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Abstract—Rounding error or cancellation that appears
with each floating-point operations, combined with the lack
of control over execution order in parallel code leads to
numerical issues such as numerical reproducibility.

In order to enhance the possibility to discover such
numerical issue, in this article we propose a simple solution
base on an index interposer and an index scrambler to
amplify the possible combination of execution order.

[. INTRODUCTION

Determinism and numerical reproducibility on to-
day’s modern multicore architectures are affected by
the hierarchical structuration of computation as well as
execution concurrency. This can be encountered when
targeting parallel programming, either GPU’s (CUDA,
SyCL or OpenCL), or OpenMP where several thousands
of threads are executed and scheduled concurrently. On
these system’s thread scheduling is mostly unknown and
can be considered unpredictable.

A common workaround is to enforce interaction be-
tween tasks or threads using memory consistency with
synchronization mechanisms (locks, atomics or barriers).
Although these can address the problem of memory
consistency, they do not solve the problem of numerical
reproducibility when dealing with floating-point num-
bers. Furthermore they can come with a significant
performance penalty. This is a major issue as non-
determinism of floating-point calculations in parallel
programs causes validation and debugging issues, and
may even lead to deadlocks [1], [2], [3], [4].

Numerical non-reproducibility of floating-point oper-
ations is due to the combination of two phenomena:
rounding-error and the order in which operations are
executed. If there exists numerous tools and solutions
[5], [6] to analyse the impact of rounding errors, to our
knowledge there are no tools devoted to analysing the
impact due to the reorder of operations which can occur
during parallel execution.

This problem can be depicted with the simplified
following CUDA kernel which computes the sum of NV
floating-point numbers stored in table i_val according
to their address i_adr in a table res located in global
memory as it could be encountered with the bin counting
or histogram problem such as those encountered in
Nbody [7], Real-time simulation [8], accurate reduction
scheme [9], or SQL query [10].

__global__ wvoid GlobalSum(float xi_val,

int +i_adr, float *res, int N) {
blockDim.x*blockIdx.x+threadIdx.x;

int gid =

for (uint i=0; 1i<N; 1i+=GridDim.xxblockDim.x)
atomicAdd (&res[i_adr[i+gid]],
i_val[i+gid]);

Listing 1. Floating-point atomic accumulation

As we do not have information on the order in which
threads will acquire access to the datum Res, the order in
which the accumulation is actually done is unknown. For
example, on a set of N = 26 values with a condition
number! of 10% and a single output address, out of 1000
runs with 1 block of 1024 threads, 1000 different results
can be obtained.

In this article, we propose to explore a Proof-Of-
Concept to detect and quantify potential numerical issues
due to the order in which floating-point operations are
executed.

The rest of this article is organized as follows. Section
II introduces the necessary background about floating-
point arithmetic. Section III presents the execution model
for GPU and OpenMP. Section IV describes the proposed
solution to amplify scheduling scheme in order to expose
potential numerical issues. Section V analyses some per-
formance measurements on Nvidia CUDA and OpenMP
executions.

IThe condition number characterizes the numerical stability of a
problem [11].



II. NUMERICAL NON REPRODUCIBILITY IN
PARALLEL EXECUTION ENVIRONMENT

Floating-point (FP) numbers can represent a wide
range of numbers with nearly-constant precision by
approximating real numbers with a significant, an ex-
ponent, and a sign. The representation formats and
operations are standardized by the IEEE-754 standard.

The results of floating-point operations have to be
rounded. In the case of addition, this may lead to the
absorption of the lower bits of the sum. For example
the exact mathematical result of (1 + 2190 — 2100 jg
equal to 1 whereas the computed result is either 0 or
1 depending on the order of operations. Thus, the final
accuracy of floating-point summations depends on the
order of evaluation. More details can be found in the
main references related to floating-point arithmetic [11],
[12]. This phenomenon is emphasized when executed in
parallel environments.

There exist two main solutions to address the problem
of numerical reproducibility. One is based on reducing
rounding error and the second one is based on a deter-
ministic execution.

A. Workaround based on reducing numerical error

Numerical reproducibility is particularly impacting
regarding the summation problem which occurs during
reduce scheme based on floating-point additions. For this
particular problem, the solution consists in increasing the
accuracy used for the accumulator. This can consist in in-
creasing the accuracy of the accumulator (using binary64
in place of binary32 for example, or using multiprecision
library [13]), compensated algorithm such as Kahan-
Babuska summation [14], or a long accumulator [15],
[16].

B. Workaround based on deterministic execution order

Another solution consists in enforcing an execution
order. This order could be set either at software level or
at execution level.

At software level, the programmer could set an order
at design stage with the help of a loop iteration. However,
in that case, the language, library and/or compiler could
reorganize execution order (e.i. use of a reduction clause
with OpenMP).

At execution level, it is possible to set an execution
order. However, this solution could be challenging espe-
cially when no assumption can be made on the execution
order of threads/block such as on GPUs. For example,
on such architectures CUDA/OpenCL thread and block
identifiers used at software level provide no information
on the hardware scheduling order of threads and blocks.

This has lead to numerous works focusing on efficient
inter-block synchronization. For example, in [17] Volkov
et al. propose a global software synchronization method
that does not use atomic operations to accelerate dense
linear-algebra constructs. In [18], [19], Xiao and Feng
propose a mechanism for inter-block communication via
global memory. In [20], Stuart and Owens are evalu-
ating various implementations of barriers, mutexes and
semaphores applied to Nvidia’s GPU. Some solutions
[21], [22], propose to use alternative thread and block
identifier in place of the hardware generated one.

III. EXECUTION MODEL

Our motivation is to offer to the developers solutions
to measure the numerical impact of scheduling, even
those which are not possible at a given time. The goal is
to determine if a given code is still valid when executed
on a hypothetical architecture for example a future
architecture and/or programming language/compiler with
additional features.

In this section we first describe how parallelism is
exploited at hardware level followed by software level
and how it impacts scheduling.

A. Hardware level

Today’s architecture exploit various level of data,
instruction and thread parallelism.

1) Level N°0: Sub-Word Parallelism: On most proces-
sors, the register width is fixed at the architecture level.
However, computation unit support multiple operand
precision (FP16 and FP32), meaning that by lowering the
precision the hardware follows a packed SIMD paradigm
at register level.

2) Level N°1: SWAR: Similarly to what is done at
level-0, architectures pack several data within a single
register which correspond to SIMD Within A Register
(SWAR). For example, ARM SVE is designed for vari-
able length from 128 to 2048 bits by multiple of 128 bits.
At this level, we often encounter cross-lane instruction
with component swizzling ability. This corresponds to
the ability to redirect individual components to and from
individual processing units.

3) Level N°2: Warp: Instruction stream are scheduled
simultaneously across the processing units of one or
more SIMD blocks to form a subgroup called a wave (or
sometimes wavefront or warp). The individual instruc-
tion within those are referred to as the lanes or threads of
the wave. For example, the wavefront contains 32 threads
for Nvidia GPU, and 64 threads for AMD GPUs.



4) Level N°3: SIMT: On architecture such as GPU,
parallelism can be exploited using array processing
contrarily to vector processing. This correspond to the
concept of associative processor in Flynn’s taxonomy.
Spatio-temporal SIMT corresponds to the issuing of the
same instruction multiple time but for different set of
invocations over the individual lane of a SIMD block.

5) Level N°4: SMT: Some processor also embed the
possibility to schedule instructions from another wave in
order to hide long-latency instructions such as memory
accesses. The same instruction stream is then issued
across multiple invocation simultaneously in a lock-step
fashion on the same core unit.

6) Level N°5: Core: Processor also embed several
copy of the same hardware. This corresponds to core
units, where every hardware resources are duplicated. In
CUDA terminology, this corresponds to streaming mul-
tiprocessors (SMs). SM maintains a scoreboard for each
warp to launch, depending on their type, instructions
and a “fair” scheduling policy [23]. The number of core
varies depending on the hardware generation as well as
the version.

B. Software level

The architecture details mentioned in the previous
section are usually not accessible directly, and advance
have been made at the API level (either architectural or
language level) to expose and give control of parallelism
to the developer. In this section we describe how paral-
lelism is exploited at software level and how it impacts
scheduling.

1) OpenMP / Threads: OpenMP is a shared memory
parallel programming model widely used at node level
on today’s supercomputers typically used to accelerate
calculations within a MPI rank. It supports multiple style
of parallelization based on threads (parallel regions),
tasks (implicit and explicit) and work sharing (parallel
loops). There are multiple synchronization constructs
such as barriers, reductions, task dependencies, task wait,
locks and critical sections.

With OpenMP program, numerical behavior could be
impacted by the number of threads launched, the usage
and/or the order in which threads are executed (middle-
ware) and especially how reduction clause targeting
floating-point reduction-identifier are handled. For this
later point, the way a for loop operating a floating-
point reduction behaves is dependant of the loop itself
(possibility of using a reduction clause), the usage of
task, SIMD lanes or Accelerator offloading (OpenMP
4.0).

If there are tools to help detect data race, however
there are not accurate as they give false negatives (loops
with dependencies) or false positives (ordered critical
sections) and are not intended to detect numerical issues.
Such tools are based on dynamic data race detection,
cilkscreen [24] hybrid data race detection algorithm [25].
Regarding the specific case of OpenMP programs, there
are analysis based on static analysis [26], tools such as
Archer [27], Sword [28] or OMPT API based tools

2) CUDA/OpenCL: Task parallelism such as the one
available in OpenMP proves to be useful to avoid work
imbalanced and ease implementation of recursive con-
struction. This sort of parallelism is not available with
CUDA/OpenCL. Work distribution is solely done thanks
the thread and block identifier.

Tasks executed on GPU either as CUDA or OpenCL
code are divided in threads operating in SIMT mode and
executed by specific hardware. We must distinguish the
software and hardware organization of threads. From the
developer point of view, threads are divided into three
hierarchical levels: a grid of blocks of threads. The same
code, or kernel, is executed by multiple threads running
in parallel on different data. Threads are grouped in set
of block_size elements in order to make so-called blocks.
Blocks are packed in set of grid_size elements in order
to make a so-called grid. Threads in a block and blocks
of a grid are uniquely identified by their coordinates
in the blocks and the grid. In this model, threads in a
block and the blocks of a grid are virtually launched in
parallel, which implies that no assumption shall be made
regarding the execution order.

Blocks are dispatched among the available multipro-
cessor by the block schedulers. This step consists in
launching a new block with a unique identifier according
to available resources. The number of concurrent blocks
depends on the number and version of SMs and the
resources such as registers and shared memory required
by the executed kernel. This step impacts determinism
as no assumption can be made on how indexes are
generated and is subject to variations from one run to
another [29].

Traditional synchronization primitives used in parallel
program such as mutexes, barriers, and semaphores are
limited on GPU to intra-block synchronizations. Only
atomic and fence operations provide basic support for
inter-block communication. On Nvidia hardware, atomic
instructions were introduced with compute capability
1.1, and with compute capability 2.0 for atomic addi-
tion operating on 32-bit floating-point values in global
and shared memory. Atomic floating-point operations
are necessary, first to provide the substrate for high



performance floating-point operations, and second, to
preserve the memory consistency necessary to deal with
thousands of in flight threads.

However, Block synchronization is challenging, as the
CUDA programming model does not support it. The only
safe solution consists on splitting kernels into subkernels,
as a kernel launch involves an implicit synchronization
barrier. Alternatively, resident kernel techniques take ad-
vantage of the fact that once launched, a block continue
its execution until completion freeing resources only at
the end.

Block barrier proposed by Feng in [18] is working
only when the number of launched blocks is less than
the number of blocks that could be executed concurrently
on the hardware. In case this assumption is not met,
deadlocks may occur.

Today’s GPUs also offer grid nesting and synchro-
nization, called dynamic parallelism. A parent grid of
block of threads is able to launch kernels called child
grids. Child grid launched with dynamic parallelism
always complete before the parent grids that launch
them. Synchronization at parent grid is possible and
parent/child grid have a fully consistent view of global
memory at grid level.

IV. PROPOSED SOLUTION

During software development, validation is usually
done for a limited number of configurations and there-
fore scheduling combination. In this article we propose
to amplify legal scheduling combination thanks to an
accumulator identifier, an interposer and a scheduling
amplifier (Figure 1).

A. Accumulator Identification

One of the common source of numerical error is
related with chain of floating-point accumulation. Longer
is the chain of accumulated value, larger is the possibility
of encountering numerical issues. Therefore, we propose
to spot precisely in a code where are located long
chain of accumulation. This step could be done semi-
automatically by associating with each floating-point
value the number of consecutive floating-point addition/-
subtraction done to produce a given results. We have
developed a pass based on a modified version of Nsan
[30], where each floating-point number corresponds to a
pair of number (V, N), with V the floating-point value
and N the number of consecutive additions/subtractions.
Each floating-point operation R = A - B is replaced in
the Nsan framework by the following operation:

(Vr,Ng) = (Va,Na) ® (Vg,Ng)
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Fig. 1. Proposed configuration based on a multilevel interposer and
Fischer-Yates Shuffler
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Programs are recompile with this modified version
of Nsan and run on dataset. The output correspond for
a given execution, to a list with the largest chains of
accumulation which are either sequential, parallel or
tree-based one.

B. Interposer

The interposer first objective is to intercept and build
either set of index (block/thread) or iteration (e.i. for
loops). This interposer collects information from the
original code on how indexes are generated. This infor-
mation includes the lower and upper bound index and
the increment.

Once these information are collected, the interposer
replace the original indexes with scrambled ones. If
this could be done easily for loop index, and thread
index, it is however challenging for accelerated devices
(GPU) as user’s do not have control over block and
thread scheduling (hardware managed resources). In that
case, the objective is to gain control over threads/block
scheduling such that their execution regarding floating-
point operations could potentially be scrambled.

1) Grid level: As mention in section III, if consid-
ering Nvidia’s GPU, threads of blocks of a grid are
scheduled as set of 32 consecutive threads, or warps.
The solution has to be deadlock-free. For example the
solution proposed by Feng in [18] is working only when



the number of launched blocks is less than the number
of blocks that could be executed concurrently on the
hardware. In case this assumption is not met, deadlocks
may occur.

Therefore, we propose to use a software generated
block identifier in place of the one offered by the hard-
ware block scheduler. As we do not have any information
on which block will be executed first, we propose to
rely on a CPU generated array. This array will then be
accessed based on the hardware block index whenever
needed and the value stored within the array used as
the new index. This solution allows us to offload to the
CPU the generation of a good permutation of index.
Notice that the memory required with this solution could
potentially be very high as a grid can embed 2'6 blocks
for each of the 3 possible dimensions. However, in
general the number of blocks used remains small enough
(less than 2'%) to not impact memory. An alternative
could be to generate scrambled index directly on the
device, however this will requires global lock and atomic
as in [21] which may impact performance.

2) Block level: At block level, thread index have to
be generated directly on the hardware to avoid large
memory overhead. Indeed, each block can embed up to
1024 threads each. In that case, this requires generating
vectors of 1024 index on the CPU for each executed
block potentially requiring 8.219.216,216 216 — 261 gjf.
ferent combinations.

Therefore, thread indexes are handled at block level
and located in shared memory, accessible by each thread
of a block. A the beginning of a block execution, one
thread is in charge of scrambling the array of thread
index. Once done, kernel execution can continue with
the new index being replaced by the scrambled one. An
overview of the code is given in listing 2.

#include <curand.h>
#include <curand_kernel.h>

__device__ dim3 =*bckScblIdx;
__shared___ dim3 xtrdScrblIdx;

// Use preprocessor to automaticaly use

// scrambled index

#define blockIdx.x (bckScrbIdx[blockIdx.x])
#define threadIdx.x (trdScrblIdx[threadIdx.x])

__device_  wvoid
d_FisherYates (int *idx, int n) {
int i,7;
for (i=n-1;i>0;1i--){
j = curand(&___MTPG_state[blockIdx.x]);
J %= (i+1);
swap ( &idx[1], &idx[]j]);

}

__device__ wvoid setup_kernel () {
if (threadIdx.x==0) {
for (int i=0; i<blockDim.x; i++)
tdScrblIdx [threadIdx].x = i;

d_FisherYates (trdScrblIdx, blockDim.x);

___ syncthreads();

Listing 2. Thread reindexing

C. Scheduling amplifier

Once the set of possible index or iteration is build, we
use a combination amplifier. This amplifier is based on
Fischer-Yates shuffler which generate a random permu-
tation of the input set. We selected the Sattolo’s variant
of the Fischer-Yates algorithm [31] as it produces in
an efficient manner an unbiased permutation. With this
variant the time taken is proportional to the number if
input items thanks to an in-place shuffles.

D. Testing framework

As the amount of code modification could be potential
high, we operate in the following order.

1) First, we alter work distribution. At OpenMP level,
we change the number of thread and at accelerator
level, we change the number of thread per block
and block per grid. (Applying these modifications
are not always possible. We noticed during our
test, see section V-B that for some applications
the number of thread is fixed by the applications
and could not be altered).

2) Second, we change work scheduling. At OpenMP
level, this is done by using a randomized scheduler
[32], altering work distribution and at accelerator
level this is done using the proposed solution.

3) Third, we alter loop iteration order as this modifi-
cation is the most performance impacting modifi-
cation.

V. TESTS

In order to demonstrate how the proposed solution
operates on real code, we measured the amplification
of scheduling as well as the numerical variability on
SHOC][33] and PARBOIL [34] benchmarks on a ma-
chine with an Intel] Xeon E5645 with 6 cores and an
Nvidia GeForce RTX2060 with 30 streaming multipro-
CEessors.



A. Measure of scheduling amplification

We designed tests to demonstrate and quantify the
benefit of our scheduling amplifier. To do so, we fo-
cused first on the order in which threads and block are
processed.

We have tested our block and thread scrambler against
the hardware block and thread scheduler. Figure 2 com-
pares the scheduling with and without our scrambler at
block level. Similar figures are obtained at thread level.
The X axis corresponds to the execution test done one
after another (as it would be done by a developer to
manually test the numerical validity of an application).
The Y axis corresponds to the possible scheduling. Each
scheduling is encoded as a floating-point number in
the range [0.0, 1.0] using an arithmetic encoding of the
sequence of index identifier according to their execution
order [35]. The used coder started with equal probability
for each index. The execution order is collected using
an index gathered atomically by each thread/block. We
choose the arithmetic encoding as it allows us to spot
precisely the scheduling order distribution.

We can observe that without the entropy amplifica-
tion, the scheduling combinations are very limited and
does not cover well the scheduling possibility (the two
graphics on the first line). In other words, it means
that even though we cannot make assumption on how
block and thread index are handled in hardware, there
is a high correlation factor among them. By observing
the two graphics on the second line, we can deduce
that the Fished-Yates scrambling functions appears to
provide less correlated scheduling combination with a
larger spectrum of possibility coverage.

B. Measure of numerical variations

In order to demonstrate the benefit of the proposed
solution on real program, we selected programs from
the SHOC and PARBOIL benchmarks listed in Table I
as those programs include floating-point calculations and
in particular, floating-point accumulations.

For each of those benchmark, thanks to the accumu-
lator identifier we have spotted at least one accumulator
where the interposer could be used. We have then
interfaced block/thread/loop index with the amplifier as
described in section IV-C. Each program where run
multiple times and we counted over 100 runs, the number
of time we could observe numerical differences, as
well as the numerical variability (norm2 of the relative
error over each computed results) on the output for the
following configurations:

1) Configuration 1: Use the same execution configu-

ration for each run.

.0
0 10 20 30 40 50 60 70 80 90
Execution Iteration

10 20 30 40 50 60 70 80 90
Execution Iteration

0 10 20 30 40 50 60 70 80 90
Execution Iteration

10 20 30 40 50 60 70 80 90
Execution Iteration

Fig. 2. Measure of the entropy for block scheduling with the hardware
scheduler solely (first line), and combined with the entropy amplifier

(second line), for 8 (first column) and 320 (second column) launched
block over 100 executions.

TABLE 1
SELECTED BENCHMARKS FROM SHOC AND PARBOIL.

Name Description
Cutcp Compute short-range electrostatic potentials induced
by point charges in a 3D volume.
LBM Lid-Driven Cavity fluid dynamics simulation using
the Lattice-Boltzmann Method.
MRI-Q Matrix computation used in a 3D magnetic resonance
image reconstruction.
MRI-GRID | Compute for a 3D grid the contribution of every data
point onto its neighboring grid points.
SGEMM A register-tiled matrix-matrix multiplication, with
default column-majored layout.
SPMV Sparse-Matrix Dense-Vector Product.
Stencil Seven point stencil.
MD Molecular dynamics.
Reduction Sum reduction operation using single precision
floating-point data.
NeuralNet | Training of neural networks using backpropagation.

2) Configuration 2: Change the execution configura-
tion (number of threads, block, ...) between each

run.

3) Configuration 3: Change work scheduling between
each run.

4) Configuration 4: Change loop indexing between
each run.

Results are reported in table II. Out of these experi-
ments, we made the following observations:

o With the exception of omp_cutcp, no numerical
variations could be observed by executing the same
program multiple time (configuration 1 column), as
a developer would do during development phase.



TABLE 11
OBSERVED NUMERICAL VARIABILITY OVER 100 RUNS FOR VARIOUS CUDA/OPENMP PROGRAMS ACCORDING TO 4 DIFFERENT
EXECUTION CONFIGURATIONS.

Conf. 1 Conf. 2 Conf. 3 Conf. 4
error # diff. error # diff. error # diff. error # diff.
cuda_cutcp 0 0 - - 0 0 7,52E+00 12482
omp_cutcp 3,02E-01 11970 | 4,70E-01 12253 | 7,05E-01 12135 - -
cuda_MRI-GRID 0 0 0 0 0 0 5,65E-03 59
omp_MRI-GRID 0 0 9,83E-05 23 7,27E-04 32 1,6 87
cuda_MRI-Q 0 0 0 0 0 0 1,23E+00 | 64427
omp_MRI-Q 0 0 0 0 0 0 1LI7E+00 | 64461
cudasdk_Reduction 0 0 7,30E-03 9 0 0 9,24E-02 100
cudasdk_Jacobi 0 0 4,79E-03 3 6,90E-01 100 8,87 100
cuda_SGEMM 0 0 0 0 0 0 1,75E-03 20482
omp_SGEMM 0 0 0 0 0 0 1,75E-03 20482
cuda_SPMV 0 0 0 0 0 0 3,69E-06 11948
omp_SPMV 0 0 0 0 0 0 1,16E-07 11948
(cuda/omp)_Stencil 0 0 0 0 0 0 0 0
(cuda/omp)_lbm 0 0 0 0 0 0 0 0

o Changing the execution configuration (configura-
tion 2), leads to numerical variations only for a few
programs. Those observations were hindered for the
cuda version as the number of valid configurations
to test is limited.

o It was not possible to alter the execution config-
uration, (configuration N°2 and 4), for cutcp for
the cuda and omp version respectively. This is due
to the way these two programs were design: the
number of thread per block and block per grid is
hard-coded or due to dependencies between loop
iterations.

o Altering work scheduling (configuration 3) leads
to an increase of the norm2 error for Jacobi or
MRI-GRID which relies on atomic floating-point
accumulations.

o The largest number of differences, norm?2 error, and
number of benchmark impacted were observed for
configuration 4 which corresponds to interfacing the
amplifier with scrambled loop index.

o Despite the fact that stencil and Ibm benchmark
uses floating-point accumulators, it was not possible
to observe numerical variability. In that case, it
is due to the coding style adopted by the de-
veloper. For these two benchmarks, the chain of
accumulation is hardcoded and independent of any
index. However, it was possible to observe numeri-
cal variation using the —fast-math compiler option,
which allow the compiler to reorganise sequence of
operations.

VI. CONCLUSION

In this article, we were concerned by exploring so-
lutions to amplify numerical variability linked with

the order of operations which occurs especially during
floating-point reduction pattern for parallel execution
either in OpenMP or CUDA.

We have observed that, exposing numerical variabil-
ity the traditional way, with multiple execution, or by
changing execution configuration settings, may not work,
or expose a sufficient large enough numerical error to
detect numerical bug.

We proposed a solution, consisting of an accumulator
identifier based on llvm to locate chain of floating-point
additions, an interposer to replace indexes by software
generated one, and an index amplifier based on a Fischer-
Yates shuffler. We have tested this solution against
OpenMP and CUDA benchmarks, and demonstrated that
this solution could help developers to detect numerical
issues by amplifying scheduling combination.

As future work, we are planning to explore how
to take into account other sources of numerical errors
such as simdization, matrix operations, or usage of MPI
primitives.

ACKNOWLEDGEMENT

Funding: This work was supported by the ANR-20-
CE46-0009 InterFLOP project

REFERENCES

[1] L. S. Blackford, A. Cleary, J. Demmel, and I. Dhillon, “Practical
experience in the dangers of heterogeneous computing,” Lecture
Notes in Computer Science, vol. 1184, pp. 57-64, 1996.

[2] S. Keum, R. G. Jr, J. Gao, X. Yang, and T. Kuo, “Effect of
parallel computing environment on the solution consistency of
cfd simulations—focused on ic engines.” Engineering, vol. 9,
pp. 824-847, 2017.

[3] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users’
Guide, Ch. 6. Accuracy and stability. SIAM, 1997.



[4]

[6]

[7]

[8]

[9]

[10]

(11]

(12]
[13]

[14]

[15]

[16]

(17]

[18]

[19]
[20]

[21]

Q. Meng, A. Humphrey, J. A. Schmidt, and M. Berzins,
“Preliminary experiences with the uintah framework on intel
xeon phi and stampede,” in Extreme Science and Engineering
Discovery Environment: Gateway to Discovery, XSEDEI3,
San Diego, CA, USA - July 22 - 25, 2013, N. Wilkins-
Diehr, Ed. ACM, 2013, pp. 48:1-48:8. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2484762

C. Denis, P. D. O. Castro, and E. Petit, “Verificarlo: Checking
floating point accuracy through monte carlo arithmetic,” in 2016
IEEE 23nd Symposium on Computer Arithmetic (ARITH). Los
Alamitos, CA, USA: IEEE Computer Society, jul 2016, pp.
55-62. [Online]. Available: https://doi.ieeecomputersociety.org/
10.1109/ARITH.2016.31

F. Jézéquel and J. M. Chesneaux, “Cadna: a library for estimating
round-off error propagation,” Comput. Phys. Commun, vol. 178,
no. 12, pp. 933-955, 2008.

(2012, november) N-body: Fp atomics v. recomputation.
[Online].  Available: http://www.cudahandbook.com/2012/11/
n-body-fp-atomics- v-recomputation/

J. Allard, S. Cotin, F. Faure, P.-J. Bensoussan, F. Poyer, C. Duriez,
H. Delingette, and L. Grisoni, “Sofa an open source frame-
work for medical simulation,” in Medicine Meets Virtual Reality
(MMVR’15), Long Beach, USA, February 2007.

W.-E. Chiang, G. Gopalakrishnan, Z. Rakamari¢, D. H. Ahn,
and G. L. Lee, “Determinism and reproducibility in large-scale
HPC systems,” in Informal Proceedings of the 4th Workshop on
Determinism and Correctness in Parallel Programming (WoDet
2013), 2013.

P. Bakkum and K. Skadron, “Accelerating SQL database opera-
tions on a GPU with CUDA,” in Proceedings of 3rd Workshop
on General Purpose Processing on Graphics Processing Units,
GPGPU 2010, Pittsburgh, Pennsylvania, USA, March 14, 2010,
ser. ACM International Conference Proceeding Series, D. R.
Kaeli and M. Leeser, Eds., vol. 425. ACM, 2010, pp. 94-103.
N. J. Higham, Accuracy and stability of numerical algorithms,
2nd ed. Philadelphia, PA: Society for Industrial and Applied
Mathematics (SIAM), 2002.

J.-M. Muller and al., Handbook of floating-point arithmetic.
Birkhéuser, 2010.

T. Grandlund, “GNU MP: The GNU Multiple Precision Arith-
metic Library,” http:/gmplib.org.

I. Babuska, “Numerical stability in mathematical analysis,” in
Proc. IFIP Congress, ser. Information Processing 68.  North-
Holland , Amsterdam, The Netherlands, 1969, pp. 11-23.

U. W. Kulisch, Computer arithmetic and validity, 2nd ed., ser.
de Gruyter Studies in Mathematics. Berlin: Walter de Gruyter
& Co., 2013, vol. 33, theory, implementation, and applications.

S. Collange, D. Defour, S. Graillat, and R. Iakymchuk, “Full-
Speed Deterministic Bit-Accurate Parallel Floating-Point Sum-
mation on Multi- and Many-Core Architectures,” INRIA, DALI-
LIRMM, LIP6, ICS, Tech. Rep. HAL: hal-00949355, Feb. 2014.
V. Volkov and J. W. Demmel, “LU, QR and Cholesky factoriza-
tions using vector capabilities of GPUs,” Department of Electrical
Engineering and Computer Science, University of California,
Berkeley, LAPACK Working Note 202, May 2008.

W. chun Feng and S. Xiao, “To GPU synchronize or not GPU
synchronize?” in Circuits and Systems (ISCAS), Proceedings of
2010 IEEE International Symposium on, 2010, pp. 3801-3804.

S. Xiao and W. chun Feng, “Inter-block GPU communication via
fast barrier synchronization,” in /PDPS. IEEE, 2010, pp. 1-12.
J. A. Stuart and J. D. Owens, “Efficient synchronization primi-
tives for GPUs,” CoRR, vol. abs/1110.4623, 2011.

D. Defour and C. Collange, “Reproducible floating-point atomic
addition in data-parallel environment,” in 2015 Federated Confer-
ence on Computer Science and Information Systems (FedCSIS),
2015, pp. 721-728.

[22]
(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

J. Sanders and E. Kandrot, CUDA by example: an introduction
to general-purpose GPU programming. Addison-Wesley, 2010.
J. Nickolls and W. J. Dally, “The GPU computing era,” I[EEE
Micro, vol. 30, pp. 56-69, March 2010.

M. Feng and C. E. Leiserson, “Efficient detection of determinacy
races in cilk programs,” in Proceedings of the Ninth Annual
ACM Symposium on Parallel Algorithms and Architectures,
ser. SPAA ’97. New York, NY, USA: Association for
Computing Machinery, 1997, p. 1-11. [Online]. Available:
https://doi.org/10.1145/258492.258493

R. O’Callahan and J.-D. Choi, “Hybrid dynamic data race de-
tection,” ACM SIGPLAN Notices, vol. 38, no. 10, pp. 167-178,
Oct. 2003.

F. Ye, M. Schordan, C. Liao, P.-H. Lin, I. Karlin, and V. Sarkar,
“Using polyhedral analysis to verify OpenMP applications are
data race free,” in 2018 IEEE/ACM 2nd International Workshop
on Software Correctness for HPC Applications (Correctness),
2018, pp. 42-50.

S. Atzeni, G. Gopalakrishnan, Z. Rakamaric, D. H. Ahn, I. La-
guna, M. S. 0001, G. L. Lee, J. Protze, and M. S. Miiller,
“ARCHER: Effectively spotting data races in large OpenMP
applications,” in /PDPS. IEEE Computer Society, 2016, pp.
53-62.

S. Atzeni, G. Gopalakrishnan, Z. Rakamaric, I. Laguna, G. L.
Lee, and D. H. Ahn, “SWORD: A bounded memory-overhead
detector of OpenMP data races in production runs,” in /PDPS.
IEEE Computer Society, 2018, pp. 845-854.

D. Defour, “Measuring predictability of nvidia’s GPU schedulers:
Application to the summation problem,” in 2015 IEEE 9th Inter-
national Symposium on Embedded Multicore/Many-core Systems-
on-Chip, 2015, pp. 17-24.

C. Courbet, “NSan: A floating-point numerical sanitizer,” CoRR,
vol. abs/2102.12782, 2021.

S. Sattolo, “An algorithm to generate a random cyclic permuta-
tion,” Information Processing Letters, vol. 22, no. 6, pp. 315-317,
1986.

F. M. Ciorba, C. Iwainsky, and P. Buder, “OpenMP loop schedul-
ing revisited: Making a case for more schedules,” CoRR, vol.
abs/1809.03188, 2018.

A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The scalable hetero-
geneous computing (SHOC) benchmark suite,” in Proceedings
of 3rd Workshop on General Purpose Processing on Graphics
Processing Units, (3rd GPGPU’10), ser. ACM International
Conference Proceeding Series, vol. 425, Mar. 2010, pp. 63-74.
J. A. Stratton, C. Rodrigues, L. jui Sung, N. Obeid, L. wen Chang,
N. Anssari, G. D. Liu, and W. mei W. Hwu, “University of illinois
at urbana-champaign center for reliable and high-performance
computing,” Tech. Rep., May 22 2012.

G. G. L. Jr., “An introduction to arithmetic coding,” IBM Journal
of Research and Development, vol. 28, no. 2, pp. 135-149, Mar.
1984.



