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From as small as single carbon dimers up to giant fullerenes or amorphous nanometer-sized par-
ticles, the large family of carbon nanoclusters holds a complex structural variability that increases
with cluster size. Capturing this variability and predicting stable allotropes remains a challenging
modelling task, crucial to advance technological applications of these materials. While small cluster
sizes are traditionally investigated with first-principles methods, a comprehensive study spanning
larger sizes calls for a computationally efficient alternative. Here, we combine the stochastic ab ini-
tio random structure search algorithm (AIRSS) with geometry optimisations based on interatomic
potentials to systematically predict the structure of carbon clusters spanning a wide range of sizes.
We first test the transferability and predictive capability of seven widely used carbon potentials,
including classical and machine-learning potentials. Results are compared against an analogous clus-
ter dataset generated via AIRSS combined with density functional theory optimizations. The best
performing potential, GAP-20, is then employed to predict larger clusters in the nanometre scale,
overcoming the computational limits of first-principles approaches. Our complete cluster dataset
describes the evolution of topological properties with cluster size, capturing the complex variabil-
ity of the carbon cluster family. As such, the dataset includes ordered and disordered structures,
reproducing well-known clusters, like fullerenes, and predicting novel isomers.

I. INTRODUCTION

The wide family of carbon nanoclusters develops under
a range of natural and experimental conditions. Small
molecular carbon clusters in the shape of chains were
first observed in carbon vaporization experiments in the
80s. These pioneering experiments led to the break-
through synthesis of a new form of carbon clusters with
icosahedral symmetry, the C60 Buckminster-fullerene1,
well after its theoretical prediction. The in-lab synthe-
sis of the buckyball, naturally present in interstellar me-
dia, sparked exhaustive research on the quest for other
fullerenes with smaller and larger sizes, and other pos-
sible cluster morphologies beyond fullerenes. For this a
number of experimental techniques have been employed,
all based on vaporization of a carbon-rich target, such
as arc discharge, laser deposition, supersonic beams and
chemical-vapor deposition2–5. These techniques allow the
formation of clusters via atom-by-atom aggregation in
the plasma or carbon vapor, with in situ characteriza-
tion of the existing clusters usually performed with mass
spectrometry3. Spectrometry allows one to infer the rel-
ative stabilities, masses and energies of the existing clus-
ters and thus size of the cluster in terms of number of
atoms per cluster, with clusters as small as dimers and
carbyne-chains up to larger clusters containing thousands
of atoms2,4,5. Dense and non-hollow nanoclusters, typi-
cally with diamond-like features, have also been observed
in other conditions, such as subproducts of industrial det-

onations6 and as precursors of nano-onions (concentric
fullerenes) in annealing processes7.

However, experimental characterization cannot pro-
vide insight on the clusters atomic structure, and since
the number of possible isomers for a given cluster size
increases with the number of atoms, the landscape be-
comes extremely complex. To overcome experimental
limitations, first-principles theoretical studies have shed
light onto the microstructure, chemistry, nucleation and
stability of carbon clusters, relying on highly predictive
frameworks such as density-functional theory (DFT)8–10,
tight-binding DFT11 and quantum Monte Carlo ap-
proaches12. However, first-principles methods are lim-
ited by their high computational cost and thus restricted
to small cluster sizes of a few tens of atoms and small
datasets.

The main challenges for accurate in silico prediction
of carbon cluster structures and their isomers at the
molecular level are two-fold: (1) accurate and efficient
description of the interactions between carbon atoms,
and (2) generation of reliable representative structural
models; notwithstanding the overwhelmingly large con-
formational space that requires care to reduce the compu-
tational costs of demanding first-principles calculations.
On this front, progress in the development of accurate
carbon interatomic potentials has enabled substantial re-
duction of calculation overheads. However, a remaining
bottleneck towards accurate large-scale predictions em-
ploying interatomic potentials, is the need for system-
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atic benchmarking to ensure the reliability of the cho-
sen potential. Since carbon potentials are usually devel-
oped with a given carbon material in mind, their trans-
ferability to other carbon materials is not guaranteed.
This becomes particularly evident in disordered carbons
and high-density carbon phases, where previous bench-
marking works13–16 revealed some potentials inaccurately
describe the local coordination environments, indicated
by underestimated sp3 hybridization and unlikely ring
topologies, as well as unphysical behaviours at densities
above graphite density.

To overcome the limitations of classical interatomic
potentials, machine-learning (ML) frameworks have re-
cently opened an alternative path for carbon potentials
development. ML-based potentials generally map a set of
atomic environments to the numerical values for the cor-
responding energies and forces. This procedure involves
the training of the energy and forces based on a large and
accurate quantum-mechanical reference database, typi-
cally generated with DFT, and a subsequent interpo-
lation to predict ‘new’ atomic environments using one
of the many available ML algorithms. Upon a success-
ful training, ML potentials can achieve a significantly
higher accuracy than comparable classical models, often
approaching that of quantum-mechanical methods at a
reduced computational costs17. To date mainly three ML
algorithms have been employed to generate ML poten-
tials for carbon: the Gaussian approximation potential
(GAP)17–19, neural networks20,21 and adaptive Bayesian
inference (FLARE)22 models. Of these, the most promis-
ing and carbon-focused approach is the GAP framework,
with the last generation (GAP-20) being successfully
applied to crystalline and amorphous carbon phases19.
However its transferability to carbon clusters of different
degree of order, morphologies and densities is yet to be
tested.

Typically classical interatomic potentials have been
employed in combination with molecular dynamics (MD)
to study well-defined cluster structures, e.g. fullerenes
and nano-onions23,24, targeting their physical properties
and behaviour under external conditions without tar-
geting the generation of a carbon cluster energy land-
scape neither the evolution of geometries with cluster
size. Only a few works have explored how to combine
the potentials with high-throughput structure searching
algorithms and energy optimization methods in order
to i) improve over the limited size of DFT-only stud-
ies (in terms of number of atoms per cluster and size of
datasets) and ii) reduce computational costs. Cai et al.25

combined the Brenner potential26 (aka REBO-I) with a
global optimisation algorithm to produce clusters of sev-
eral sizes containing up to 71 carbon atoms. Mauney et
al.27 also selected the REBO-I potential and combined it
with Monte Carlo simulated annealing, basing-hopping
and minima-hopping algorithms for structure searching
of clusters containing up to 99 atoms, followed by a DFT-
based energy optimization. Kosimov et al.28,29 modified
the REBO-I potential and combined it with an energy

minimization based on the conjugate gradient algorithm
to produce planar clusters of up to 55 atoms and applied
the dataset to study defective graphene flakes.

Another popular global optimisation technique which
has not yet been combined with carbon interatomic po-
tentials to achieve large cluster datasets is the ab initio
random structure search (AIRSS)30, which relies on high-
throughput stochastic structure generation followed by
geometry relaxations. Unlike the other global optimisers,
AIRSS benefits from a broad and uncorrelated sampling
of configuration space, as it does not require to avoid
the local minima on the corresponding potential energy
surface. As such, AIRSS has proven useful in predicting
new stable and metastable crystalline phases and cluster
configurations for a range of materials (see Refs.30,31 and
references therein). AIRSS has hitherto been used jointly
with ab initio methods to enforce the geometry optimisa-
tion of the predicted structures. However, after being in-
terfaced with the widely-used large-scale molecular simu-
lator software LAMMPS32,33, AIRSS offers the flexibility
to be used in combination with any interatomic poten-
tial (either classical or machine-learning) implemented in
LAMMPS to perform the geometry optimisations. Nev-
ertheless, employing AIRSS with carbon interatomic po-
tentials calls for a rigorous benchmarking of the existing
potentials because the choice of the potential can greatly
affect the carbon structure and properties, especially in
highly disordered systems. In addition, no potential was
developed with isolated carbon clusters in mind, such as
fullerenes, cyclo[n]carbons, chains and bowl-shaped clus-
ters. Therefore, the characteristics of such carbon mate-
rials (highly curved surfaces, dangling bonds and differ-
ent surface reconstruction to graphite or diamond) pose
a challenge to test the transferability of the potentials.

Here, we predict a wide carbon clusters landscape com-
bining AIRSS with an interatomic potential-driven ge-
ometry optimisation by enforcing a robust optimisation
protocol in LAMMPS based on the FIRE optimiser34.
Within this framework, we test the performance and
transferability of common classical interatomic potentials
for carbon (EDIP, ReaxFFC2013, REBO-II, LCBOP-I,
AIREBO, Tersoff) and a recently developed machine-
learning-based potential (GAP-20) to generate a large
dataset of carbon clusters. To benchmark these poten-
tials, we analyse a set of structural properties in the
predicted clusters and compare to those of our refer-
ence AIRSS+DFT generated dataset containing clusters
of up to 200 atoms. In view of the benchmark results,
to showcase the prediction and high-throughput capa-
bility of our methodology, we choose the best perform-
ing potential to predict the minimum-energy structure of
larger carbon nanoclusters. Predictions reveal novel car-
bon allotropes for clusters sizes ranging from 200 to 720
atoms. Our methodology can be extended to predict even
larger clusters and, potentially, carbon nano-powders and
nanofoams where the particle size (typically <100 nm) is
intractable with first-principles approaches.
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II. METHODS

To explore the allotropes of different carbon clus-
ter sizes and point group symmetries, we employed
AIRSS30,31 to generate the starting cluster atomic coor-
dinates. These starting coordinates were then subjected
to a geometry optimization to achieve stable structures.
In our initial search, the energy optimization was per-
formed with plane-wave density-functional theory (re-
ferred to as AIRSS+DFT method) to establish a refer-
ential clusters dataset. In our subsequent searches, the
optimization was performed with an interatomic poten-
tial (referred to as AIRSS+potential method). Seven
widely used carbon potentials were employed: a recently
developed machine-learning-based potential (GAP-20)19

and six common empirical potentials (Tersoff35, C-
EDIP36, LCBOP-I37, ReaxFFC−2013

38, REBO-II39 and
AIREBO40).

A. Input structure generation using AIRSS

For each searching method (AIRSS+DFT and
AIRSS+potential) two AIRSS searching approaches were
used to account for different degrees of short-range order
in the cluster microstructure: random search of atomic
positions within a sphere of a given radius imposing (i)
only C1 symmetry constraint to obtain disordered struc-
tures and (ii) up to 24 symmetry operations to obtain
higher-symmetry structures. A minimum atomic separa-
tion (MINSEP command) of 1.4 Å was imposed for each
C-C pair to prevent unphysical overlap of atoms. The ra-
dius of the initial sphere is read-in by the POSAMP com-
mand. By default AIRSS uses a push algorithm, which
pushes atoms further away to fulfil the minimum atomic
separation condition. This means that for structures with
low number of atoms, the initial sphere is filled. When
the number of atoms increases, it reaches a point where
there is no space within the initial sphere to fulfil the im-
posed minimum atomic separation. Then, the algorithm
starts pushing the atoms further outside of the region de-
fined by the initial sphere, which originates denser clus-
ters. A low value for the initial sphere of 3 Å is selected to
ensure a smooth density increase with cluster size above
cluster sizes 40 to 50 atoms (note C60 fullerene radius is
3.5 Å), where the cage-like geometry is already expected
to prevail. Switching on the CLUSTER flag promotes
the clusterization of the structure. All searches were
performed over a cluster size interval of [4, 200] atoms.
The subsequent optimisation of the input structures with
either DFT or interatomic potentials was performed as
follows: carbon atoms were placed in the centre of a suf-
ficiently large periodic cubic box to prevent interactions
with the periodic images, i.e. 50 Å per side for all inter-
atomic potentials and 15 Å for DFT to minimise the com-
putational cost. To discard any unwanted effects of using
a smaller box in the DFT searches, we performed addi-
tional tests as discussed in the Supplementary (Section

S2). To ensure a fair comparison across the AIRSS+DFT
and AIRSS+potential methods for all the seven poten-
tials studied here, the AIRSS search-related parameters
in both approaches (with and without symmetry con-
straints) are kept identical, see the AIRSS scripts in the
Supplementary (Section S1).

B. Structure optimisation with density-functional
theory

Density-functional theory calculations were performed
using the Vienna Ab initio Simulation Package (VASP
v. 5.4.4)41. We employed the projector-augmented
wave (PAW)41 method jointly with the PBE ver-
sion of the Generalized Gradient Approximation ex-
change–correlation potentials42. To limit computational
cost, we use a smaller plane-wave energy cut-off of 300 eV
in the AIRSS searches, whereas a higher cut-off of 520 eV
is used for selected structures within 0.1 eV/atom of the
corresponding minimum-energy. An electronic conver-
gence criterion of 10−8 eV and a Gaussian smearing fac-
tor of 0.2 eV were adopted, the VASP default settings for
the fast Fourier transform (FFT) grid and optimisation
of the projection operators were employed. Due to the
non-periodic nature of the isolated clusters, we only con-
sidered the centre of the reciprocal space (Γ point) when
integrating the Brillouin zone. This also enabled us to
benefit from the faster implementation in VASP designed
for the Γ-only calculations, useful to achieve a large num-
ber of structures needed for the high-throughput AIRSS
searches. During the geometry optimisations atomic po-
sitions were fully relaxed until all force components were
below 50 meV/Å using the conjugate gradient (CG) al-
gorithm43.

C. Structure optimisation with interatomic
potentials

Geometry optimisation using the classical and
machine-learning interatomic potentials was performed
in LAMMPS32,33. We used the standard implemen-
tations of the original carbon Tersoff35, the 2015
reparametrization of the ReaxFF (ReaxFFC−2013)38 tar-
geting solid carbon phases, the second generation of the
Brenner potential (REBO-II)39, the first generation of
the Long-range carbon bond order potential (LCBOP-
I)37, the Adaptive intermolecular reactive empirical bond
order potential (AIREBO)40; the carbon environment-
dependent interaction potential (EDIP)36 developed by
Marks, with its LAMMPS implementation available upon
request to the developer. The Gaussian approxima-
tion potential for carbon (GAP-20)19 was employed via
the routines implemented in the QUIP module within
LAMMPS. For all the potentials the optimisation pro-
tocol was kept identical. The protocol consists of four
consecutive geometry minimisations using the CG algo-
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Method Disordered clusters Symmetric clusters
DFT 3,500 [5,000] 10,500 [13,000]

GAP-20 22,200 [24,000] 20,300 [24,000]
Tersoff 18,300 [24,000] 12,500 [24,000]
EDIP 22,200 [24,000] 18,300 [24,000]

REBO-II 20,700 [24,000] 15,400 [24,000]
AIREBO 18,800 [24,000] 20,000 [24,000]

ReaxFFC−2013 20,200 [24,000] 19,800 [24,000]
LCBOP-I 22,300 [24,000] 16,600 [24,000]

TABLE I. Number of relaxed structures obtained for each
curated dataset by AIRSS with different methods (avoiding
structure duplicates, dissociated clusters and non-converging
structures). Initial number of generated structures for each
method is given in brackets for reference.

rithm, with energy and force tolerance criteria of 10−12

eV and 10−8 eV/Å, respectively, and a step size of 0.2
Å. Note that this is the default LAMMPS optimisation
protocol distributed with AIRSS. However, this minimi-
sation was not sufficient and resulted in a large number
of structures with large pressures ( >100 MPa). To pre-
vent this, we implemented in the LAMMPS protocol an
additional energy minimisation step using the FIRE34

damped-dynamics followed by a Hessian-free truncated
Newton algorithm procedure with a timestep of 1 fs,
which was run until the pressure (internal stress) con-
verged to ≈0 Pa, ensuring a negligible pressure con-
tribution to the enthalpy (≤10−5 eV). With this ap-
proach, only a small fraction of non-converging structures
were observed and subsequently removed, optimising the
dataset production.

D. Final datasets

Further to the removal of non-converging structures,
all datasets (AIRSS+DFT and AIRSS+potential) were
also screened to identify repeated structures and struc-
tures containing dissociated clusters. To filter out the
repeated structures, we performed structural similarity
analysis based on the radial distribution functions (RDF)
as implemented in the MATADOR code44. To filter out
the structures with dissociated clusters, we performed a
cluster size analysis (using a 1.85 Å cut-off radius to de-
termine bonded atoms) using OVITO45. Table I shows
the final number of unique cluster structures comprising
each dataset, which were used for the subsequent charac-
terization analysis. Note that the AIRSS+DFT datasets
initially contained fewer structures due to computational
cost limitations. All datasets are available online.46

E. Analysis of the generated clusters datasets

To characterize the clusters microstructure we imple-
mented the analysis tools from the OVITO package45

in an in-house Python code and computed coordination

numbers within a 1.85 Å cut-off radius, RDFs and den-
sity of cohesive energies by counting number of struc-
tures with the same energy within a bin width of 0.01
eV/atom. We used the R.I.N.G.S. code47 combined with
the Franzblau algorithm48 to compute the ring statistics
for each cluster. To limit the complexity in the resulting
plots and to capture the relative contributions of each
of the isomers of a given cluster size within the obtained
subset of isomers, we show the Boltzmann-weighted aver-
age properties (unless stated otherwise). The Boltzmann
weight of each structure with respect to the minimum-
energy structure of the same stoichiometry was computed
using the well-known relation

pi =
e−εi/kBT∑M
j=1 e

−εj/kBT
(1)

where εi and ε0 are the energy of the given structure
and the minimum-energy structure respectively, kB the
Boltzmann constant and T =293 K. The cohesive energy
(Ec) of a cluster of size n was computed using

Ec = (Etot − nEref )/n (2)

where Etot is the total energy of a cluster, predicted by
DFT or an interatomic potential, and Eref is the ref-
erence energy of a single carbon atom. Given that the
pressure is negligible, the Etot corresponds to the en-
thalpy of formation of the cluster, as reported by VASP
and LAMMPS. By construction Eref = 0 for the poten-
tials, whereas for DFT results Eref is the energy of an
isolated carbon atom (–1.38 eV/atom).

F. Extrapolation of the methodology to search for
arbitrarily large cluster sizes

The key to apply our method to larger clusters is sim-
ply to enlarge the cubic box size to prevent interactions
with periodic images, and to increase the radius within
which carbon atoms are added to the simulation cell to
prevent extremely dense clusters. Thus, to target clus-
ter sizes in the C200 to C720 range, we employ box
sizes of 100 Å and an initial sphere radius of 9.5 Å. As
known from previous studies49,50, in this range size the
fullerene/cage-like structures with high symmetry (Th/Td
or Ih) are expected to form. Therefore we covered this
possibility by enforcing all 24 symmetry operators while
generating the input structures. The AIRSS input script
is included in Supplementary Section S1C. The extra
searches were performed in the [200,720] interval at se-
lected cluster sizes (see script). This resulted in addi-
tional 4350 structures of which 1800 unique structures
passed the filtering criteria described above. Additional
intensive searches targeting only two cluster sizes (C240
and C540 searches) resulted in 840 and 410 new struc-
tures, respectively, of which 460 and 160 unique struc-
tures passed the filtering criteria.
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C128 (C2h)
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C72 (Td) C76 (Td) C80 (S4) C84 (Td) C88 (C2) C92 (D3d)

C116 (C3h) C120 (Th)

C8 (Dh)

C44 (D3d)

C132 (D2d) C144 (C3) C152 (Oh) C160 (C5) C178 (Ci) C180 (Td)

C68 (C2) C96 (Th)

FIG. 1. Visualization of the minimum-energy structures in a selection of ordered carbon clusters generated with AIRSS+DFT.
Clusters are labelled as Cn where n indicates the number of atoms. Point group symmetries are shown in parentheses. Carbon
atoms are coloured according to their hybridization: blue, green and red correspond to sp, sp2 and sp3, respectively.

III. RESULTS AND DISCUSSION

We first present in subsection A the results of a global
search using a wide cluster size range (C4 to C200);
this is aimed at benchmarking the interatomic potentials
against DFT. In subsection B we perform a single cluster
size search on a well-known system (C60) as case study to
further analyse the behaviour of the potentials compared
to DFT. Finally, subsection C shows the application of
the best performing potential to search for larger clusters
unable to be studied with DFT.

A. Comparison of general structural trends as a
function of cluster size in the range C4 to C200

To assess the performance of different interatomic po-
tentials, we analyse energetic and structural properties of
the predicted carbon clusters with AIRSS+potential and
compare to the AIRSS+DFT benchmark. As detailed in
the Methodology, for each of the AIRSS+potential and
AIRSS+DFT searches we generate two datasets to ac-
count for symmetric and disordered structures.

1. Minimum-Energy Structures

Predicting minimum-energy (ME) structures in agree-
ment with DFT-level theory is a key merit for any in-
teratomic potential. Here we focus our discussion on

the symmetric structures datasets for the sake of eval-
uating the point group symmetries (PGS) and cohesive
energies of the ME structures obtained with the different
AIRSS+potentials and compare with the AIRSS+DFT
benchmark. A comparison table including cohesive en-
ergies Ec and PGS values for all the C4 to C200 ME
structures is presented in the Supplementary (Table S1),
while Fig. 1 collates some representative snapshots of se-
lected cluster sizes.

Small carbon clusters typically present chain and
ring morphologies competing for the most stable con-
figuration. Upon reaching a critical mass of at least
n=20-35 atoms the most stable configuration becomes
a bowl-shaped or cage-like cluster, such as fullerenes and
bucky-diamonds, with the C20 fullerene being the small-
est closed cage-like cluster51. In line with this, a vi-
sual inspection of our AIRSS+DFT ME structures re-
veals that small clusters (C4 to C7 inclusive) form sp-
hybridised carbon chains, whereas between C8 and C19,
the sp-chains close into ring-like clusters, known as cy-
clo[n]carbons, where [n] denotes the number of atoms
in the ring. At C20 we observe the expected change in
morphology, obtaining the well-known smallest fullerene
formed entirely by pentagons in a sp2-hybridised spher-
ical cage. As the cluster size increases up to C200, the
structures densify and cage-like structures are the only
observed ME structural form.

Our structures (Fig. 1 and Table S1) are in overall
good agreement with those from Mauney et al.27, who
generated clusters up to C100 using global optimisation
techniques (basin and minima hopping). In particular,
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there is a good agreement in the DFT cohesive energy
trends, in view of the gradual decrease from about -5
to -7.5 eV/atom with a consequent level-off upon going
from C4 to C100. Mauney et al. also reported ME ge-
ometries similar to ours (Fig. 1). They showed that for
the smallest carbon clusters (C4-C9) chains predominate
except for C6, which presents a ring structure. For the
cluster sizes C10 to C23, Mauney et al. found ring struc-
tures as the most stable form and did not predict the C20
fullerene, contrary to our AIRSS+DFT approach. As a
consequence, they obtained the threshold for the trans-
formation into cage-like structures at C23. For larger
cluster sizes (Cn, n>60), we note that our structures
have higher densities than corresponding fullerenes, and
thus occur as filled spheres, as opposed to previous re-
ports27,49. This is due to our structure generation strat-
egy using AIRSS, which constrains atoms within a cer-
tain constant radius for the sake of simplifying the bench-
mark. However, AIRSS offers the flexibility to adopt di-
verse searching strategies, which can prioritize the gener-
ation of hollow fullerene-like structures rather than filled
spheres. Varying the parameters in the searching proto-
col, we can recover the high-symmetry (hollow) fullerene
structures of different sizes. We further discuss this in
Section III B.

As for the interatomic potentials, the structures of
carbon clusters with size up to C71 and their cohesive
energies were previously reported using a global opti-
misation (GA) approach jointly with the first genera-
tion of REBO potential25, enabling a comparison with
the second generation REBO-II tested here. By in-
specting the ME structures, we found a good agreement
between our AIRSS+REBO-II structures and the GA-
REBO structures25, particularly considering the high
symmetry structures of C20, C24, C28, C36, C50, C60
and C70 bearing the symmetry of Ih, D6d, Td, D6h, D5h,
Ih and D5h, respectively, whereas some discrepancies in
the corresponding formation energies are also noted.

Among the potentials considered here, the
AIRSS+GAP-20 searches gives overall the best match
with the AIRSS+DFT dataset in terms of the predicted
point group symmetries as well as the cohesive energies
for the corresponding ME structures (see Supplementary
Table S1). The only discrepancy for GAP-20 and
DFT is noted for the small cluster range, where the
conversion from chains into ring-like structures occurs
at a somewhat larger size C10, rather than C8 in DFT.
In contrast, the other potentials (except AIREBO)
predict only ring-like clusters below C9. Note that for
the C60 cluster size, all potentials predict the expected
icosahedral fullerene as the ME structure, although
discrepancies of ∼0.5 eV respect to the DFT value
are observed, with GAP-20 giving the closest value to
DFT. In Section III B we show additional details on
intensive C60 searches to further assess the potentials
performance in a well-known case study.

2. Cohesive Energies

Beyond minimum-energy structures, we analyse the co-
hesive energies of the entire structure datasets and com-
pare the general trends in structural behaviour as a func-
tion of cluster size among potentials and DFT searches
(see Fig. 2). Noteworthy is the initial decrease of cohe-
sive energy for small cluster sizes up to ca. C40, followed
by a levelling-off for larger clusters. The latter can be
attributed to the well-known low stability of the smallest
clusters (mostly chain or ring-like) and is predicted by
all the potentials as well as DFT, albeit with a change of
energy gradient across potentials.

Another trend observed for all interatomic potentials
and DFT is the mismatch between symmetric and disor-
dered distributions in the low energy region of the dis-
tribution: the minimum-energy and lower energy struc-
tures for each cluster size in the symmetric set (red)
show lower energy values than in the disordered dataset
(black), in line with chemical intuition, i.e. symmetry
helping stabilise structures. This is observed in a lesser
extent for the Tersoff potential, where only a few cluster
sizes present lower minimum-energy values in the sym-
metric datasets.

Moreover, there is a wider energy distribution per clus-
ter size in the symmetric sets (red datapoints) than in the
disordered ones (black), as the spread datapoints indicate
in Fig. 2. This is expected to follow from our method-
ology for creating the initial geometries. For the disor-
dered clusters dataset, the constraint to place atoms in
a 3 Å-radius sphere results in efficiently packed struc-
tures due to the lack of short-range order. However,
this constraint results in an artificially large number of
high-energy structures when symmetry operations need
to be satisfied. This effect is most evident in the broadest
distribution of ReaxFFC2013, followed by AIREBO and
Tersoff, indicating a poorer performance as compared to

FIG. 2. Cohesive energy distributions of the predicted sym-
metric (red) and disordered (black) clusters with cluster size.
Panels show the results given by the seven interatomic poten-
tials tested in this work and the DFT benchmark.
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a) Symmetric clusters datasets 

b) Disordered clusters datasets 

FIG. 3. Cohesive energy histogram for the (a) symmetric
and (b) disordered structure datasets computed with different
interatomic potentials and DFT considering the whole cluster
size range [C4, C200].

GAP-20, EDIP and LCBOP-I. Beyond the width of the
distribution, GAP-20 is the only potential that provides
the lower energy values for the symmetric and disordered
datasets, comparable to the DFT results and the graphite
cohesive energy (-7.5 eV/atom). Note that the agree-
ment is achieved despite GAP-20 was not trained using
the same type of DFT theory.

For an alternative perspective on cohesive energies,
Fig. 3 shows the histogram of cohesive energies for
the symmetric and disordered datasets computed with
AIRSS+potential and AIRSS+DFT for the whole clus-
ter size range [C4,C200]. The plots reveal the high over-
lap between the DFT and GAP-20 energy distributions
for both symmetric and disordered datasets (-7.5 to -
6.0 eV/atom regions). In contrast, the classic poten-
tials give cohesive energies in a higher regime (-6.5 to
-4.5 eV/atom), suggesting a tendency to overestimate the
clusters cohesive energies with respect to DFT.

3. Coordination fractions

Local coordination environments are commonly anal-
ysed to benchmark carbon interatomic potentials since
it provides insight into the bond-making and -breaking
capacity of the potentials13,15. To analyse the whole
datasets beyond the minimum-energy structures, we
compute the Boltzmann factors at 293 K based on the
energies of individual structures for a given cluster size,
relative to the associated minimum-energy state. The re-
sulting Boltzmann-weighted (BW) ratios of sp, sp2 and
sp3-hybridised carbons for the symmetric and disordered
datasets are shown in Fig. 4. For reference, the raw
data without averaging is included in the Supplemen-
tary Fig. S3. As a general note for all AIRSS+DFT
and AIRSS+potentials results, the disordered clusters
datasets (Fig. 4b) show average coordination fractions
with smoother fluctuations than the symmetric datasets
(Fig. 4a), despite having overall similar trends. This is
due to less variability in the allotropes of a given clus-
ter size in the disordered dataset, contrary to the higher
symmetry case, where atoms are more spread due to sym-
metry constraints.

The AIRSS+DFT searches predict predominantly sp-
hybridised clusters up to C20 in the symmetric and dis-
ordered dataset. This characteristic arises from the pre-
dominance of chain-like and ring-like clusters and agrees
with previous DFT studies8,27. Additionally, in both
datasets the sp and sp2 curves intersect at C20 and clus-
ters become predominantly sp2-bonded with less than
20% sp3 contribution in the C20-C200 range. Only
for the largest clusters, above ca. 120 atoms in both
datasets, the sp3 fraction presents a small increase, due
to the densification of the clusters. This densification
is enforced by the choice of AIRSS parameters during
the input structure generation: an increasing number
of carbon atoms need to fit within the same confined
space defined by our initial spherical domain for coordi-
nate generation, which originates denser clusters. Note
that the initial conditions can be tuned to target par-
ticular cluster densities. The sp3 increase is more acute
in the disordered dataset and correlates well with the ex-
perimentally observed linear increase of sp3 fraction with
density in bulk amorphous carbons52. Importantly, the
high-density regime poses a challenge for the interatomic
potentials since most potentials tend to underestimate
sp3 fractions in dense carbon phases13,15.

Among the seven potentials employed in the
AIRSS+potential searches, GAP-20, ReaxFFC2013 and
EDIP provide the best overall match to the AIRSS+DFT
results for both symmetric and disordered datasets in all
cluster size ranges. However over C100 the three po-
tentials show small differences: GAP-20 shows a slightly
larger sp3 fraction for disordered clusters; while the DFT
sp2 fractions present a smooth decreasing trend with in-
creasing cluster size, ReaxFFC2013 and EDIP show sp2

fractions plateauing at around 65% and 75% respectively
in the disordered datasets, and around 70% and 80% re-
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FIG. 4. Boltzmann-weighted coordination fractions as a function of cluster size for the datasets generated using different
interatomic potentials and DFT searches. Panels show the symmetric (a) and disordered (b) clusters datasets.

spectively in the symmetric datasets. In contrast, the
other potentials, viz. TERSOFF, REBO-II, AIREBO,
and LCBOP-I, significantly deviate from the DFT bench-
mark in both symmetric and disordered clusters datasets.
In particular, TERSOFF and LCBOP-I behave similarly
and favour a high sp content (around 35%) for clusters
between C30 and C200, comparable to the value obtained
by Alonso et al.53 at room temperature for bulk disor-
dered carbon of density 1 g/cm3. However this high sp
fraction is not comparable to amorphous carbons with
higher densities, as it is well-known that the sp fraction
decreases with increasing density13,53. The origin of the
high sp content in the TERSOFF and LCBOP-I clus-
ters is revealed after visual inspection of minimum-energy
structures, which contain highly sp-hybridised surface
shells.

The REBO family of potentials (REBO-II and
AIREBO) displays a different behaviour to the others.
Both potentials produce disordered and symmetric clus-
ters with a significantly lower sp2 and higher sp3 content
with predominance of sp3 as clusters densify, well-above
the DFT benchmark. De Tomas et al.13 also observed
density-related issues with REBO-II, which produced un-
realistically compressed graphitic bulk structures at den-
sities well above graphite density. In the present case of
clusters, this behaviour may be amplified by our choice of
cluster generation methodology. The choice of a fixed ra-
dius while adding atoms during the structure generation

in AIRSS, leads to a high density/close packing in the
resulting carbon clusters, particularly over C100. While
most of the interatomic potentials and DFT can handle
these high-density input structures upon geometry opti-
misation and thus relax to less dense clusters, REBO-II
and AIREBO fail at this and cannot drive away from
these initial structures due to getting trapped in deep
potential wells, and they hence converge to local minima
even though we enforce zero internal pressure structures.
Thus, to employ a potential of the REBO family in low-
density and large cluster structure searches, we suggest
an alternative structure generation procedure by setting
a variable radius based on the cluster size to ensure a
fixed target density in the inputs.

Computing the average coordination numbers for the
symmetric and disordered datasets further supports
the overall good agreement of GAP-20, EDIP and
ReaxFFC2013 with DFT for both datasets (see Supple-
mentary Fig. S4). In particular, GAP-20 performs rela-
tively better than EDIP and ReaxFFC2013 in capturing
the increase in coordination number in the small cluster
size regime, i.e. C4-C30, where the sp to sp2 conver-
sion occurs. In contrast, REBO-II and AIREBO tend to
slightly overestimate the mean coordination numbers for
the larger clusters, in line with the dominant sp3 charac-
ter, while TERSOFF and LCBOP-I underestimate coor-
dination numbers for the disordered clusters in line with
the observed high sp fractions.



9

4. Ring Statistics

Characterizing carbon structures using ring statistics
provides complementary information to the local coordi-
nation environments. To further assess the performance
of different potentials against DFT, we computed the BW
fractions of common carbon rings occurring within the
clusters in the symmetric and disordered datasets. In
the Supplementary Figs. S5a and S5b we show the frac-
tions for the most relevant three- to ten-member rings
(R3-R10) for each potential. To facilitate comparison
with each potential, AIRSS+DFT results are shown in
blue shade background in each panel.

The ring profiles of AIRSS+DFT clusters show signif-
icant differences between the symmetric and disordered
datasets. Symmetric clusters above C20 contain predom-
inantly hexagons (R6) and pentagons (R5), which drive
positive curvature, resulting in cage-like clusters54. This
behaviour is broadly well reproduced by all the poten-
tials. Smaller clusters (below C20) only contain a small
fraction of triangles and isolated peaks are observed for
the ring size at the cluster size where DFT predicts sta-
ble cyclocarbons (see Fig.1), such as the peaks at C6, C8
and C10 clusters in the R6, R8 and R10 profiles respec-
tively. Note that no peak is observed in the heptagons
profile at C7, since the predicted minimum-energy struc-
ture is a chain-like cluster. The small symmetric clusters
regime pose a challenge to all the potentials, since none
of them provide an overall good agreement with DFT
for all ring sizes. Disordered DFT clusters also show a
change in ring profiles versus cluster size below and above
C20. The smallest clusters present a predominance of
triangles, which is broadly captured only by GAP-20,
EDIP and AIREBO. However, EDIP, AIREBO, REBO-
II and ReaxFF show a significant contribution of pen-
tagons, which is absent in the DFT profile. Larger DFT
clusters contain all types of rings, typical of disordered
carbons, with most ring profiles given by the potentials
broadly matching the DFT benchmark.

Minimum-energy 2nd lowest 3rd lowest
DFT -7.47 (Ih) -7.23 (D5h) -7.18 (D5d)

GAP-20 -7.57 (Ih) -7.50 (D5) -7.45 (C6h)
Tersoff -6.73 (Ih) -6.66 (C6h) -6.66 (D6h)
EDIP -6.56 (Ih) -6.54 (D5) -6.52 (C5v)

REBO-II -6.84 (Ih) -6.76 (C6h) -6.74 (D6h)
AIREBO -6.81 (Ih) -6.77 (Cs) -6.76 (D6d)

ReaxFFC2013 -7.17 (Ih) -7.12 (C2) -7.10 (D5)
LCBOP-I -6.93 (Ih) -6.86 (C6h) -6.66 (D4h)

TABLE II. Cohesive energy in (eV/atom) and point group
symmetry of the three lowest-energy C60 clusters predicted by
different interatomic potentials and compared to the reference
DFT calculations.

B. Case study: C60 clusters

Having compared the general trends in the cluster
properties as a function of cluster size, we now target
a single cluster size to further test the AIRSS+potentials
performance on a well-known system. For this we chose
the most widely studied subfamily of carbon clusters,
that is, clusters comprising 60 atoms. The ground-state
of all possible C60 isomers is the Buckminster-fullerene
and has been the object of exhaustive experimental and
theoretical research for the last 30 years. The C60
fullerene is formed by 12 pentagonal (R5) and 20 hexag-
onal (R6) rings arranged into a hollow cage with icosa-
hedral symmetry (Ih).

Analysis of the minimum-energy of C60 structures
found in our wide cluster size (C4 to C200) searches
revealed that REBO-II, AIREBO and GAP-20 did not
include the C60-(Ih) fullerene. This can be due to ei-
ther a lack of enough statistics for the particular clus-
ter size or to higher density C60 clusters. Therefore, to
enable fair comparison across all the potentials and dis-
card statistical and density-related effects, we perform
additional AIRSS+potentials searches targeting only C60
clusters. To target the particular fullerene morphology
with optimised search efficiency, we adopt coordination
constraints to rapidly locate the hollow icosahedral C60:
atoms are not allowed to enter a spherical exclusion zone
of radius 3.0 Å defined within the initial sphere while im-
posing 24 high-symmetry operations, a minimum bond
angle of 91◦ and coordination number of 3, to avoid 4-
fold rings (see script in Supplementary S1B). Since large
datasets ensure better statistics in the AIRSS protocol,
we then combine the structures produced in these new
highly targeted searches (low density structures) with the
C60 structures of the initial symmetric dataset. This way
the dataset for C60 clusters spans a wide range of densi-
ties.

Analysis of the extended dataset reveals that now all
of the AIRSS+potentials and AIRSS+DFT searches suc-
cessfully predict the icosahedral Buckminster-fullerene as
the minimum-energy structure (see Table II); however
some discrepancies are observed in the formation energies
values, with GAP-20 giving the closest value to the DFT
benchmark, followed by ReaxFFC2013. The energy of the
other two most stable C60 isomers (2nd and 3rd lowest-
energy structures) are also reported in Table II along with
their corresponding symmetry group. For these struc-
tures again GAP-20, followed by ReaxFFC2013, provides
the closest energy values to the DFT reference, however
the structures symmetry is widely varied, with no poten-
tial reproducing the DFT results. We note that the dis-
agreement between the empirical models and DFT/GAP-
20 may be affected by the choice of the energy of isolated
atoms as reference, which would not be as prevalent if
computing the cohesive energy relative to a condensed-
phase state, such as graphite19.

Figure 5a shows the radial distribution function pre-
dicted by each potential and DFT for the C60-(Ih)
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minimum-energy structure. The DFT curve displays
twin peaks at the first neighbours C-C distances of 1.41 Å
and 1.46 Å, corresponding to the two bond lengths
(pentagon-hexagon and hexagon-hexagon) featured in
the fullerene structure. While most potentials reproduce
the characteristic twin peaks, EDIP is the only potential
that do not differentiate both bond lengths. This may
be due to the bond-order term of EDIP’s functional form
being atom-centred, unlike the other classical potentials
tested here where the bond-order term is bond-centred.
This behaviour arises from the original focus on amor-
phous carbon when EDIP was developed, and may pose
some transferability issues when applying it to isolated
fullerene-like clusters. In contrast, GAP-20 provides a
nearly identical radial distribution function to the DFT
function; AIREBO and LCBOP closely match the DFT
function while the rest of the potentials present an over-
all right shift of the functions, indicating slightly larger
bond lengths. Further analysis of bond lengths is in-
cluded in Supplementary Fig. S6. Beyond the minimum-
energy fullerene structure, analysis of the whole C60 iso-
mers datasets is presented in Fig. 5b, which shows the
energy density distribution of the dataset as a function
of the cluster cohesive energy. GAP-20, ReaxFFC2013,

a)

b)

FIG. 5. Comparison of (a) radial distribution functions of the
C60 (Ih) fullerene cluster and (b) energy distribution of the
whole family of C60 isomers, as predicted by the potentials
and DFT.

REBO-II and LCBOP-I give an overall good agreement
in the distributions widths and shapes compared to the
DFT reference. However, the classical potentials present
a right shift in the energy values with respect to the DFT
benchmark and only GAP-20 gives the highest overlap.
A similar good agreement among GAP-20 and DFT-level
of theory was obtain by Aghajamali and Karton55 in a
study of isomerisation energies using a dataset of 1,812
C60 isomers.

C. Applying the AIRSS+GAP-20 method to
predict large clusters

To showcase the predictive capabilities of our
AIRSS+potential approach, we select the best perform-
ing potential and run additional searches to find the low-
energy structures of large carbon clusters, inaccessible
with AIRSS+DFT due to the associated computational
costs. According to our benchmarking results, GAP-20
gives the closest agreement with DFT over the cluster
size range C4 to C200. Therefore, here we employ the
AIRSS+GAP-20 method to target larger cluster sizes
above C200. Computational details and key aspects to
extrapolate our method to large structures are given in
the Methodology. Here we note that the AIRSS+GAP-
20 structure searches are not exhaustive and the dataset
contains a limited number of structures. This is due to
our intention to just give a flavour of the capabilities of
our AIRSS+GAP-20 approach. A detailed study of the
larger carbon clusters calls for a dedicated future work
applying the methodology presented here.

1. General trends observed for varying cluster sizes with
high symmetry

As a first predictive test, we expand our cluster size
range above n=200 up to n=720 atoms and look at
the evolution of apparent ground-state with increasing
n within our initial searching constraints; i.e. increasing
the cluster densities. Selected minimum-energy struc-
tures resulting from the general search are collated in
Fig. 6. Visual inspection reveals that the degree of sp3

hybridization increases with increasing cluster size, as-
sociated to the densification of the clusters. This be-
haviour is quantitatively shown in Supplementary Fig.
S7c, where the computed coordination fractions indicate
predominantly sp2-bonded clusters up to ca. C320, cor-
related with hollow cage structures with spheroidal mor-
phologies and octahedral/tetrahedral symmetries. This
behaviour resembles that of the less dense icosahedral gi-
ant fullerenes occurring at specific cluster sizes, such as
C240. Above C320 sp3 fractions steadily increase and
correlate with non-hollow cage-like structures. To ac-
commodate a denser structure, external sp2 shells with
faceted octagonal morphologies seem to be preferred in
order to encapsulate a predominantly sp3 carbon core,
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C540 (Td) -7.46 eV/at

C720 (Th) -7.17 eV/atC680 (Th) -7.46 eV/atC600 (Th) -7.38 eV/at

C420 (Th) -7.31 eV/at

C360 (Td) -7.41 eV/atC300 (Td) -7.43 eV/at

C260 (Th) -7.58 eV/atC240 (Oh) -7.70 eV/atC200 (Th) -7.48 eV/at

C320 (Th) -7.37 eV/at

C480 (Th) -7.38 eV/at

FIG. 6. Minimum-energy structures for large symmetric car-
bon clusters (Cn, n=atoms) of increasing density as predicted
by AIRSS+GAP-20. Point group symmetries and cohesive
energy per atom are are indicated. Carbon atoms are coloured
by coordination: blue, green, and red spheres correspond to
sp, sp2 and sp3-hybridised atoms, respectively.

similar to what has been experimentally observed in
the thermal decomposition of nano-diamonds to carbon
onions56. Furthermore, these structures seem to combine
two behaviours independently observed in large carbon
clusters: first the encapsulation capacity as observed in
endohedral fullerenes able to encapsulate other clusters
and chemical species57, and second the faceted external
shell as observed in large hollow clusters, where it is still
under debate if alternative faceted pseudo-spherical mor-
phology are more stable than the canonical icosahedral
cages58.

An alternative setup in the searches would be fixing
the clusters density and allowing the volume to increase
with the number of atoms. This would allow to explore
other morphologies for a particular density. In particular,
to target only large fullerene/cage-like hollow clusters as
well as carbon onions, we suggest to adopt an dynamic

initial sphere, so that its radius increases with the in-
creasing cluster size, but this is beyond the scope of this
work. A further aspect worth noting is the large vari-
ety of the predicted structures, including spherical and
multi-faceted clusters as well as filled vs. hollow clus-
ters, hinting at the advantage of using AIRSS over other
methods for structure predictions due to the more bal-
anced exploration of the topological search space.

2. Structural Properties of C240 and C540 clusters

Now we focus on two carbon clusters, viz. C240 and
C540, selected after the availability of previous experi-
mental and computational studies addressing their struc-
ture23,49,59. In particular, these clusters were shown by
electron microscopy measurements to be building blocks
of larger clusters or carbon onions49 and the icosahedral
(Ih) structures are presumed to be the ground-state for
both C240 and C540. However, due to the large cluster
size, multiple local minima are expected with energies
close to the ground-state.

To elaborate on the structural variety of the C240
and C540 allotropes, we perform more comprehensive
searches where clusters are generated with the symmetry
of a randomly chosen point group with between two and
24 symmetry operations and without exclusion zone im-
posed in the center of the initial sphere. This way we ac-
count for both low and high symmetry structures without
enforcing hollow icosahedral structures. Again, we note
here that these structure searches are not exhaustive,
and a fully-fledged computational study is thus needed
to cover the vast allotropic space corresponding to these
particular cluster sizes. By inspecting the predicted C240
clusters (Fig. 7a and Supplementary S11), the large topo-
logical variety becomes evident, which can be grouped
into, e.g., high vs. low density, (quasi-)spherical vs.
faceted, disordered vs. ordered, and classified by pre-
dominant hybridization (sp3 vs. sp2). The structural
variety is accompanied by a large spread of formation
energies. In this lot of structures, the fullerene-like (hol-
low) octahedron (Oh) geometry is predicted to be the
lowest-energy one, with considerably lower cohesive en-
ergy (–7.57 eV/atom). In this structure, immediate C-C
bond distances are predicted as 1.40, 1.44 and 1.49 Å,
depending on the location of a given C-C bond (whether
shared among pentagon-hexagon, hexagon-hexagon or
hexagon-octagon) and the fullerenic radius is 7.2 Å.

Moreover, the AIRSS+GAP-20 searches also give some
C240-Ih pseudo-fullerenes, presenting a hollow quasi-
spherical fullerenes but containing other rings different
to the canonical combination of hexagon, pentagons and
heptagons. Interestingly, however, these Ih structures
are predicted to have higher formation energies (-7.42
and -7.12 eV/atom) as compared to the C240-Oh struc-
tures (-7.56 eV/atom). This highlights the multiple local
minima that can coexist at such large cluster sizes which
hints at the need for intensive structure searches for a
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(Td) -7.13 eV/at (Td) -7.15 eV/at(Td) -7.08 eV/at (Oh) -7.08 eV/at (Oh) -7.14 eV/at (Th) -7.18 eV/at(Ih) -7.12 eV/at

(Td) -7.46 eV/at (Oh) -7.57 eV/at(Td) -7.19 eV/at (Oh) -7.29 eV/at (Oh) -7.43 eV/at (Oh) -7.56 eV/at(Ih) -7.42 eV/at

a) C240 clusters

b) C540 clusters

(Th) -7.37 eV/at

(Td) -7.04 eV/at (Td) -7.10 eV/at (S4) -7.11 eV/at (Th) -7.13 eV/at (Td) -7.16 eV/at (Th) -7.17 eV/at

(Td) -7.30 eV/at (Th) -7.47 eV/at(Th) -7.46 eV/at(Td) -7.31 eV/at (Th) -7.32 eV/at(Td) -7.27 eV/at 

(Th) -7.27 eV/at

FIG. 7. Lowest-energy isomers of (a) C240 and (b) C540 clusters as predicted by AIRSS+GAP-20. Isomers are ordered by
decreasing energy, with the minimum-energy structure shown on the bottom-left corner of each panel. Point group symmetries
and cohesive energies per atom are indicated for each structure. Carbon atoms are colored by coordination: blue, green, and
red spheres correspond to sp, sp2 and sp3-hybridised atoms, respectively. Additional higher-energy isomers of C240 and C540
are shown in Fig. S11

more complete understanding of the energy landscape
beyond canonical fullerenes. Despite such study is out
of the scope of this work, for the sake of completeness
we performed an additional search targeting only hollow
C240 clusters, i.e low-density, using an analogous search-
ing protocol as described in Section II-B with a larger ini-
tial sphere (8 Å radius) and larger exclusion zone within
the initial sphere (6 Å) with the aim to obtain the canon-
ical C240 fullerene. A low-cost search with only 1000 iso-
mers gives the canonical C240 (Ih) fullerene 8 times as
the minimum-energy structure (-7.81 eV/atom), followed
by hollow pseudo-fullerenes with Oh symmetry, similar
to those found in the general search shown in Fig. 7-a,
comprising energies between -7.77 and -7.57 eV/atom.

As for the C540 clusters (Fig. 7b and Supplementary
S11), again a wide range of structures with different char-
acteristic features have been generated by AIRSS. In par-
ticular, the minimum-energy structure is predicted to be
a fullerene-like one with tetrahedral (Td) symmetry, with
the cohesive energy of -7.47 eV/atom. Moreover, the sec-
ond lowest-energy structure with a comparable cohesive
energy (within 10 meV/atom) is also of Td symmetry; in-
terestingly, however, it has a high-density geometry (as
evident from the high sp3 content). This finding sug-
gests that allotropes other than fullerenes may compete

with the canonical fullerene morphology and geometry, in
line with recent findings pointing to octahedral fullerenes
with energies comparable to icosahedral fullerenes when
cluster sizes surpass the hundreds of atoms58.

As a final remark we note that, although no carbon
interatomic potential is perfect, developing new poten-
tials and improving existing ones remains an active field
of research which has seen increased impact and accu-
racy in the last years; particularly the use of machine-
learning algorithms has fueled the race to achieve the
quantum accuracy provided by DFT methods. Neverthe-
less, the low computational costs associated to classical
potentials, such as REBO or Tersoff, are still tempting
respect to machine-learning potentials. Therefore, intro-
ducing quantum corrections in classical potentials are de-
sirable to achieve more accurate energies, specially when
describing frustrated systems as in amorphous carbons60.
Although such corrections are not straightforwardly ap-
plicable into the GAP formalism, extending and refining
the training datasets to specifically deal with geometrical
frustration will offer a solid path towards greater accu-
racy in the next-generation GAP potentials.
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IV. CONCLUSIONS

We have evaluated the performance of widely used
classical and machine-learning carbon interatomic po-
tentials in high-throughput structure searches. For this,
we generate large datasets of symmetric and disordered
carbon clusters using the stochastic structure search al-
gorithm AIRSS for the atomic coordinates generation
combined with a geometry relaxation protocol driven
by the potentials. The results of the AIRSS+potentials
searches are evaluated against analogous AIRSS+DFT
datasets, where the geometry relaxation is performed
at the DFT-theory level and used as benchmark. For
the examined cases, the machine-learning GAP-20 po-
tential gives overall the best match with the DFT results
for high-density carbon clusters (i.e. condensed carbon
phases) with a wide range of sizes (Cn, n=4-200), at a
lower computational cost. This conclusion was drawn
based on an intensive dataset and a wide range of dif-
ferent metrics, including structural features like symme-
try group, coordination fractions, cohesive energy dis-
tributions, ring statistics, and radial distribution func-

tions. On the other hand, being developed for condensed
carbon phases, ReaxFFC2013 provides a promising cost-
efficient alternative to DFT with a moderate accuracy
trade-off. Our approach combining the GAP-20 poten-
tial with AIRSS provides a computationally cost-effective
alternative, overcoming the DFT limitations due to large
cluster sizes and big data. As such, our approach en-
ables the production of large data sets with large cluster
sizes, required to explore the vast energy space of carbon
nanoclusters. Our method is also in particular timely
with the rapidly increasing availability of data-driven nu-
merical modelling methods, with valuable applications in
structure prediction of crystals, surfaces and particles at
the nanoscale.
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12 S. Sokolova, A. Lüchow, and J.B. Anderson. Energetics

of carbon clusters C20 from all-electron quantum monte
carlo calculations. Chemical Physics Letters, 323(3):229–
233, 2000. doi:10.1016/S0009-2614(00)00554-6.

13 Carla de Tomas, Irene Suarez-Martinez, and Nigel A.
Marks. Graphitization of amorphous carbons: A compara-
tive study of interatomic potentials. Carbon, 109:681 – 693,
2016. ISSN 0008-6223. doi:10.1016/j.carbon.2016.08.024.

14 Alireza Aghajamali, Carla de Tomas, Irene Suarez-
Martinez, and Nigel A Marks. Unphysical nucle-
ation of diamond in the extended cutoff Tersoff po-

mailto:bora.karasulu@warwick.ac.uk and carla.detomas@he.co
mailto:bora.karasulu@warwick.ac.uk and carla.detomas@he.co
http://dx.doi.org/10.1038/318162a0
http://dx.doi.org/10.1016/S0009-2614(98)01449-3
http://dx.doi.org/10.1016/S1387-3806(00)00350-X
http://dx.doi.org/10.1016/S1387-3806(00)00350-X
http://dx.doi.org/10.1103/PhysRevB.69.075422
http://dx.doi.org/10.1063/1.2727450
http://dx.doi.org/10.1021/acs.jpcc.9b02692
http://dx.doi.org/10.1016/S0008-6223(01)00311-6
http://dx.doi.org/10.1063/1.478414
http://dx.doi.org/10.1039/c8cp05059g
http://dx.doi.org/10.1016/j.cplett.2019.02.028
http://dx.doi.org/10.1016/j.cplett.2019.02.028
http://dx.doi.org/10.1063/1.4908561
http://dx.doi.org/10.1063/1.4908561
http://dx.doi.org/10.1063/1.4908561
http://dx.doi.org/10.1016/S0009-2614(00)00554-6
http://dx.doi.org/10.1016/j.carbon.2016.08.024


14

tential. Mol. Simul., 44(2):164–171, 2018. doi:
10.1080/08927022.2017.1355555.

15 Carla de Tomas, Alireza Aghajamali, Jake L. Jones,
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