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In the recent years, the seismological community has adopted deep learning (DL) models for many diverse tasks such as discrimination and classification of seismic events, identification of P-and S-phase wave arrivals or earthquake early warning systems. Numerous models recently developed are showing high accuracy values, and it has been attested for several tasks that DL models perform better than the classical seismological state-of-art models. However, their performances strongly depend on the DL architecture, the training hyperparameters, and the training datasets. Moreover, due to their complex nature, we are unable to understand how the model is learning and therefore how it is making a prediction. Thus, DL models are usually referred to as a "black-box". In this study we propose to apply three complementary techniques to address the interpretability of a convolutional neural network (CNN) model for the earthquake detection. The implemented techniques are: feature map visualisation, backward optimisation and layer-wise relevance propagation. Since our model reaches a good accuracy performance (97%), we can suppose that the CNN detector model extracts relevant characteristics from the data, however a question remains: can we identify these characteristics? The proposed techniques help 2 Josipa Majstorović, Sophie Giffard-Roisin, Piero Poli to answer the following questions: How is an earthquake processed by a CNN model? What is the optimal earthquake signal according to a CNN? Which parts of the earthquake signal are more relevant for the model to correctly classify an earthquake sample?

The answer to these questions help understand why the model works and where it might fail, and whether the model is designed well for the predefined task. The CNN used in this study had been trained for single-station detection, where an input sample is a 25 seconds three-component waveform. The model outputs a binary target: earthquake (positive) or noise (negative) class. The training database contains a balanced number of samples from both classes. Our results shows that the CNN model correctly learned to recognize where is the earthquake within the sample window, even though the position of the earthquake in the window is not explicitly given during the training. Moreover, we give insights on how a neural network builds its decision process: while some aspects can be linked to clear physical characteristics, such as the frequency content and the P-and S-waves, we also see how different a DL detection is compared to a visual expertise or an STA/LTA detection. On top of improving our model designs, we also think that understanding how such models work, how they perceive an earthquake, can be useful for the comprehension of events that are not fully understood yet such as tremors or low frequency earthquakes.

INTRODUCTION

Science community has to a great extent embraced machine learning (ML) algorithms for solving various tasks, and seismology is following this trend. Seismology is an observational data driven research field, and throughout years great number of techniques has been developed to study earthquake and how the seismic wave propagate through Earth. Because of the demand to handle large amount of data with usually computationally expensive techniques, the implementation of ML algorithms in seismology started very early [START_REF] Dowla | Seismic discrimination with artificial neural networks: Preliminary results with regional spectral data[END_REF][START_REF] Dai | Automatic picking of seismic arrivals in local earthquake data using an artificial neural network[END_REF], and nowadays there are numerous applications [START_REF] Kong | Machine Learning in Seismology: Turning Data into Insights[END_REF][START_REF] Bergen | Machine learning for data-driven discovery in solid Earth geoscience[END_REF]Mignan & Broccardo 2020, and references therein).

The range of topics include: earthquake detection [START_REF] Perol | Convolutional neural network for earthquake detection and location[END_REF][START_REF] Majstorović | Designing convolutional neural network pipeline for nearfault earthquake catalog extension using single-station waveforms[END_REF], phase picking [START_REF] Zhu | PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method[END_REF][START_REF] Ross | Generalized Seismic Phase Detection with Deep Learning[END_REF][START_REF] Mousavi | Earthquake transformer-an attentive deep-learning model for simultaneous earthquake detection and phase picking[END_REF], early warning systems [START_REF] Kong | Myshake: Initial observations from a global smartphone seismic network[END_REF], real-time seismicity monitoring [START_REF] Cua | The virtual seismologist (vs) method: A bayesian approach to earthquake early warning[END_REF], ground-motion prediction [START_REF] Jozinović | Rapid prediction of earthquake ground shaking intensity using raw waveform data and a convolutional neural network[END_REF] for obtaining source, path, and site effects [START_REF] Alavi | Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing[END_REF], or subsurface geophysical structure in seismic tomography [START_REF] Elad | Sparse and redundant representations: from theory to applications in signal and image processing[END_REF]) (for more detailed list of references see [START_REF] Kong | Machine Learning in Seismology: Turning Data into Insights[END_REF]). ML algorithms, especially deep learning (DL) models, offer a successful framework to tackle all these tasks since DL models can be designed: a) to work with any type of data or even with the combination of different types of data, b) to produce any type of output depending on the task, c) to implement the algorithms in a computationally efficient way. Even though numerous studies provide us with a proof of concept that DL methods can successfully solve traditional seismological problems, some difficulties still remain. Mostly because these models are highly parametric and strongly depend on the DL architecture, the training hyperparameters, and the training dataset. Moreover, in the training process, we lose track of how the prediction is obtained and we cannot examine if models has learned something physically significant from the data itself.

One step closer into understanding how and why DL models work, and why some perform better than the others, can be done by developing tools to understand the so-called "black-box" nature of DL models. Even though the structure of a DL model is explicitly defined, and it is well understood how the mathematical operations are implemented, it can be substantially complex and the number of the operations can be tremendous. Therefore, tracking how data are being transformed within DL model is not feasible. Overall, studying the black-box nature of DL model, implies interpreting how the data are fitted for some predefined task by using a specific DL architecture. In recent years rich set of various techniques has been developed for the purpose of interpreting a prediction process behind DL models [START_REF] Barredo Arrieta | Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai[END_REF][START_REF] Roscher | Explainable machine learning for scientific insights and discoveries[END_REF][START_REF] Samek | Explaining deep neural networks and beyond: A review of methods and applications[END_REF][START_REF] Ras | Explainable deep learning: A field guide for the uninitiated[END_REF][START_REF] Linardatos | Explainable ai: A review of machine learning interpretability methods[END_REF][START_REF] Kong | Combining deep learning with physics based features in explosion-earthquake discrimination[END_REF]. It is highly crucial to recognize if DL model failed to represent training data and sometime sole prediction value is not enough to alert the user of the problem. In the situations where DL outputs have huge impacts on the decision making processes, this lack of interpretability is highly criticized [START_REF] Castelvecchi | Can we open the black box of ai?[END_REF].

The various applications of DL models within the seismology are designed to produce only the output prediction value, that is obtained by maximizing the accuracy of the model performance. For example, in an earthquake detection task, the DL detectors are developed to recognizing earthquake signals in continuous seismograms that contain signals of many other geophysical, anthropogenic, instrumental sources, which we refer to as noise. To declare a detection within the continuous data, the model has to surpass a certain threshold of the prediction value. Even though the problem of earthquake detection is quite straightforward, the existing models are usually developed for specific purposes and/or in specific conditions, and suffer from false detections [START_REF] Perol | Convolutional neural network for earthquake detection and location[END_REF][START_REF] Lomax | An Investigation of Rapid Earthquake Characterization Using Single-Station Waveforms and a Convolutional Neural Network[END_REF][START_REF] Wu | DeepDetect: A Cascaded Region-Based Densely Connected Network for Seismic Event Detection[END_REF][START_REF] Mousavi | CRED: A Deep Residual Network of Convolutional and Recurrent Units for Earthquake Signal Detection[END_REF][START_REF] Magrini | Local earthquakes detection: A benchmark dataset of 3-component seismograms built on a global scale[END_REF][START_REF] Zhu | PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method[END_REF][START_REF] Ross | Generalized Seismic Phase Detection with Deep Learning[END_REF][START_REF] Mousavi | Earthquake transformer-an attentive deep-learning model for simultaneous earthquake detection and phase picking[END_REF][START_REF] Yang | Simultaneous Earthquake Detection on Multiple Stations via a Convolutional Neural Network[END_REF][START_REF] Majstorović | Designing convolutional neural network pipeline for nearfault earthquake catalog extension using single-station waveforms[END_REF][START_REF] Xiao | Siamese earthquake transformer: A pair-input deep-learning model for earthquake detection and phase picking on a seismic array[END_REF][START_REF] Saad | Scalodeep: A highly generalized deep learning framework for real-time earthquake detection[END_REF].

Consequently, developed detectors once applied on the same continuous data are generating dissimilar results. While we can quantify that existing detectors reach different accuracy performance values, we don't know why. In this context of interpretability, EQTransformer [START_REF] Mousavi | Earthquake transformer-an attentive deep-learning model for simultaneous earthquake detection and phase picking[END_REF], the detector and seismic phase picking encoder, has already provided some intuition behind the decision process by implementing the hierarchical attention mechanism [START_REF] Luong | Effective approaches to attention-based neural machine translation[END_REF][START_REF] Yang | Hierarchical attention networks for document classification[END_REF]. Using attention mechanism we can get a first indication on what the DL model is focused on at different stages of the network. However, this technique is only able to investigate a specific layer of the network (the attention layer), thus it does not provide insights on how other layers transform the information within the network.

In this study, we apply interpretation techniques to explore the prediction process behind DL detector model. For this purpose we use the convolutional neural network (CNN) detector developed in [START_REF] Majstorović | Designing convolutional neural network pipeline for nearfault earthquake catalog extension using single-station waveforms[END_REF]. Our main motivation is to explain how the information about the earthquakes is embedded in a DL model, i.e. a binary classification model, separating earthquake from noise signals. If we consider that DL model is interpreting our training data space, this implies that it has presumably learned some high level characteristics, features, patterns, and is able to generalize well to the unseen data that seemingly belong to the training data space. By exploring how our CNN detector makes prediction and how it classifies the samples from the evaluation dataset, we can learn which earthquake characteristics are relevant for this task and we can explore how our CNN architecture is suitable for this predefined scope. To tackle these questions we applied three different interpretability techniques, the feature map visualisation [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Zeiler | Visualizing and understanding convolutional networks[END_REF], the backward-optimisation algorithm [START_REF] Simonyan | Deep inside convolutional networks: Visualising image classification models and saliency maps[END_REF][START_REF] Olah | Feature visualization, Distill[END_REF]) and the layerwise relevance propagation algorithm [START_REF] Bach | On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation[END_REF]. Each technique focuses on different aspects Interpreting CNN decision for earthquake detection 5 of the model. The feature map visualisation reveals how the individual earthquake samples are represented within the CNN layers. The backward optimisation method answers the question of how the optimal earthquake signal looks like for our trained CNN model. And finally, the layer-wise relevance method illustrates which parts of the earthquake sample are important for a good detection.

The paper is organized as follows: first, we introduce the data and the CNN earthquake detector model used in this study. Further, we introduce the theory behind the feature map visualisation, the backward optimisation and the layer-wise relevance methods. Lastly, we analyze how and why the CNN earthquake detector model works, and which parts of the model are more or less independent when we repeat the retraining process. We finish with the discussions and perspectives for future works.

MATERIAL AND METHODS

Data

In this study we use the AQULO dataset introduced in [START_REF] Majstorović | Designing convolutional neural network pipeline for nearfault earthquake catalog extension using single-station waveforms[END_REF]. It is based of two types of samples: positive samples which are the earthquake signals that contain at least P-and Swaves arrivals, and negative samples that are composed of random geophysical and anthropogenic signals. The data are collected from the AQU station placed in the city of L'Aquila, in the Abruzzo region in the Central Apennines of Italy for a period of 30 years. It contains around 123k samples, from which 48% are positive samples. In this case each positive sample corresponds to one catalogued earthquake, where 40% originated from the Valoroso catalog [START_REF] Valoroso | Radiography of a normal fault system by 64,000 high-precision earthquake locations: The 2009 L'Aquila (central Italy) case study[END_REF]. In other words, we cleaned our dataset from the positive samples that contain multiple events. The duration length of the samples is set to 25 seconds, the sampling frequency is 20 Hz and within each sample there are three components (east-west, north-south, vertical) waveforms. Additionally, the dataset is non-filtered and normalised per sample by the maximum value out of the three components. Due to the Gutenberg-Richter law [START_REF] Gutenberg | Magnitude and Energy of Earthquakes[END_REF] the distribution of the earthquakes' epicentral distance and magnitude is quite imbalanced.

Convolutional neural network

Neural networks (NNs) are a family of techniques within the machine learning domain that are at the basis of deep learning algorithms [START_REF] Mcculloch | A logical calculus of the ideas immanent in nervous activity[END_REF]. They were inspired by the functionality of human brains, how the biological neurons communicate within each other using complex interconnections. The NNs are algorithms that can process parallel information. Their basic components are called neurons (or units, nodes) that are organized in layers and are connected with links. There are three types of layers: an input layer, one or more hidden layers, and an output layer. In a standard artificial NN called fully connected NN, the values from the input layer are connected to the output layer, or prediction layer, through a series of hidden layers that are called fully-connected layers. Each neuron from one layer is connected to every neuron of the next layer. In Figure 1 we show the neuron model, defined as a = σ ( i w i x i + b) where x i is the input value, w i is the weight of x i , b is the bias, σ is an activation function, and i is the index in the previous layer. The weights represent the connection strength between neurons, the biases are constant additive terms, while the activation function is used to introduce non-linearity to NNs. In this complex mapping process from the input to the output layer, we adjust the weights and the biases, which are optimized by a learning algorithm during the training process. There are two phases within the learning process, the feed-forward and the backpropagation. In the feed-forward phase the input data are passed through the layers and we calculate the output values. In the final step of the feed-forward phase, we calculate the error (loss) between the predicted and ground truth value of the output layer for every sample of the training dataset.

Then, this error is backpropagated to adjust the weights and the biases in the backpropagation phase.

The iterative optimizing process in which we minimize the error itself is called the stochastic gradient descent. These two phases are repeated until an acceptable loss value is reached.

[Figure 1 about here.] Convolutional neural networks (CNNs) are a special kind of NNs able to process data having a grid-like structure such as images (2D or 3D) as well as temporal time series (1D) [START_REF] Lecun | Deep learning[END_REF].

The main building elements are convolutional, pooling (downsampling operation) and fully-connected layers. Stacking these different layers defines a CNN architecture. The difference between CNNs and traditional NNs are the convolutional layers acting as a variety of filters by using a mathematical operation called convolution defined as

f (t) = (x * w)(t) = x(a)w(t -a)da, (1) 
where x(t) is the input (image or time series) or the output of a previous layer, w(t) is the kernel or filter, a is a dummy variable, and f (t) is the output feature map. The filter is smaller than the input data, thus the multiplication is always applied between a filter-sized patch of the input data and the filter, and this operation is repeated over the whole input data. In every convolutional layer, many feature maps are estimated from different kernels, and the values of the kernels are the weights being optimized during the training. These convolutions help the model to leverage three important concepts: sparse interactions, parameter sharing and equivariant representations. The sparse connectivity is achieved by making the filter smaller than the input, thus only a small local patch of data is interconnected unlike in fully-connected layer where all neurons from one layer are interconnected. This property implies
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Next, parameter sharing refers to the fact that during the convolution the weights within one filter are used in every position on the input. This, further, reduces the number of the parameters of the model.

The parameter sharing introduces another property which is called equivariance to translation. This property allows the filter to discover features of objects within the data, while the position of the object does not need to be fixed in order to be detected by CNN.

As in NNs, the values of the filters, the weights, are learned during the training process of the network. Therefore, the network learns what types of features to extract from the input data by minimizing the loss function. It is important to emphasise that the network learns more than one filter at a time, and multiple convolutional layers are applied in series. This allows decomposing input data to the features of higher abstractions. Same as in NNs, the (linear) convolution layers are followed by (non-linear) activation functions in order to obtain activation maps from the feature maps.

CNN earthquake detection model

In this study we use the CNN architecture from [START_REF] Majstorović | Designing convolutional neural network pipeline for nearfault earthquake catalog extension using single-station waveforms[END_REF], also shown in Figure 2A, where the full process of training and selecting the optimal hyperparameters is explained. The CNN model is trained to recognise earthquake signals within the continuous recordings that in very high percentage contain noise signals, which comprise numerous anthropogenic and unknown geophysical signals. Its architecture consists of seven convolutional and two fully-connected layers. Each convolutional block has 32 outputs that corresponds to a kernel of size 3, a stride of 2 and padding of 1, and it is followed by the rectified linear (ReLU) activation function. The last fully-connected layer is followed by the sigmoid activation function. Based on our samples' shape the input layer has a dimension 3 × 500, corresponding to three components and 500 time steps (which is a time series of 25 seconds sampled with frequency of 20 Hz). The output of the CNN is a scalar between 0 and 1 that represents the CNN estimation whether the input sample belongs to the negative or positive class, i.e.

whether the CNN model recognizes an earthquake or not within the 25 seconds time window. During the training process the data is split into training (80%), validation (10%) and evaluation (10%) sets.

To train our CNN model we use the stochastic gradient descent optimizing algorithm with a learning rate of 10 -2 , a momentum of 0.9 and a batch size of 512 samples. If during the training the model does not improve for 50 epochs on the validation dataset, the training process is stopped.

Ten CNN training runs

The CNN model, as any other deep learning algorithm, is stochastic by nature. This randomness comes from the weight initialisation and the training process by changing the order of the training samples.

Consequently, retraining a CNN model with the same dataset and hyperparameters yields different weights and biases, and this might introduce slightly different predictions. If by introducing small changes in the training set, we obtain small differences in the output of the trained model, we can argue that the training algorithm is stable [START_REF] Bousquet | Stability and generalization[END_REF][START_REF] Charles | Stability and generalization of learning algorithms that converge to global optima[END_REF]. To consider the stochastic nature of the CNN models and to test for the stability, we train our model by using ten different random orders of the training dataset, thus we store the 10 model instances. The average accuracy on the evaluation set, having the same number of positive and negative samples, is 0.9758 and the standard deviation between the model runs is 8 • 10 -4 (the full evaluation report is shown in Table S1): the models seems to be very consistent among them. The first trained model instance is referred to as model A, and it is used as the reference model.

Interpretation methods

When we talk about interpretation, the goals are numerous: checking the limits of the model, finding a way how to improve the model, better understanding the physics of the system we are modeling, etc.

In this study, we want to tackle these different aspects, so we explore different types of interpretation techniques. First, in order to check the limits of the model and potentially improve it, we need a way to understand what is happening inside the model. For this, a first possibility is to extract and visualize the weights of the model, which in the case of CNNs are the kernel filters. However, in our case the filters are not visually interpretable as they are small (the filter size within our CNN model for the first layer is set to 3x3 which corresponds to the 3 components of our input array and the size of the temporal window (3 time steps), and for other layers the filter size is 3x32). Nonetheless, we can analyze the decision processes, for targeted samples, by extracting and visualizing the sequential transformation of the input data trough the network, i.e. the feature maps, which was originally done in 2D CNNs by [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]; [START_REF] Zeiler | Visualizing and understanding convolutional networks[END_REF]. The feature maps visualisation (FMV) technique is developed in Section 2.5.1.

However, when visualizing feature maps we are not able to understand how a model relates the input and the output. In order to analyze the model at a global scale and understand what it does on average, a good strategy is to determine class prototypes (optimal inputs). For every class, we estimate what would be the 'mean' sample. Several studies [START_REF] Simonyan | Deep inside convolutional networks: Visualising image classification models and saliency maps[END_REF][START_REF] Olah | Feature visualization, Distill[END_REF]) proposed a method, called backward optimisation, able to generate a prototype signal for each class with an iterative process. We explore the backward optimization (BO) technique and develop it in Section 2.5.2.

Moreover, in the scope of analyzing the link between input and output for individual decisions (by analyzing the individual waveform samples from the evaluation dataset), many methods have
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proposed ways to interpret why a certain data is classified as a certain class. They almost all rely on the generation of a heatmap showing which part of the input plays in favor or against its classification.

A first family of methods, called sensitivity analysis or gradients/saliency methods [START_REF] Simonyan | Deep inside convolutional networks: Visualising image classification models and saliency maps[END_REF], is proposing to estimate for each pixel (or time step) what is the gradient of the model function (how does the output varies when modifying this pixel). A second family of methods, called layerwiserelevance propagation (LRP) [START_REF] Bach | On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation[END_REF], propagates a relevance value from the output to the input, expressing how important each pixel (or time step) is for the decision. The LRP methods were shown to be more stable than the gradients methods, especially in deep networks [START_REF] Montúfar | On the number of linear regions of deep neural networks[END_REF][START_REF] Balduzzi | The shattered gradients problem: If resnets are the answer, then what is the question?[END_REF]. Moreover, we want to explain the decision function and not its variations, so we will focus on the LRP technique and give more details in Section 2.5.3. The three identified methods, depicted in Figure 2B, are all using a scientific visualisation to explain how a model works: they are referred to as 'visualization methods' [START_REF] Ras | Explainable deep learning: A field guide for the uninitiated[END_REF]. Moreover, as throughout the analysis we do not alter the trained weights and biases of the CNN models, these methods belong to the post-modeling (post-hoc) methods (Barredo Arrieta et al. 2020).

Feature map visualisation (FMV)

Once a model has been trained, we can have access and visualize the learned weights, which are the kernel filters in the case of convolutional layers. Moreover, by inputting a new sample from the evaluation dataset into the model, we can also extract the sequential transformations of the input data by every filter of every layer: this is what we call 'feature maps' [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Zeiler | Visualizing and understanding convolutional networks[END_REF]. The schematic representation of the feature maps, belonging to the convolutional layers, along with their sizes is shown in Figure 2A with light blue blocks. The feature maps helps us understand how the convolutional filters transform the input data at intermediate layers. As mentioned previously, having more convolutional layers implies having features of higher abstraction. Therefore, it is expected that the features extracted in the first convolutional layer have temporal details while the features in the last 7th convolutional layer should be more general. We can define the decomposition within the CNN as

f 1 = C 1 (x) a 1 = σ(f 1 ) f 2 = C 2 (a 1 ) a 2 = σ(f 2 ) . . . , (2) 
where x is the input, C k is the k-th convolutional layer, σ is the activation function, f k is the feature map of layer k, a k is the activation map of layer k. In this study, we visualize the feature maps f k .

Backward optimisation (BO)

In the following, we give a short overview of the method called backward optimisation (BO) or feature optimisation [START_REF] Simonyan | Deep inside convolutional networks: Visualising image classification models and saliency maps[END_REF][START_REF] Olah | Feature visualization, Distill[END_REF]. The schematic representation is shown in Figure 2B. The goal of this technique is to iteratively generate a synthetic input, or prototype, based on the trained model for a specific class. By maximizing the output likelihood, in our case the likelihood of the CNN to correctly predict an earthquake signal, we can perceive what is the optimal earthquake signal for the CNN model.

There are several important steps in this method (Figure 2B). First, we freeze the trained CNN model's weights and biases. This means that during the new iteration process those parameters are not updated. Next, a vector with the same size of the input sample (here 500x3) is passed through the network, the prediction is obtained and compared with the desired class (either earthquake or noise class in case of the CNN earthquake detection model). The misfit is calculated using the same loss function, and the backward optimisation algorithm is used to update the input sample values. The network is using the previous knowledge (weights and biases) to update the input sample for a desired class. This is repeated during several iterations, until convergence. The process is quite similar to how the model is originally trained, however here the updated variables are the values of the input sample.

The final input is hereinafter referred as the optimal input.

The optimal input solution is thus generated iteratively. The input vector can be initialized in different ways: only zero values (the exact "zero input"), an array of random values ("random input") and an array matching real-dataset sample ("real input"). The zero input generates an invariant synthetic optimal input that is completely novel with respect to the starting initial array. 2C.

The goal of LRP is to define a measure called relevance R over the input vector taking into account the model's decision. This is accomplished by respecting the conservation property, meaning that the contribution received by a neuron must be redistributed to the lower layer in equal amount [START_REF] Montavon | Methods for interpreting and understanding deep neural networks[END_REF][START_REF] Montavon | Layer-Wise Relevance Propagation: An Overview[END_REF]. There are three steps: in the first step the weights and the biases of the trained model are frozen. Next, we forward pass the input array through the DL model and we collect the activations at each layer. In the third step, the prediction of the last output layer is backpropagated using a set of propagation rules that satisfies the conservation law. Let's mark with j the neurons at layer l, with k the neurons at the lower layer l -1 and with R the relevance. Then, the conservation law implies j R j = k R k . The implementation relies on a specific set of propagation rules. Let's describe the neuron activation a k by the equation

a k = σ( j a j w jk + b k ), (3) 
where a j are the activations from the previous layer l, w jk , b k are the weights and biases of the neuron.

One propagation rule that has shown to work well in practice [START_REF] Montavon | Methods for interpreting and understanding deep neural networks[END_REF][START_REF] Montavon | Layer-Wise Relevance Propagation: An Overview[END_REF] is the β-rule (or αβ-rule, where α = 1 + β) defined as

R j = k (1 + β) a j w + jk j a j w + jk -β a j w - jk j a j w - jk R k , (4) 
where () + and () -denote the positive and negative parts, and the constrain β ≥ 0 is valid. To avoid numerical instability by dividing with zero, a stabilizing term ε can be introduced. The parameter β controls how much weight is given to the positive/negative relevance within the layered graph structure of DL model. For example, by setting β = 0 we only consider the positive relevance, and by setting β = 1 we are allowing the negative relevance to have an impact to the final LRP solution. The positive relevance being propagated to the input layer highlights the relevant parts of the input layer, and vice versa. To understand which part of the input three-component waveforms are relevant for the earthquake prediction it might be meaningful to focus on several possible LRP-β solutions [START_REF] Montavon | Methods for interpreting and understanding deep neural networks[END_REF]) by varying the β value.

[Figure 2 about here.]

RESULTS

As explained in Section 2.5, we use the FMV, BO and LRP methods to explore the decision process of our trained CNN model (see Figure 2). In order to study the CNN model in an objective way and obtain complementary solutions for the different methods, we select a set of waveforms of earthquakes characterized by different distances and magnitudes and some noise samples, and we use them throughout the analysis. These samples are extracted from the evaluation dataset, so that the FMV, BO and LRP solutions are independent from the examined model. The ten chosen earthquakes are shown in Figure S1.

We also use the interpretation methods to explore how our model is stable in terms of the training process and the existing architecture. For this purpose we analyze ten CNN detector models from Section 2.4, while the results for the model A are used as a reference (see Table S1).

Feature map visualisation

Using the FMV we can visualize the feature maps of the intermediate convolutional layers. Based on our CNN architecture shown in Figure 2A there are 36 output channels for each of the seven convolutional layers, that are the products of the convolution using the filters of size 3x3 (first layer)

and 3x32 (all other layers). Each output channel is associated with the feature map (light blue blocks in 2A) and its size is decreasing from 251 down to 4 features.

In Figure 3, for the first time to our knowledge, we show how an earthquake and a noise sample are seen by a DL model trained for earthquake detection by visualizing the feature maps. Clearly, the earthquake feature map differ from the noise feature maps for all CNN layers. We notice how the bulk of phases (positive or negative peaks, i.e. activation of the neuron), including P-and S-phase arrivals, is visually present throughout the first five layers (see several other earthquake samples in Figures S2-S10), while these characteristics are evidently absent in the noise feature maps.
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To understand how the CNN model treats earthquake samples of different distance and magnitude values, we show in Figure 4 and Figure S11 a comparison between ten earthquake samples (A-J) and two noise samples (K-L). For better visual comparison the vertical scale is the same per channel across all included samples. We are visualizing only the 5th convolutional layer (L5): in L5, the original sample (500 time steps) is already reduced into vectors of size 16, but the bulk related to seismic phase arrivals is still visually present. At this point, we distinctly notice that some feature maps are common: a) within the layer, b) across different earthquake samples. For example, if we consider the earthquake sample A, we notice that all channels numbered with 2, 10 (Figure 4), 16,18,19,22,23,26,27,29,32 (Figure S11) contain a left-sided amplitude peak. Moreover, these channels are quite similar and consistent also for earthquakes with different distances and magnitudes (see Figure 4A-F and Figure S11A-F). Yet, we notice that the pattern is changing, but being consistent, for the earthquakes with the epicentral distance larger than 50 km (see Figure 4G-J and and Figure S11G-J).

These observations could point to the fact that the CNN model defined a relevant highly abstract latent space where 'generalized' earthquakes (of different distance and magnitude values) exists.

[Figure 3 about here.]

[Figure 4 about here.]

The aforementioned occurrence of the repetitive feature maps suggests that our CNN model is stable in terms of the architecture design, since these maps are not random. To explore this hypothesis even further, we proceed to numerically quantify the resemblance between the feature maps by calculating the Pearson correlation coefficients r(x i , x i ) [START_REF] Freedman | Statistics[END_REF], where x i is the feature map and index i stands for the channel number and runs from 1 to 32. We quantify the resemblance between the feature maps of the 5th layer for earthquake sample B (Figure 4B and Figure S11B) obtained for the reference CNN detector model A (from Section 2.4 and Table S1). We calculate that 49% out of 32 channels have at least one or more channel pairs with high correlation coefficient of r > 0.8 (see Figure S12). Thus, we are finding pairs of channels with quite similar patterns. Beyond quantify the stability of the network, the observed redundancy indicates that less than 32 channels could be sufficient for the CNN detector model to provide correct classification of the positive sample. This analysis shows how the FMV could be used to guide the design of CNN architecture. For our case a less complex one, might provide similar performance. Yet, the presented analysis cannot provide us with straightforward information on how to design the optimal CNN architecture in terms of the number of layers or channels without any additional testing.

The stability of our CNN detector can be additionally supported by studying the feature maps of ten different training runs of the CNN model. We train ten different models by randomly initializing weights and by changing the order of the training samples (while keeping the architecture and the training hyperparameters), see Section 2.4. We extract the feature maps of the 5th convolutional layer of the earthquake sample B for the ten CNN models. It is important to underline that, due to the randomness introduced in the training process, the indices of the channels are not fixed between the different runs (Figure S13). By visual comparison, we observe that the feature maps are extremely similar, for example we see a feature map with the left-sided amplitude peak repeating consistently (see Figure S13). However, as much as we can see some stable patterns among feature maps, we can also notice that there is a level of uniqueness related to these feature maps, meaning that some feature maps are unique for each training run. We then quantify this visual comparison, by calculating the correlation coefficients r(x i , y j,i ), where x i stands for the feature maps of the reference model A, y j,i stands for the feature maps of different training runs with index j running from B to J (see Section 2.4

and Table S1), and again index i represents the channel index. Since in this case we are only examining whether the feature maps of different training runs are similar, for each channel of x i we keep only the related correlation coefficient of y j,i that has the maximum value, and we repeat this for every j.

We notice that in average more than 75% of the channels associated with the reference model A have high correlation values of r > 0.8 (see Figure S14). The high resemblance among the feature maps of different training runs of the CNN detector model are quite high, proving that the existing CNN architecture is quite stable, despite the randomness during the training process.

Backward optimisation

The input data in our CNN detector (see Section 2.2) is shaped as 3 × 500 array where 3 stands for the number of components (E-W, N-S, Z) and 500 stands for the time steps. Following the details in Section 2.5.2 the optimal input obtained by applying the backward optimisation technique is also of shape 3 × 500. When maximizing the output likelihood for the class associated with the earthquake signal, we expect to obtain waveforms that resemble the three components of real seismograms. Intuitively, they should, to some degree, be similar to the samples of the training dataset.

To better evaluate the optimal input solutions for our CNN detector model, we proceed by studying the solutions of ten different training runs (Section 2.4). In Figure 5A we show the optimal inputs for these ten models, while the input array is initialized with zeros. Each input is updated separately for each model for 5000 iterations. While the optimal input training is converging correctly for all ten models, we notice that often the first few iterations (2 to 3) are diverging (increase of the loss) before converging (see Figure S15). This can be due to the fact that the 'zero initialisation' is out of the training sample domain of the CNN models. We notice that the randomness introduced during the Interpreting CNN decision for earthquake detection 15 training process of the CNN models affects the final optimal inputs, thus they are different for each run. However, we can observe some common characteristics present in all these solutions.

First, all optimal inputs show consistent local amplitude increase simultaneously on all three channels, corresponding to three components of our training sample. Next, we notice that the Z components related to the models A, B, E, G, J have their absolute amplitude exceeding 1. Thus, 83% of the total components (25/30) is consistent with our normalisation approach. In the time domain, the optimal solutions are showing a more complex behavior, which we can interpret as if there were occurrence of multiple earthquakes in the time window. This behavior is consistent with the BO results on images [START_REF] Simonyan | Deep inside convolutional networks: Visualising image classification models and saliency maps[END_REF][START_REF] Olah | Feature visualization, Distill[END_REF] where multiple artifacts of the learned object are repeated on the optimal image solution. This might be because the CNN model was trained using a broad range of local, regional, and teleseismic events, and this diversity encourages the complex multiple-event behaviour we are seeing. We also notice that the P-and S-waves are not really identifiable in the simulated inputs. This is interesting as it means that such samples, which would not be identified as earthquakes by any specialist, have a perfect detection score for this CNN model. We can see how part of the decision process is different between a human and a CNN. In Figure 5B we show the comparison between the optimal inputs for all ten CNN models and the average amplitude spectrum of the training positive samples. We notice that the optimal inputs have enhanced high frequency content respect to real earthquake samples. By performing the same test for the negative class (noise), we can notice a clear difference especially in terms of the amplitude values (see Figure S16): the negative class is characterized by very low amplitude values. This does not match with the noise samples used for the training, since our noise samples have the amplitude bounded within -1 to 1 (see Figure 3C).

However, the low amplitude values indicates that for the CNN model, the optimal noise sample is supposed to have an amplitude as low as possible.

[Figure 5 about here.]

We also study how the real earthquake samples are modified when we apply the BO technique.

This test illustrates the modification of an earthquake sample to improve the confidence of the CNN model. We perform 5000 iterations on an input array initialized with a real earthquake sample from the evaluation dataset using the reference CNN model A (Section 2.4 and Table S1). In Figure 6 we show the raw Z component as well as the optimal input waveform at their full time scale, a zoom of the interval between 2.5 and 7.5 seconds, the logarithmic ratio between the two waveforms in the time and frequency domain (results for E and N components are shown in Figure S17 and S18, respectively).

The logarithmic ratio is calculated as log |A in | |Aout| * 100 , where A in is the raw waveform and A out is the optimal input waveform or the modified one. A ratio value above 2 indicates a decrease of the optimal input amplitude with respect to the raw one. We notice that the upgrades are quite small in amplitude, mostly less than one quarter of the magnitude. This is not surprising, since the prediction values of these earthquake samples before the BO modification are quite high, meaning that the starting loss values are already small. Moreover, we observe that the modifications are occurring within the full time window, yet, more often at the beginning of the time window (see Figure 6, S17 and S18 for Z, E, N component, respectively). These are not predominately positive or negative, and are earthquakedependent. The modification occurring less than 5 seconds, and the absence of it between 5 to 10 seconds, might indicate that the BO technique acts in a favor of a noise reduction before the P-arrival time. In Figure 6 we also see that the alterations are associated with high frequency content, which suggests that CNN model learned what frequencies are relevant for the earthquake detection.

[Figure 6 about here.]

We also compare the modifications for ten different training runs of the CNN model using the same earthquake sample B (see Figure S19). The results support previous observations from the FMV technique. The models perform similar alterations to the input signal, supporting the stability of our CNN model architecture design.

Layer-wise relevance propagation

In this section we attempt to understand which parts of the waveform are relevant for its classification as an earthquake or noise, by means of the LRP method. The relevance values depend on the used LRP propagation rule. In Figure 7 we show the solutions obtained with the LRP-β -0 rule defined by Eq. 4 for ten earthquakes (same as in Figure 4) and the reference model A (Section 2.4 and Table S1).

We use ε = 10 -6 to stabilize the solutions. The results show high values of the relevance matching with the position of the earthquake in the time window, with peak values associated with P and S time arrivals (Figure 7). We further observe a consistent time distribution of the high relevance for the three components. Moreover, time distribution of high relevance closely follows the bulk of seismic arrivals.

In more details, for events close to the station, with short S-P time, the relevance is visually much more compact in time (Figure 7A-F), respect to distant events for which the earthquake signature (S-P time, or P wave plus coda) is longer (Figure 7G-J).

To explore this property in more details, we estimate the spreading of the positive relevance value with respect to time as the standard deviation, σ LRP , for almost 6000 samples in the evaluation dataset.

The standard deviation of the LRP solution is calculated by taking into account the full time span of 500 time steps, where the relevance values are considered as steps' weights. Thus, this measure is not related to specific time, but to a full waveform sample. The σ LRP as a function of epicentral distance is reported in Figure 8A. Our analysis confirms that the earthquake samples with larger distances are
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The model learns in a general way what is an earthquake, regardless of the position of the earthquake related signals (e.g. P, S, coda waves) in the time window. Clearly, this is achieved without explicitly pointing to the earthquake position within the corresponding time window. We observe that the high relevance values follow the positions of the multiple non-overlapping earthquakes in the time window, even though the CNN detector is trained with the positive samples having a single event with a fixed P-onset (see Figure S20). However, more relevance is associated with the earlier event. Beyond this general property, we can see in Figure 7 that the relevance shows a high frequency pattern. Also, for the larger distances sometimes particular time steps are given more relevance without a clear meaning.

How these patterns are involved in the decision process of the CNN is not fully interpreted, leaving room for possible improvement of our earthquake understanding.

We also calculate the relevance values for the LRP-β -0.5 (see Figure S21) and LRP-β -1 rules (see Figure S22). Unlike the LRP-β -0 rule, these allow negative relevance values to be propagated up to the input array. In the context of the detection task, negative relevance is associated with the negative (noise) class. Thus, time periods associated with high negative relevance values are those that do not help the CNN detector to classify earthquakes in the positive class. The results are consistent for both LRP-β -0 and LRP-β -0.5 rules, while the solutions for the LRP-β -1 are less stable. This might be because we ask the LRP technique to consider the positive input array thorough an increasing impact of negative relevance, which could be in contradiction. Nevertheless, we do not see consistent patterns related to the negative relevance for both LRP-β -0.5 and LRP-β -1. Such patterns, which are rare, are mostly associated with the time periods before P-arrivals (first 5 seconds) and the coda parts of the earthquakes. When the negative relevance patterns occur during the P and S phase arrivals, the associated amplitudes are less notable than those related to the positive relevance. Further, if we consider the σ LRP value, unlike the LRP-β -0 solution, both LRP-β -0.5 and LRP-β -1 remain more localised. For the LRP-β -0.5 solution the position of the positive relevance seems to be precisely linked to the P and S phase arrivals, which is not the case for the LRP-β -1 solution.

[Figure 7 about here.]

[Figure 8 about here.]

As for the FMV and BO technique, we apply the LRP-β -0 -0.5 -1 rules for ten different training runs of our CNN model (Section 2.4 and Table S1). For this test we use only the earthquake sample B (Figure 4 and S1). The LRP results are quite consistent between all models for the LRPβ -0 and β -0.5 rules, and the results for the LRP-β -1 are varying more (see Figure S23, S24, S25 for the LRP-β -0, β -0.5, β -1 rule, respectively). For the results associated with the LRPβ -0 and β -0.5, the main characteristics and the shape of the relevance values are the same across different training runs. For the LRP-β -1, the differences across different training runs are more prominent. This observation again indicate the relative instability of this rule, that propagates more negative relevance, applied on the positive input array.

By applying the LRP-β -0 rule for the negative (noise) samples from our evaluation dataset (also around 6000 samples), we notice that the relevance is negative and fully spread within the whole time window (see an example for LRP-β -0 in Figure S26). Having a negative relevance for the LRPβ -0 (that only propagates the positive relevance) is not impossible. Our CNN model is trained to recognise earthquakes from noise samples, by providing us with a probability value between 0 and 1. We should obtain the positive (resp. negative) relevance for the earthquake (resp. noise) samples, if those are classified as positive (resp. negative). In a detection task, the positive relevance indicates time steps that help the CNN model to classify the sample as positive, while the negative relevance indicates the opposite: time steps that help the model to classify the sample as negative. In Figure 8B we show σ LRP for the positive and negative samples from the evaluation dataset. The plot shows that the CNN detector is indeed more localised for the positive samples, as the positive σ LRP values are in average smaller. The LRP-β -0 is spread within the whole time window for the negative samples, which is reflected by having larger σ LRP values. This implies that each time is equally relevant for the detection task.

To explore whether the LRP-β solutions are robust, we also check the relevance solutions by using the LRP-ε propagation rule (see Figure S27) [START_REF] Montavon | Methods for interpreting and understanding deep neural networks[END_REF]. We can conclude that the solutions related to this rule are highly linked with the solutions presented by the LRP-β rules: the positive relevance values for the earthquake samples are associated with the location of the earthquakes within the sample window. This shows that despite the large variety of possible LRP rules, the main findings are in agreement.

DISCUSSION

In this study we introduce three different methods to explain how a CNN detector model makes prediction between two classes, the earthquake (positive) and the noise (negative) class. The samples related to these two classes are constructed as 25 second window that contain either earthquake events of different distance and magnitude values (positive samples) or signals of many unidentified sources (negative samples). As an output this model gives a probability value, when being closer to one it indicates that the positive class is predicted. This model reaches quite high accuracy performance (97%).

At this point of analysis, it is clear that the CNN detector model extracts relevant characteristics from
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By considering the results obtained with one CNN detector model and several earthquake samples, we can deduce that the characteristics we are identifying are relevant for the different earthquakes. This is important since our CNN model should be able to generalize to earthquakes of different distances and magnitudes, once it is applied on the continuous data [START_REF] Majstorović | Designing convolutional neural network pipeline for nearfault earthquake catalog extension using single-station waveforms[END_REF]. We notice that earthquake diversity is well captured during training. Despite the waveforms differences of the earthquake samples the CNN detector model is able to generalize well by generating feature maps of similar shape (Figure 4). Therefore, by using the FMV technique we note that the relevant characteristics are identified as very abstract feature maps that define a high-dimensional space where all earthquakes can eventually fit. The existence of this abstract space is the reason why the CNN model performs with high accuracy. Since we can obtain relevant maps for different earthquakes of various signal to noise ratios, it could indicate that the extracted features have some physical meaning (Figure 4).

The results from the BO technique are more difficult to interpret. If we try to answer the question of how does the optimal earthquake looks like, the answer is that it is not what a human would expect.

This result suggests that the optimal processing for earthquakes detection is perhaps more complex than some standard methods (such as STA/LTA, etc). The optimal input results reflect the complex nature of the patterns learned by the CNN model, also shown in previous studies [START_REF] Olah | Feature visualization, Distill[END_REF]). Yet, by comparing the optimal solutions for the earthquake and the noise classes, we might conclude that the amplitude is quite an important characteristic, while the shape and location of the peaks (events) seem less relevant (see Figure 5 and6). Indeed, the earthquake optimal solutions span a much larger range of amplitude values, while those for the noise optimal solutions are more constrained.

From the LRP technique, we observe that the high relevance values follow the position of the earthquake related signals (e.g. P, S and coda waves) within the sample window (Figure 7). The model learns in a general way what is an earthquake without being explicitly pointed to the earthquake position within the corresponding time window during the training process. However, more relevance is given to times related to P and S phase arrivals than the coda (Figure 7). This does not imply that the LRP technique could be used as a stable technique for picking P-and S-phase arrivals. We also notice that some time steps with very high relevance are followed by time steps with low relevance, without a clear pattern on what differs these time steps (Figure 7). This could be subject to further explorations, however it is not entirely odd, since LRP relevance values are sample dependent (Montavon, 2019).

By comparing the results for different training runs, we can infer whether our CNN model is stable to the randomness we introduce during the training process. While comparing the interpretability results we conclude that these results are coherent with the low accuracy variability between different models: the different runs of the models show very similar patterns and features. The feature maps have similar shape and amplitude values, and high correlation coefficients when compared to each other.

The class prototypes estimated by BO are quite different between each model (indicating randomness can still play an important role), but many common characteristics are present in all optimal solutions. Moreover, the modifications found by optimizing a real earthquake sample are similar for the different runs. Finally, the LRP solutions associated with different model runs show that the relevance is of the same order of magnitude and the peaks are at the same location when being tested on the same earthquake sample.

In our analysis, the positive and negative classes are represented differently for the studied techniques, which is also a sign of a good model performance. For example, the feature maps of two classes differ in amplitude and shape (see Figure 4). However, unlike the earthquake feature maps, the noise maps are quite different from sample to sample. This might imply that the feature space related to noise samples is more complex and diverse than the earthquake feature space. Certainly, this is a reason why the detection problem is quite challenging. Even though the earthquakes share some common characteristics, they are buried into a random wave field whose sources we are not able to dissociate. When observing the optimal solutions for the noise class (initialized with zero values, see Figure S16), we notice that the main characteristic is to have low amplitude. When the LRP technique is applied to the negative class, we learn that the CNN needs all time steps to correctly predict this class: the relevance values are homogeneously spread within the full sample window. This behavior differs from the positive class, where the time steps related to the earthquake are more relevant than the others. It comes probably from the fact that in order to know if a sample is negative, all time steps should be detected as noise so they are all important.

From our analysis we can infer that the CNN detector model is extracting and using some relevant characteristics from the training samples to make good predictions. These characteristics seem to have a physical meaning, therefore applying these techniques to related research areas, that have the same research goal or similar subjects, might be quite interesting. For example, it would be interesting to see if we can use the feature maps to better understand some less known signals such as tremors, low-and very low-frequency earthquakes [START_REF] Peng | An integrated perspective of the continuum between earthquakes and slow-slip phenomena[END_REF]. Furthermore, we could try to understand the black-box nature of the models that are used to predict laboratory earthquakes (Rouet-Leduc et al.

2017

). Especially since these models are trained for predicting the rupture time. Thus, it would be interesting to see whether the feature maps change over the time preceding the rupture, or check the properties of the signals (from FMV or LRP) in those time windows that we can use to predict the rupture.
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We show in our study how interpretation techniques might be useful to assess whether a CNN model is stable with respect to the randomness of the training process. Each technique has a different indication of how the stability can be assessed based on the output result, and the consistency between the output results is the first indicator of the stability. Yet, the different intepretability methods are all additional measures to assess the robustness of a model. Furthermore, we also show how these techniques might be practical for the architecture or the database design. For example, if the prediction is not satisfying, using the FVM technique one can inspect whether the feature maps of samples belonging to different classes are significantly different for the predefined task. Furthermore, the LRP technique can be used to indicate which parts of the training samples, if any, is helping CNN to make good prediction. If the high relevance value does not match with the predefined targeted class in the time window or image, this might be indicative that the training samples need to be better defined.

Despite these techniques provide us with valuable insight about our CNN model, all three techniques are evaluated by a visual approach and we do not have a relevant ground truth. To overcome this lack of a numerical interpretation, it might be interesting to compare the results among different models that are trained with different datasets but the same architecture, in that case taking an advantage of existing toolbox [START_REF] Woollam | SeisBench-A Toolbox for Machine Learning in Seismology[END_REF]. Based on the performance of, for example, two models trained with different datasets but the same architecture, we could assess how the accuracy is related to feature maps, optimal solutions, or relevance values. The possible existing differences should not affect the general characteristics that we discussed through our study, for example: the feature maps between negative and positive samples being visually different, the optimal inputs reflecting the frequency content of the training samples, the LRP solutions indicating the meaningful samples within the time window.

It should be noted that it is relatively straightforward to apply these techniques on a standard CNN architecture like the one used in this analysis. For more complex architectures, like transformers or recurrent networks, as well as for regression tasks, other methods might be needed [START_REF] Barredo Arrieta | Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai[END_REF][START_REF] Roscher | Explainable machine learning for scientific insights and discoveries[END_REF][START_REF] Samek | Explaining deep neural networks and beyond: A review of methods and applications[END_REF][START_REF] Ras | Explainable deep learning: A field guide for the uninitiated[END_REF][START_REF] Linardatos | Explainable ai: A review of machine learning interpretability methods[END_REF].

CONCLUSIONS

We applied three different interpretation techniques in order to better understand the decision process of a DL earthquake detection model. We conclude that it is important to interpret the results of these techniques jointly, since they define different characteristics which are all important to have a full picture of how the model perform. From our analysis we infer that the model learns some physical and meaningful earthquake characteristics without imposing any physical constrains during the training.

These characteristics are different from what an expert seismologist would expect and are not defined as simply as in other standard methods (such as STA/LTA, etc). In other words, the CNN model does not perceive an earthquake as humans do. The feature maps related to earthquake samples suggest that the CNN model, at the deepest architecture level, defines very abstract high-dimensional space where diverse earthquakes can eventually fit. The prototype earthquake signals propose that the model learned some complex patterns where amplitude is of high importance, while the shape and location of these patterns seem less relevant. Besides, the frequency content of earthquakes seems to be well captured, which implies that it is an important earthquake characteristic. The high relevance values associated with the earthquake related signals (e.g. P, S and coda waves) indicate that the CNN learned in a general way what is an earthquake, since we never explicitly highlighted these signals during the training process. We conclude that the important strength of the CNN model is the ability to generalize well to many types of earthquakes, without having any other prior information about them during the training process. The CNN is able to perform very complex transformation on the input samples in order to obtain robust results. Therefore, we believe that this is also an opportunity to discover new representations of events that are still poorly understood, such as tremors or low-frequency earthquakes.

As we showed, there are numerous perspectives how this study can be extended, and hopefully the seismological community will continue the effort in interpreting more DL models. S1) for 10 earthquake samples (A-J) and 2 noise samples (K and L). First column corresponds to the Z component of the earthquake samples, while other columns corresponds to the first 10 channel feature maps. The vertical scale is the same per channel for all samples. 
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 2 Figure 2. A) Schematic representation of the network architecture for the CNN detector model. The input array size is 3x500 corresponding to the three components (E-W, N-S and vertical) of the 25 s seismic waveforms sampled at 20 Hz. The output prediction is a scalar value ranging from 0 to 1, where 0 means that the sample belongs to the negative (noise) class and 1 to the positive (earthquake) class. There are nine hidden layers, out of which first seven are convolutional layers with stride of 2 and padding of 1, and two fully connected layers. The feature maps from Section 2.5.1 are represented here as light blue blocks. B) Schematic representation of the backward optimisation method. C) Schematic representation of the layer-wise relevance propagation method.
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 3 Figure 3. A) Earthquake sample from the evaluation dataset with epicentral distance of 5.3 km and magnitude 0.82. B) Visualisation of the feature maps associated with 32 output channels (rows) of the seven convolutional layers (L1 -L7) (light blue blocks in 2A) for the earthquake sample in A) obtained with the reference CNN detector model A (Section 2.4 and TableS1). C) Noise sample from the evaluation dataset. D) Same as B) for the noise sample from C).
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 4 Figure 4. Visualisation of the feature maps associated with the first 10 output channels of the 5th convolutional layer of the reference CNN detector model A (Section 2.4 and TableS1) for 10 earthquake samples (A-J) and 2 noise samples (K and L). First column corresponds to the Z component of the earthquake samples, while other columns corresponds to the first 10 channel feature maps. The vertical scale is the same per channel for all samples.
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 5 Figure 5. A) Optimal inputs obtained for the 10 CNN detector models (Section 2.4) using the backward optimisation (BO) technique (see Figure 2B) with the input array initialised with zero values. Columns corresponds to E, N, Z components and the amplitude spectrum of the associated components. B) Average spectrum of the training positive samples (orange) compared with the spectrum of 10 optimal inputs (blue).
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 6 Figure 6. Optimal inputs for the input array initialised with a real earthquake sample (examples from Figure4). Raw Z component (blue) and the optimal input (orange) waveforms are represented in full time scale, zoomed between 2.5 and 7.5 seconds, the logarithmic ratio of their amplitude calculated in time and frequency domain.
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 7 Figure 7. LRP relevance solutions for the reference CNN detector model A (Section 2.4 and TableS1) using the LRP-β propagation rule with β = 0 in Eq. (4) for samples shown in Figure4. Raw earthquake E, N, Z components (blue) are compared with the β -0 relevance value (orange). The time seconds that are associated with the high relevance values are used by CNN detector model to correctly classify this signal as an earthquake.
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 8 Figure 8. Applying the LRP-β -0 rule on all samples of the evaluation dataset and calculating the standard deviation of the LRP over time, σ LRP . A) σ LRP with respect to the epicentral distance for the positive samples. Yellowish colour indicate higher densities spots. B) Histogram of σ LRP for the positive (gray) and negative (blue) samples, with the distributions' average values (dash-dotted line for positive samples and solid line for negative samples).

  It allows the trained CNN detector model to generate one perfect earthquake (for positive class) or noise (for negative class) solution. Here, the term "perfect" relates to having a maximum likelihood for earthquake solution and minimum likelihood for the noise solution. Unlike the zero input, we can randomly chose the initialisation values within the input array with a Gaussian process and have as a result a collection of optimal inputs. The obtained optimal inputs are novel and almost never resemble the original training samples[START_REF] Mcgovern | Making the black box more transparent: Understanding the physical implications of machine learning[END_REF]. The random inputs allow us to perform an ensemble study since we are able to generate an endless possible optimal input solutions. Third, in the case of a real Interpreting CNN decision for earthquake detection 11 understand which parts of the training samples need more attention or modification in order to improve the actual detection rate.Layer-wise relevance propagation (LRP) aims at determining which parts of a particular input vector contribute most strongly to a NN decision, as a kind of heatmap. Unlike the backward optimisation, LRP is a non-iterative method applied to one input real sample at a time, by propagating the relevance value backward using purposely designed local propagation rules. The original method was introduced by[START_REF] Bach | On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation[END_REF] and has been applied in different scientific fields to unravel the decision making

	2.5.3 Layer-wise relevance propagation (LRP)

input initialization, the optimal input solution is physically realistic

[START_REF] Mcgovern | Making the black box more transparent: Understanding the physical implications of machine learning[END_REF]

). Hence, this solution could be understood as an improvement of an existing earthquake signal by finding the needed changes in order to maximize the detection rate of the actual earthquake signal. It allows us to process of large variety of deep learning models. Some applications are understanding relevant features in text-based data

[START_REF] Arras | what is relevant in a text document?": An interpretable machine learning approach[END_REF]

, patch-based learning of video data

[START_REF] Anders | Understanding Patch-Based Learning of Video Data by Explaining Predictions[END_REF]

), Alzheimer's disease patterns

[START_REF] Böhle | Layer-wise relevance propagation for explaining deep neural network decisions in mri-based alzheimer's disease classification[END_REF]

, climate patterns

[START_REF] Toms | Physically interpretable neural networks for the geosciences: Applications to earth system variability[END_REF]

. The schematic representation is shown in Figure

Josipa Majstorović, Sophie Giffard-Roisin, Piero Poli Figure 1. Schematic representation of a fully connected neural network.
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4

Visualisation of the feature maps associated with the first 10 output channels of the 5th convolutional layer of the reference CNN detector model A (Section 2.4 and Table S1)

for 10 earthquake samples (A-J) and 2 noise samples (K and L). First column corresponds to the Z component of the earthquake samples, while other columns corresponds to the first 10 channel feature maps. The vertical scale is the same per channel for all samples. compared with the spectrum of 10 optimal inputs (blue).

6

Optimal inputs for the input array initialised with a real earthquake sample (examples from Figure 4). Raw Z component (blue) and the optimal input (orange) waveforms are represented in full time scale, zoomed between 2.5 and 7.5 seconds, the logarithmic ratio of their amplitude calculated in time and frequency domain.

7

LRP relevance solutions for the reference CNN detector model A (Section 2.4 and Table S1) using the LRP-β propagation rule with β = 0 in Eq. ( 4) for samples shown in