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SUMMARY7

In the recent years, the seismological community has adopted deep learning (DL) models8

for many diverse tasks such as discrimination and classification of seismic events, identi-9

fication of P- and S- phase wave arrivals or earthquake early warning systems. Numerous10

models recently developed are showing high accuracy values, and it has been attested for11

several tasks that DL models perform better than the classical seismological state-of-art12

models. However, their performances strongly depend on the DL architecture, the training13

hyperparameters, and the training datasets. Moreover, due to their complex nature, we are14

unable to understand how the model is learning and therefore how it is making a predic-15

tion. Thus, DL models are usually referred to as a “black-box”. In this study we propose16

to apply three complementary techniques to address the interpretability of a convolutional17

neural network (CNN) model for the earthquake detection. The implemented techniques18

are: feature map visualisation, backward optimisation and layer-wise relevance propa-19

gation. Since our model reaches a good accuracy performance (97%), we can suppose20

that the CNN detector model extracts relevant characteristics from the data, however a21

question remains: can we identify these characteristics? The proposed techniques help22
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to answer the following questions: How is an earthquake processed by a CNN model?23

What is the optimal earthquake signal according to a CNN? Which parts of the earth-24

quake signal are more relevant for the model to correctly classify an earthquake sample?25

The answer to these questions help understand why the model works and where it might26

fail, and whether the model is designed well for the predefined task. The CNN used in this27

study had been trained for single-station detection, where an input sample is a 25 seconds28

three-component waveform. The model outputs a binary target: earthquake (positive) or29

noise (negative) class. The training database contains a balanced number of samples from30

both classes. Our results shows that the CNN model correctly learned to recognize where31

is the earthquake within the sample window, even though the position of the earthquake32

in the window is not explicitly given during the training. Moreover, we give insights on33

how a neural network builds its decision process: while some aspects can be linked to34

clear physical characteristics, such as the frequency content and the P- and S- waves, we35

also see how different a DL detection is compared to a visual expertise or an STA/LTA36

detection. On top of improving our model designs, we also think that understanding how37

such models work, how they perceive an earthquake, can be useful for the comprehension38

of events that are not fully understood yet such as tremors or low frequency earthquakes.39

Key words: Neural networks, Numerical modelling, Time-series analysis, Computa-40

tional seismology41
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1 INTRODUCTION42

Science community has to a great extent embraced machine learning (ML) algorithms for solving var-43

ious tasks, and seismology is following this trend. Seismology is an observational data driven research44

field, and throughout years great number of techniques has been developed to study earthquake and45

how the seismic wave propagate through Earth. Because of the demand to handle large amount of data46

with usually computationally expensive techniques, the implementation of ML algorithms in seismol-47

ogy started very early (Dowla et al. 1990; Dai & MacBeth 1995), and nowadays there are numerous48

applications (Kong et al. 2019; Bergen et al. 2019; Mignan & Broccardo 2020, and references therein).49

The range of topics include: earthquake detection (Perol et al. 2018; Majstorović et al. 2021), phase50

picking (Zhu & Beroza 2018; Ross et al. 2018; Mousavi et al. 2020), early warning systems (Kong51

et al. 2016), real-time seismicity monitoring (Cua & Heaton 2007), ground-motion prediction (Jozi-52

nović et al. 2020) for obtaining source, path, and site effects (Alavi & Gandomi 2011), or subsurface53

geophysical structure in seismic tomography (Elad 2010) (for more detailed list of references see Kong54

et al. (2019)). ML algorithms, especially deep learning (DL) models, offer a successful framework to55

tackle all these tasks since DL models can be designed: a) to work with any type of data or even with56

the combination of different types of data, b) to produce any type of output depending on the task, c) to57

implement the algorithms in a computationally efficient way. Even though numerous studies provide58

us with a proof of concept that DL methods can successfully solve traditional seismological problems,59

some difficulties still remain. Mostly because these models are highly parametric and strongly depend60

on the DL architecture, the training hyperparameters, and the training dataset. Moreover, in the train-61

ing process, we lose track of how the prediction is obtained and we cannot examine if models has62

learned something physically significant from the data itself.63

One step closer into understanding how and why DL models work, and why some perform better64

than the others, can be done by developing tools to understand the so-called ”black-box” nature of DL65

models. Even though the structure of a DL model is explicitly defined, and it is well understood how66

the mathematical operations are implemented, it can be substantially complex and the number of the67

operations can be tremendous. Therefore, tracking how data are being transformed within DL model is68

not feasible. Overall, studying the black-box nature of DL model, implies interpreting how the data are69

fitted for some predefined task by using a specific DL architecture. In recent years rich set of various70

techniques has been developed for the purpose of interpreting a prediction process behind DL models71

(Barredo Arrieta et al. 2020; Roscher et al. 2020; Samek et al. 2021; Ras et al. 2021; Linardatos et al.72

2021; Kong et al. 2022). It is highly crucial to recognize if DL model failed to represent training data73

and sometime sole prediction value is not enough to alert the user of the problem. In the situations74



4 Josipa Majstorović, Sophie Giffard-Roisin, Piero Poli

where DL outputs have huge impacts on the decision making processes, this lack of interpretability is75

highly criticized (Castelvecchi 2016).76

The various applications of DL models within the seismology are designed to produce only the77

output prediction value, that is obtained by maximizing the accuracy of the model performance. For78

example, in an earthquake detection task, the DL detectors are developed to recognizing earthquake79

signals in continuous seismograms that contain signals of many other geophysical, anthropogenic,80

instrumental sources, which we refer to as noise. To declare a detection within the continuous data,81

the model has to surpass a certain threshold of the prediction value. Even though the problem of82

earthquake detection is quite straightforward, the existing models are usually developed for specific83

purposes and/or in specific conditions, and suffer from false detections (Perol et al. 2018; Lomax et al.84

2019; Wu et al. 2019; Mousavi et al. 2019; Magrini et al. 2020; Zhu & Beroza 2018; Ross et al. 2018;85

Mousavi et al. 2020; Yang et al. 2020; Majstorović et al. 2021; Xiao et al. 2021; Saad et al. 2021).86

Consequently, developed detectors once applied on the same continuous data are generating dissimilar87

results. While we can quantify that existing detectors reach different accuracy performance values, we88

don’t know why. In this context of interpretability, EQTransformer (Mousavi et al. 2020), the detector89

and seismic phase picking encoder, has already provided some intuition behind the decision process90

by implementing the hierarchical attention mechanism (Luong et al. 2015; Yang et al. 2016). Using91

attention mechanism we can get a first indication on what the DL model is focused on at different92

stages of the network. However, this technique is only able to investigate a specific layer of the network93

(the attention layer), thus it does not provide insights on how other layers transform the information94

within the network.95

In this study, we apply interpretation techniques to explore the prediction process behind DL de-96

tector model. For this purpose we use the convolutional neural network (CNN) detector developed97

in Majstorović et al. (2021). Our main motivation is to explain how the information about the earth-98

quakes is embedded in a DL model, i.e. a binary classification model, separating earthquake from99

noise signals. If we consider that DL model is interpreting our training data space, this implies that100

it has presumably learned some high level characteristics, features, patterns, and is able to general-101

ize well to the unseen data that seemingly belong to the training data space. By exploring how our102

CNN detector makes prediction and how it classifies the samples from the evaluation dataset, we can103

learn which earthquake characteristics are relevant for this task and we can explore how our CNN104

architecture is suitable for this predefined scope. To tackle these questions we applied three differ-105

ent interpretability techniques, the feature map visualisation (Krizhevsky et al. 2012; Zeiler & Fergus106

2014), the backward-optimisation algorithm (Simonyan et al. 2014; Olah et al. 2017) and the layer-107

wise relevance propagation algorithm (Bach et al. 2015). Each technique focuses on different aspects108
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of the model. The feature map visualisation reveals how the individual earthquake samples are repre-109

sented within the CNN layers. The backward optimisation method answers the question of how the110

optimal earthquake signal looks like for our trained CNN model. And finally, the layer-wise relevance111

method illustrates which parts of the earthquake sample are important for a good detection.112

The paper is organized as follows: first, we introduce the data and the CNN earthquake detector113

model used in this study. Further, we introduce the theory behind the feature map visualisation, the114

backward optimisation and the layer-wise relevance methods. Lastly, we analyze how and why the115

CNN earthquake detector model works, and which parts of the model are more or less independent116

when we repeat the retraining process. We finish with the discussions and perspectives for future117

works.118

2 MATERIAL AND METHODS119

2.1 Data120

In this study we use the AQULO dataset introduced in Majstorović et al. (2021). It is based of two121

types of samples: positive samples which are the earthquake signals that contain at least P- and S-122

waves arrivals, and negative samples that are composed of random geophysical and anthropogenic123

signals. The data are collected from the AQU station placed in the city of L’Aquila, in the Abruzzo124

region in the Central Apennines of Italy for a period of 30 years. It contains around 123k samples,125

from which 48% are positive samples. In this case each positive sample corresponds to one catalogued126

earthquake, where 40% originated from the Valoroso catalog (Valoroso et al. 2013). In other words, we127

cleaned our dataset from the positive samples that contain multiple events. The duration length of the128

samples is set to 25 seconds, the sampling frequency is 20 Hz and within each sample there are three129

components (east-west, north-south, vertical) waveforms. Additionally, the dataset is non-filtered and130

normalised per sample by the maximum value out of the three components. Due to the Gutenberg-131

Richter law (Gutenberg & Richter 1955) the distribution of the earthquakes’ epicentral distance and132

magnitude is quite imbalanced.133

2.2 Convolutional neural network134

Neural networks (NNs) are a family of techniques within the machine learning domain that are at the135

basis of deep learning algorithms (McCulloch & Pitts 1943). They were inspired by the functionality136

of human brains, how the biological neurons communicate within each other using complex intercon-137

nections. The NNs are algorithms that can process parallel information. Their basic components are138

called neurons (or units, nodes) that are organized in layers and are connected with links. There are139
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three types of layers: an input layer, one or more hidden layers, and an output layer. In a standard140

artificial NN called fully connected NN, the values from the input layer are connected to the output141

layer, or prediction layer, through a series of hidden layers that are called fully-connected layers. Each142

neuron from one layer is connected to every neuron of the next layer. In Figure 1 we show the neu-143

ron model, defined as a = σ (
∑

iwixi + b) where xi is the input value, wi is the weight of xi, b is144

the bias, σ is an activation function, and i is the index in the previous layer. The weights represent145

the connection strength between neurons, the biases are constant additive terms, while the activation146

function is used to introduce non-linearity to NNs. In this complex mapping process from the input147

to the output layer, we adjust the weights and the biases, which are optimized by a learning algorithm148

during the training process. There are two phases within the learning process, the feed-forward and149

the backpropagation. In the feed-forward phase the input data are passed through the layers and we150

calculate the output values. In the final step of the feed-forward phase, we calculate the error (loss) be-151

tween the predicted and ground truth value of the output layer for every sample of the training dataset.152

Then, this error is backpropagated to adjust the weights and the biases in the backpropagation phase.153

The iterative optimizing process in which we minimize the error itself is called the stochastic gradient154

descent. These two phases are repeated until an acceptable loss value is reached.155

[Figure 1 about here.]156

Convolutional neural networks (CNNs) are a special kind of NNs able to process data having a

grid-like structure such as images (2D or 3D) as well as temporal time series (1D) (LeCun et al. 2015).

The main building elements are convolutional, pooling (downsampling operation) and fully-connected

layers. Stacking these different layers defines a CNN architecture. The difference between CNNs and

traditional NNs are the convolutional layers acting as a variety of filters by using a mathematical

operation called convolution defined as

f(t) = (x ∗ w)(t) =
∫

x(a)w(t− a)da, (1)

where x(t) is the input (image or time series) or the output of a previous layer, w(t) is the kernel or157

filter, a is a dummy variable, and f(t) is the output feature map. The filter is smaller than the input data,158

thus the multiplication is always applied between a filter-sized patch of the input data and the filter, and159

this operation is repeated over the whole input data. In every convolutional layer, many feature maps160

are estimated from different kernels, and the values of the kernels are the weights being optimized161

during the training. These convolutions help the model to leverage three important concepts: sparse162

interactions, parameter sharing and equivariant representations. The sparse connectivity is achieved by163

making the filter smaller than the input, thus only a small local patch of data is interconnected unlike164

in fully-connected layer where all neurons from one layer are interconnected. This property implies165
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that fewer parameters need to be learned and that the output requires fewer operations to be computed.166

Next, parameter sharing refers to the fact that during the convolution the weights within one filter are167

used in every position on the input. This, further, reduces the number of the parameters of the model.168

The parameter sharing introduces another property which is called equivariance to translation. This169

property allows the filter to discover features of objects within the data, while the position of the object170

does not need to be fixed in order to be detected by CNN.171

As in NNs, the values of the filters, the weights, are learned during the training process of the172

network. Therefore, the network learns what types of features to extract from the input data by min-173

imizing the loss function. It is important to emphasise that the network learns more than one filter at174

a time, and multiple convolutional layers are applied in series. This allows decomposing input data to175

the features of higher abstractions. Same as in NNs, the (linear) convolution layers are followed by176

(non-linear) activation functions in order to obtain activation maps from the feature maps.177

2.3 CNN earthquake detection model178

In this study we use the CNN architecture from Majstorović et al. (2021), also shown in Figure 2A,179

where the full process of training and selecting the optimal hyperparameters is explained. The CNN180

model is trained to recognise earthquake signals within the continuous recordings that in very high181

percentage contain noise signals, which comprise numerous anthropogenic and unknown geophysical182

signals. Its architecture consists of seven convolutional and two fully-connected layers. Each convo-183

lutional block has 32 outputs that corresponds to a kernel of size 3, a stride of 2 and padding of 1,184

and it is followed by the rectified linear (ReLU) activation function. The last fully-connected layer is185

followed by the sigmoid activation function. Based on our samples’ shape the input layer has a di-186

mension 3 × 500, corresponding to three components and 500 time steps (which is a time series of 25187

seconds sampled with frequency of 20 Hz). The output of the CNN is a scalar between 0 and 1 that188

represents the CNN estimation whether the input sample belongs to the negative or positive class, i.e.189

whether the CNN model recognizes an earthquake or not within the 25 seconds time window. During190

the training process the data is split into training (80%), validation (10%) and evaluation (10%) sets.191

To train our CNN model we use the stochastic gradient descent optimizing algorithm with a learning192

rate of 10−2, a momentum of 0.9 and a batch size of 512 samples. If during the training the model193

does not improve for 50 epochs on the validation dataset, the training process is stopped.194

2.4 Ten CNN training runs195

The CNN model, as any other deep learning algorithm, is stochastic by nature. This randomness comes196

from the weight initialisation and the training process by changing the order of the training samples.197
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Consequently, retraining a CNN model with the same dataset and hyperparameters yields different198

weights and biases, and this might introduce slightly different predictions. If by introducing small199

changes in the training set, we obtain small differences in the output of the trained model, we can argue200

that the training algorithm is stable (Bousquet & Elisseeff 2002; Charles & Papailiopoulos 2018). To201

consider the stochastic nature of the CNN models and to test for the stability, we train our model by202

using ten different random orders of the training dataset, thus we store the 10 model instances. The203

average accuracy on the evaluation set, having the same number of positive and negative samples,204

is 0.9758 and the standard deviation between the model runs is 8 · 10−4 (the full evaluation report205

is shown in Table S1): the models seems to be very consistent among them. The first trained model206

instance is referred to as model A, and it is used as the reference model.207

2.5 Interpretation methods208

When we talk about interpretation, the goals are numerous: checking the limits of the model, finding a209

way how to improve the model, better understanding the physics of the system we are modeling, etc.210

In this study, we want to tackle these different aspects, so we explore different types of interpretation211

techniques. First, in order to check the limits of the model and potentially improve it, we need a way to212

understand what is happening inside the model. For this, a first possibility is to extract and visualize the213

weights of the model, which in the case of CNNs are the kernel filters. However, in our case the filters214

are not visually interpretable as they are small (the filter size within our CNN model for the first layer215

is set to 3x3 which corresponds to the 3 components of our input array and the size of the temporal216

window (3 time steps), and for other layers the filter size is 3x32). Nonetheless, we can analyze the217

decision processes, for targeted samples, by extracting and visualizing the sequential transformation218

of the input data trough the network, i.e. the feature maps, which was originally done in 2D CNNs by219

Krizhevsky et al. (2012); Zeiler & Fergus (2014). The feature maps visualisation (FMV) technique is220

developed in Section 2.5.1.221

However, when visualizing feature maps we are not able to understand how a model relates the222

input and the output. In order to analyze the model at a global scale and understand what it does on223

average, a good strategy is to determine class prototypes (optimal inputs). For every class, we estimate224

what would be the ’mean’ sample. Several studies (Simonyan et al. 2014; Olah et al. 2017) proposed225

a method, called backward optimisation, able to generate a prototype signal for each class with an226

iterative process. We explore the backward optimization (BO) technique and develop it in Section227

2.5.2.228

Moreover, in the scope of analyzing the link between input and output for individual decisions229

(by analyzing the individual waveform samples from the evaluation dataset), many methods have230
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proposed ways to interpret why a certain data is classified as a certain class. They almost all rely on231

the generation of a heatmap showing which part of the input plays in favor or against its classification.232

A first family of methods, called sensitivity analysis or gradients/saliency methods (Simonyan et al.233

2014), is proposing to estimate for each pixel (or time step) what is the gradient of the model function234

(how does the output varies when modifying this pixel). A second family of methods, called layerwise-235

relevance propagation (LRP) (Bach et al. 2015), propagates a relevance value from the output to the236

input, expressing how important each pixel (or time step) is for the decision. The LRP methods were237

shown to be more stable than the gradients methods, especially in deep networks (Montúfar et al. 2014;238

Balduzzi et al. 2018). Moreover, we want to explain the decision function and not its variations, so we239

will focus on the LRP technique and give more details in Section 2.5.3. The three identified methods,240

depicted in Figure 2B, are all using a scientific visualisation to explain how a model works: they are241

referred to as ’visualization methods’ (Ras et al. 2021). Moreover, as throughout the analysis we do not242

alter the trained weights and biases of the CNN models, these methods belong to the post-modeling243

(post-hoc) methods (Barredo Arrieta et al. 2020).244

2.5.1 Feature map visualisation (FMV)245

Once a model has been trained, we can have access and visualize the learned weights, which are246

the kernel filters in the case of convolutional layers. Moreover, by inputting a new sample from the247

evaluation dataset into the model, we can also extract the sequential transformations of the input data248

by every filter of every layer: this is what we call ’feature maps’ (Krizhevsky et al. 2012; Zeiler249

& Fergus 2014). The schematic representation of the feature maps, belonging to the convolutional250

layers, along with their sizes is shown in Figure 2A with light blue blocks. The feature maps helps us251

understand how the convolutional filters transform the input data at intermediate layers. As mentioned252

previously, having more convolutional layers implies having features of higher abstraction. Therefore,253

it is expected that the features extracted in the first convolutional layer have temporal details while the254

features in the last 7th convolutional layer should be more general. We can define the decomposition255

within the CNN as256

f1 = C1(x)

a1 = σ(f1)

f2 = C2(a1)

a2 = σ(f2)

...

, (2)
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where x is the input, Ck is the k-th convolutional layer, σ is the activation function, fk is the feature257

map of layer k, ak is the activation map of layer k. In this study, we visualize the feature maps fk.258

2.5.2 Backward optimisation (BO)259

In the following, we give a short overview of the method called backward optimisation (BO) or feature260

optimisation (Simonyan et al. 2014; Olah et al. 2017). The schematic representation is shown in Figure261

2B. The goal of this technique is to iteratively generate a synthetic input, or prototype, based on the262

trained model for a specific class. By maximizing the output likelihood, in our case the likelihood of263

the CNN to correctly predict an earthquake signal, we can perceive what is the optimal earthquake264

signal for the CNN model.265

There are several important steps in this method (Figure 2B). First, we freeze the trained CNN266

model’s weights and biases. This means that during the new iteration process those parameters are267

not updated. Next, a vector with the same size of the input sample (here 500x3) is passed through the268

network, the prediction is obtained and compared with the desired class (either earthquake or noise269

class in case of the CNN earthquake detection model). The misfit is calculated using the same loss270

function, and the backward optimisation algorithm is used to update the input sample values. The271

network is using the previous knowledge (weights and biases) to update the input sample for a desired272

class. This is repeated during several iterations, until convergence. The process is quite similar to how273

the model is originally trained, however here the updated variables are the values of the input sample.274

The final input is hereinafter referred as the optimal input.275

The optimal input solution is thus generated iteratively. The input vector can be initialized in dif-276

ferent ways: only zero values (the exact ”zero input”), an array of random values (”random input”)277

and an array matching real-dataset sample (”real input”). The zero input generates an invariant syn-278

thetic optimal input that is completely novel with respect to the starting initial array. It allows the279

trained CNN detector model to generate one perfect earthquake (for positive class) or noise (for neg-280

ative class) solution. Here, the term ”perfect” relates to having a maximum likelihood for earthquake281

solution and minimum likelihood for the noise solution. Unlike the zero input, we can randomly chose282

the initialisation values within the input array with a Gaussian process and have as a result a collec-283

tion of optimal inputs. The obtained optimal inputs are novel and almost never resemble the original284

training samples (McGovern et al. 2019). The random inputs allow us to perform an ensemble study285

since we are able to generate an endless possible optimal input solutions. Third, in the case of a real286

input initialization, the optimal input solution is physically realistic (McGovern et al. 2019). Hence,287

this solution could be understood as an improvement of an existing earthquake signal by finding the288

needed changes in order to maximize the detection rate of the actual earthquake signal. It allows us to289
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understand which parts of the training samples need more attention or modification in order to improve290

the actual detection rate.291

2.5.3 Layer-wise relevance propagation (LRP)292

Layer-wise relevance propagation (LRP) aims at determining which parts of a particular input vector293

contribute most strongly to a NN decision, as a kind of heatmap. Unlike the backward optimisation,294

LRP is a non-iterative method applied to one input real sample at a time, by propagating the relevance295

value backward using purposely designed local propagation rules. The original method was introduced296

by Bach et al. (2015) and has been applied in different scientific fields to unravel the decision making297

process of large variety of deep learning models. Some applications are understanding relevant fea-298

tures in text-based data (Arras et al. 2017), patch-based learning of video data (Anders et al. 2019),299

Alzheimer’s disease patterns (Böhle et al. 2019), climate patterns (Toms et al. 2020). The schematic300

representation is shown in Figure 2C.301

The goal of LRP is to define a measure called relevance R over the input vector taking into account302

the model’s decision. This is accomplished by respecting the conservation property, meaning that the303

contribution received by a neuron must be redistributed to the lower layer in equal amount (Montavon304

et al. 2018, 2019). There are three steps: in the first step the weights and the biases of the trained model305

are frozen. Next, we forward pass the input array through the DL model and we collect the activations306

at each layer. In the third step, the prediction of the last output layer is backpropagated using a set307

of propagation rules that satisfies the conservation law. Let’s mark with j the neurons at layer l, with308

k the neurons at the lower layer l − 1 and with R the relevance. Then, the conservation law implies309 ∑
j Rj =

∑
k Rk. The implementation relies on a specific set of propagation rules. Let’s describe the310

neuron activation ak by the equation311

ak = σ(
∑
j

ajwjk + bk), (3)

where aj are the activations from the previous layer l, wjk, bk are the weights and biases of the neuron.312

One propagation rule that has shown to work well in practice (Montavon et al. 2018, 2019) is the β-rule313

(or αβ-rule, where α = 1 + β) defined as314

Rj =
∑
k

(
(1 + β)

ajw
+
jk∑

j ajw
+
jk

− β
ajw

−
jk∑

j ajw
−
jk

)
Rk, (4)

where ()+ and ()− denote the positive and negative parts, and the constrain β ≥ 0 is valid. To avoid315

numerical instability by dividing with zero, a stabilizing term ε can be introduced. The parameter β316
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controls how much weight is given to the positive/negative relevance within the layered graph structure317

of DL model. For example, by setting β = 0 we only consider the positive relevance, and by setting318

β = 1 we are allowing the negative relevance to have an impact to the final LRP solution. The319

positive relevance being propagated to the input layer highlights the relevant parts of the input layer,320

and vice versa. To understand which part of the input three-component waveforms are relevant for the321

earthquake prediction it might be meaningful to focus on several possible LRP-β solutions (Montavon322

et al. 2018) by varying the β value.323

[Figure 2 about here.]324

3 RESULTS325

As explained in Section 2.5, we use the FMV, BO and LRP methods to explore the decision process of326

our trained CNN model (see Figure 2). In order to study the CNN model in an objective way and obtain327

complementary solutions for the different methods, we select a set of waveforms of earthquakes char-328

acterized by different distances and magnitudes and some noise samples, and we use them throughout329

the analysis. These samples are extracted from the evaluation dataset, so that the FMV, BO and LRP330

solutions are independent from the examined model. The ten chosen earthquakes are shown in Figure331

S1.332

We also use the interpretation methods to explore how our model is stable in terms of the training333

process and the existing architecture. For this purpose we analyze ten CNN detector models from334

Section 2.4, while the results for the model A are used as a reference (see Table S1).335

3.1 Feature map visualisation336

Using the FMV we can visualize the feature maps of the intermediate convolutional layers. Based337

on our CNN architecture shown in Figure 2A there are 36 output channels for each of the seven338

convolutional layers, that are the products of the convolution using the filters of size 3x3 (first layer)339

and 3x32 (all other layers). Each output channel is associated with the feature map (light blue blocks340

in 2A) and its size is decreasing from 251 down to 4 features.341

In Figure 3, for the first time to our knowledge, we show how an earthquake and a noise sample342

are seen by a DL model trained for earthquake detection by visualizing the feature maps. Clearly, the343

earthquake feature map differ from the noise feature maps for all CNN layers. We notice how the bulk344

of phases (positive or negative peaks, i.e. activation of the neuron), including P- and S- phase arrivals,345

is visually present throughout the first five layers (see several other earthquake samples in Figures346

S2-S10), while these characteristics are evidently absent in the noise feature maps.347
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To understand how the CNN model treats earthquake samples of different distance and magnitude348

values, we show in Figure 4 and Figure S11 a comparison between ten earthquake samples (A-J) and349

two noise samples (K-L). For better visual comparison the vertical scale is the same per channel across350

all included samples. We are visualizing only the 5th convolutional layer (L5): in L5, the original351

sample (500 time steps) is already reduced into vectors of size 16, but the bulk related to seismic352

phase arrivals is still visually present. At this point, we distinctly notice that some feature maps are353

common: a) within the layer, b) across different earthquake samples. For example, if we consider the354

earthquake sample A, we notice that all channels numbered with 2, 10 (Figure 4), 16, 18, 19, 22,355

23, 26, 27, 29, 32 (Figure S11) contain a left-sided amplitude peak. Moreover, these channels are356

quite similar and consistent also for earthquakes with different distances and magnitudes (see Figure357

4A-F and Figure S11A-F). Yet, we notice that the pattern is changing, but being consistent, for the358

earthquakes with the epicentral distance larger than 50 km (see Figure 4G-J and and Figure S11G-J).359

These observations could point to the fact that the CNN model defined a relevant highly abstract latent360

space where ’generalized’ earthquakes (of different distance and magnitude values) exists.361

[Figure 3 about here.]362

[Figure 4 about here.]363

The aforementioned occurrence of the repetitive feature maps suggests that our CNN model is364

stable in terms of the architecture design, since these maps are not random. To explore this hypothesis365

even further, we proceed to numerically quantify the resemblance between the feature maps by cal-366

culating the Pearson correlation coefficients r(xi, xi) (Freedman et al. 2007), where xi is the feature367

map and index i stands for the channel number and runs from 1 to 32. We quantify the resemblance368

between the feature maps of the 5th layer for earthquake sample B (Figure 4B and Figure S11B) ob-369

tained for the reference CNN detector model A (from Section 2.4 and Table S1). We calculate that370

49% out of 32 channels have at least one or more channel pairs with high correlation coefficient of r >371

0.8 (see Figure S12). Thus, we are finding pairs of channels with quite similar patterns. Beyond quan-372

tify the stability of the network, the observed redundancy indicates that less than 32 channels could373

be sufficient for the CNN detector model to provide correct classification of the positive sample. This374

analysis shows how the FMV could be used to guide the design of CNN architecture. For our case375

a less complex one, might provide similar performance. Yet, the presented analysis cannot provide376

us with straightforward information on how to design the optimal CNN architecture in terms of the377

number of layers or channels without any additional testing.378

The stability of our CNN detector can be additionally supported by studying the feature maps of379

ten different training runs of the CNN model. We train ten different models by randomly initializing380
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weights and by changing the order of the training samples (while keeping the architecture and the381

training hyperparameters), see Section 2.4. We extract the feature maps of the 5th convolutional layer382

of the earthquake sample B for the ten CNN models. It is important to underline that, due to the383

randomness introduced in the training process, the indices of the channels are not fixed between the384

different runs (Figure S13). By visual comparison, we observe that the feature maps are extremely385

similar, for example we see a feature map with the left-sided amplitude peak repeating consistently386

(see Figure S13). However, as much as we can see some stable patterns among feature maps, we can387

also notice that there is a level of uniqueness related to these feature maps, meaning that some feature388

maps are unique for each training run. We then quantify this visual comparison, by calculating the389

correlation coefficients r(xi, yj,i), where xi stands for the feature maps of the reference model A, yj,i390

stands for the feature maps of different training runs with index j running from B to J (see Section 2.4391

and Table S1), and again index i represents the channel index. Since in this case we are only examining392

whether the feature maps of different training runs are similar, for each channel of xi we keep only393

the related correlation coefficient of yj,i that has the maximum value, and we repeat this for every j.394

We notice that in average more than 75% of the channels associated with the reference model A have395

high correlation values of r > 0.8 (see Figure S14). The high resemblance among the feature maps396

of different training runs of the CNN detector model are quite high, proving that the existing CNN397

architecture is quite stable, despite the randomness during the training process.398

3.2 Backward optimisation399

The input data in our CNN detector (see Section 2.2) is shaped as 3 × 500 array where 3 stands for the400

number of components (E-W, N-S, Z) and 500 stands for the time steps. Following the details in Sec-401

tion 2.5.2 the optimal input obtained by applying the backward optimisation technique is also of shape402

3 × 500. When maximizing the output likelihood for the class associated with the earthquake signal,403

we expect to obtain waveforms that resemble the three components of real seismograms. Intuitively,404

they should, to some degree, be similar to the samples of the training dataset.405

To better evaluate the optimal input solutions for our CNN detector model, we proceed by studying406

the solutions of ten different training runs (Section 2.4). In Figure 5A we show the optimal inputs for407

these ten models, while the input array is initialized with zeros. Each input is updated separately for408

each model for 5000 iterations. While the optimal input training is converging correctly for all ten409

models, we notice that often the first few iterations (2 to 3) are diverging (increase of the loss) before410

converging (see Figure S15). This can be due to the fact that the ’zero initialisation’ is out of the411

training sample domain of the CNN models. We notice that the randomness introduced during the412
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training process of the CNN models affects the final optimal inputs, thus they are different for each413

run. However, we can observe some common characteristics present in all these solutions.414

First, all optimal inputs show consistent local amplitude increase simultaneously on all three chan-415

nels, corresponding to three components of our training sample. Next, we notice that the Z components416

related to the models A, B, E, G, J have their absolute amplitude exceeding 1. Thus, 83% of the total417

components (25/30) is consistent with our normalisation approach. In the time domain, the optimal418

solutions are showing a more complex behavior, which we can interpret as if there were occurrence of419

multiple earthquakes in the time window. This behavior is consistent with the BO results on images420

(Simonyan et al. 2014; Olah et al. 2017) where multiple artifacts of the learned object are repeated on421

the optimal image solution. This might be because the CNN model was trained using a broad range422

of local, regional, and teleseismic events, and this diversity encourages the complex multiple-event423

behaviour we are seeing. We also notice that the P- and S- waves are not really identifiable in the424

simulated inputs. This is interesting as it means that such samples, which would not be identified as425

earthquakes by any specialist, have a perfect detection score for this CNN model. We can see how426

part of the decision process is different between a human and a CNN. In Figure 5B we show the com-427

parison between the optimal inputs for all ten CNN models and the average amplitude spectrum of428

the training positive samples. We notice that the optimal inputs have enhanced high frequency content429

respect to real earthquake samples. By performing the same test for the negative class (noise), we can430

notice a clear difference especially in terms of the amplitude values (see Figure S16): the negative431

class is characterized by very low amplitude values. This does not match with the noise samples used432

for the training, since our noise samples have the amplitude bounded within -1 to 1 (see Figure 3C).433

However, the low amplitude values indicates that for the CNN model, the optimal noise sample is434

supposed to have an amplitude as low as possible.435

[Figure 5 about here.]436

We also study how the real earthquake samples are modified when we apply the BO technique.437

This test illustrates the modification of an earthquake sample to improve the confidence of the CNN438

model. We perform 5000 iterations on an input array initialized with a real earthquake sample from439

the evaluation dataset using the reference CNN model A (Section 2.4 and Table S1). In Figure 6 we440

show the raw Z component as well as the optimal input waveform at their full time scale, a zoom of the441

interval between 2.5 and 7.5 seconds, the logarithmic ratio between the two waveforms in the time and442

frequency domain (results for E and N components are shown in Figure S17 and S18, respectively).443

The logarithmic ratio is calculated as log
(

|Ain|
|Aout| ∗ 100

)
, where Ain is the raw waveform and Aout444

is the optimal input waveform or the modified one. A ratio value above 2 indicates a decrease of the445

optimal input amplitude with respect to the raw one. We notice that the upgrades are quite small in446
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amplitude, mostly less than one quarter of the magnitude. This is not surprising, since the prediction447

values of these earthquake samples before the BO modification are quite high, meaning that the starting448

loss values are already small. Moreover, we observe that the modifications are occurring within the full449

time window, yet, more often at the beginning of the time window (see Figure 6, S17 and S18 for Z,450

E, N component, respectively). These are not predominately positive or negative, and are earthquake-451

dependent. The modification occurring less than 5 seconds, and the absence of it between 5 to 10452

seconds, might indicate that the BO technique acts in a favor of a noise reduction before the P-arrival453

time. In Figure 6 we also see that the alterations are associated with high frequency content, which454

suggests that CNN model learned what frequencies are relevant for the earthquake detection.455

[Figure 6 about here.]456

We also compare the modifications for ten different training runs of the CNN model using the457

same earthquake sample B (see Figure S19). The results support previous observations from the FMV458

technique. The models perform similar alterations to the input signal, supporting the stability of our459

CNN model architecture design.460

3.3 Layer-wise relevance propagation461

In this section we attempt to understand which parts of the waveform are relevant for its classification462

as an earthquake or noise, by means of the LRP method. The relevance values depend on the used463

LRP propagation rule. In Figure 7 we show the solutions obtained with the LRP-β− 0 rule defined by464

Eq. 4 for ten earthquakes (same as in Figure 4) and the reference model A (Section 2.4 and Table S1).465

We use ε = 10−6 to stabilize the solutions. The results show high values of the relevance matching466

with the position of the earthquake in the time window, with peak values associated with P and S time467

arrivals (Figure 7). We further observe a consistent time distribution of the high relevance for the three468

components. Moreover, time distribution of high relevance closely follows the bulk of seismic arrivals.469

In more details, for events close to the station, with short S-P time, the relevance is visually much more470

compact in time (Figure 7A-F), respect to distant events for which the earthquake signature (S-P time,471

or P wave plus coda) is longer (Figure 7G-J).472

To explore this property in more details, we estimate the spreading of the positive relevance value473

with respect to time as the standard deviation, σLRP , for almost 6000 samples in the evaluation dataset.474

The standard deviation of the LRP solution is calculated by taking into account the full time span of475

500 time steps, where the relevance values are considered as steps’ weights. Thus, this measure is not476

related to specific time, but to a full waveform sample. The σLRP as a function of epicentral distance477

is reported in Figure 8A. Our analysis confirms that the earthquake samples with larger distances are478
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related to larger σLRP , meaning that the positive relevance is more spread. This again reflects that479

the duration of an earthquake is related to signals having larger S-P time and/or P wave plus coda.480

The model learns in a general way what is an earthquake, regardless of the position of the earthquake481

related signals (e.g. P, S, coda waves) in the time window. Clearly, this is achieved without explicitly482

pointing to the earthquake position within the corresponding time window. We observe that the high483

relevance values follow the positions of the multiple non-overlapping earthquakes in the time window,484

even though the CNN detector is trained with the positive samples having a single event with a fixed485

P-onset (see Figure S20). However, more relevance is associated with the earlier event. Beyond this486

general property, we can see in Figure 7 that the relevance shows a high frequency pattern. Also, for487

the larger distances sometimes particular time steps are given more relevance without a clear meaning.488

How these patterns are involved in the decision process of the CNN is not fully interpreted, leaving489

room for possible improvement of our earthquake understanding.490

We also calculate the relevance values for the LRP-β − 0.5 (see Figure S21) and LRP-β − 1 rules491

(see Figure S22). Unlike the LRP-β − 0 rule, these allow negative relevance values to be propagated492

up to the input array. In the context of the detection task, negative relevance is associated with the493

negative (noise) class. Thus, time periods associated with high negative relevance values are those that494

do not help the CNN detector to classify earthquakes in the positive class. The results are consistent495

for both LRP-β− 0 and LRP-β− 0.5 rules, while the solutions for the LRP-β− 1 are less stable. This496

might be because we ask the LRP technique to consider the positive input array thorough an increasing497

impact of negative relevance, which could be in contradiction. Nevertheless, we do not see consistent498

patterns related to the negative relevance for both LRP-β − 0.5 and LRP-β − 1. Such patterns, which499

are rare, are mostly associated with the time periods before P-arrivals (first 5 seconds) and the coda500

parts of the earthquakes. When the negative relevance patterns occur during the P and S phase arrivals,501

the associated amplitudes are less notable than those related to the positive relevance. Further, if we502

consider the σLRP value, unlike the LRP-β−0 solution, both LRP-β−0.5 and LRP-β−1 remain more503

localised. For the LRP-β − 0.5 solution the position of the positive relevance seems to be precisely504

linked to the P and S phase arrivals, which is not the case for the LRP-β − 1 solution.505

[Figure 7 about here.]506

[Figure 8 about here.]507

As for the FMV and BO technique, we apply the LRP-β − 0 − 0.5 − 1 rules for ten different508

training runs of our CNN model (Section 2.4 and Table S1). For this test we use only the earthquake509

sample B (Figure 4 and S1). The LRP results are quite consistent between all models for the LRP-510

β − 0 and β − 0.5 rules, and the results for the LRP-β − 1 are varying more (see Figure S23, S24,511
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S25 for the LRP-β − 0, β − 0.5, β − 1 rule, respectively). For the results associated with the LRP-512

β − 0 and β − 0.5, the main characteristics and the shape of the relevance values are the same across513

different training runs. For the LRP-β − 1, the differences across different training runs are more514

prominent. This observation again indicate the relative instability of this rule, that propagates more515

negative relevance, applied on the positive input array.516

By applying the LRP-β− 0 rule for the negative (noise) samples from our evaluation dataset (also517

around 6000 samples), we notice that the relevance is negative and fully spread within the whole time518

window (see an example for LRP-β − 0 in Figure S26). Having a negative relevance for the LRP-519

β − 0 (that only propagates the positive relevance) is not impossible. Our CNN model is trained to520

recognise earthquakes from noise samples, by providing us with a probability value between 0 and521

1. We should obtain the positive (resp. negative) relevance for the earthquake (resp. noise) samples,522

if those are classified as positive (resp. negative). In a detection task, the positive relevance indicates523

time steps that help the CNN model to classify the sample as positive, while the negative relevance524

indicates the opposite: time steps that help the model to classify the sample as negative. In Figure 8B525

we show σLRP for the positive and negative samples from the evaluation dataset. The plot shows that526

the CNN detector is indeed more localised for the positive samples, as the positive σLRP values are527

in average smaller. The LRP-β − 0 is spread within the whole time window for the negative samples,528

which is reflected by having larger σLRP values. This implies that each time is equally relevant for the529

detection task.530

To explore whether the LRP-β solutions are robust, we also check the relevance solutions by531

using the LRP-ε propagation rule (see Figure S27) (Montavon et al. 2018). We can conclude that532

the solutions related to this rule are highly linked with the solutions presented by the LRP-β rules: the533

positive relevance values for the earthquake samples are associated with the location of the earthquakes534

within the sample window. This shows that despite the large variety of possible LRP rules, the main535

findings are in agreement.536

4 DISCUSSION537

In this study we introduce three different methods to explain how a CNN detector model makes pre-538

diction between two classes, the earthquake (positive) and the noise (negative) class. The samples539

related to these two classes are constructed as 25 second window that contain either earthquake events540

of different distance and magnitude values (positive samples) or signals of many unidentified sources541

(negative samples). As an output this model gives a probability value, when being closer to one it indi-542

cates that the positive class is predicted. This model reaches quite high accuracy performance (97%).543

At this point of analysis, it is clear that the CNN detector model extracts relevant characteristics from544
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both type of samples to make a good prediction, however a question remains: can we identify these545

characteristics? We use three techniques to visualize how the trained model treat the input array, in546

order to get a better insight into what are these relevant characteristics.547

By considering the results obtained with one CNN detector model and several earthquake samples,548

we can deduce that the characteristics we are identifying are relevant for the different earthquakes. This549

is important since our CNN model should be able to generalize to earthquakes of different distances550

and magnitudes, once it is applied on the continuous data (Majstorović et al. 2021). We notice that551

earthquake diversity is well captured during training. Despite the waveforms differences of the earth-552

quake samples the CNN detector model is able to generalize well by generating feature maps of similar553

shape (Figure 4). Therefore, by using the FMV technique we note that the relevant characteristics are554

identified as very abstract feature maps that define a high-dimensional space where all earthquakes can555

eventually fit. The existence of this abstract space is the reason why the CNN model performs with556

high accuracy. Since we can obtain relevant maps for different earthquakes of various signal to noise557

ratios, it could indicate that the extracted features have some physical meaning (Figure 4).558

The results from the BO technique are more difficult to interpret. If we try to answer the question559

of how does the optimal earthquake looks like, the answer is that it is not what a human would expect.560

This result suggests that the optimal processing for earthquakes detection is perhaps more complex561

than some standard methods (such as STA/LTA, etc). The optimal input results reflect the complex562

nature of the patterns learned by the CNN model, also shown in previous studies (Olah et al. 2017). Yet,563

by comparing the optimal solutions for the earthquake and the noise classes, we might conclude that564

the amplitude is quite an important characteristic, while the shape and location of the peaks (events)565

seem less relevant (see Figure 5 and 6). Indeed, the earthquake optimal solutions span a much larger566

range of amplitude values, while those for the noise optimal solutions are more constrained.567

From the LRP technique, we observe that the high relevance values follow the position of the568

earthquake related signals (e.g. P, S and coda waves) within the sample window (Figure 7). The model569

learns in a general way what is an earthquake without being explicitly pointed to the earthquake570

position within the corresponding time window during the training process. However, more relevance571

is given to times related to P and S phase arrivals than the coda (Figure 7). This does not imply that the572

LRP technique could be used as a stable technique for picking P- and S- phase arrivals. We also notice573

that some time steps with very high relevance are followed by time steps with low relevance, without a574

clear pattern on what differs these time steps (Figure 7). This could be subject to further explorations,575

however it is not entirely odd, since LRP relevance values are sample dependent (Montavon, 2019).576

By comparing the results for different training runs, we can infer whether our CNN model is stable577

to the randomness we introduce during the training process. While comparing the interpretability578
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results we conclude that these results are coherent with the low accuracy variability between different579

models: the different runs of the models show very similar patterns and features. The feature maps have580

similar shape and amplitude values, and high correlation coefficients when compared to each other.581

The class prototypes estimated by BO are quite different between each model (indicating randomness582

can still play an important role), but many common characteristics are present in all optimal solutions.583

Moreover, the modifications found by optimizing a real earthquake sample are similar for the different584

runs. Finally, the LRP solutions associated with different model runs show that the relevance is of585

the same order of magnitude and the peaks are at the same location when being tested on the same586

earthquake sample.587

In our analysis, the positive and negative classes are represented differently for the studied tech-588

niques, which is also a sign of a good model performance. For example, the feature maps of two589

classes differ in amplitude and shape (see Figure 4). However, unlike the earthquake feature maps,590

the noise maps are quite different from sample to sample. This might imply that the feature space591

related to noise samples is more complex and diverse than the earthquake feature space. Certainly, this592

is a reason why the detection problem is quite challenging. Even though the earthquakes share some593

common characteristics, they are buried into a random wave field whose sources we are not able to594

dissociate. When observing the optimal solutions for the noise class (initialized with zero values, see595

Figure S16), we notice that the main characteristic is to have low amplitude. When the LRP technique596

is applied to the negative class, we learn that the CNN needs all time steps to correctly predict this597

class: the relevance values are homogeneously spread within the full sample window. This behavior598

differs from the positive class, where the time steps related to the earthquake are more relevant than599

the others. It comes probably from the fact that in order to know if a sample is negative, all time steps600

should be detected as noise so they are all important.601

From our analysis we can infer that the CNN detector model is extracting and using some relevant602

characteristics from the training samples to make good predictions. These characteristics seem to have603

a physical meaning, therefore applying these techniques to related research areas, that have the same604

research goal or similar subjects, might be quite interesting. For example, it would be interesting to see605

if we can use the feature maps to better understand some less known signals such as tremors, low- and606

very low-frequency earthquakes (Peng & Gomberg 2010). Furthermore, we could try to understand607

the black-box nature of the models that are used to predict laboratory earthquakes (Rouet-Leduc et al.608

2017). Especially since these models are trained for predicting the rupture time. Thus, it would be609

interesting to see whether the feature maps change over the time preceding the rupture, or check the610

properties of the signals (from FMV or LRP) in those time windows that we can use to predict the611

rupture.612
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We show in our study how interpretation techniques might be useful to assess whether a CNN613

model is stable with respect to the randomness of the training process. Each technique has a different614

indication of how the stability can be assessed based on the output result, and the consistency between615

the output results is the first indicator of the stability. Yet, the different intepretability methods are616

all additional measures to assess the robustness of a model. Furthermore, we also show how these617

techniques might be practical for the architecture or the database design. For example, if the prediction618

is not satisfying, using the FVM technique one can inspect whether the feature maps of samples619

belonging to different classes are significantly different for the predefined task. Furthermore, the LRP620

technique can be used to indicate which parts of the training samples, if any, is helping CNN to make621

good prediction. If the high relevance value does not match with the predefined targeted class in the622

time window or image, this might be indicative that the training samples need to be better defined.623

Despite these techniques provide us with valuable insight about our CNN model, all three tech-624

niques are evaluated by a visual approach and we do not have a relevant ground truth. To overcome625

this lack of a numerical interpretation, it might be interesting to compare the results among different626

models that are trained with different datasets but the same architecture, in that case taking an advan-627

tage of existing toolbox (Woollam et al. 2022). Based on the performance of, for example, two models628

trained with different datasets but the same architecture, we could assess how the accuracy is related629

to feature maps, optimal solutions, or relevance values. The possible existing differences should not630

affect the general characteristics that we discussed through our study, for example: the feature maps631

between negative and positive samples being visually different, the optimal inputs reflecting the fre-632

quency content of the training samples, the LRP solutions indicating the meaningful samples within633

the time window.634

It should be noted that it is relatively straightforward to apply these techniques on a standard CNN635

architecture like the one used in this analysis. For more complex architectures, like transformers or636

recurrent networks, as well as for regression tasks, other methods might be needed (Barredo Arrieta637

et al. 2020; Roscher et al. 2020; Samek et al. 2021; Ras et al. 2021; Linardatos et al. 2021).638

5 CONCLUSIONS639

We applied three different interpretation techniques in order to better understand the decision process640

of a DL earthquake detection model. We conclude that it is important to interpret the results of these641

techniques jointly, since they define different characteristics which are all important to have a full pic-642

ture of how the model perform. From our analysis we infer that the model learns some physical and643

meaningful earthquake characteristics without imposing any physical constrains during the training.644

These characteristics are different from what an expert seismologist would expect and are not defined645
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as simply as in other standard methods (such as STA/LTA, etc). In other words, the CNN model does646

not perceive an earthquake as humans do. The feature maps related to earthquake samples suggest647

that the CNN model, at the deepest architecture level, defines very abstract high-dimensional space648

where diverse earthquakes can eventually fit. The prototype earthquake signals propose that the model649

learned some complex patterns where amplitude is of high importance, while the shape and location650

of these patterns seem less relevant. Besides, the frequency content of earthquakes seems to be well651

captured, which implies that it is an important earthquake characteristic. The high relevance values as-652

sociated with the earthquake related signals (e.g. P, S and coda waves) indicate that the CNN learned653

in a general way what is an earthquake, since we never explicitly highlighted these signals during the654

training process. We conclude that the important strength of the CNN model is the ability to generalize655

well to many types of earthquakes, without having any other prior information about them during the656

training process. The CNN is able to perform very complex transformation on the input samples in657

order to obtain robust results. Therefore, we believe that this is also an opportunity to discover new rep-658

resentations of events that are still poorly understood, such as tremors or low-frequency earthquakes.659

As we showed, there are numerous perspectives how this study can be extended, and hopefully the660

seismological community will continue the effort in interpreting more DL models.661
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Figure 1. Schematic representation of a fully connected neural network.
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Figure 2. A) Schematic representation of the network architecture for the CNN detector model. The input array
size is 3x500 corresponding to the three components (E-W, N-S and vertical) of the 25 s seismic waveforms
sampled at 20 Hz. The output prediction is a scalar value ranging from 0 to 1, where 0 means that the sample
belongs to the negative (noise) class and 1 to the positive (earthquake) class. There are nine hidden layers, out of
which first seven are convolutional layers with stride of 2 and padding of 1, and two fully connected layers. The
feature maps from Section 2.5.1 are represented here as light blue blocks. B) Schematic representation of the
backward optimisation method. C) Schematic representation of the layer-wise relevance propagation method.
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Figure 3. A) Earthquake sample from the evaluation dataset with epicentral distance of 5.3 km and magnitude
0.82. B) Visualisation of the feature maps associated with 32 output channels (rows) of the seven convolutional
layers (L1 - L7) (light blue blocks in 2A) for the earthquake sample in A) obtained with the reference CNN
detector model A (Section 2.4 and Table S1). C) Noise sample from the evaluation dataset. D) Same as B) for
the noise sample from C).
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Figure 4. Visualisation of the feature maps associated with the first 10 output channels of the 5th convolutional
layer of the reference CNN detector model A (Section 2.4 and Table S1) for 10 earthquake samples (A-J) and 2
noise samples (K and L). First column corresponds to the Z component of the earthquake samples, while other
columns corresponds to the first 10 channel feature maps. The vertical scale is the same per channel for all
samples.
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Figure 5. A) Optimal inputs obtained for the 10 CNN detector models (Section 2.4) using the backward opti-
misation (BO) technique (see Figure 2B) with the input array initialised with zero values. Columns corresponds
to E, N, Z components and the amplitude spectrum of the associated components. B) Average spectrum of the
training positive samples (orange) compared with the spectrum of 10 optimal inputs (blue).
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Figure 6. Optimal inputs for the input array initialised with a real earthquake sample (examples from Figure 4).
Raw Z component (blue) and the optimal input (orange) waveforms are represented in full time scale, zoomed
between 2.5 and 7.5 seconds, the logarithmic ratio of their amplitude calculated in time and frequency domain.
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Figure 7. LRP relevance solutions for the reference CNN detector model A (Section 2.4 and Table S1) using
the LRP-β propagation rule with β = 0 in Eq. (4) for samples shown in Figure 4. Raw earthquake E, N, Z
components (blue) are compared with the β − 0 relevance value (orange). The time seconds that are associated
with the high relevance values are used by CNN detector model to correctly classify this signal as an earthquake.
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Figure 8. Applying the LRP-β − 0 rule on all samples of the evaluation dataset and calculating the standard
deviation of the LRP over time, σLRP . A) σLRP with respect to the epicentral distance for the positive samples.
Yellowish colour indicate higher densities spots. B) Histogram of σLRP for the positive (gray) and negative
(blue) samples, with the distributions’ average values (dash-dotted line for positive samples and solid line for
negative samples).


