricted to ⟨, ⟩| I k is proportional to ⟨, ⟩ can | I k . Thus, we have the following relationship,

⟨z k1 1 z k2 2 • • • z kn n , z l1 1 z l2 2 • • • z ln n ⟩ gen := c k1+•••+kn ⟨z k1 1 z k2 2 • • • z kn n , z l1 1 z l2 2 • • • z ln n ⟩ can (7.38) = c k1+•••+kn δ k1,l1 • • • δ kn,ln n j=1 k j ! with c k1+•••+kn ̸ = 0 is a proportionality constant. We now have (7.39) Z k z i1 1 • • • z i k k • • • z kn n = z i1 1 • • • z i k +1 k • • • z in n
We now calculate the adjoint Z † j , with respect to the following inner product, (7.40)

⟨z k1 1 z k2 2 • • • z kn n , z l1 1 z l2 2 • • • z ln n ⟩ gen = c k1+•••+kn δ k1,l1 • • • δ kn,ln n j=1 k j !.
So, we start with,

⟨Z † k (z i1 1 z i2 2 • • • z i k +1 k • • • z in n ), z i1 1 z i2 2 • • • z i k k • • • z in n ⟩ gen = ⟨z i1 1 z i2 2 • • • z i k +1 k • • • z in n , Z k (z i1 1 z i2 2 • • • z i k k • • • z in n )⟩ gen (7.41) = ⟨z i1 1 z i2 2 • • • z i k +1 k • • • z in n , z i1 1 z i2 2 • • • z i k +1 k • • • z in n ⟩ gen = c i1+i2+•••+(i k +1)+•••+in n j=1,j̸ =i k +1 i j !(i k + 1)!
Therefore the action of Z † k on the basis is the following,

(7.42) Z † k (z i1 1 z i2 2 • • • z i k +1 k • • • z in n ) = c • (z i1 1 z i2 2 • • • z i k k • • • z in n ),
where c is a constant, using (7.42) in (7.41), we get,

⟨c • (z i1 1 z i2 2 • • • z i k k • • • z in n ), z i1 1 z i2 2 • • • z i k k • • • z in n ⟩ = c i1+i2+•••+(i k +1)+•••+in n j=1,j̸ =i k +1 i j !(i k + 1)! =⇒ c • ⟨z i1 1 z i2 2 • • • z i k k • • • z in n , z i1 1 z i2 2 • • • z i k k • • • z in n ⟩ = c i1+i2+•••+(i k +1)+•••+in n j=1,j̸ =i k +1 i j !(i k + 1)! c • c i1+i2+•••+i k +•••+in n j=1 i j ! = c i1+i2+•••+(i k +1)+•••+in n j=1,j̸ =i k +1 i j !(i k + 1)! (7.43) c = c i1+i2+•••+(i k +1)+•••+in c i1+i2+•••+i k +•••+in (i k + 1)
with c 0 is excluded from above equation (7.43). So using the value of c from (7.43), the operator action of Z † k on basis vector is,

(7.44) Z † k (z i1 1 z i2 2 • • • z i k +1 k • • • z in n ) = c i1+i2+•••+(i k +1)+•••+in c i1+i2+•••+(i k )+•••+in (i k + 1) • (z i1 1 z i2 2 • • • z i k k • • • z in n ),
in other words,

(7.45) Z † k (z i1 1 z i2 2 • • • z i k k • • • z in n ) = c i1+i2+•••+(i k )+•••+in c i1+i2+•••+(i k -1)+•••+in • i k • (z i1 1 z i2 2 • • • z i k -1 k • • • z in n )
The King-Nekrasov equation becomes, (with c 0 excluded), (7.46)

n k=1 c i1+i2+•••+(i k +1)+•••+in c i1+i2+•••+(i k )+•••+in (i k + 1) - c i1+i2+•••+(i k )+•••+in c i1+i2+•••+(i k -1)+•••+in • i k = n • ℏ.
We will calculate the partition function corresponding to the solutions of (7.46). Define:

(7.47) e (k1,••• ,kn) := z 1 1 • • • z kn n √ c k1+•••kn n i=1 √ k i ! , k 1 , • • • , k n ≥ 0.
Then the reproducing kernel or the partition function has the following form,

Z := k1,••• ,kn |e (k1,••• ,kn) | 2 = k k1+•••+kn=k (z 1 z 1 ) k1 • • • (z n z n ) kn √ c k n i=1 ( √ k i !) 2 = k 1 c k 1 k! (z 1 z 1 ) k1 • • • (z n z n ) kn k! n i=1 k i ! = k 1 c k 1 k! (z 1 z 1 + • • • + z n z n ) k = k 1 c k k! t k , where t := (z 1 z 1 + • • • + z n z n ) k , i k i = k ≥ 1. (7.48)
It is shown in [START_REF] Bhattacharya | Maxim Some Solutions of King-Nekrasov Equation[END_REF] that Z has the following asymptotic expansion,

(7.49) Z ∼ k≥0 a k t k ,
for some real numbers a k .

8. Twistor Quantization as a special case 8.1. Introduction. It had been observed by the author in [START_REF] Bhattacharya | Gourab Gravitational Monopoles[END_REF] that gravitational monopole might play a significant role in understanding the non-Kählerian behaviour of manifolds as well as algebraic surfaces. The gravitational monopoles which are the solution of the new equation presented in [START_REF] Bhattacharya | Gourab Gravitational Monopoles[END_REF] are classical and not quantized. Since the new equation is a special case of the King-Nekrasov equation [START_REF] Bhattacharya | Maxim A Generalization of King's Equation[END_REF], one might expects a qunatization of the gravitational monopoles. This is similar to the Dirac's monopole construction, it comes with an automatic "first quantisation" of the monopole, but then one needs to "second quantize" the corresponding field generated by the Dirac monopoles. In the next subsection, we shall outline the main ideas, the details will be published elsewhere.

8.2. The Classical Picture. The complex projective 3-space CP 3 will be our model for Twistor space. The homogeneous coordinates are denoted by {z 1 , z 2 , z 3 , z 4 }. Let E be a hermitian vector bundle with hermitian product h over CP 3 and with respect to a soldering connection with the tangent bundle T CP 3 , one can equip E ⊗ T CP 3 with a hermitian structure over CP 3 . Let us denote an infinitesimal change in twistor coordinates z α by δz α [START_REF] Penrose | Roger Twistor Quantisation and Curved Space-Time[END_REF] (8.1) δz α = i ∂H ∂z α where H is the Hamiltonian H(z α , z α ) is real and seperately homogeneous of degree unity in z α and z α [5] :

(8.2) H = H = z α ∂H ∂z α = z α ∂H ∂z α so, (8.3) δz α = -i ∂H ∂z α . Therefore one notes that, (8.4) δ(z α z α ) = 0.
Let us define the Poisson bracket by One also notes that

δ(dz α ) = d(δz α ) = d i ∂H ∂z α = i ∂ 2 H ∂z β ∂z α dz β + ∂ 2 H ∂z β ∂z α dz β (8.9)
then using ∂H/∂z β and ∂H/∂z β are respectively homogeneous of degree one and zero in z α [START_REF] Penrose | Roger Twistor Quantisation and Curved Space-Time[END_REF], we therefore have, (8.10) δ(z α dz α ) = 0.

We also have,

(8.11) d(z α dz α ) = dz α ∧ dz α = 0.
So, (8.12) δ(z α ∧ dz α ) = 0.

Therefore the surface element z α ∧ dz α is invariant under the action of the Hamiltonian H. So, we have the following equations [START_REF] Penrose | Roger Twistor Quantisation and Curved Space-Time[END_REF] z α ∂ψ ∂z α , H = z α ∂ ∂z α {ψ, H}, (8.13) which is the same as, (8.14) δ z α ∂ ∂z α ≡ z α ∂ ∂z α δ.

8.3. The Quantum Picture. Let H be the completion of C[z 1 , z 2 , z 3 , z 4 ] with respect to h. The operators Z α corresponds to z α . They can be thought of as the position variables and with respect to h, the Z α := ∂/∂Z α are the conjugate "momenta" [START_REF] Penrose | Roger Twistor Quantisation and Curved Space-Time[END_REF]. The quantization condition is described below [START_REF] Penrose | Roger Twistor Quantisation and Curved Space-Time[END_REF]:

(8.15) [Z α , Z β ] = 0 = [Z α , Z β ], [Z α , Z β ] = ℏδ α β .
One notes the difference between (8.15) and equation (4.37) of [START_REF] Penrose | Roger Twistor Quantisation and Curved Space-Time[END_REF]. We here 'Wick rotated' the Planck's constant upto a sign, and our constant is real and there is no imaginary unit i = √ -1.

8.4. Direction. In a future work, we shall provide more details of quantizing gravitational monopoles using a King-Nekrasov quantisation of which Twistor quantization is a very special case.

Appendix

Construction of the Operators [START_REF] Gauduchon | Paul Hermitian Connections and Dirac Operators Boll[END_REF], [START_REF] Bismut | Demally's Asymptotic Morse Inequalities[END_REF], [START_REF] Do | Geoff An intrinsic and exterior form of the Bianchi identities[END_REF], [START_REF] Salamon | Spin geometry and Seiberg-Witten invariants[END_REF]. A choice of a Spin-structure on an almost complex manifold (M, g, J) is equivalent to the choice of a square-root K 1 2

M of the corresponding complex manifold (M, g) with integrable J.

One identifies the Spin bundle S on M in the following way: where, for all p = 0, 1, 2, • • • , m the sub-bundle S p of spinors of degree p is defined to be the bundle (9.4) (S p :=) (0,p)

T * M ⊗ K 1 2 M of K 1 2
M -valued (0, p)-forms. Remark 9.1. Additionally, if M is a Kähler manifold with a Kähler form ω, then S p is the eigen sub-bundle of ω with eigenvalue (2p -m)i for the Clifford action of the Kähler form ω on SM .

One can always choose an open set U ⊂ M , sufficiently well-behaved, so that, a spin-field φ of degree p can be written as:

(9.5) φ = ψ ⊗ σ, with ψ ⊗ σ ∈ (0,p) T * M ⊗ K 1 2 M , ψ ∈ (0,p) T * M , that is ψ is a form of type (0, p), σ ∈ Γ(M, K 1 2 M ), that is σ is a section of K 1 2
M . Definition 9.2. Let V be a real or complex vector space with a quadratic form Q, (can be degenerate ). The Clifford algebra of (V, Q), denoted by C(V, Q) is the algebra over R or C generated by V having the following relations

(9.6) u • v + v • u = -2Q(u, v), ∀u, v ∈ V, also, (9.7) v 2 = -Q(v) ∀v ∈ V.
Proposition 5. If A is an algebra and c : V → A is a linear map such that

(9.8) c(u) • c(v) + c(v) • c(u) = -2Q(u, v), ∀u, v ∈ V,
then there is a unique algebra homomorphism ĉ : C(V, Q) → A extending c.

Definition 9.3. If Q is positive definite, then by polarising Q one induces an inner product on a Clifford module E over C(V, Q). We say E is self-adjoint with respect to the induced inner product if, (9.9)

c(v * ) = c(v) * .
Therefore, the operator c(v) is skew-adjoint.

One denotes by c(v) the action of an element element of V on a Clifford module E over C(V, Q), in partcular the action of v on a Clifford algebra C(V, Q). If E is a Z 2 -graded Clifford module, one denotes by End C(V,Q) E the algebra of endomorphisms of E supercommuting with the action of C(V, Q). Now we consider the exterior algebra of V . To define the Clifford module action of C(V, Q) on V , we only need to specify how V acts on C(V, Q), which is the following:

(9.10) c(v)α := v ∧ α -ι v α
where, ι v is a contraction with the covector Q(v, * ) ∈ V * .

In our case we need to specify the action of a real or complex vector field X on a spin field ξ ∈ ( * ,p) T * M , and is done similarly, (9.11) c(X

)ξ = √ 2 (X (1,0) ) b ∧ ψ -ι X (1,0) ψ ⊗ ψ.
Here, X = X (1,0) + X (0,1) is the type decomposition of vector field X; (X (1,0) ) b is the image of X (1,0) in T * (1,0) M with respect to the metric g. The notation ι X (1,0) ψ means the contraction of the complex vector field X (1,0) by the (0, p)-form ψ, (9.12)

ι X (1,0) ψ X1,••• ,Xp-1 := ψ X (1,0) X1,••• ,Xp-1
for all complex vector fields X 1 , • • • , X p-1 . The coefficient √ 2 signifies the action of X is equal to the multiplication by the scalar -Q(X, X). We deote by ⟨•, •⟩ Q the corresponding inner product induced by Q. If Q is fixed, we will omit Q from the inner-product and simply denote by ⟨•, •⟩. The corresponding C-bilinear extension to the tangent space is clear.

Remark 9.4. The C-Riemann duality of T C M with T * C M with respect to g exchanges types: 1) .

(9.13) (X (1,0) ) b = (X b ) (0,
In particular (X (1,0) ) b is a (0, 1)-form. M be a spinor field of degree p then / ∇ acts on ξ in the following way:

(9.16) / ∇ X ξ = / ∇ X (ψ ⊗ σ) = ( / ∇ X ψ) ⊗ σ + ψ ⊗ / ∇ X σ.
The hermitian Dirac operator / ∇ decomposed in the following way:

(9.17)

/ ∇ = / ∇ + ⊕ / ∇ -,
where / ∇ + acts on a spinor field ξ of degree p and produces a spinor field of degree (p + 1), and similarly, / ∇ - acts on a spinor field ξ of degree p and produces a spinor field of degree (p -1), so we have the following coordinate expression using the definition of Clifford multiplication, (the expression for / ∇ + follows from the first term of (9.11), and the expression for / ∇ -follows from the second term of (9.11)):

( / ∇ + ξ) Z0,••• ,Zp = √ 2 n j=0 (-1) j (∇ Zj ξ) Z0,••• , Zj ,••• ,Zp ( / ∇ -ξ) Z1,••• ,Zp = √ 2 n j=0 (∇ ei ξ) ei,Z1,••• ,Zp-1 , (9.18) 
for all vector fields Z 1 , • • • , Z p of type (0, 1). One actually think of the above result as a consequence of the following equation,

(9.19) ⟨e i , ext(v)(e j ) b ⟩ = ⟨ι v e i , (e j ) b ⟩, where, ext(v)α := v ∧ α, that is ext(v) is adjoint to ι v . More precisely, Proposition 6. For α ∈ Ω k (M ), β ∈ Ω k-1 (M ), X ∈ Γ(M, T M ), then ⟨ι X α, β⟩ = ⟨α, X b ∧ β⟩. (9.20)
Proof. The above is a reformulation of the following statement,

(9.21) ⟨α, (X 1 ) b ∧ • • • ∧ (X k ) b ⟩ = α(X 1 , • • • , X k )
for X i ∈ (M, T M ). If the vector field X i 's are orthonormal, then it follows from the definition of the norm, 

(9.22) ⟨γ, δ⟩ = i1<•••<i k γ(e i1 , • • • , e i k )δ(e i1 , • • • , e i k ) γ, δ ∈ Ω k (M ), {e 1 , • • • , e n }
) div(X) = trace(∇X) = i ⟨∇ ei X, f i ⟩ Proposition 7. (9.24 
i (∇ i f i + div(e i )f i ) = 0. (9.25) 
Proof. Since ∇ is a Riemannian connection with the pointwise inner product by e j provides, ∀j, (9.26) E) be a connection compatible with a Riemannian metric on a vector bundle E → M with M compact. For a vector field v ∈ Γ(M, T M ), the L 2 -adjoint of the first order operator D

i ⟨∇ i f i + div(e i )f i , e j ⟩ = div(e j ) - i ⟨f i , ∇ ei e j ⟩ = 0. □ Proposition 8. Let D : C ∞ (M, E) → Ω 1 (M,
v : C ∞ (M, E) → C ∞ (M, E) is given by (9.27) D * v s + D v s = -div(v)s, for s ∈ C ∞ (M, E). Proof. Let f = ⟨s, s ′ ⟩. Since D is compatible with ⟨•, •⟩, we have (9.28) ⟨D v s, s ′ ⟩ + ⟨s, D v s ′ ⟩ = df (v) = div(f v) -f div(v)
for a vector field v. One can show (9.28) using the following computations, 

div(f v) = i ⟨f i , ∇ ei (f v)⟩ i ⟨f i , f ∇ ei v + df (e i )v⟩ = f i ⟨f i , ∇ ei v⟩ + df i ⟨f i , v⟩e i = f div(v) + df (v).
div g (ζ) = i ∂ζ i ∂x i + 1 2 µν ∂g µν ∂x i ζ i = i ∂ζ i ∂x i + 1 2 Tr g -1 ∂g ∂x i ζ i = i ∂ζ i ∂x i + ζ i 1 √ det g ∂ ∂x i det g . (9.31) Therefore, (9.32) div g (ζ) • det g = i ∂ ∂x i ζ i det g . Since, M is compact, (9.33) M div(v)d(vol) = 0.
Integrating both sides of (9.28) and using (9.33), (

M div(f v) = 0.

We, therefore, have from (9.28) Proof. We first prove the left hand side and right hand sides are independent of the basis {e i }, {f j }.

Let us assume the base change to

e ′ k = i a i k e i , f ′ k = k b j k f j , k a i k b j k = δ ij , k a k i b k j = δ ij .
(9.39) So, the transformations are bijective linear transformations. Putting everything together, we get, (9.40)

i (f ′ i ) * ∧ ∇ e ′ i α = i,k.l a k i b l i f * l ∧ ∇ e k α.
We know in a coordinate representation e k = ∂/∂x k , f k = dx k the following equation holds true where we used the fact that, ∇ preserves the inner product, and applied Leibnitz rule (9.46) 0 = ∇ ei ⟨e i , f i ⟩ = ⟨∇ ei e i , f i ⟩ + ⟨e i , ∇ ei f i ⟩.

dα i + k,l ∂ ∂x k ∧ α l Γ i kl = 0 =⇒ dα i = - k,l ∂ ∂x k ∧ α l Γ i kl =⇒ dα = - i f * i ∧ ∇ ∂/∂x i α =⇒ dα = - i f * i ∧ ∇ e i α ( 

□

To proceed further, we need to compute the following covariant exterior derivative of a bundle valued p-form ψ: 

dψ(X 1 , X 2 , • • • , X p+1 ) := 1≤i≤p+1 (-1) i+1 X i (ψ(X 1 , • • • , X i , • • • , X p+1 )) + 1≤i≤p+1 (-1) i+j ψ([X i , X j ], X 1 , • • • , X i , • • • , X j , • • • , X p+1 ) = 1≤i≤p+1 (-1) i+1 ∇ Xi (ψ(X 1 , • • • , X i , • • • , X p+1 )) + 1≤i≤p+1 (-1) i+j-1 ψ(∇ Xi X j , X 1 , • • • , X i , • • • , X j , • • • , X p+1 ) -ψ(∇ Xj X i , X 1 , • • • , X i , • • • , X j , • • • , X p+1 ) + 1≤i≤j≤p+1 (-1) i+j+1 ψ T (X i , X j ), X 1 , • • • , X i , • • • , X j , • • • , X p+1 + 1≤i≤p+1 (-1) i+j ψ(∇ Xi X j , X 1 , • • • , X i , • • • , X j , • • • , X p+1 ) -ψ(∇ Xj X i , X 1 , • • • , X i , • • • , X j , • • • , X p+1 ) . (9.47) Therefore, dψ(X 1 , X 2 , • • • , X p+1 ) = 1≤i≤p+1 (-1) i+1 ∇ Xi (ψ(X 1 , • • • , X i , • • • , X p+1 )) + 1≤i≤j≤p+1 (-1) i+j+1 ψ T (X i , X j ), X 1 , • • • , X i , • • • , X j , • • • , X p+1
d * ψ(X 1 , X 2 , • • • , X p-1 ) = - n i=1 (∇ ei ψ)(e i , X 1 , X 2 , • • • , X p-1 ) +ψ (Tr T ) # , X 1 , • • • , X p-1 - p-1 j=1 (-1) j ⟨X j , T ⟩, ψ, • • • , X 1 , • • • , X j , • • • , X p-1 , (9.49)
where ⟨•, •⟩ denotes the C-bilinear inner product induced from g, Tr(T ) is the trace of the torsion T , a real valued 1-form defined by: (9.50) X → n i=1 ⟨e i , T (e i , X)⟩;

(Tr T ) # is the dual vector field; ⟨X j , T ⟩ is the complex 2-form defined by: (9.54)

  ∂L ∂q a = 0, and, q = v a .

5 .

 5 The Canonical Quantization Procedure.

) r n = w 2 n

 2 we have after a short calculation,(7.11) r n-1 -r n + |c| 2 r -1 n -|c| 2 r -1 n-1 = ϵ. now assume, for δ > 0, (7.12)r n -|c| 2 r n = -ℏn + δ,we get by solving the quadratic equation,(7.13) 

  )(z, z) ∼ Const.|z| 4λ+1 exp |z| 4 + |z| 2 ℏ, (as 2c 2 = ℏ)

  This gives, δz α = {z α , H}, δz α = {z α , H},(8.6) which is the same as (8.7) δψ = {ψ, H} for a homogeneous polynomial of z and z. If in particular ψ = z α z α then, (8.8) 0 = δ(z α z α ) = δψ = {ψ, H}.

  p)T * M is the bundle of complex differential forms of type (0, * ).Particularly, the spin bundle S over M has the following decomposition (

Definition 9 . 5 .

 95 (Riemannian Dirac Operators). The Riemannian Dirac operator, denoted by / ∂, acts on the sections of S as follows:(9.14) / ∂ψ = n i=1 e i ∇ ei ψ,for an orthonormal frame {e i } with respect to g, ∇ is the induced Levi-Civita connection on S.Definition 9.6 (Hermitian Dirac Operators.). For any hermitian connection ∇, the hermitian Dirac operator associated with ∇, and acts on S, ei ψ, with / ∇ is the induced connection on S.Let ξ ∈ (0, * ) T * M ⊗ C K 1 2

( 9 .

 9 29)Also, in a local frame, the volume form isd(vol) = det gdx 1 ∧ • • • ∧ dx n . (9.30)One choses a vector field ζ = i ζ i ∂/∂x i in the same local frame, and

M

  ⟨D v s, s ′ ⟩ + ⟨s, D v s ′ ⟩ d(vol) s ′ ⟩div(v)d(vol) = -M ⟨s, div(v)s ′ ⟩d(vol).

□Proposition 9 .

 9 ⟨D v s, s ′ ⟩ L 2 + ⟨s, D v s ′ ⟩ L 2 = -⟨s, div(v)s ′ ⟩ L 2 .Moreover, if v is chosen with a compact support, then, (9.37)⟨D v s, s ′ ⟩ L 2 + ⟨s, D v s ′ ⟩ L 2 = 0. The differential d and its co-differential d * of a k-form α is given by, ei α, d * α =i ι fi ∧ ∇ ei α

  9.41) Now, ⟨d * α, β⟩ = ⟨α, dβ⟩= i ⟨α, f * i ∧ ∇ ei β⟩ = i ⟨ι fi α, ∇ ei β⟩ =i ⟨∇ ei ι fi α, β⟩i div(e i )⟨ι fi α, β⟩ =i ⟨ι fi ∇ ei α, β⟩i ⟨ ι ∇e i fi+div(ei)fi α, β⟩is equals to 0 using[START_REF] Bismut | Demally's Asymptotic Morse Inequalities[END_REF].where we used: ∇ v (ι w α) = (ι ∇v w)α + ι w ∇ v α, = ⟨∇ ei e j , e k ⟩ the result follows immediately from the definition of the covariant divergence field, namely, for any vector field v,div(v) = Tr(∇v) = i ⟨∇ ei v, f i ⟩ =⇒ div(e j ) = i ⟨∇ ei e i , f i ⟩ =i⟨∇ ei e i , e i ⟩ (9.45)

( 9 .

 9 48)Then using similar argument to Proposition (9) and the equation (9.27), we get, Proposition 11.

( 9 . 1 ; 12 .(- 1 )(- 1 ) 1 j=1(- 1 )

 91121111 51)Y, Z → ⟨X j , T (Y, Z)⟩;and ψ ⟨•, •⟩, X 1 , • • • , X j , • • • X p-1) denotes the complex 2-form defined by(9.52) Y, Z → ψ ⟨Y, Z⟩, X 1 , • • • , X j , • • • , X p-Proposition For any (0, p)-form ψ, hermitian connection ∇, and vector fields Z 0 , • • • , Z p of type (0, 1), we get(∂ψ)(Z 0 , • • • , Z p ) = p j=1 j (∇ Zj ψ)(Z 0 , • • • , Z j , • • • , Z p ) + j<k j+k ψ T (2,0) (Z j , Z k ), Z 0 , • • • , Z j , • • • , Z k , • • • , Z p (9.53) (∂ * ψ)(Z 1 , • • • , Z p-1 ) = -n i=1 (∇ ei ψ)(e i , Z 1 , • • • , Z p-1 ) +ψ((Tr T ) # , Z 1 , • • • , Z p-1 ) -pj (⟨Z j , T (2,0) ⟩, ψ•, •, Z 1 , • • • , Z j , • • • , Z p-1).

  2.2.The Classical Gibbs distribution. The probability dW (r 1 , p 1 ; r 2 , p 2 ; • • • ; r n , p n ) of finding the molecule 1 with phase space coordinates (r 1 , p 1 ) into the phase space volume dγ 1 , the molecule 2 with phase space coordinates (r 2 , p 2 ) into the phase space volume dγ 2 , • • • , the molecule n with phase space coordinates (r n , p n ) into the phase space volume dγ n is given by the Gibbs distribution,

	(2.2)	W (r 1 , p 1 ; r 2 , p 2 ; • • • ; r n , p n ) = exp	F -E kT	dΓ
	with phase space volume element dΓ, energy E; F is so determined that dW = 1, and is written in the
	following form,			
	(2.3)	F = -kT ln Z
	where,			
	(2.4)	Z = exp -	E kT	.
	The quantity Z in Statistical physics is known as the state integral or in Quantum Field theory the
	partition function. If an external source is present, namely a potential φ with a source ρ then Z depends
	on φ, and is denoted by,			
	(2.5)	Z(φ) = exp -	E(φ) kT
	and the partition function Z(φ) can be evaluated by solving an auxiliary Poison equation,
	(2.6)			

  is an orthonormal basis at x ∈ M . The inner product is independent of the orthonormal frame. The general case is to write down the vector fields X i as Definition 9.7. Let {e 1 , • • • , e n } is an orthonormal basis and {f 1 , • • • , f n } is the dual basis, that is ⟨e i , f j ⟩ = δ ij . For a vector field X ∈ Γ(M, T M ) one gets and endomorphism of T M , namely Y → ∇ Y X. One denotes the endomorphism by ∇X. The trace of ∇X is called the covariant divergence of X,

	(9.23)	X i =

ij

a ij e j , we then evaluate α on X i 's, and use the multilinearity of α and then use the orthonormaloty of e i 's.

□