N

N
N

HAL

open science

Improving the Tractability of SVC-based Robust
Optimization

Benoit Loger, Alexandre Dolgui, Fabien Lehuédé, Guillaume Massonnet

» To cite this version:

Benoit Loger, Alexandre Dolgui, Fabien Lehuédé, Guillaume Massonnet. Improving the Tractability
of SVC-based Robust Optimization. MIM 2022: 10th IFAC Conference on Manufacturing Modelling,
Management and Control, Jun 2022, Nantes, France. pp.719 - 724, 10.1016/j.ifacol.2022.09.492 .

hal-03832914v2

HAL Id: hal-03832914
https://hal.science/hal-03832914v2

Submitted on 3 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03832914v2
https://hal.archives-ouvertes.fr

Improving the Tractability of SVC-based
Robust Optimization
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Abstract: Support Vector Clustering (SVC) has been proposed in the literature as a data-
driven approach to build uncertainty sets in robust optimization. Unfortunately, the resulting
SVC-based uncertainty sets induces a large number of additional variables and constraints in the
robust counterpart of mathematical formulations. We propose two methods to approximate the
resulting uncertainty sets and overcome these tractability issues. We evaluate these approaches
on a production planning problem inspired from an industrial case study. The results obtained
are compared with those of the SVC-based uncertainty set and the well known budget-based
uncertainty set. We find that the approximated uncertainty set based formulation can be solved
much faster than the SVC-based formulation. Still, the obtained solutions are comparable to

the SVC-based solutions in term of performance.
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1. INTRODUCTION

Robust optimization (RO) has become a popular approach
to deal with uncertainties in optimization problems in
the last decades and have been applied to a wide range
of application fields (Sozlier and Thiele, 2016). The core
concept of RO is to restrict the possible realizations of
uncertain parameters to a given uncertainty set U, then to
optimize against the worst case within this set to obtain
solutions that are immunized against all scenarios included
in U. With the growing complexity of supply chain and
production systems, RO appears to be a promising ap-
proach to improve the performances and the reliability of
industrial systems by reducing the impact of uncertain or
unpredictable events. Since the pioneering work of Soyster
(1973), a lot of efforts have been dedicated to propose and
characterize different types of uncertainty sets in order to
obtain tractable robust models (El Ghaoui et al., 1998;
Ben-Tal and Nemirovski, 1998; Bertsimas and Sim, 2004).

Among the numerous applications of RO, Bertsimas and
Thiele (2006) were the first to apply the model of Bert-
simas and Sim (2004) to multi-period inventory manage-
ment problems where demands are uncertain. On simi-
lar topics, José Alem and Morabito (2012) considered a
production planning problem with uncertain costs and
demands, while Wei et al. (2011) considered uncertain
returns and demands. In Aouam and Brahimi (2013),
the authors proposed a robust model for an integrated
production planning problem. The RO approach have been
extended to different source of uncertainty Varas et al.
(2014), Thorsen and Yao (2017).

Thanks to the growing amount of data collected in in-
dustrial processes, the paradigm of Data-driven robust
optimization (DDRO) have recently emerged with the ob-

jective to find new ways to use historical data as a support
to build more sophisticated uncertainty sets. Several math-
ematical tools have been applied to incorporate a large
fraction of the support of random parameters in the un-
certainty set (Bertsimas and Brown, 2009; Bertsimas et al.,
2018; Zhang et al., 2018). Chassein et al. (2019) have pro-
posed a construction procedure of different class of uncer-
tainty sets from real observations on a robust shortest path
problem and compared their respective performance on a
real-case application. Other approaches have addressed the
exploitation of available data as an unsupervised learning
problem, leading to the application of Machine Learning
methods (Ning and You, 2019) to construct uncertainty
sets. Among the different approaches proposed in the lit-
erature, Ning and You (2018) apply principal component
analysis and kernel density estimation to construct uncer-
tainty sets for different optimization problem encountered
in the chemical industry. Multiple kernel support vector
machine is applied in Han et al. (2021) for a multistage
inventory management problem.

Among kernel learning approaches, Shang et al. (2017)
proposed a support vector clustering (SVC) uncertainty
set that efficiently captures correlations and asymmetries
in the distribution of uncertain parameters. In addition,
this technique produces polyhedral uncertainty sets, which
offers a relative computational efficiency. This has been
demonstrated by some recent studies such as a multi-
product inventory management problem (Qiu et al., 2019),
an energy system optimization (Shen et al., 2020) or a re-
source allocation in a cellular network (Wu et al., 2021). As
another perspective on this technique, the recent work of
Goerigk and Kurtz (2021) compare deep learning methods
with the SVC-based method of Shang et al. (2017). As we
shall see later, one drawback of this type of uncertainty



set comes from the number of variables and constraints
introduced in the robust model. Indeed, these are linearly
increasing in both the number of uncertain parameters
and the size of the data set. In many industrial applica-
tions, this results in a large mathematical formulation that
quickly become intractable.

In this paper we address this scalability issue by introduc-
ing two simple methods to approximate the SVC-based
uncertainty set described in Shang et al. (2017). Both
approaches rely on a parameter that directly controls
the number of additional variables and constraints in the
robust model. This allows us to compute solutions that are
identical or comparable to those obtained with the SVC-
based uncertainty set with a significant reduction in the
computational burden.

The remaining of this paper is organized as follows: Sec-
tion 2 describes the uncertainty set of Shang et al. (2017)
and exhibits the reasons of the scalability issue. Section 3
describes in details the approximation methods. Section 4
presents the application of our approximations method on
a robust production planning problem, before Section 5
concludes this study.

2. SUPPORT VECTOR CLUSTERING BASED
UNCERTAINTY SET

Throughout the theoretical construction of the approxi-
mate SVC-based uncertainty sets, we consider that our
goal is to solve a robust combinatorial optimization prob-
lems of the form

min cTx (1)
st.ajx <b; Ya; €U (2)
xeN” (3)

where uncertain parameters a; belongs to a given uncer-
tainty set U;. Constraint (2) is equivalent to
T .

max ajx < b; (4)
, where U is constructed from a sample of data that
consists of a set D = {u(l),...,u(N)} of N points in
a m-dimensional space. Ideally, & should provide a good
representation of the support of the multi-dimensional ran-
dom variable that generated D. Various Machine Learning
techniques have been developed to achieve this goal. SVC
(Ben-Hur et al., 2001) is one of them that relies on a
single parameter v € (0,1) to define the boundaries of
a cluster that contains at least (1 — v) points of D, while
at most v are considered as outliers (i.e. lie outside of the
cluster boundaries). On of the major strengths of SVC is
to naturally capture information such as the covariance of
random variables or asymmetries in their distributions. In
addition when the SVC algorithm is well designed, it does
not need any sophisticated tuning of hyper-parameters and
only requires to solve a quadratic program (QP).

Recently, Shang et al. (2017) have built data-driven uncer-
tainty sets for robust optimization by applying the SVC
approach with a custom piecewise linear kernel function
(Weighted General Intersection Kernel, WGIK). The so-
lution of their QP defines a subset S of outliers called
support vectors (SV), among which a subset B C S,
called boundary support vectors (BSV), are exactly on the
boundary of the cluster. To summarize, those two sets
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Fig. 1. Representation of S and B for a bivariate gaussian
distribution when v = 0.15

are such that B C § C D and |S\ B| < Nv < |S]. We
refer the reader to Shang et al. (2017) for more details on
their method and the theoretical aspects of SVC. Figure 1
represents these sets for 1000 samples following a bivariate
gaussian disribution when v is set to 0.25.

To keep the remainder of this paper concise, we sometimes
refer to a data point u(® by its index ¢ when it is clear
from the context. For each point i € D the QP computes
the vector of weights & = [aq,...,an] where o; = 0 iff
i€ D\S and a; = 1/vN iff i € S\ B. Shang et al. (2017)
define the SVC based uncertainty set as

U,(a,D) = {u

S allQu — )|y < e} (5)

€S
where || - ||1 stands for the ¢;-norm and
0 = mi , (&) _ ()
min (Z ail|Q(ul") — ulV||; (6)
€S
Using auxiliary variables v = [v1,...,vy], one can then

reformulate U, (o, D) as a polyhedron:

Ju;, 1 €8 st
eq a1 <0 ™)
—v;, <Qu—-u)<v;, ie€S

U, (a,D)=<u

which is bounded and nonempty for 0 < v < 1 (Shang
et al., 2017). Based on formulation (7), the left-hand side
of the robust linear constraint

max a’x <b (8)
acl, (o, D)

is thus equivalent to the following LP:

max a’x (9)

s.t. > ailTv; <6 (10)
€S

—v; < Qa—uV) <y VieS (11)

, which is feasible and bounded since U,, (e, D) is nonempty
and bounded for 0 < v < 1. By strong duality, the dual of
this problem



min Z(Mz‘ )" Qul + 1o (12)
i€S
s.t. Z Qi —p;))+x=0 (13)
=
Ai+pi=na;lViesS (14)
i, i € Ri ViesS (15)
n >0 (16)

is also feasible and bounded and their optimal value coin-
cide. Therefore the robust counterpart or constraint (8) is
given by
> (i = X)) Qul) + o < b
i€S
with the additional constraints (13)-(16).

Formulation (17), (13)-(16) suggests that the size of S
greatly influences the size of the robust counterpart. Con-
sider a robust constraint with m uncertain parameters
that belong to the uncertainty set U, (a, D) defined from
support vectors S. The robust counterpart has 2 -|S| + 1
new variables (15) and m - (|S| + 1) new constraints (13),
(14) compared to the original one. An increase in the
size of the data set D or of the input parameter v may
thus lead to an intractable formulation, which represents
a significant limitation to the application of this technique
in practice. This phenomenon is particularly problematic
in the context of big data where one would need to take
advantage of the information contained in a large volume
of data.

(17)

3. APPROXIMATIONS OF SVC-BASED
UNCERTAINTY SETS

The computational burden described above is a significant
drawback for the practitioners interested in robust solu-
tions that use data-driven uncertainty sets based on SVC.
We propose a method to alleviate this limitation, with the
objective to define an approximate cluster that is highly
similar to U, (e, D) but uses a number of support vectors
that is significantly lower than the original one. Our ap-
proach consists in computing a vector & = [y, ..., ay]| of
modified weights to derive an approximation of the original
uncertainty set. We use a single input parameter K € N*
that directly defines the maximum number of strictly pos-
itive &; thus limiting the number of support vectors used
to define the (approximate) uncertainty set, which is then
defined following (5) as the set U, (&, D). This leads to a
reduction of the number of variables and constraints in the
LP (12)-(16) as well as its robust counterpart and gives the
user a parameter to control the tractability of the model.

In what follows, we assume that we start from an initial
uncertainty set U, (¢, D) obtained with the methodology
of Shang et al. (2017). For simplicity we use the notations

00 = 3" a1 Q(u) — u®)[|; (18)
1ES

0 =3 allQu® —u®)|; (19)
€S

to refer to the weighted sum calculated in point u() that
is used in definition (5) of U, (e, D) and U, (&, D). We
measure the quality of an approximation based on the
cumulative absolute deviation of #() from () over D.

In the remainder of this section we describe two different
approaches to select the set of data points S C S with
strictly positive modified weight. The vector & is then
computed using a linear program that maximizes the

quality of the approximation with respect to S.
3.1 K-medoid based subset selection

From the construction of the SVC, we can assume that
relatively close samples that lie strictly outside U, (a, D)
have similar contributions to cluster boundaries. Our first
approach selects a subset S of K data points, each rep-
resenting the support vectors that are “close” to them.
Our procedure relies on the so-called K-medoid clustering
algorithm Kaufman and Rousseeuw (1990) to select the

subset of points S that aggregates the information con-
tained in S. We compute the distances between two points
u, v € R™ using the f3-norm ||u — v||2. We define the set
S of selected support vectors as the union of the K cluster
centers collected as the output of the algorithm with the
set B, as represented in Figure 2.
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Fig. 2. Subset S of support vectors selected with the K-
medoid approach

3.2 Crown based subset selection

The idea motivating the “crown” method is to only keep
the K support vectors that are the closest to the cluster
boundaries. We can achieve this selection easily by ex-
pressing K as a fraction 6 = K/N of the total number of
points and compute a second SVC with parameter (v —§).
Let S’ lle the resulting set of support vectors: We simply
define S = S\ &’ as the set of selected support vectors

for the approximation. The set S contains at most K of
the original support vectors. Figure 3 illustrates the subset
obtained for the example introduced above.

3.8 Updating coefficients &

The classification of point (i’) as being inside or outside of
the SVC-based uncertainty set U, (c, D) is based on the

comparison of 0 with a given threshold 6. A reasonable
approach to approximate the U, (a,D) thus consists in

defining modified wieghts & in such a way that 04" is
comparable to 6 for any sample point i’. This leads
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Fig. 3. Subset Sof support vectors selected with the Crown
approach when N = 1000 and K = 30

to the definition of a distance between U, (a, D) and its
approximation U, (&, D) as

A=Y -

i'€D

(20)

Obtaining the best approximation then comes down to
computing weights & that minimize A, which can be
formulated as the following LP:

min A (21)

st 3 (e - a)llQ@t) —u) <A (22)
€D ES

Do (@ —a)|Qul) —u)|< A (23)
€D ES

a; >0 VieS (24)

A>0 (25)

This LP enables us to derive the optimal weights & and
the approximate uncertainty set U, (&, D) is the defined
as:

U,(&,D) =

HIZ%IIQ u—u?); <0 (26)

€S
where 6 is the initial bound of (5).

4. APPLICATION TO AN ASSEMBLY PROBLEM

We consider the production planning problem introduced
in Loger et al. (2021) where an assembly line combines
different components into a set of final products over
a finite planning horizon 7. The set of final products
and components are respectively denoted by I and J.
d;+ denotes the demand for product ¢ € I faced by the
system in each period ¢t € T. For each product i € I and
component j € J, let r;; be the number of components
j required to produce one unit of product i. We assume
that all component are available in a warehouse managed
by a third party logistic provider (TPL). The TPL is
in charge of delivering components to the assembly line
according to its orders as represented on Figure 4. For each
picking operation, an operator collects a given quantity
of a single type of component, bounded by a maximum
batch size of m; units. Thus several picking operations
of the same component j € J may be scheduled in the
same period due to this limitation. We presume that the

Warehouse Assembly line

——————————

Final pr oduct 1

-

Components J [ J

Fig. 4. Diagram of the problem

picking time of a particular batch of component j of size
x; is composed of (1) a fixed time p;, that corresponds
to the travel time between the shipping point and the
zone where components j are stored and (2) a picking
time per unit denoted 7;. The overall picking time of a
given period ¢ € T is bounded by the maximum work
capacity of the TPL C;. Any demand for product i that
is not satisfied immediately is backlogged and incurs a
backlogging penalty cost b; in each period until the cor-
responding product is assembled in a subsequent period.
Whenever a component j is available on the assembly
line but is not immediately used to manufacture an end
product, it disturbs the production process by interfering
with people and other goods moving nearby. We model
this situation with a per-unit, per-period obstruction cost
0j. The problem consists in planning the quantity of each
component delivered to the assembly line by the TPL in
each period such that the sum of the obstruction and
backlogging costs is minimized. To model this problem,
we define variables z;; which represent the quantity of
components j € J that should be delivered to the assembly
line during period t. These variables are closely related to
variables v;;, representing the number of distinct picking
operations of components j € J performed during period
t. Variables s;; represent the number of components j € J
held on the border of the assembly line at the end of period
t. Variables u;; denote the number of final products 7 € T
produced during period ¢t and finally, variables P; and O
denote the total backlogging penalty and obstruction costs
incurred in period t, respectively.

We formulate the problem with the following MIP:
T
min Z Ot + P (27)

t—1

s.b. s+ = 851 + Zl‘jk — Z’!’ijuik Vj e JVt e T\ 1 (28)

k=1 iel

Zuz‘m‘j < sjt + Tt VieJvVteT (29)
iel

¢ ¢
Zuz-kézdik Viel,VteT (30)

= =1
Vi > Tjr/my Vje JVteT (31)
Zvjtpj + 7z < Ct vteT (32)

jeJ



Oy > Zoj <S]'t =+ Tt — Zuitrij> vte T (33)

JjeJ el
t
P, > Zbi <Z dip — uk> Vie T (34)
el k=1
Tjt, Sjt, P, 01 € Ry Vje VteT (35)

Ui, Vit € Ny Vie ILVje JVteT (36)
The objective (27) aims at minimizing the total cost in-
curred over the planning horizon. The inventory balance
constraints (28) update the stock levels in each period.
Constraints (29) ensure that the quantity of component
j € J available in period t is sufficient to perform the
planned assembly operations. Constraints (30) impose that
the system never manufactures more units of product ¢ € I
than the expressed demand. The minimum number of pick-
ing batches corresponding to the quantity of components
j ordered in each period t is defined in constraints (31).
Constraints (32) ensure that the total picking time does
not exceed the picking capacity of the TPL provider in any
period t. Constraints (33) and (34) define the components
holding costs and final product backlogging costs incurred
in each period ¢, respectively. Finally, constraints (35)
and (36) define the domain of the decision variables.

4.1 Picking time uncertainties

We consider a case where the manufacturer has an incom-
plete or imprecise knowledge on the picking times. As a
consequence, some combinations of his orders may exceed
the picking capacity of the TPL provider, forcing the latter
to postpone some operations to subsequent periods. We
assume that we are given a set of historical setup times
D = {pM,...,p™M} and we present a comparison of
the performance of three different robust models, each
based on a particular implementation of /(D). Namely, we
compare the performances of the approximate SVC uncer-
tainty set we propose built with the K-medoid method and
the Crown method with both the original SVC of Shang
et al. (2017) and a budget based uncertainty set similar to
the one derived in Bertsimas and Sim (2004):

Ur(D)={p=p+P"z[1Tz <L, z€[0,1]™}  (37)
, where p = [p1, ..., Pm] for m the number of components
is calculated such that the interval [p — p,p + p] contains
95% of the data {p(*),...,p")}. We assume that the TPL
provider organizes the storage of the components in order
to optimize the picking operations. Specifically, compo-
nents are stored in such a way that their accessibility im-
proves with their order frequency. We consider three types
of components and separate them based on their storage
area. We assume that both the mean and the variability
of the setup times decrease with component accessibility.
In our instances, we thus we generate setup times using
Gamma distributions with different shape parameters for
each type of component. As in Loger et al. (2021), we
generate the instances in order to reflect a practical appli-
cation case inspired from the aircraft industry.

4.2 Ezperimental results

Figure 5 and 6 presents the results obtained for instances
with 5 final products over 10 periods and for five different
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Fig. 5. Average total cost of the best solution when the
number of component increases

— @ - Budget
5VC
Crown
K-medoid

600

400 |

CPLEX CPU-time (sec)

5 10 15 20 25
Number of components

Fig. 6. CPLEX CPU-time (s) of the best solution when
the number of component increases

number of components in {5,10,15,20,25}. The different
uncertainty sets are built with a data-set D of N = 400
data-points and the solutions obtained are evaluated on
a larger test data-set of N/ = 10000 data points following
the same distribution. For all uncertainty sets, we consider
different values of parameters I' and v. The budget based
solutions presented in Figure 5 and 6 always correspond
to the best overall solutions obtained with this type of
uncertainty set. The solutions presented for the SVC-based
uncertainty set and the two approximations are always
obtained with the same values of v and the additional
parameter is set to K = 2 x |J|.

Figure 5 clearly shows that SVC based model can help to
reduce costs when in the case of asymmetric distributions.
We observe that both the Crown and the K-medoid based
approximations efficiently captured asymmetries in the
distribution of picking time and lead to better solutions
than the classic budget based uncertainty set. For a given
value of v, the solution obtained with the K-medoid based
approximation tends to be closer to the solution obtained
with U, (a, D) than those obtained with the Crown based
approximation.

Figure 6 shows the solving time of the four different robust
counterparts obtained for each instances. We observe for
both approximation methods that restricting the number
of support vector efficiently reduces the time needed to



solve the robust counterpart. On the instance with 25
components, the gap achieved with the SVC-based model
exceeds 99% at the end of the maximum allocated time
of 20 minutes. On the same instance, the K-medoid and
the crown based approximations are respectively solved to
optimality in 68 and 97 seconds. In our test set, the budget-
based models always required less computational efforts
than the SVC-based model and the two approximations,
with a time difference that increases with the number of
components.

5. CONCLUSION AND PERSPECTIVES

We propose two approximations of the SVC-based un-
certainty set that efficiently reduce the computational
effort while maintaining good quality solutions. Our main
contribution is to make it possible to apply this type of
data-driven approach to larger industrial problems in a
reasonable amount time. Both methods lead to comparable
computational time but the K-medoid based method pro-
duces a better approximation than the Crown based one.
Future works could extend the K-medoid based approach
by defining a specific metric space to compute the distance
between two points in the K-medoid algorithm in order
to improve the quality of the approximation. Using an
optimization approach to select the best support vectors
to define U, (&, D) could also be an interesting perspective
for future research work.
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