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Introduction

Methods

Validation on Synthetic Data
Our model has been thoroughly validated on synthetic data. We generated data 
via synthetic disease models. The influence of covariates was simulated by ins-
tanciating multiple models with slightly different dynamics. For each subject we 
first sampled its time-fixed covariates, and then used them to select the model 
for data generation. Continuous covariates were modeled by combining slightly 
different models. We also included covariates irrelevant to the disease dynamics 
to validate the robustness of our approach.

For example, we consider a fic-
tive disease having two different 
progression patterns, depending 
on the status of a given mutation 
(binary covariate). We use two 
distinct generative models (bold 
line) to model a standard form 
(top) and a motor form of the di-
sease (down). We consider a bi-
nary covariate (think: mutation 
status) that defines whether a 
patient suffers from the standard 
(no mutation) or the motor form  
(mutation) of the pathology.
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Trajectories of patients are pooled into a single 
synthetic cohort, where two disease modes 
coexist and depends on a mutation status.

Longitudinal modelling is of pivotal interest for the study of neurodegenerative di-
seases. The Disease Course Mapping1 is a multivariate Bayesian mixed-effect pro-
gression model that is able to recover the course of a disease from a cohort with 
multimodal longitudinal observations (imaging variables, cognitive and clinical 
scores) and to extract interpretable parameters to describe each patient. It has 
been validated on multiple diseases and on multiple applications settings (cohort 
study, trial enrichment, data simulation, ...)
However, its statistical formulation relies only on time-dependent observations. 
It thus fail to integrate time-independent information (gender, education levels, 
genetic factors, ...) in its modelling, even though such covariates are known to 
modulate clinical disease courses. We propose a mixed-effect formulation that 
captures the influence of such covariates over the dynamic of the disease.

Results on Clinical Data
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During calibration, the original model 
learns a set of population parameters 
characterizing the average progression 
of the pathology. Averaging is defined 
as learning a geodesic in a multi-dimen-
sional Riemannian space which mini-
mizes the cost of non-linear identifiable 
registrations of the average curve onto 
all individual observations. A Bayesian 
framework is used in order to include 
regularize registration costs: each regis-
tration is driven both by individual data 
attachment and information learned 
from the whole cohort.

We then calibrated our new model on such synthetic datasets 
and made sure that we could recover the link between covariates 
and dynamic effects. The example presented here is a simple bi-
nary setting, but multiple, continuous and slighter dynamics effects 
were also considered with success. Covariates that were artificial-
ly added but without any dyna-
mic effects were also correctly 
discarded by our model.

Top: average progression from a standard mo-
del calibrated on this heterogenous cohort. 
Bottom: average progression from our cova-
riate aware model.

The standard model averaged the cohort onto 
an intermediate dynamic that does not ac-
count for the heterogeneity of the cohort, while 
our new model was able to recover the dyna-
mic effect that was associated to the mutation 
status.

We ran our model on the ADNI dataset, which is an Alzheimer’s Disease co-
hort. We showed that we can recover clinically established effects of cova-
riates such as sex, APOE mutation. 
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Effect of APOE4 Mutation
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Calibration over ADNI. Here we emphasize the ef-
fect of the APOE4 mutation. In solid line the average 
progression for patients without the APOE4 mutation. 
The dotted line shows the expected progression of 
a patient homozygous for the APOE4 mutation. We 
recover the clinically known effect of the mutation 
with patients affected earlier and faster.

Analysis of the link function 
learned during calibration. 
Here is represented the ef-
fect of the APOE4 mutation 
on the progression speed 
of some biomarkers and 
cognitive scores. A positive 
value is associated to an 
«accelerating» effect, while 
a negative value stands for 
a «slowing» effect.
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Analysis of SNP using the same prin-
ciple as for the APOE4 example. 
Those SNP are selected among 
some of the most associated SNP 
from a reference GWAS. The first 
and third SNP show no significant 
effect on the disease progression 
speed, while the second one is si-
gnificantly associated to a faster 
cognitive decline.

1[Schiratti et al. — 2017]
A Bayesian mixed-effects model to learn trajectories of changes 
from repeated manifold-valued observations. JMLR

https://gitlab.com/icm-institute/aramislab/leaspy/

Learning a geodesic minimizing the cost of 
registration toward observations (dots). The 
identifiable registration involve a time repa-
rametrization of the patients age (τ and α) 
and spatial effects (w). The ambient metric 
is chosen so that geodesics respect clini-
cal hypothesis behind biomarker evolution 
— monotonicity, logistic-like dynamic, etc. 
(Figure from the Leaspy gitlab repository)
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Comparison between the ori-
ginal approach (left) and our 
new formulation (right).
The link function of the new mo-
del diagrammatically corres-
ponds to the arrow between 
the green and the blue areas.

2[Kunkle et al — 2019] 
Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci 
and implicates Abeta, tau, immunity and lipid processing. Nature genetics.

We adapt this model to explicit the dependancy between covariates and bio-
marker evolution. We learn a parametrized function linking covariates to popu-
lation parameters. While the original model learned a fixed average trajectory, 
we now learn a function that associates a set of covariates, to a proposal ave-
rage trajectory. Individual effects are retained to account for patient variability 
even within a “similar covariate class”.
This link function is modelled as a linear map between covariates and the geo-
desic parameters. We thus obtain an interpretable link between each cova-
riate and the dynamic of the pathology (such as progression speed for each 
biomarker, onset age, etc). The total likelihood of the model thereby formu-
lated can be shown to lie in the curved exponential family. This allows using al-
gorithms of the MCMC-SAEM family for calibration.

We then ran our model on a wider number of SNP selected using a re-
ference GWAS2. Our findings suggest that even though those SNPs have 
some of the highest effect size in the GWAS, their association with dyna-
mics effect of the disease — such as speed of progression — is not always 
significant. This is because in most standard GWAS, SNP are associated 
with diagnosis and not with dynamic aspects of pathologies.
This suggests that polygenic risk scores derived from regular GWAS do not 
efficiently target and inform about disease dynamics and that our ap-
proach could be a first step toward designing finer risk scores.
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Leaspy synthetizes longitudinal observations from a cohort into a descriptive model (left). Once 
presented with observations from a new patient, it finds descriptive parameters that register the 
population model onto the observed data, thus obtaining a personalized progression model. Priors 
learned during the initial calibration over the cohort help regularizing the model. 
While performing this registration of the population model onto the personalized model, no infor-
mation about covariates are taken into account. We propose to change this behaviour.


