
HAL Id: hal-03832901
https://hal.science/hal-03832901

Preprint submitted on 28 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Locality-Preserving Minimal Perfect Hashing of k-mers
Giulio Ermanno Pibiri, Yoshihiro Shibuya, Antoine Limasset

To cite this version:
Giulio Ermanno Pibiri, Yoshihiro Shibuya, Antoine Limasset. Locality-Preserving Minimal Perfect
Hashing of k-mers. 2022. �hal-03832901�

https://hal.science/hal-03832901
https://hal.archives-ouvertes.fr

Locality-Preserving Minimal Perfect Hashing of k-mers

Giulio Ermanno Pibiri1,2, Yoshihiro Shibuya3, and Antoine Limasset4

1Ca’ Foscari University of Venice, Venice, Italy
2 ISTI-CNR, Pisa, Italy

3University Gustave Eiffel, Marne-la-Vallée, France
4University of Lille and CNRS, Lille, France

Abstract

Minimal perfect hashing is the problem of mapping a static set of n distinct keys into the address
space {1, . . . , n} bijectively. It is well-known that n log2 e bits are necessary to specify a minimal
perfect hash function f , when no additional knowledge of the input keys is to be used. However,
it is often the case in practice that the input keys have intrinsic relationships that we can exploit
to lower the bit complexity of f . For example, consider a string and the set of all its distinct
sub-strings of length k – the so-called k-mers of the string. Two consecutive k-mers in the string
have a strong intrinsic relationship in that they share an overlap of k − 1 symbols. Hence, it seems
intuitively possible to beat the classic log2 e bits/key barrier in this case. Moreover, we would like f to
map consecutive k-mers to consecutive addresses, as to preserve as much as possible the relationships
between the keys also in the co-domain {1, . . . , n}. This is a useful feature in practice as it guarantees
a certain degree of locality of reference for f , resulting in a better evaluation time when querying
consecutive k-mers from a string.

Motivated by these premises, we initiate the study of a new type of locality-preserving minimal
perfect hash functions designed for k-mers extracted consecutively from a string (or collections of
strings). We show a theoretic lower bound on the bit complexity of any (1 − ε)-locality-preserving
MPHF, for a parameter 0 < ε < 1. The complexity is lower than n log2 e bits for sufficiently small ε.
We propose a construction that approaches the theoretic minimum space for growing k and present
a practical implementation of the method. Lastly, we demonstrate the practical usefulness of our
construction through experimentation: the functions can be several times smaller and even faster to
query than the most efficient, albeit “general-purpose”, minimal perfect hash functions.

Code Availability: Our C++ implementation of the method is open-source and available on
GitHub at https://github.com/jermp/lphash.

Data Availability: All the datasets used for the experiments of this work are available on Zenodo
at https://zenodo.org/record/7239205.

Keywords: Locality-Preserving · Minimal Perfect Hashing · Spectrum-Preserving String Sets

1

ar
X

iv
:2

21
0.

13
09

7v
1

 [
cs

.D
S]

 2
4

O
ct

 2
02

2

https://github.com/jermp/lphash
https://zenodo.org/record/7239205

1 Introduction

Given a universe set U , a function f : U → [n] = {1, . . . , n} is a minimal perfect hash function (or,
MPHF) for a set S ⊆ U with n = |S| if f(x) 6= f(y) for all x, y ∈ S, x 6= y. In simpler words, f maps
each key of S into a distinct integer in [n]. The function is allowed to return any value in [n] for a key
x ∈ U \ S. Several authors proved that n log2 e = 1.442n bits are essentially necessary to represent such
functions for |U | � n [32, 28]. Minimal perfect hashing is a central problem in data structure design and
has received considerable attention, both in theory and practice. In fact, many practical constructions
have been proposed [18, 6, 30, 20, 8, 4, 26, 15, 37]. These algorithms find MPHFs that take space close
to the theoretic-minimum, e.g., 2 – 3 bits/key, retain very fast lookup time, and scale well to very large
sets. Applications of minimal perfect hashing range from computer networks [27] to databases [10], as
well as language models [38, 39, 45], compilers, and operating systems. MPHFs have been also used
recently in Bioinformatics to implement fast and compact dictionaries for DNA strings [34, 33, 1, 31].

In its simplicity and versatility, the minimal perfect hashing problem does not take into account
specific types of inputs, nor the intrinsic relationships between the input keys. Each key x ∈ S is
considered independently from any other key in the set and, as such, P[f(x) = i] ≈ 1

n for any fixed
i ∈ [n]. In practice, however, the input keys often present some regularities that we could exploit to
let f act “less randomly” on S. This, in turn, would permit to achieve a lower space complexity for
f . We therefore consider in this paper the following special setting of the minimal perfect hashing
problem: the elements of S are all the distinct sub-strings of length k, for some k > 0, from a given
string X (or collection of strings). The elements of S are called k-mers. The crucial point is that any
two consecutive k-mers in X have indeed a strong intrinsic relationship in that they share an overlap of
k − 1 symbols. It seems profitable to exploit the overlap information to preserve (as much as possible)
the local relationship between consecutive k-mers as to reduce the randomness of f , thus lowering its bit
complexity and evaluation time.

We are therefore interested in the design of a locality-preserving MPHF, or LP-MPHF, in the following
sense: given a query sequence Q, if f(x) = j for some k-mer x ∈ Q, we would like f to hash Next(x) to
j + 1, Next(Next(x)) to j + 2, and so on, where Next(x) is the k-mer following x in Q (and assuming
these k-mers are also in X). This behavior of f is very desirable in practice, at least for two important
reasons. First, it implies compression for satellite values associated to k-mers. Typical satellite values
are abundance counts, reference identifiers (sometimes called “colors”), or contig identifiers (e.g., unitigs)
in a de Bruijn graph. Consecutive k-mers tend to have very similar – if not identical – satellite values,
hence hashing consecutive k-mers to consecutive identifiers induce a natural clustering of the associated
satellite values which is amenable to effective compression. The second important reason is, clearly, faster
evaluation time when querying for consecutive k-mers in a sequence. This streaming query modality is
the query modality employed by k-mer-based applications [1, 7, 31, 42, 34].

We formalize the notion of locality-preserving MPHF along with other preliminary definitions in
Section 2. In Section 3 we show a lower bound to the bit complexity of any (1 − ε)-locality-preserving
MPHF that depends on a parameter 0 < ε < 1. The complexity is below the well-known bound of
n log2 e bits for a “classic” MPHF, for sufficiently small ε. We then give in Section 4 a construction using
random minimizers [43, 41] whose space approaches the lower bound by increasing k. The construction
approximates a LP-MPHF for ε = 2/(w + 1), for a sufficiently-large minimizer length m ≤ k, where
w = k −m + 1. The data structure is built in linear time in the size of the input (number of distinct
k-mers). In Section 5 we present experiments across a breadth of datasets to show that the construction
is practical too: the functions can be several times smaller and even faster to query than the most
efficient, albeit general-purpose, minimal perfect hash functions. We conclude in Section 6 where we also
sketch some future directions and open questions. Our C++ implementation of the method is publicly
available at https://github.com/jermp/lphash.

2 Locality-Preserving Minimal Perfect Hashing of k-mers

Let X be a set of strings over an alphabet Σ. Throughout the paper we focus on the DNA alphabet
Σ = {A,C,G, T} to better highlight the connection with our concrete application but our algorithms
can be generalized to work for arbitrary alphabets. A sub-string of length k of a string S ∈ X is called
a k-mer of S.

Definition 1 (Spectrum). The k-mer spectrum of X is the set of all distinct k-mers of the strings in
X . Formally: spectrumk(X) := {x ∈ Σk | ∃S ∈ X such that x is a k-mer of S}.

2

https://github.com/jermp/lphash

Definition 2 (Spectrum-Preserving String Set). A spectrum-preserving string set (or SPSS) S of X is a
set of strings such that (i) each string of S has length at least k, and (ii) spectrumk(S) = spectrumk(X).

In particular, we are interested in a SPSS S where each k-mer is seen only once, i.e., for each k-
mer x ∈ spectrumk(S) there is only one string of S where x appears once. We assume that no k-mer
appearing at the end of a string shares and overlap of k − 1 symbols with the first k-mer of another
string, otherwise we could reduce the number of strings in S and obtain a smaller SPSS. In the following,
we make use of this form of SPSS which is suitable for the minimal perfect hashing problem. We remark
that efficient algorithms exist to compute such SPSSs (see, e.g., [40, 9, 25, 24]).

The input for our problem is therefore a SPSS S for X with |S| strings and n > 1 distinct k-mers.
Without loss of generality we assume an order S1, S2, S3, . . . of the strings of S is fixed, so that also an
order between the k-mers is fixed and we indicate with xi the i-th k-mer in S for i = 1, . . . , n.

Definition 3 (Fragmentation Factor). Given a SPSS S with |S| strings and n = |spectrumk(S)| distinct

k-mers, we define the fragmentation factor of S as α := |S|−1
n .

The fragmentation factor of S is a measure of how much contiguous the k-mers in S are. The
minimum fragmentation α = 0 is achieved for |S| = 1 and, in this case, xi shares and overlap of k − 1
symbols with xi+1 for all i = 1, . . . , n−1. This ideal scenario is, however, unlikely to happen in practice.
On the other hand, the worst-case scenario of maximum fragmentation α = 1 − 1/n is achieved when
|S| = n and k-mers do not share any overlap. This is also unlikely to happen given that k-mers are
extracted consecutively from the strings of X and, as a result, many overlaps are expected. A more
realistic scenario happens, instead, when |S| � n, resulting in ε� α. For the rest of the paper, we focus
on this latter scenario to make our analysis meaningful.

We want to build a MPHF f : Σk → [n] for S, i.e., more precisely, for the n distinct k-mers in
spectrumk(S). We remark again that our objective is to exploit the overlap of k − 1 symbols between
consecutive k-mers from a string of S to preserve their locality, and hence reduce the bit complexity of f
as well as its evaluation time when querying k-mers in sequence. We define a locality-preserving MPHF,
or LP-MPHF, for S as follows.

Definition 4 (LP-MPHF). Let f : Σk → [n] be a MPHF for S. If

P[f(xi+1) = f(xi) + 1 and xi, xi+1 are from the same string of S] = 1− ε,

for i = 1, . . . , n− 1, then f is a (1− ε)-locality-preserving MPHF for S.

Let E1 be the event “f(xi+1) = f(xi) + 1” and E2 be the event “xi, xi+1 are from the same string of
S”. Then P[E1 and E2] = 1 − ε ⇐⇒ ε = 1 − P[E1 and E2] = P[¬E1 or ¬E2] by De Morgan’s laws.
Therefore we have

ε = P[¬E1 or ¬E2] = P[f(xi+1) 6= f(xi) + 1 or xi, xi+1 are not from the same string of S].

Lemma 1. Let S be a SPSS with fragmentation factor α and f be a (1− ε)-locality-preserving MPHF
for S. Then ε ≥ α.

Proof. ε = P[¬E1 or ¬E2] ≥ P[¬E2] = P[xi, xi+1 are not from the same string of S] = (|S| − 1)/n = α,
since there are exactly |S| − 1 consecutive pairs (xi, xi+1) of k-mers in S that are not in the same string
(xi at the end of some string Sj and xi+1 at the beginning of the string Sj+1).

Lemma 1 says that any LP-MPHF for S is at best (1− α)-locality-preserving1 and how small ε can
be actually depends on the input SPSS (and on the strategy used to implement f in practice, as we are
going to illustrate in Section 4). In fact, for the worst-case input – a SPSS with maximum fragmentation
factor – we immediately obtain the following Corollary.

Corollary 1. Let S be a SPSS with maximum fragmentation factor. Then any LP-MPHF for S is
0-locality-preserving.

Intuitively, the “best” LP-MPHF for S is the one having the smallest probability ε, so we look for
practical constructions with small ε.

On the other hand, note that a “classic” MPHF is obtained when the locality-preserving property is
almost always not satisfied and, as a consequence, P[f(xi+1) = j + 1|f(xi) = j] = P[f(xi+1) = j + 1] ≈ 1

n
for any j ∈ [n], regardless of the overlap between xi and xi+1.

1For example, SSHash [34, 33] is a (1 − α)-locality-preserving MPHF. It is also able of detecting alien k-mers, so its
space usage is larger than that of the functions described in this work.

3

Corollary 2. Let S be a SPSS with fragmentation factor α. Then any “classic” MPHF for S is ε(1−α)-
locality-preserving for a very small ε ≥ 0.

3 Information-Theoretic Lower Bound

In this section we address the following central question: What is the information-theoretic lower bound
for f? As we already motivated, we expect f to require less space than log2 e bits/k-mer as for a “classic”
MPHF – at least for sufficiently small ε – thanks to the overlaps between consecutive k-mers on S.

Theorem 1. Any MPHF f : Σk → [n] that is (1− ε)-locality-preserving for a SPSS S needs at least

n ·
(
ε log2(e/ε)− (1− ε) log2(1− ε)

)
bits (1)

to be described, with |spectrumk(S)| = n.

Proof. We first sketch our proof strategy. Let I be the number of choices for S. Suppose that f is a
LP-MPHF for at most Z distinct SPSSs. Then the number of distinct functions is at most I/Z and
we need at least log2(I/Z) bits to distinguish them. In the reminder of the proof we therefore focus on
determining the ratio I/Z.

By Definition 4, any function f induces a partition of the k-mers of S into εn sub-strings and the
k-mers x1, . . . , x|s|−k+1 of each sub-string s are such that f(xi+1) = f(xi) + 1 for i = 1, . . . , |s| − k. By
binning these εn sub-strings with respect to their first k-mers, we have that the probability of hashing

the n k-mers of S without collisions is Pf = (εn)!
(εn)(εn) . Now, taking into account that any f induces a

sub-string length distribution, it then follows that the number of SPSSs S whose n k-mers are hashed
without collisions is Z = (Pf · I)/(ε ·

(
n
εn

)
) where ε ·

(
n
εn

)
is the number of possible ways of partitioning

S into εn sub-strings. In fact, the total number of k-mers in the εn sub-strings is n and each sub-string
contains at least 1 k-mer. Hence, the number of ways of selecting εn non-zero integers whose sum is n
is equivalent to the number of distinct bit-vectors of length n with εn bits set where the last bit (that in
position n) is always set (because the sum must be n) and where each integer is given by the difference
between the position of two consecutive bits set. So there are

(
n−1
εn−1

)
= ε ·

(
n
εn

)
such bit-vectors.

In conclusion, the space lower bound is log2(I/Z) = log2(ε ·
(
n
εn

)
/Pf) bits plus a global redundancy

of log2 n bits to encode the value of n. Using Stirling’s approximation of factorial and simplifying, we
obtain

log2(I/Z) + log2 n = log2

(
ε ·
(
n

εn

)
/Pf

)
+ log2 n

= log2 ε+ n log2

(1

1− ε
)
− εn log2

(ε

1− ε
)

+
1

2

(
���log2 ε −���log2 n − log2(1− ε) +���

�log2(2π)
)

+ εn log2 e
((((

((((
(((

((((

−1

2

(
log2 ε+ log2 n+ log2(2π)

)
+���log2 n

= n ·
(
ε log2(e/ε)− (1− ε) log2(1− ε)

)
+ log2 ε−

1

2
log2(1− ε)

≈ n ·
(
ε log2(e/ε)− (1− ε) log2(1− ε)

)
bits.

Let b(ε) = ε log2(e/ε)− (1− ε) log2(1− ε), for 0 < ε < 1, so that the lower bound of Theorem 1 can
be written as n · b(ε) bits. It is easy to see that limε→1 b(ε) = log2 e, so one would essentially obtain a
classic MPHF for large values of ε. In Figure 1 we plot the function b(ε). By taking

∂b(ε)

∂ε
= 0 ⇐⇒ log2(e/ε · (1− ε)) = 0 =⇒ ε =

e

1 + e

we see that the function is maximum in ε = e
1+e and the value is b(e

1+e) = e
e+1 log2(e+1)− 1

e+1 log2(1
e+1) ≈

1.895 which is larger than log2 e. This is no surprise because part of the complexity of the function is
due to the distribution of sub-string lengths which vanishes for ε → 1. Instead, it can be derived that
b(ε) < log2 e for any 0 < ε < 0.3516.

4

0.0

0.6

1.2

1.8

2.4

3.0

0.3516

1.895

<latexit sha1_base64="AclObARuIIx/cyllwJgdNs7FE2s=">AAACf3icbVFNT+MwEHUDuwvdZbeAOHGJtqBFAkUxID4OlRBcOMKKAlIbVY47AQvHCfYEKFZ/DFf4RfwbnFChbdmRLD29eWO/eY5zKQyG4WvNm5r+8vXbzGz9+4+5n78a8wvnJis0hzbPZKYvY2ZACgVtFCjhMtfA0ljCRXxzVPYv7kAbkakzHOQQpexKiURwho7qNZZWuolm3MLQ0nUYtsJgd4uu9BrNMAir8j8DOgJNMqqT3nztb7ef8SIFhVwyYzo0zDGyTKPgEob1bmEgZ/yGXUHHQcVSMJGt/A/9Vcf0/STT7ij0K/bfCctSYwZp7JQpw2sz2SvJ//U6BSZ7kRUqLxAUf38oKaSPmV+G4feFBo5y4ADjWjivPr9mLg90kY3dhNhKmDSwUQ3SFuoCIitFDG5DNbHgHdO3RWQfxfY4/yGPrIJ7fKh8jynOaGTLDEq3dfcLdDLzz+B8M6A7wfbpZvPgcPQfM2SZ/CZrhJJdckCOyQlpE04seSLP5MWreX+8wAvfpV5tNLNIxsrbfwNYz8NY</latexit> 4
1+4 = 0.731

<latexit sha1_base64="NnWYfhYq/pAaL7z1Iqh6tl1Jwn4=">AAACenicbVFNT+MwEHXDd2GhwJGLRVlpV7uqkioCLpUQXDgCooDURpXjToqF4wR7UigR/4Qr/Cf+CwecUCFaGMnS05s39pvnMJXCoOu+VpyZ2bn5hcWl6vLKr9W12vrGhUkyzaHNE5noq5AZkEJBGwVKuEo1sDiUcBneHBX9yyFoIxJ1jqMUgpgNlIgEZ2ipXq2205XJoNek0PIavt/c6dXqbsMti34H3hjUybhOeuuVs24/4VkMCrlkxnQ8N8UgZxoFl/BY7WYGUsZv2AA6FioWgwny0voj/W2ZPo0SbY9CWrJfJ3IWGzOKQ6uMGV6b6V5B/tTrZBjtB7lQaYag+MdDUSYpJrTIgfaFBo5yZAHjWlivlF8zzTjatCZuQmxFTBr4Xw56LdQZBLkUIdgN1dSCQ6ZvsyB/EP4k/ykPcgV3eF/6nlCce0FeZFC4rdpf8KYz/w4umg1vt+GfNusHh+P/WCRbZJv8IR7ZIwfkmJyQNuFkSJ7IM3mpvDnbzl/n34fUqYxnNslEOf473YnByw==</latexit>

log2 4 = 1.442

1.00.0

Figure 1: The function b(ε) = ε log2(e/ε) − (1 − ε) log2(1 − ε), for 0 < ε < 1, representing the average
number of bits/k-mer spent by the lower bound in Theorem 1. The dashed red line is the function
b∗(ε) = ε log2(e2/ε), which is a tight approximation of b(ε) for small values of ε, e.g., when ε < 0.3516.

4 Construction

In this section we describe an algorithm to find (1−ε)-locality-preserving MPHFs whose space approaches
the theoretic minimum (Theorem 1) for growing k.

We first need the following definitions.

Definition 5 (Random Minimizer). Given a k-mer x and a random hash function h, the minimizer of
x is the m-mer µ such that h(µ) ≤ h(y) for any other m-mer y of x, for some m ≤ k.

For convenience, we indicate with w = k − m + 1 the number of m-mers in a k-mer. Since h is a
random hash function2, each m-mer in a k-mer has probability 1

w of being the minimizer of the k-mer.
We say that the triple (k,m, h) defines a random minimizer scheme. The density of a minimizer scheme
is the expected number of selected minimizers from the input.

Definition 6 (Super-k-mer). Given a string S, a super-k-mer is a maximal sub-string of S where each
k-mer has the same minimizer.

The construction algorithm builds upon the following main insight. Let g be a super-k-mer and
assume g is the only super-k-mer whose minimizer is µ. By definition of super-k-mer, all the k-mers
xg,1, . . . , xg,|g|−k+1 in g contain the minimizer µ as a sub-string. If pg,1 is the start position of µ in the
first k-mer xg,1 of g, then

pg,i = pg,1 − i+ 1 (2)

is the start position of µ in xg,i (the i-th k-mer of g) for 1 ≤ i ≤ |g| − k + 1. Figure 2 gives a practical
example for a super-k-mer g of length 16 and k = 13. The next property illustrates the relation between
the size |g| − k + 1 and the position pg,1 (we will come later on the implications of this Property).

Property 1. |g| − k + 1 ≤ pg,1 ≤ w for any super-k-mer g.

Proof. Since pg,1 is the start position of the minimizer in the first k-mer of g, there are at most pg,1
k-mers that contain the minimizer as a sub-string, hence |g| − k + 1 ≤ pg,1. However, g cannot contain
more than w k-mers.

Now, suppose we are given a positive query k-mer x whose minimizer is µ. The k-mer must appear
as a sub-string of g, i.e., it must be one among xg,1, . . . , xg,|g|−k+1. We want to compute the rank of x
among the k-mers xg,1, . . . , xg,|g|−k+1 of g, which we indicate by Rank(x) (assuming that it is clear from
the context that Rank is relative to g). We can use the positional information given by µ to compute
Rank(x) as follows. Let p be the start position of µ in x: if pg,1 ≥ p and 1 ≤ pg,1 − p+ 1 ≤ |g| − k + 1,
then

Rank(x) = pg,1 − p+ 1 (3)

otherwise (pg,1 < p or pg,1 − p + 1 > |g| − k + 1), x cannot possibly be in g and, hence, indexed by f .
Our strategy is to compute f(xg,i) as

f(xg,i) = f(xg,1) + Rank(xg,i)− 1 = f(xg,1) + pg,1 − pg,i (4)

2In practice, h will be an instance of MurmurHash [2] or xxHash [13].

5

1 2 3 4 5 7 8 9 10 11 12 13

1 2 3 4 6 7 8 9 10 11 12 13

1 2 3 5 6 7 8 9 10 11 12 13

1 2 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16�
<latexit sha1_base64="W6vG4P4DYfv/AKydWTDWN13uTMA=">AAACa3icbVHbSsNAEN3Ge7219k19CLYFH6QkIuhLQfTFR29VoQ1ls53Uxc0m7k6qNfQTfNVv8yP8BzexiK0OLBzOnJk9M+PHgmt0nI+CNTM7N7+wuFRcXlldWy+VN250lCgGLRaJSN35VIPgElrIUcBdrICGvoBb/+E0y98OQGkeyWscxuCFtC95wBlFQ13V+rVuqeo0nDzsv8AdgyoZx3m3XLjs9CKWhCCRCap123Vi9FKqkDMBo2In0RBT9kD70DZQ0hC0l+ZeR3bdMD07iJR5Eu2c/V2R0lDrYegbZUjxXk/nMvK/XDvB4MhLuYwTBMm+PwoSYWNkZ4PbPa6AoRgaQJnixqvN7qmiDM16JjohNgMqNOzlhW4TVQJeKrgPZkI5NeCAqsfES1/4wST/I/dSCU/4nPueUFy7XprtIHNbNFdwp3f+F9zsN1yn4V7sV49PxvdYJFtkh+wSlxySY3JGzkmLMNInr+SNvBc+rYq1aW1/S63CuKZCJsKqfwExA72M</latexit><latexit sha1_base64="W6vG4P4DYfv/AKydWTDWN13uTMA=">AAACa3icbVHbSsNAEN3Ge7219k19CLYFH6QkIuhLQfTFR29VoQ1ls53Uxc0m7k6qNfQTfNVv8yP8BzexiK0OLBzOnJk9M+PHgmt0nI+CNTM7N7+wuFRcXlldWy+VN250lCgGLRaJSN35VIPgElrIUcBdrICGvoBb/+E0y98OQGkeyWscxuCFtC95wBlFQ13V+rVuqeo0nDzsv8AdgyoZx3m3XLjs9CKWhCCRCap123Vi9FKqkDMBo2In0RBT9kD70DZQ0hC0l+ZeR3bdMD07iJR5Eu2c/V2R0lDrYegbZUjxXk/nMvK/XDvB4MhLuYwTBMm+PwoSYWNkZ4PbPa6AoRgaQJnixqvN7qmiDM16JjohNgMqNOzlhW4TVQJeKrgPZkI5NeCAqsfES1/4wST/I/dSCU/4nPueUFy7XprtIHNbNFdwp3f+F9zsN1yn4V7sV49PxvdYJFtkh+wSlxySY3JGzkmLMNInr+SNvBc+rYq1aW1/S63CuKZCJsKqfwExA72M</latexit><latexit sha1_base64="W6vG4P4DYfv/AKydWTDWN13uTMA=">AAACa3icbVHbSsNAEN3Ge7219k19CLYFH6QkIuhLQfTFR29VoQ1ls53Uxc0m7k6qNfQTfNVv8yP8BzexiK0OLBzOnJk9M+PHgmt0nI+CNTM7N7+wuFRcXlldWy+VN250lCgGLRaJSN35VIPgElrIUcBdrICGvoBb/+E0y98OQGkeyWscxuCFtC95wBlFQ13V+rVuqeo0nDzsv8AdgyoZx3m3XLjs9CKWhCCRCap123Vi9FKqkDMBo2In0RBT9kD70DZQ0hC0l+ZeR3bdMD07iJR5Eu2c/V2R0lDrYegbZUjxXk/nMvK/XDvB4MhLuYwTBMm+PwoSYWNkZ4PbPa6AoRgaQJnixqvN7qmiDM16JjohNgMqNOzlhW4TVQJeKrgPZkI5NeCAqsfES1/4wST/I/dSCU/4nPueUFy7XprtIHNbNFdwp3f+F9zsN1yn4V7sV49PxvdYJFtkh+wSlxySY3JGzkmLMNInr+SNvBc+rYq1aW1/S63CuKZCJsKqfwExA72M</latexit><latexit sha1_base64="W6vG4P4DYfv/AKydWTDWN13uTMA=">AAACa3icbVHbSsNAEN3Ge7219k19CLYFH6QkIuhLQfTFR29VoQ1ls53Uxc0m7k6qNfQTfNVv8yP8BzexiK0OLBzOnJk9M+PHgmt0nI+CNTM7N7+wuFRcXlldWy+VN250lCgGLRaJSN35VIPgElrIUcBdrICGvoBb/+E0y98OQGkeyWscxuCFtC95wBlFQ13V+rVuqeo0nDzsv8AdgyoZx3m3XLjs9CKWhCCRCap123Vi9FKqkDMBo2In0RBT9kD70DZQ0hC0l+ZeR3bdMD07iJR5Eu2c/V2R0lDrYegbZUjxXk/nMvK/XDvB4MhLuYwTBMm+PwoSYWNkZ4PbPa6AoRgaQJnixqvN7qmiDM16JjohNgMqNOzlhW4TVQJeKrgPZkI5NeCAqsfES1/4wST/I/dSCU/4nPueUFy7XprtIHNbNFdwp3f+F9zsN1yn4V7sV49PxvdYJFtkh+wSlxySY3JGzkmLMNInr+SNvBc+rYq1aW1/S63CuKZCJsKqfwExA72M</latexit>

<latexit sha1_base64="HRcn2GZWEw98F3s+41Zx/WqzYks=">AAACcXicbVFNaxsxEJW3beo4TWK3p9KLiFMoJJjdYJJeDKa59OiWOB84i9HKs7aIVruVZl27wr+i1+SH5XfkD1S7NqV2OiB4vHkzejMTZVIY9P3Hivfi5aut19Xt2s6b3b39euPtpUlzzaHPU5nq64gZkEJBHwVKuM40sCSScBXdnRf5qyloI1J1gfMMwoSNlYgFZ+iom8PZ0I6Pg8XhsN70W34Z9DkIVqBJVtEbNirfb0cpzxNQyCUzZhD4GYaWaRRcwqJ2mxvIGL9jYxg4qFgCJrSl4wX96JgRjVPtnkJasv9WWJYYM08ip0wYTsxmriD/lxvkGH8OrVBZjqD48qM4lxRTWoxPR0IDRzl3gHEtnFfKJ0wzjm5Ja50QOzGTBo7LwqCDOofQShGBm1BtDDhl+kce2l+ivc7/lYdWwU+clb7XFBdBaIsdFG5r7grB5s6fg8uTVnDaan87aXa/rO5RJR/IAflEAnJGuuQr6ZE+4SQhv8k9eag8ee896h0spV5lVfOOrIV39AeDBb/9</latexit>G6,1
<latexit sha1_base64="0Z5N5gmfdg/bHwZt7+xAtf//4LE=">AAACcXicbVHbTttAEF27FGjacilPFS8rkkqViiI7QsALEmpf+giIXKpgRevNOFllvTa7YyBd5St4bT+s39EfYG0iRAIjrXR05szsmZk4l8JgEPzz/Dcrb1fX1t/V3n/4uLG5tf2pY7JCc2jzTGa6FzMDUihoo0AJvVwDS2MJ3Xjyo8x3b0AbkalLnOYQpWykRCI4Q0f9atwN7Gi/NWsMtupBM6iCvgThHNTJPM4G297F1TDjRQoKuWTG9MMgx8gyjYJLmNWuCgM54xM2gr6DiqVgIls5ntEvjhnSJNPuKaQV+7zCstSYaRo7ZcpwbJZzJflarl9gchxZofICQfHHj5JCUsxoOT4dCg0c5dQBxrVwXikfM804uiUtdEI8SZg0sF8VhieoC4isFDG4CdXSgDdMXxeR/S0OFvkneWQV3OJd5XtBcRlGttxB6bbmrhAu7/wl6LSa4WHz4LxVP/0+v8c62SV75CsJyRE5JT/JGWkTTlJyT/6Qv95//7NP/b1Hqe/Na3bIQvjfHgCFDL/+</latexit>G6,2

<latexit sha1_base64="ubjaBueidAVcvKDWp2g0tVX9ZpM=">AAACcXicbVHbThsxEHWWS2m4JfBU9cVKQEICRbshAl6QUPvSR1oRLgqryOvMBguvd2vPAsHKV/S1/bB+R3+g3k2ESGAkS0dnzozPzESZFAZ9/2/FW1hcWv6w8rG6ura+sVmrb12aNNccujyVqb6OmAEpFHRRoITrTANLIglX0f3XIn/1ANqIVF3gKIMwYUMlYsEZOupm56lvhweH451+rem3/DLoWxBMQZNM47xfr/y4HaQ8T0Ahl8yYXuBnGFqmUXAJ4+ptbiBj/J4NoeegYgmY0JaOx3TXMQMap9o9hbRkX1dYlhgzSiKnTBjemflcQb6X6+UYn4RWqCxHUHzyUZxLiiktxqcDoYGjHDnAuBbOK+V3TDOObkkznRBPYyYNHJSFwSnqHEIrRQRuQjU34APTP/PQPovOLP8iD62CR3wqfc8oLoLQFjso3FbdFYL5nb8Fl+1WcNTqfG83z75M77FCPpMG2SMBOSZn5Bs5J13CSUJ+kd/kT+Wf98mjXmMi9SrTmm0yE97+f4cTv/8=</latexit>G6,3
<latexit sha1_base64="cBnWP4mBCe99Iu1JtY5KRxkEQW0=">AAACcXicbVHbTttAEF27FGjacilPFS8rkkqViiIbRcALEmpf+giIXKpgRevNOFllvTa7YyBd5St4bT+s39EfYG0iRAIjrXR05szsmZk4l8JgEPzz/Dcrb1fX1t/V3n/4uLG5tf2pY7JCc2jzTGa6FzMDUihoo0AJvVwDS2MJ3Xjyo8x3b0AbkalLnOYQpWykRCI4Q0f9atwN7Gi/NWsMtupBM6iCvgThHNTJPM4G297F1TDjRQoKuWTG9MMgx8gyjYJLmNWuCgM54xM2gr6DiqVgIls5ntEvjhnSJNPuKaQV+7zCstSYaRo7ZcpwbJZzJflarl9gchxZofICQfHHj5JCUsxoOT4dCg0c5dQBxrVwXikfM804uiUtdEI8SZg0sF8VhieoC4isFDG4CdXSgDdMXxeR/S1ai/yTPLIKbvGu8r2guAwjW+6gdFtzVwiXd/4SdA6a4WGzdX5QP/0+v8c62SV75CsJyRE5JT/JGWkTTlJyT/6Qv95//7NP/b1Hqe/Na3bIQvjfHgCJGsAA</latexit>G6,4

<latexit sha1_base64="4mYSsYHCqLlkF4Khm3aQ8yJKQ4E=">AAACc3icbVHLTsMwEHTDuzwLRy4RLRIHqBKEgEslBBeOgCgglahy3E2x6jjB3hSK1c/gCt/Fh3DHCRWihZUsjWZn7dlxmAqu0fM+Ss7U9Mzs3PxCeXFpeWV1rbJ+o5NMMWiyRCTqLqQaBJfQRI4C7lIFNA4F3Ia9s7x/2weleSKvcZBCENOu5BFnFC3VqqVt0931h43DWnut6tW9oty/wB+BKhnVRbtSurrvJCyLQSITVOuW76UYGKqQMwHD8n2mIaWsR7vQslDSGHRgCs9Dd9syHTdKlD0S3YL9PWForPUgDq0ypvigJ3s5+V+vlWF0HBgu0wxBsu+Hoky4mLh5AG6HK2AoBhZQprj16rIHqihDG9PYTYiNiAoNu8Wg30CVQWAED8FuKCcW7FP1mAXmhR+M8z/ywEh4wufC95ji2g9MnkHutmx/wZ/M/C+42a/7h/WDy/3qyenoP+bJJtkiO8QnR+SEnJML0iSMJOSVvJH30qez6Ww5tW+pUxrNbJCxcva+AKvtwHw=</latexit>

?6,1 = 6
<latexit sha1_base64="sqosfyQWhVGLFluYnTusfPgQPQI=">AAACc3icbVHLTsMwEHTDu7zhyCWiReIAVVLxulRCcOEIiAJSiSrH3RSrjhPsDVCsfgZX+C4+hDtOqBAtrGRpNDtrz47DVHCNnvdRciYmp6ZnZufK8wuLS8srq2vXOskUgyZLRKJuQ6pBcAlN5CjgNlVA41DATdg7zfs3j6A0T+QV9lMIYtqVPOKMoqVa1bRtujv1QWO/2l6peDWvKPcv8IegQoZ13l4tXd51EpbFIJEJqnXL91IMDFXImYBB+S7TkFLWo11oWShpDDowheeBu2WZjhslyh6JbsH+njA01rofh1YZU7zX472c/K/XyjA6CgyXaYYg2fdDUSZcTNw8ALfDFTAUfQsoU9x6ddk9VZShjWnkJsRGRIWGnWLQb6DKIDCCh2A3lGMLPlL1kAXmhe+N8j/ywEh4wufC94jiyg9MnkHutmx/wR/P/C+4rtf8g9reRb1yfDL8j1myQTbJNvHJITkmZ+ScNAkjCXklb+S99OlsOJtO9VvqlIYz62SknN0vq/DAfA==</latexit>

?6,2 = 5
<latexit sha1_base64="Buolldpe0uLUM6YP9Deo1Pv9g30=">AAACc3icbVHLTsMwEHTDu7zhyCWiReIAVQIVcKmE4MIREAWkElWOuylWHSfYG6BY/Qyu8F18CHecUCFaWMnSaHbWnh2HqeAaPe+j5ExMTk3PzM6V5xcWl5ZXVteudZIpBk2WiETdhlSD4BKayFHAbaqAxqGAm7B3mvdvHkFpnsgr7KcQxLQrecQZRUu1qmnbdHf2B416tb1S8WpeUe5f4A9BhQzrvL1aurzrJCyLQSITVOuW76UYGKqQMwGD8l2mIaWsR7vQslDSGHRgCs8Dd8syHTdKlD0S3YL9PWForHU/Dq0ypnivx3s5+V+vlWF0FBgu0wxBsu+Hoky4mLh5AG6HK2Ao+hZQprj16rJ7qihDG9PITYiNiAoNO8Wg30CVQWAED8FuKMcWfKTqIQvMC6+P8j/ywEh4wufC94jiyg9MnkHutmx/wR/P/C+43qv5B7X6xV7l+GT4H7Nkg2ySbeKTQ3JMzsg5aRJGEvJK3sh76dPZcDad6rfUKQ1n1slIObtfq/PAfA==</latexit>

?6,3 = 4
<latexit sha1_base64="7nK7sOakUZgWdpXCxh/PbNvDFMM=">AAACc3icbVHLTsMwEHTDu7zhyCWiReIAVQIVcKmE4MIREAWkElWOuylWHSfYG6BY/Qyu8F18CHecUCFaWMnSaHbWnh2HqeAaPe+j5ExMTk3PzM6V5xcWl5ZXVteudZIpBk2WiETdhlSD4BKayFHAbaqAxqGAm7B3mvdvHkFpnsgr7KcQxLQrecQZRUu1qmnbdHfqg8Z+tb1S8WpeUe5f4A9BhQzrvL1aurzrJCyLQSITVOuW76UYGKqQMwGD8l2mIaWsR7vQslDSGHRgCs8Dd8syHTdKlD0S3YL9PWForHU/Dq0ypnivx3s5+V+vlWF0FBgu0wxBsu+Hoky4mLh5AG6HK2Ao+hZQprj16rJ7qihDG9PITYiNiAoNO8Wg30CVQWAED8FuKMcWfKTqIQvMC6+P8j/ywEh4wufC94jiyg9MnkHutmx/wR/P/C+43qv5B7X6xV7l+GT4H7Nkg2ySbeKTQ3JMzsg5aRJGEvJK3sh76dPZcDad6rfUKQ1n1slIObtfq/bAfA==</latexit>

?6,4 = 3

6

5

4

3

Figure 2: A super-k-mer g of length 16 with |g| − k + 1 = 16− 13 + 1 = 4 k-mers xg,1, xg,2, xg,3, xg,4 for
k = 13 and minimizer length m = 7. The shaded boxes highlight the minimizer whose start position is
pg,i in k-mer xg,i. It is easy to see that i = pg,1 − pg,i + 1 for any 1 ≤ i ≤ |g| − k + 1.

for any k-mer xg,1, . . . , xg,|g|−k+1 of g. Next, we show in Lemma 2 that this strategy maps the k-mers
xg,1, . . . , xg,|g|−k+1 bijectively in {(f(xg,1) − 1) + 1, . . . , (f(xg,1) − 1) + |g| − k + 1} and preserves their
locality.

Lemma 2. The strategy in Equation 4 guarantees f(xg,i+1) = f(xg,i) + 1 for any i = 1, . . . , |g| − k.

Proof. For Equation 4, f(xg,i) = f(xg,1)+pg,1−pg,i. Therefore f(xg,i+1) = f(xg,1)+pg,1−pg,i+1. Since
pg,i+1 = pg,i − 1 for Equation 2, then f(xg,i+1) = f(xg,1) + pg,1 − pg,i+1 = f(xg,1) + pg,1 − pg,i + 1 =
f(xg,i) + 1.

4.1 Data Structure

From Equation 4 is evident that f(xg,1) acts as a “global” component in the calculation of f(xg,i), which
must be added to a “local” component represented by Rank(xg,i). We have shown how to compute
Rank(xg,i) (Equation 3). Moreover, Lemma 2 guarantees that the local rank bijectively maps the k-mers
of g into [1..|g| − k + 1]. We are therefore left to show how to compute f(xg,1) for each super-k-mer g.
We proceed as follows.

Let M be the set of all the distinct minimizers of S. We build a MPHF for M, fm : Σm → [|M|].
Assume, for ease of exposition, that each super-k-mer g is the only super-k-mer having minimizer µ. (We
explain how to handle the case where more super-k-mers have the same minimizer in Section 4.3.) We
allocate an array L[1..|M|+ 1] where L[1] = 0 and L[fm(µ) + 1] = |g| − k + 1. We then take the prefix-

sums of L, that is, we replace L[i] with
∑i
j=1 L[j] for all i = 2, . . . , |M|+ 1. After this transformation,

L[fm(µ)] indicates that there are L[fm(µ)] k-mers before those in g (whose minimizer is µ) in the order
given by fm. The size of g can be recovered as L[fm(µ) + 1]− L[fm(µ)] = |g| − k + 1. In conclusion, we
compute f(xg,1) as f(xg,1) = L[fm(µ)]. The positions p1 of each super-k-mer g are instead written in
another array P [1..|M|] where P [fm(µ)] = p1. It follows that the data structure is built in O(n) time,
since a scan over the input suffices to compute all super-k-mers and fm can be built in O(|M|) expected
time.

With these three components – fm, and the two arrays L and P – it is easy to evaluate f(x) as
shown in Algorithm 1. The complexity of the algorithm is O(w) since that is the time for computing the
minimizer3 and the evaluation of fm, as well as accessing the arrays, takes O(1).

The data structure for f is itself a compressed representation for fm, L, and P . To compute the
space taken by the data structure we first need to know |M|, the expected number of distinct minimizers
seen in the input. If d indicates the density of a random minimizer scheme, then (i) |M| = dn, and (ii)
ε = d for Lemma 2. In particular, a result due to Zheng et al. [47, Theorem 3] allows us to compute d
for a random minimizer scheme as d = 2

w+1 + o(1/w) if m > (3 + ε) log4(w + 1) for any ε > 0. (We will
always operate under the condition that m is sufficiently large compared to k otherwise minimizers are
meaningless.)

Therefore any random minimizer scheme gives us a (1 − ε)-LP MPHF with ε = 2
w+1 , where w =

k−m+1 (we omit lower order terms for simplicity). Replacing this value of ε into Theorem 1, we derive
a theoretic minimum space for f of n · (2

w+1 · log2(e · w+1
2)− w−1

w+1 log2(w−1
w+1)) bits, which is

n · 2

w + 1
· log2

(
e2 · w + 1

2

)
bits (5)

3Considering each hash calculation h(·) as O(1).

6

Algorithm 1: Evaluation
algorithm for f , given the
k-mer x. The helper func-
tion minimizer(x) computes
the minimizer µ of x and the
starting position p of µ in x.

1 f(x) :
2 (µ, p) = minimizer(x)
3 i = fm(µ)
4 return L[i] + P [i]− p

Algorithm 2: Evaluation algorithm for a partitioned
representation of f . The quantities nlr, nl, nr, and nn
are, respectively, the number of left-right-max, left-
max, right-max, and non-max super-k-mers of S.

1 f(x) :
2 (µ, p) = minimizer(x)
3 i = fm(µ)
4 t = R[i]
5 j = Rankt(i)
6 prefix = 0, offset = 0, p1 = 0
7 switch(t):
8 case left-right-max:
9 prefix = 0, offset = (j − 1)w, p1 = w

10 case left-max:
11 prefix = nlr, offset = Ll[j], p1 = Ll[j + 1]− Ll[j]
12 case right-max:
13 prefix = nlr + nl, offset = Lr[j], p1 = w
14 case non-max:
15 prefix = nlr + nl + nr, offset = Ln[j], p1 = Pn[j]
16 return prefix + offset + p1 − p

for small ε (see dashed red line in Figure 1). Our construction, instead, achieves the following space
usage (see the supplementary material for the proof).

Theorem 2. Given a random minimizer scheme (k,m, h) with m > (3 + ε) log4(w + 1) for any ε > 0
and w = k −m+ 1, there exists a (1− ε)-LP MPHF for a SPSS S which takes

n · 2

w + 1
·
(

log2

(
4e · (w + 1)2

)
+ o(1)

)
bits (6)

with ε = 2
w+1 and n = |spectrumk(S)|.

Comparing the space bound in Theorem 2 with the lower bound in Formula 5 and omitting lower
order terms, it is easy to derive that our construction costs 2

w+1 · (3 + log2(w+1
e)) bits/k-mer more than

the theoretic minimum. However this surplus diminishes as w grows; for example, when m is fixed and
k grows. Next we show how to improve the result of Theorem 2.

4.2 Partitioned Data Structure

Property 2 states that |g| − k + 1 ≤ pg,1 ≤ w for any super-k-mer g. As an immediate implication we
have that if |g| − k + 1 = w then also pg,1 = w (and, symmetrically, if pg,1 = 1 then |g| = k). This
suggests that, whenever a super-k-mer contains a maximal number of k-mers, |g| − k + 1 = pg,1 = w
can be implicitly derived. We can thus save the space for the entries dedicated to such super-k-mers
in the arrays L and P . Note that the converse is not true in general, i.e., if pg,1 = w it could be that
|g| − k + 1 < w. Nonetheless, we can still save space for some entries of P in this case.

Based on the starting position of the minimizer in the first and last k-mer of a super-k-mer, we
distinguish between four types of super-k-mers. See Figure 3 for an example.

Definition 7 (FL rule). Let g be a super-k-mer. The first/last (FL) rule is as follows:

• if pg,1 = w and pg,|g|−k+1 = 1, then g is a left-right-max super-k-mer; else

• if pg,1 < w and pg,|g|−k+1 = 1, then g is a left-max super-k-mer; else

• if pg,1 = w and pg,|g|−k+1 > 1, then g is a right-max super-k-mer; else

• if pg,1 < w and pg,|g|−k+1 > 1, then g is a non-max super-k-mer.

We store the type of each super-k-mer in an array R[1..|M|], in the order given by fm. We can
now exploit this labeling of super-k-mers to improve the space bound of Theorem 2 because: (i) for all
left-right-max super-k-mers, we do not store L nor P ; (ii) for all left/right-max super-k-mers, we only
store L – precisely, two arrays Ll and Lr for left- and right-max super-k-mers respectively; (iii) for all

7

(a) left-right-max (b) right-max (c) left-max (d) non-max

Figure 3: The four different types of super-k-mers. The example is for k = 13 and minimizer length
m = 7, so w = k − m + 1 = 13 − 7 + 1 = 7. The shaded boxes highlight the minimizer whose start
position is marked when it is either max (7), or min (1).

the other super-k-mers, i.e., non-max, we store both L and P as explained before – let us indicate them
with Ln and Pn in the following.

Addressing the arrays Ll, Lr, Ln and Pn, can be achieved by answering Rankt(i) queries on R: the
result of this query is the number of super-k-mers that have type t in the prefix R[1..i]. If i = fm(µ),
then we read the type of the super-k-mer associated to µ as t = R[i]. Then we compute j = Rankt(i).
Depending on the type t, we have to access the j-th position of either Ll, or Lr, or Ln and Pn. A
succinct representation of R that also supports Rankt(i) and Access(i) queries is the wavelet tree [21]. In
our case, we only have four possible types, so the wavelet tree represents R in 2|M|+ o(|M|) bits4 and
supports both queries in O(1) time. The wavelet tree is also built in linear time, so the overall building
time remains O(n). Algorithm 2 shows the evaluation for this partitioned representation of f(x). Also
this algorithm executes in O(w) time.

Intuitively, if the fraction of left-right-max super-k-mers and that of left/right-max super-k-mers is
sufficiently high, we can save significant space compared to the previous data structure which stores both
L and P for all minimizers. Indeed, we obtain the following Theorem (see the supplementary material
for the proof).

Theorem 3. Given a random minimizer scheme (k,m, h) with m > (3 + ε) log4(w + 1) for any ε > 0
and w = k −m+ 1, there exists a (1− ε)-LP MPHF for a SPSS S which takes

n · 2

w + 1
·
(

log2

(
e

16 · 21/4

3
· (w + 1)

)
+ o(1)

)
bits (7)

with ε = 2
w+1 and n = |spectrumk(S)|.

Comparing this space bound with the lower bound in Formula 5 and omitting lower order terms, we

see that this construction costs 2
w+1 · log2(32·21/4

3e) bits/k-mer more than the theoretic minimum. Also
this surplus tends to vanish as k grows but faster than that from Theorem 2. Theorem 3 saves a factor
of 2

5 · (3− log2 e+ log2(w + 1)) bits/k-mer from the space of Theorem 2.

4.3 Ambiguous Minimizers

Let Gµ be the set of super-k-mers whose minimizer is µ. The rank computation in Equation 3 can be
used as long as |Gµ| = 1, i.e., whenever one single super-k-mer g has minimizer µ and, thus, the single
pg,1 unequivocally displace all the k-mers xg,1, . . . , xg,|g|−k+1. When |Gµ| > 1 we say that the minimizer
µ is “ambiguous”. It is a known fact that the number of such minimizers is small for a sufficiently long
minimizer length m [34, 23, 11] (for example, on the datasets used in Section 5, the fraction of ambiguous
minimizers is in between 1% and 4%). However, they must be dealt with in some way.

Let ξ be the fraction of k-mers whose minimizers are ambiguous. Our strategy is to build a fall-back
MPHF for these k-mers. This function adds ξ log2 e bits/k-mer on top of the space of Theorem 2 and 3,
making our functions be (1 − ξ)(1 − ε)-locality-preserving. To detect an ambiguous minimizer µ, we
use the following trick: we set L[fm(µ)] = 0 for the un-partitioned data structure from Section 4.1 and
Lr[fm(µ)] = 0 for the partitioned variant from Section 4.2. Therefore, with just an extra check on the
super-k-mer size we know if the query k-mer must be looked-up in the fall-back MPHF or not.

4The o(|M|) term is the redundancy needed to accelerate the binary rank queries. In practice, the term o(|M|) can be
non-negligible, e.g., can be as high as 2 · (|M|/4) bits using the Rank9 index [46, Sec. 3], but it is necessary for fast queries
in practice (namely, O(1) time). Looking at Table 1a from [35], we see that the redundancy is in between 3% and 25% of
2|M|.

8

Figure 4: Space in average bits/k-mer for LPHash by varying k, for both un-partitioned and partitioned
data structures. As reference points, we report that PTHash takes 2.76, 2.68, 2.65, 2.58, and 2.65 bits/k-
mer on Yeast, Elegans, Cod, Kestrel, and Human respectively (2.6-2.8 bits/k-mer); BBHash takes 3.06
bits/k-mer across all datasets. The space for PTHash and BBHash does not depend on k. The dotted
line at log2 e = 1.442 bits/k-mer indicates the classic MPHF lower-bound.

We leave the exploration of alternative strategies to handle ambiguous minimizers to future work.
For example, one can imagine a recursive data structure where, similarly to [44], each level is an instance
of the construction with different minimizer lengths: if level i has minimizer length mi, then level i+ 1
is built with length mi+1 > mi over the k-mers whose minimizers are ambiguous at level i.

5 Experiments

Table 1: Minimizer length m by
varying k on the different datasets.

k → 31 35 39 43 47 51 55 59 63

Yeast 15 15 16 16 16 16 18 18 18
Elegans 16 18 18 20 20 20 20 20 20
Cod 20 20 22 22 22 24 24 24 24
Kestrel 20 20 22 22 22 24 24 24 24
Human 21 21 23 23 26 26 28 28 28

In this section we show that the data structure described in Sec-
tion 4 is practical too. Our implementation of the method is in
C++ and we refer to it as LPHash in the following. We com-
pare its space usage, query time, and building time against the
fastest MPHF, PTHash [36, 37], and the popular BBHash [26].
Both competitors are also written in C++. Following the authors’
recommendations, PTHash is tested with parameters (D-D, α =
0.94, c = 5.0) and BBHash with parameter γ = 1.0 (see the re-
spective papers for an explanation of such parameters).

Implementation Details. We report the major implementation details for LPHash. The arrays L
and P are compressed with Elias-Fano [16, 14]. Both the function fm and the fall-back MPHF are
implemented with PTHash using parameters (D-D, α = 0.94, c = 3.0), unless otherwise specified. We
do not compress the bit-vectors in the wavelet tree and we add constant-time support for rank queries
using the Rank9 index [22, 46].

Testing Machine. The experiments were executed on a machine equipped with a Intel i9-9900K CPU
(clocked at 3.60GHz), 64 GB of RAM, and running the Linux 5.13.0 operating system. The whole code
(LPHash and competitors) was compiled with gcc 11.2.0, using the flags -O3 and -march=native.

Datasets. We use datasets of increasing size in terms of number of distinct k-mers; namely, the whole-
genomes of: Saccharomyces Cerevisiae (Yeast, 11.6 × 106 k-mers), Caenorhabditis Elegans (Elegans,
95×106 k-mers), Gadus Morhua (Cod, 0.56×109 k-mers), Falco Tinnunculus (Kestrel, 1.16×109 k-mers),
and Homo Sapiens (Human, 2.77× 109 k-mers). For each dataset, we obtain the corresponding SPSS by
first building the compacted de Bruijn graph using BCALM2 [12], then running the UST algorithm [40].
At our code repository https://github.com/jermp/lphash we provide detailed instructions on how to
prepare the datasets for indexing. Also, all processed datasets are available at https://zenodo.org/

record/7239205.

Space Effectiveness. Figure 4 shows the space of LPHash in average bits/k-mer, by varying k from
31 to 63 with a step of 4, for both un-partitioned and partitioned data structures. We report the
actual space usage achieved by the implementation against the theoretical space usage computed using
Formula 6 (un-partitioned) and Formula 7 (partitioned). We also plot the theoretic minimum computed
with Formula 5. For each combination of k and dataset, we choose a suitable value of minimizer length
(m) as reported in Table 1. For all datasets we use c = 3.0 the PTHash fm and fall-back, except on the

9

https://github.com/jermp/lphash
https://zenodo.org/record/7239205
https://zenodo.org/record/7239205

Table 2: Query time in average nanoseconds per k-mer.

Method k
Yeast Elegans Cod Kestrel Human

stream random stream random stream random stream random stream random

LPHash

31 29 110 40 115 80 140 90 145 106 160
35 32 238 42 225 70 248 75 251 96 265
39 32 245 38 245 65 260 68 262 90 295
43 30 264 36 264 61 272 65 272 80 303
47 29 283 34 283 55 289 57 287 78 323
51 28 300 33 300 51 307 52 302 71 334
55 28 322 32 322 47 325 48 320 66 335
59 28 340 31 340 45 340 45 338 64 340
63 27 360 30 360 42 360 43 360 60 370

PTHash 35 60 100 120 120
BBHash 50 140 200 220 220

largest Human where we use c = 5.0 to lower construction time at the expense of a larger space usage.
As expected, the space lowers for increasing k and the partitioned data structure is always considerably
smaller than the un-partitioned counterpart. The net result is that the achieved space is much better
than that of the classic MPHFs traditionally used in the literature and in practice. To make a concrete
example, partitioned LPHash for k = 63 achieves 0.54, 0.65, 0.83, 0.58, and 0.87 bits/k-mer on Yeast,
Elegans, Cod, Kestrel, and Human respectively. These values are 5.1×, 4.1×, 3.2×, 4.4×, and 3× smaller
than the those achieved by PTHash and reported in the caption of Figure 4 (and even smaller when
compared to BBHash). We remark that, however, PTHash and BBHash are general-purpose MPHFs
that can work with arbitrary keys, whereas the applicability of LPHash is restricted to k-mer sets.

Not surprisingly, the actual space usage of LPHash is higher than the theoretical one achieved by For-
mula 6 and Formula 7. This is due to the fact that, in practice, the MPHF fm and the fall-back one take
more than the theoretic minimum of log2 e = 1.44 bits/key (e.g., 2.3 bits/k-mer in our implementation).

Query Time. Table 2 reports the query time for LPHash in comparison to PTHash and BBHash.
Timings were collected using a single core of the processor; we query all k-mers read from the Hu-
man chromosome 13, for a total of ≈100×106 queries. First of all, we noticed that query timings for
un-partitioned and partitioned LPHash are the same, so we do not distinguish between the two data
structures in Table 2. While the evaluation for the un-partitioned data structure (Algorithm 1) is simpler
compared to that of the partitioned variant (Algorithm 2), it always performs two accesses per query to
two compressed arrays. On the other hand, partitioning involves an extra rank query over a wavelet tree
but it also spares many accesses to the arrays L and P .

We distinguish between streaming and random queries (lookups) for LPHash. Given a query string
Q, we query for each k-mer read consecutively from Q, that is, for Q[1..k], Q[2..k + 1], Q[3..k + 2],
etc. We refer to the this query modality as streaming; anything else different from streaming is a
random lookup (i.e., “random” here means “without locality”). LPHash is optimized for streaming
lookup queries, whereas PTHash and BBHash do not benefit from any specific query order. In fact, the
locality-preserving nature of LPHash makes the calculation of hashes for consecutive k-mers very cheap,
as consecutive k-mers are likely to be part of the same super-k-mer.

Considering the result in Table 2, we see that LPHash’s streaming query time is in fact much smaller
than random query time. Both timings are sensitive to the growth of k: while the streaming one slightly
decreases for the better locality, the random one increases significantly for the more expensive hash
calculations. Also note that the random query time is essentially independent from the size of the data
structures but depends on w = k −m + 1 as explained in Section 4. LPHash is as fast as PTHash for
streaming queries on the smaller Yeast dataset, but actually up to 2− 2.5× faster on the larger Elegans,
Cod, Kestrel, and Human. Compared to BBHash, LPHash is 2× faster on Yeast and up to 4− 5× faster
on the larger datasets.

Random lookup time is, instead, slower for LPHash compared to PTHash and BBHash: this is
expected because the evaluation of LPHash is more complex (it involves computing the minimizer,
accessing several arrays, and computing a rank using a wavelet tree). However, we do not regard this
as a serious limitation since, as we already motivated, the streaming query modality is the one used
in Bioinformatics tasks involving k-mers [1, 7, 31, 42, 34]. We also see that: the slowdown is more
evident on the smaller datasets while it tends to diminish on the larger ones; lookup time for k = 31

10

is substantially better than that for the other values of k since 31 bases fits into a single 8-byte integer
whereas any 31 < k ≤ 63 requires the double of the size, making hash calculations more expensive.

Table 3: Total building time, including the time to
read the input and serialize the data structure on
disk. All constructions were run with 4 processing
threads and within 8GB of RAM.

Method
Yeast Elegans Cod Kestrel Human

mm:ss mm:ss mm:ss mm:ss mm:ss

LPHash 00:03 00:35 11:30 08:50 16:41
PTHash 00:05 00:45 10:30 31:30 83:10
BBHash 00:03 00:25 02:40 05:05 13:45

Building Time. Lastly in this section, we con-
sider building time. Refer to Table 3. Again, we
report that the building time for un-partitioned
and partitioned LPHash is the same. LPHash is
competitive with the fastest BBHash and signifi-
cantly faster than PTHash on the larger datasets.
Specifically, it is faster than PTHash over the
entire set of k-mers since it builds two smaller
PTHash functions (fm and fall-back). The slow-
down seen for Cod is due to the larger fall-back
MPHF, which is built with PTHash under a strict
configuration (c = 3.0) that privileges space effectiveness (and query efficiency) rather than building
time. One could in principle use BBHash instead of PTHash for the fall-back function, hence trading
space for better building time. For example, recall that we use c = 5.0 on Human for this reason.

Table 4: Minimal perfect hashing (MPH) problems for arbitrary and spectrum k-mer sets of size n.

Problem Input set type Bit-complexity Reference

order-preserving MPH arbitrary Ω(n · log n) [17]
monotone MPH arbitrary Ω(n · log log(2k))5 [3, Theorem 1]
“classic” MPH arbitrary n · log2 e [32, Lemma 1]
r-wise MPH arbitrary n · log2 r/(2r) · (1 + o(1)) [29, Theorem 3]

(1− ε) LP-MPH spectrum n · (ε log2(e/ε)− (1− ε) log2(1− ε)) [this paper, Theorem 1]

6 Conclusion and Open Questions

In this paper, we initiate the study of locality-preserving minimal perfect hash functions for k-mers. We
illustrate a theoretic minimum lower bound of the space complexity of these functions and propose a
construction that approaches the minimum when k increases. We show that a concrete implementation
of the method is practical. Before this paper, one used to build a BBHash function over the k-mers and
spend (approx.) 3 bits/k-mer and 100-200 nanoseconds per lookup. This work shows that it is possible
to do significantly better than this when the k-mers come from a spectrum-preserving string set (SPSS):
for example, less than 0.9 bits/k-mer and 30-60 nanoseconds per lookup. Our code is open-source.

As future work, we plan to carefully engineer the current implementation to accelerate construction
and streaming queries even more. Other strategies for sampling the strings could be used other than
random minimizers [19, 47]. For example, the Miniception by Zheng et al. [47] achieving ε = 1.67

w +o(1/w).
Evaluating the impact of such different sampling schemes is a promising avenue for future research.
Lastly, we also plan to investigate other strategies for handling the ambiguous minimizers. A better
strategy is likely to lead to improved space effectiveness and faster construction.

We conclude with some questions that remain open from this work, in the hope of spurring further
research on the topic. (i) Given a SPSS with fragmentation factor α, what is the lowest ε that can be
achieved in theory? And in practice? We know for Lemma 1 that ε ≥ α. Can we improve this lower
bound or prove that it is tight? (ii) Does exist a MPHF for a SPSS which is not locality-preserving and,
yet, has a lower bit-complexity than a classic MPHF? Or do our results suggest that any MPHF built
for a SPSS features the locality-preserving property for some ε ≥ α? (iii) In Table 4 we report the lower
bounds for other minimal perfect hashing problems, such as r-wise, monotone, and order-preserving
minimal perfect hashing. All of them are tight as they can be matched, at least in theory. We must be
careful in comparing such lower bounds with that from Theorem 1 because those results are valid for
arbitrary k-mer sets, not for k-mer spectra. Thus, a natural question is: What is the bit-complexity of
the other MPH problems in Table 4 when applied to a SPSS? For example, we know that SSHash [34, 33]
is an order-preserving MPHF for a SPSS (and (1−α)-locality-preserving): in fact, its space usage is well
below Ω(log n) bits/k-mer even with the ability of rejecting alien k-mers.

5Assadi et al. [3] recently showed that Ω(n · log log log |U |) expected bits are necessary for a universe of size |U |, while
O(n · log log log |U |) bits were already shown to be sufficient by Belazzougui et al. [5]. In our problem we have |U | = 4k.

11

Funding. This work was partially supported by the project MobiDataLab (EU H2020 RIA, grant
agreement No

¯101006879) and by the French ANR AGATE (ANR-21-CE45-0012).

References

[1] Fatemeh Almodaresi, Hirak Sarkar, Avi Srivastava, and Rob Patro. A space and time-efficient index
for the compacted colored de bruijn graph. Bioinformatics, 34(13):i169–i177, 2018.

[2] Austin Appleby. Smhasher. https://github.com/aappleby/smhasher, Last accessed September
2022.

[3] Sepehr Assadi, Martin Farach-Colton, and William Kuszmaul. Tight bounds for monotone minimal
perfect hashing. arXiv preprint arXiv:2207.10556, 2022.

[4] Djamal Belazzougui, Paolo Boldi, Giuseppe Ottaviano, Rossano Venturini, and Sebastiano Vigna.
Cache-oblivious peeling of random hypergraphs. In 2014 Data Compression Conference, pages 352–
361. IEEE, 2014.

[5] Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna. Monotone minimal perfect
hashing: searching a sorted table with O(1) accesses. In Proceedings of the twentieth annual ACM-
SIAM symposium on Discrete algorithms, pages 785–794. SIAM, 2009.

[6] Djamal Belazzougui, Fabiano C Botelho, and Martin Dietzfelbinger. Hash, displace, and compress.
In European Symposium on Algorithms, pages 682–693. Springer, 2009.

[7] Timo Bingmann, Phelim Bradley, Florian Gauger, and Zamin Iqbal. Cobs: a compact bit-sliced
signature index. In International Symposium on String Processing and Information Retrieval, pages
285–303. Springer, 2019.

[8] Fabiano C Botelho, Rasmus Pagh, and Nivio Ziviani. Practical perfect hashing in nearly optimal
space. Information Systems, 38(1):108–131, 2013.

[9] Karel Břinda, Michael Baym, and Gregory Kucherov. Simplitigs as an efficient and scalable repre-
sentation of de Bruijn graphs. Genome biology, 22(1):1–24, 2021.

[10] Chin-Chen Chang and Chih-Yang Lin. Perfect hashing schemes for mining association rules. The
Computer Journal, 48(2):168–179, 2005.

[11] Rayan Chikhi, Antoine Limasset, Shaun Jackman, Jared T Simpson, and Paul Medvedev. On
the representation of de Bruijn graphs. In International conference on Research in computational
molecular biology, pages 35–55. Springer, 2014.

[12] Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de Bruijn graphs from sequenc-
ing data quickly and in low memory. Bioinformatics, 32(12):i201–i208, 2016.

[13] Yann Collet. xxhash. https://cyan4973.github.io/xxHash, Last accessed September 2022.

[14] Peter Elias. Efficient storage and retrieval by content and address of static files. Journal of the
ACM, 21(2):246–260, 1974.

[15] Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. Recsplit: Minimal perfect hash-
ing via recursive splitting. In 2020 Proceedings of the Twenty-Second Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 175–185. SIAM, 2020.

[16] Robert Mario Fano. On the number of bits required to implement an associative memory. Memo-
randum 61, Computer Structures Group, MIT, 1971.

[17] Edward A Fox, Qi Fan Chen, Amjad M Daoud, and Lenwood S Heath. Order-preserving mini-
mal perfect hash functions and information retrieval. ACM Transactions on Information Systems
(TOIS), 9(3):281–308, 1991.

[18] Edward A Fox, Qi Fan Chen, and Lenwood S Heath. A faster algorithm for constructing minimal
perfect hash functions. In Proceedings of the 15th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 266–273, 1992.

12

https://github.com/aappleby/smhasher
https://cyan4973.github.io/xxHash

[19] Martin C. Frith, Jim Shaw, and John L. Spouge. How to optimally sample a sequence for rapid
analysis. bioRxiv, 2022.

[20] Marco Genuzio, Giuseppe Ottaviano, and Sebastiano Vigna. Fast scalable construction of ([com-
pressed] static— minimal perfect hash) functions. Information and Computation, page 104517,
2020.

[21] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed text indexes.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January
12-14, 2003, Baltimore, Maryland, USA, pages 841–850. ACM/SIAM, 2003.

[22] Guy Jacobson. Space-efficient static trees and graphs. In 30th annual symposium on foundations of
computer science, pages 549–554. IEEE Computer Society, 1989.

[23] Chirag Jain, Arang Rhie, Haowen Zhang, Claudia Chu, Brian Walenz, Sergey Koren, and Adam M.
Phillippy. Weighted minimizer sampling improves long read mapping. Bioinform., 36(Supplement-
1):i111–i118, 2020.

[24] Jamshed Khan, Marek Kokot, Sebastian Deorowicz, and Rob Patro. Scalable, ultra-fast, and low-
memory construction of compacted de bruijn graphs with cuttlefish 2. Genome biology, 23(1):1–32,
2022.

[25] Jamshed Khan and Rob Patro. Cuttlefish: fast, parallel and low-memory compaction of de Bruijn
graphs from large-scale genome collections. Bioinformatics, 37(Supplement 1):i177–i186, 2021.

[26] Antoine Limasset, Guillaume Rizk, Rayan Chikhi, and Pierre Peterlongo. Fast and scalable minimal
perfect hashing for massive key sets. In 16th International Symposium on Experimental Algorithms,
volume 11, pages 1–11, 2017.

[27] Yi Lu, Balaji Prabhakar, and Flavio Bonomi. Perfect hashing for network applications. In 2006
IEEE International Symposium on Information Theory, pages 2774–2778. IEEE, 2006.

[28] Harry G Mairson. The program complexity of searching a table. In 24th Annual Symposium on
Foundations of Computer Science (FOCS 1983), pages 40–47. IEEE, 1983.

[29] Harry G Mairson. The effect of table expansion on the program complexity of perfect hash functions.
BIT Numerical Mathematics, 32(3):430–440, 1992.

[30] Bohdan S Majewski, Nicholas C Wormald, George Havas, and Zbigniew J Czech. A family of perfect
hashing methods. The Computer Journal, 39(6):547–554, 1996.

[31] Camille Marchet, Mael Kerbiriou, and Antoine Limasset. Blight: efficient exact associative structure
for k-mers. Bioinformatics, 37(18):2858–2865, 04 2021.

[32] Kurt Mehlhorn. On the program size of perfect and universal hash functions. In 23rd Annual
Symposium on Foundations of Computer Science, pages 170–175. IEEE, 1982.

[33] Giulio Ermanno Pibiri. On weighted k-mer dictionaries. In International Workshop on Algorithms
in Bioinformatics (WABI), pages 9:1–9:20, 2022.

[34] Giulio Ermanno Pibiri. Sparse and skew hashing of k-mers. Bioinformatics, 38(Supplement 1):i185–
i194, 06 2022.

[35] Giulio Ermanno Pibiri and Shunsuke Kanda. Rank/select queries over mutable bitmaps. Information
Systems, 99(101756), 2021.

[36] Giulio Ermanno Pibiri and Roberto Trani. Parallel and external-memory construction of minimal
perfect hash functions with PTHash. CoRR, abs/2106.02350, 2021.

[37] Giulio Ermanno Pibiri and Roberto Trani. PTHash: Revisiting FCH Minimal Perfect Hashing.
In The 44th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 1339–1348, 2021.

[38] Giulio Ermanno Pibiri and Rossano Venturini. Efficient data structures for massive n-gram datasets.
In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 615–624, 2017.

13

[39] Giulio Ermanno Pibiri and Rossano Venturini. Handling massive N -gram datasets efficiently. ACM
Transactions on Information Systems, 37(2):25:1–25:41, 2019.

[40] Amatur Rahman and Paul Medvedev. Representation of k-mer sets using spectrum-preserving string
sets. In International Conference on Research in Computational Molecular Biology, pages 152–168.
Springer, 2020.

[41] Michael Roberts, Wayne Hayes, Brian R Hunt, Stephen M Mount, and James A Yorke. Reducing
storage requirements for biological sequence comparison. Bioinformatics, 20(18):3363–3369, 2004.

[42] Lucas Robidou and Pierre Peterlongo. findere: Fast and precise approximate membership query.
In String Processing and Information Retrieval, pages 151–163, Cham, 2021. Springer International
Publishing.

[43] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local algorithms for document
fingerprinting. In Proceedings of the 2003 ACM SIGMOD international conference on Management
of data, pages 76–85, 2003.

[44] Yoshihiro Shibuya, Djamal Belazzougui, and Gregory Kucherov. Space-efficient representation of
genomic k-mer count tables. Algorithms for Molecular Biology, 17(1):1–15, 2022.

[45] Grant P. Strimel, Ariya Rastrow, Gautam Tiwari, Adrien Piérard, and Jon Webb. Rescore in
a Flash: Compact, Cache Efficient Hashing Data Structures for n-Gram Language Models. In
Proceedings of the 21st Annual Conference of the International Speech Communication Association,
pages 3386–3390, 2020.

[46] Sebastiano Vigna. Broadword implementation of rank/select queries. In International Workshop
on Experimental and Efficient Algorithms, pages 154–168. Springer, 2008.

[47] Hongyu Zheng, Carl Kingsford, and Guillaume Marçais. Improved design and analysis of practical
minimizers. Bioinformatics, 36(Supplement 1):i119–i127, 2020.

Supplementary Material

Proofs of Corollary 1 and 2

Corollary 1. Let S be a SPSS with maximum fragmentation factor. Then any LP-MPHF for S is
0-locality-preserving.

Proof. By definition, ε = P[¬E1 or ¬E2] = P[¬E1] + P[¬E2] − P[¬E1 and ¬E2] because ¬E1 and ¬E2

are not mutually exclusive (there could obviously be k-mers xi and xi+1 that do not belong to the same
string and for which f(xi+1) 6= f(xi) + 1). But P[¬E1 and ¬E2] = P[¬E1] because ¬E1 ⊆ ¬E2 since S
has maximum fragmentation factor and there are no k-mers that belong to the same string (m = n). In
conclusion: ε = P[¬E1] + P[¬E2]− P[¬E1 and ¬E2] = P[¬E1] + P[¬E2]− P[¬E1] = P[¬E2] = 1.

Corollary 2. Let S be a SPSS with fragmentation factor α. Then any “classic” MPHF for S is ε(1−α)-
locality-preserving for a very small ε ≥ 0.

Proof. A “classic” MPHF will hash xi and xi+1 independently, thus P[¬E1] = 1−ε for a very small ε ≥ 0.
In this case the two events ¬E1 and ¬E2 are independent, thus: ε = P[¬E1]+P[¬E2]−P[¬E1] ·P[¬E2] =
1− ε+ α− α(1− ε) = 1− ε(1− α).

Proof of Theorem 2

Property 2. |g| − k + 1 ≤ pg,1 ≤ w for any super-k-mer g.

Theorem 2. Given a random minimizer scheme (k,m, h) with m > (3 + ε) log4(w + 1) for any ε > 0
and w = k −m+ 1, there exists a (1− ε)-LP MPHF for a SPSS S which takes

n · 2

w + 1
·
(

log2

(
4e · (w + 1)2

)
+ o(1)

)
bits (6)

with ε = 2
w+1 and n = |spectrumk(S)|.

14

…1
<latexit sha1_base64="Zn7qASB56wGwLUmVptdaKeRrYNM=">AAACaXicbVFNS8NAEN3E7/rV6kX0EgyCBynZIuhFEL14VLEq1CCb7USXbjZxd6LW4C/wqj/O3+CfcBOL2NaBhcebN7NvZqJMCoNB8Om4E5NT0zOzc7X5hcWl5Xpj5dKkuebQ5qlM9XXEDEihoI0CJVxnGlgSSbiKesdl/uoRtBGpusB+BmHC7pSIBWdoqTN6W/eDZlCFNw7oAPhkEKe3Def8ppvyPAGFXDJjOjTIMCyYRsElvNZucgMZ4z12Bx0LFUvAhEXl9NXbskzXi1Ntn0KvYv9WFCwxpp9EVpkwvDejuZL8L9fJMd4PC6GyHEHxn4/iXHqYeuXYXldo4Cj7FjCuhfXq8XumGUe7nKFOiAcxkwZ2qkJ6gDqHsJAiAjuhGhnwkemHPCxexO4w/ysPCwVP+Fz5HlJc0LAod1C6rdkr0NGdj4PLVpMGTXrW8g+PBveYJRtkk2wTSvbIITkhp6RNOAHyRt7Jh/PlNtw1d/1H6jqDmlUyFK7/Deb0vPo=</latexit><latexit sha1_base64="Zn7qASB56wGwLUmVptdaKeRrYNM=">AAACaXicbVFNS8NAEN3E7/rV6kX0EgyCBynZIuhFEL14VLEq1CCb7USXbjZxd6LW4C/wqj/O3+CfcBOL2NaBhcebN7NvZqJMCoNB8Om4E5NT0zOzc7X5hcWl5Xpj5dKkuebQ5qlM9XXEDEihoI0CJVxnGlgSSbiKesdl/uoRtBGpusB+BmHC7pSIBWdoqTN6W/eDZlCFNw7oAPhkEKe3Def8ppvyPAGFXDJjOjTIMCyYRsElvNZucgMZ4z12Bx0LFUvAhEXl9NXbskzXi1Ntn0KvYv9WFCwxpp9EVpkwvDejuZL8L9fJMd4PC6GyHEHxn4/iXHqYeuXYXldo4Cj7FjCuhfXq8XumGUe7nKFOiAcxkwZ2qkJ6gDqHsJAiAjuhGhnwkemHPCxexO4w/ysPCwVP+Fz5HlJc0LAod1C6rdkr0NGdj4PLVpMGTXrW8g+PBveYJRtkk2wTSvbIITkhp6RNOAHyRt7Jh/PlNtw1d/1H6jqDmlUyFK7/Deb0vPo=</latexit><latexit sha1_base64="Zn7qASB56wGwLUmVptdaKeRrYNM=">AAACaXicbVFNS8NAEN3E7/rV6kX0EgyCBynZIuhFEL14VLEq1CCb7USXbjZxd6LW4C/wqj/O3+CfcBOL2NaBhcebN7NvZqJMCoNB8Om4E5NT0zOzc7X5hcWl5Xpj5dKkuebQ5qlM9XXEDEihoI0CJVxnGlgSSbiKesdl/uoRtBGpusB+BmHC7pSIBWdoqTN6W/eDZlCFNw7oAPhkEKe3Def8ppvyPAGFXDJjOjTIMCyYRsElvNZucgMZ4z12Bx0LFUvAhEXl9NXbskzXi1Ntn0KvYv9WFCwxpp9EVpkwvDejuZL8L9fJMd4PC6GyHEHxn4/iXHqYeuXYXldo4Cj7FjCuhfXq8XumGUe7nKFOiAcxkwZ2qkJ6gDqHsJAiAjuhGhnwkemHPCxexO4w/ysPCwVP+Fz5HlJc0LAod1C6rdkr0NGdj4PLVpMGTXrW8g+PBveYJRtkk2wTSvbIITkhp6RNOAHyRt7Jh/PlNtw1d/1H6jqDmlUyFK7/Deb0vPo=</latexit><latexit sha1_base64="Zn7qASB56wGwLUmVptdaKeRrYNM=">AAACaXicbVFNS8NAEN3E7/rV6kX0EgyCBynZIuhFEL14VLEq1CCb7USXbjZxd6LW4C/wqj/O3+CfcBOL2NaBhcebN7NvZqJMCoNB8Om4E5NT0zOzc7X5hcWl5Xpj5dKkuebQ5qlM9XXEDEihoI0CJVxnGlgSSbiKesdl/uoRtBGpusB+BmHC7pSIBWdoqTN6W/eDZlCFNw7oAPhkEKe3Def8ppvyPAGFXDJjOjTIMCyYRsElvNZucgMZ4z12Bx0LFUvAhEXl9NXbskzXi1Ntn0KvYv9WFCwxpp9EVpkwvDejuZL8L9fJMd4PC6GyHEHxn4/iXHqYeuXYXldo4Cj7FjCuhfXq8XumGUe7nKFOiAcxkwZ2qkJ6gDqHsJAiAjuhGhnwkemHPCxexO4w/ysPCwVP+Fz5HlJc0LAod1C6rdkr0NGdj4PLVpMGTXrW8g+PBveYJRtkk2wTSvbIITkhp6RNOAHyRt7Jh/PlNtw1d/1H6jqDmlUyFK7/Deb0vPo=</latexit>

2
<latexit sha1_base64="a+Tq8v+FE74/EEa+WrK5G6Lrd3o=">AAACaXicbVFNS8NAEN3Gr1q/Wr2IXoJF8CAlKYJehKIXjyrWFtpQNttJu3SzibsTtQZ/gVf9cf4G/4SbWMS2Diw83ryZfTPjx4JrdJzPgrWwuLS8Ulwtra1vbG6VK9v3OkoUgyaLRKTaPtUguIQmchTQjhXQ0BfQ8keXWb71CErzSN7hOAYvpAPJA84oGuqm3itXnZqThz0P3Amokklc9yqF224/YkkIEpmgWndcJ0YvpQo5E/Ba6iYaYspGdAAdAyUNQXtp7vTVPjRM3w4iZZ5EO2f/VqQ01Hoc+kYZUhzq2VxG/pfrJBiceSmXcYIg2c9HQSJsjOxsbLvPFTAUYwMoU9x4tdmQKsrQLGeqE+J5QIWG47zQPUeVgJcK7oOZUM4M+EjVQ+KlL/xkmv+Ve6mEJ3zOfU8p7lwvzXaQuS2ZK7izO58H9/Wa69Tcm3q1cTG5R5HskwNyRFxyShrkilyTJmEEyBt5Jx+FL6ti7Vp7P1KrMKnZIVNhVb8B6Pm8+w==</latexit><latexit sha1_base64="a+Tq8v+FE74/EEa+WrK5G6Lrd3o=">AAACaXicbVFNS8NAEN3Gr1q/Wr2IXoJF8CAlKYJehKIXjyrWFtpQNttJu3SzibsTtQZ/gVf9cf4G/4SbWMS2Diw83ryZfTPjx4JrdJzPgrWwuLS8Ulwtra1vbG6VK9v3OkoUgyaLRKTaPtUguIQmchTQjhXQ0BfQ8keXWb71CErzSN7hOAYvpAPJA84oGuqm3itXnZqThz0P3Amokklc9yqF224/YkkIEpmgWndcJ0YvpQo5E/Ba6iYaYspGdAAdAyUNQXtp7vTVPjRM3w4iZZ5EO2f/VqQ01Hoc+kYZUhzq2VxG/pfrJBiceSmXcYIg2c9HQSJsjOxsbLvPFTAUYwMoU9x4tdmQKsrQLGeqE+J5QIWG47zQPUeVgJcK7oOZUM4M+EjVQ+KlL/xkmv+Ve6mEJ3zOfU8p7lwvzXaQuS2ZK7izO58H9/Wa69Tcm3q1cTG5R5HskwNyRFxyShrkilyTJmEEyBt5Jx+FL6ti7Vp7P1KrMKnZIVNhVb8B6Pm8+w==</latexit><latexit sha1_base64="a+Tq8v+FE74/EEa+WrK5G6Lrd3o=">AAACaXicbVFNS8NAEN3Gr1q/Wr2IXoJF8CAlKYJehKIXjyrWFtpQNttJu3SzibsTtQZ/gVf9cf4G/4SbWMS2Diw83ryZfTPjx4JrdJzPgrWwuLS8Ulwtra1vbG6VK9v3OkoUgyaLRKTaPtUguIQmchTQjhXQ0BfQ8keXWb71CErzSN7hOAYvpAPJA84oGuqm3itXnZqThz0P3Amokklc9yqF224/YkkIEpmgWndcJ0YvpQo5E/Ba6iYaYspGdAAdAyUNQXtp7vTVPjRM3w4iZZ5EO2f/VqQ01Hoc+kYZUhzq2VxG/pfrJBiceSmXcYIg2c9HQSJsjOxsbLvPFTAUYwMoU9x4tdmQKsrQLGeqE+J5QIWG47zQPUeVgJcK7oOZUM4M+EjVQ+KlL/xkmv+Ve6mEJ3zOfU8p7lwvzXaQuS2ZK7izO58H9/Wa69Tcm3q1cTG5R5HskwNyRFxyShrkilyTJmEEyBt5Jx+FL6ti7Vp7P1KrMKnZIVNhVb8B6Pm8+w==</latexit><latexit sha1_base64="a+Tq8v+FE74/EEa+WrK5G6Lrd3o=">AAACaXicbVFNS8NAEN3Gr1q/Wr2IXoJF8CAlKYJehKIXjyrWFtpQNttJu3SzibsTtQZ/gVf9cf4G/4SbWMS2Diw83ryZfTPjx4JrdJzPgrWwuLS8Ulwtra1vbG6VK9v3OkoUgyaLRKTaPtUguIQmchTQjhXQ0BfQ8keXWb71CErzSN7hOAYvpAPJA84oGuqm3itXnZqThz0P3Amokklc9yqF224/YkkIEpmgWndcJ0YvpQo5E/Ba6iYaYspGdAAdAyUNQXtp7vTVPjRM3w4iZZ5EO2f/VqQ01Hoc+kYZUhzq2VxG/pfrJBiceSmXcYIg2c9HQSJsjOxsbLvPFTAUYwMoU9x4tdmQKsrQLGeqE+J5QIWG47zQPUeVgJcK7oOZUM4M+EjVQ+KlL/xkmv+Ve6mEJ3zOfU8p7lwvzXaQuS2ZK7izO58H9/Wa69Tcm3q1cTG5R5HskwNyRFxyShrkilyTJmEEyBt5Jx+FL6ti7Vp7P1KrMKnZIVNhVb8B6Pm8+w==</latexit>

3
<latexit sha1_base64="JQbkB4KbiMHdip0MNOC9lpefrfQ=">AAACaXicbVFNS8NAEN3Gr1o/qxfRS7AIHqQkKuilUPTisZW2CjXIZjvRpZtN3J1Ua+gv8Ko/zt/gn3CTFrHVgYXHmzezb2b8WHCNjvNZsObmFxaXisulldW19Y3N8lZHR4li0GaRiNStTzUILqGNHAXcxgpo6Au48fuXWf5mAErzSLZwGIMX0gfJA84oGqp5cr9ZcapOHvZf4E5AhUyicV8uXN/1IpaEIJEJqnXXdWL0UqqQMwGj0l2iIaasTx+ga6CkIWgvzZ2O7APD9OwgUuZJtHP2d0VKQ62HoW+UIcVHPZvLyP9y3QSDcy/lMk4QJBt/FCTCxsjOxrZ7XAFDMTSAMsWNV5s9UkUZmuVMdUKsBVRoOMoL3RqqBLxUcB/MhHJmwAFVT4mXvvLTaf5H7qUSnvEl9z2laLlemu0gc1syV3Bnd/4XdI6rrlN1m8eV+sXkHkWyR/bJIXHJGamTK9IgbcIIkDfyTj4KX1bZ2rF2x1KrMKnZJlNhVb4B6v68/A==</latexit><latexit sha1_base64="JQbkB4KbiMHdip0MNOC9lpefrfQ=">AAACaXicbVFNS8NAEN3Gr1o/qxfRS7AIHqQkKuilUPTisZW2CjXIZjvRpZtN3J1Ua+gv8Ko/zt/gn3CTFrHVgYXHmzezb2b8WHCNjvNZsObmFxaXisulldW19Y3N8lZHR4li0GaRiNStTzUILqGNHAXcxgpo6Au48fuXWf5mAErzSLZwGIMX0gfJA84oGqp5cr9ZcapOHvZf4E5AhUyicV8uXN/1IpaEIJEJqnXXdWL0UqqQMwGj0l2iIaasTx+ga6CkIWgvzZ2O7APD9OwgUuZJtHP2d0VKQ62HoW+UIcVHPZvLyP9y3QSDcy/lMk4QJBt/FCTCxsjOxrZ7XAFDMTSAMsWNV5s9UkUZmuVMdUKsBVRoOMoL3RqqBLxUcB/MhHJmwAFVT4mXvvLTaf5H7qUSnvEl9z2laLlemu0gc1syV3Bnd/4XdI6rrlN1m8eV+sXkHkWyR/bJIXHJGamTK9IgbcIIkDfyTj4KX1bZ2rF2x1KrMKnZJlNhVb4B6v68/A==</latexit><latexit sha1_base64="JQbkB4KbiMHdip0MNOC9lpefrfQ=">AAACaXicbVFNS8NAEN3Gr1o/qxfRS7AIHqQkKuilUPTisZW2CjXIZjvRpZtN3J1Ua+gv8Ko/zt/gn3CTFrHVgYXHmzezb2b8WHCNjvNZsObmFxaXisulldW19Y3N8lZHR4li0GaRiNStTzUILqGNHAXcxgpo6Au48fuXWf5mAErzSLZwGIMX0gfJA84oGqp5cr9ZcapOHvZf4E5AhUyicV8uXN/1IpaEIJEJqnXXdWL0UqqQMwGj0l2iIaasTx+ga6CkIWgvzZ2O7APD9OwgUuZJtHP2d0VKQ62HoW+UIcVHPZvLyP9y3QSDcy/lMk4QJBt/FCTCxsjOxrZ7XAFDMTSAMsWNV5s9UkUZmuVMdUKsBVRoOMoL3RqqBLxUcB/MhHJmwAFVT4mXvvLTaf5H7qUSnvEl9z2laLlemu0gc1syV3Bnd/4XdI6rrlN1m8eV+sXkHkWyR/bJIXHJGamTK9IgbcIIkDfyTj4KX1bZ2rF2x1KrMKnZJlNhVb4B6v68/A==</latexit><latexit sha1_base64="JQbkB4KbiMHdip0MNOC9lpefrfQ=">AAACaXicbVFNS8NAEN3Gr1o/qxfRS7AIHqQkKuilUPTisZW2CjXIZjvRpZtN3J1Ua+gv8Ko/zt/gn3CTFrHVgYXHmzezb2b8WHCNjvNZsObmFxaXisulldW19Y3N8lZHR4li0GaRiNStTzUILqGNHAXcxgpo6Au48fuXWf5mAErzSLZwGIMX0gfJA84oGqp5cr9ZcapOHvZf4E5AhUyicV8uXN/1IpaEIJEJqnXXdWL0UqqQMwGj0l2iIaasTx+ga6CkIWgvzZ2O7APD9OwgUuZJtHP2d0VKQ62HoW+UIcVHPZvLyP9y3QSDcy/lMk4QJBt/FCTCxsjOxrZ7XAFDMTSAMsWNV5s9UkUZmuVMdUKsBVRoOMoL3RqqBLxUcB/MhHJmwAFVT4mXvvLTaf5H7qUSnvEl9z2laLlemu0gc1syV3Bnd/4XdI6rrlN1m8eV+sXkHkWyR/bJIXHJGamTK9IgbcIIkDfyTj4KX1bZ2rF2x1KrMKnZJlNhVb4B6v68/A==</latexit>

w � 1
<latexit sha1_base64="g/nJwx2eX4xxAhUznRyCTA/+VHg=">AAACbXicbVHbSsNAEN3Ge70rPikSrKIPWrIi6Isg+uKjSqtCDbLZTtqlm03cnag1+A2+6qf5Ff6Cm7SIrQ4sHM6cmT0zEyRSGPS8z5IzMjo2PjE5VZ6emZ2bX1hcujZxqjnUeSxjfRswA1IoqKNACbeJBhYFEm6Czlmev3kEbUSsathNwI9YS4lQcIaWqm8+7dHN+4WKV/WKcP8C2gcV0o+L+8XS1V0z5mkECrlkxjSol6CfMY2CS3gt36UGEsY7rAUNCxWLwPhZ4fbV3bJM0w1jbZ9Ct2B/V2QsMqYbBVYZMWyb4VxO/pdrpBge+ZlQSYqgeO+jMJUuxm4+utsUGjjKrgWMa2G9urzNNONoFzTQCfE4ZNLAblFIj1Gn4GdSBGAnVEMDPjL9kPrZizgY5H/kfqbgCZ8L3wOKGvWzfAe527K9Ah3e+V9wvV+lXpVe7ldOTvv3mCSrZIPsEEoOyQk5JxekTjgR5I28k4/Sl7PirDnrPalT6tcsk4Fwtr8BW92+Dg==</latexit><latexit sha1_base64="g/nJwx2eX4xxAhUznRyCTA/+VHg=">AAACbXicbVHbSsNAEN3Ge70rPikSrKIPWrIi6Isg+uKjSqtCDbLZTtqlm03cnag1+A2+6qf5Ff6Cm7SIrQ4sHM6cmT0zEyRSGPS8z5IzMjo2PjE5VZ6emZ2bX1hcujZxqjnUeSxjfRswA1IoqKNACbeJBhYFEm6Czlmev3kEbUSsathNwI9YS4lQcIaWqm8+7dHN+4WKV/WKcP8C2gcV0o+L+8XS1V0z5mkECrlkxjSol6CfMY2CS3gt36UGEsY7rAUNCxWLwPhZ4fbV3bJM0w1jbZ9Ct2B/V2QsMqYbBVYZMWyb4VxO/pdrpBge+ZlQSYqgeO+jMJUuxm4+utsUGjjKrgWMa2G9urzNNONoFzTQCfE4ZNLAblFIj1Gn4GdSBGAnVEMDPjL9kPrZizgY5H/kfqbgCZ8L3wOKGvWzfAe527K9Ah3e+V9wvV+lXpVe7ldOTvv3mCSrZIPsEEoOyQk5JxekTjgR5I28k4/Sl7PirDnrPalT6tcsk4Fwtr8BW92+Dg==</latexit><latexit sha1_base64="g/nJwx2eX4xxAhUznRyCTA/+VHg=">AAACbXicbVHbSsNAEN3Ge70rPikSrKIPWrIi6Isg+uKjSqtCDbLZTtqlm03cnag1+A2+6qf5Ff6Cm7SIrQ4sHM6cmT0zEyRSGPS8z5IzMjo2PjE5VZ6emZ2bX1hcujZxqjnUeSxjfRswA1IoqKNACbeJBhYFEm6Czlmev3kEbUSsathNwI9YS4lQcIaWqm8+7dHN+4WKV/WKcP8C2gcV0o+L+8XS1V0z5mkECrlkxjSol6CfMY2CS3gt36UGEsY7rAUNCxWLwPhZ4fbV3bJM0w1jbZ9Ct2B/V2QsMqYbBVYZMWyb4VxO/pdrpBge+ZlQSYqgeO+jMJUuxm4+utsUGjjKrgWMa2G9urzNNONoFzTQCfE4ZNLAblFIj1Gn4GdSBGAnVEMDPjL9kPrZizgY5H/kfqbgCZ8L3wOKGvWzfAe527K9Ah3e+V9wvV+lXpVe7ldOTvv3mCSrZIPsEEoOyQk5JxekTjgR5I28k4/Sl7PirDnrPalT6tcsk4Fwtr8BW92+Dg==</latexit><latexit sha1_base64="g/nJwx2eX4xxAhUznRyCTA/+VHg=">AAACbXicbVHbSsNAEN3Ge70rPikSrKIPWrIi6Isg+uKjSqtCDbLZTtqlm03cnag1+A2+6qf5Ff6Cm7SIrQ4sHM6cmT0zEyRSGPS8z5IzMjo2PjE5VZ6emZ2bX1hcujZxqjnUeSxjfRswA1IoqKNACbeJBhYFEm6Czlmev3kEbUSsathNwI9YS4lQcIaWqm8+7dHN+4WKV/WKcP8C2gcV0o+L+8XS1V0z5mkECrlkxjSol6CfMY2CS3gt36UGEsY7rAUNCxWLwPhZ4fbV3bJM0w1jbZ9Ct2B/V2QsMqYbBVYZMWyb4VxO/pdrpBge+ZlQSYqgeO+jMJUuxm4+utsUGjjKrgWMa2G9urzNNONoFzTQCfE4ZNLAblFIj1Gn4GdSBGAnVEMDPjL9kPrZizgY5H/kfqbgCZ8L3wOKGvWzfAe527K9Ah3e+V9wvV+lXpVe7ldOTvv3mCSrZIPsEEoOyQk5JxekTjgR5I28k4/Sl7PirDnrPalT6tcsk4Fwtr8BW92+Dg==</latexit>

w
<latexit sha1_base64="OMnNTGovR1XG8QpPTKW9vuQySPw=">AAACa3icbVHbSsNAEN3Ge73rm/oQbAs+SElE0JeC6IuP9VIttKFstpN2cbOJuxNrDX6Cr/ptfoT/4CYtYqsDC4czZ2bPzPix4Bod57NgzczOzS8sLhWXV1bX1jc2t+50lCgGDRaJSDV9qkFwCQ3kKKAZK6ChL+Def7jI8vdPoDSP5C0OY/BC2pM84IyioW7Kg3Jno+RUnTzsv8AdgxIZR72zWbhudyOWhCCRCap1y3Vi9FKqkDMBr8V2oiGm7IH2oGWgpCFoL829vtoVw3TtIFLmSbRz9ndFSkOth6FvlCHFvp7OZeR/uVaCwamXchknCJKNPgoSYWNkZ4PbXa6AoRgaQJnixqvN+lRRhmY9E50QawEVGg7zQreGKgEvFdwHM6GcGvCJqsfES1/48ST/I/dSCQN8zn1PKG5dL812kLktmiu40zv/C+6Oqq5Tda+OSmfn43sskl2yTw6IS07IGbkkddIgjPTIG3knH4Uva9vasfZGUqswrtkmE2FVvgFRY72c</latexit><latexit sha1_base64="OMnNTGovR1XG8QpPTKW9vuQySPw=">AAACa3icbVHbSsNAEN3Ge73rm/oQbAs+SElE0JeC6IuP9VIttKFstpN2cbOJuxNrDX6Cr/ptfoT/4CYtYqsDC4czZ2bPzPix4Bod57NgzczOzS8sLhWXV1bX1jc2t+50lCgGDRaJSDV9qkFwCQ3kKKAZK6ChL+Def7jI8vdPoDSP5C0OY/BC2pM84IyioW7Kg3Jno+RUnTzsv8AdgxIZR72zWbhudyOWhCCRCap1y3Vi9FKqkDMBr8V2oiGm7IH2oGWgpCFoL829vtoVw3TtIFLmSbRz9ndFSkOth6FvlCHFvp7OZeR/uVaCwamXchknCJKNPgoSYWNkZ4PbXa6AoRgaQJnixqvN+lRRhmY9E50QawEVGg7zQreGKgEvFdwHM6GcGvCJqsfES1/48ST/I/dSCQN8zn1PKG5dL812kLktmiu40zv/C+6Oqq5Tda+OSmfn43sskl2yTw6IS07IGbkkddIgjPTIG3knH4Uva9vasfZGUqswrtkmE2FVvgFRY72c</latexit><latexit sha1_base64="OMnNTGovR1XG8QpPTKW9vuQySPw=">AAACa3icbVHbSsNAEN3Ge73rm/oQbAs+SElE0JeC6IuP9VIttKFstpN2cbOJuxNrDX6Cr/ptfoT/4CYtYqsDC4czZ2bPzPix4Bod57NgzczOzS8sLhWXV1bX1jc2t+50lCgGDRaJSDV9qkFwCQ3kKKAZK6ChL+Def7jI8vdPoDSP5C0OY/BC2pM84IyioW7Kg3Jno+RUnTzsv8AdgxIZR72zWbhudyOWhCCRCap1y3Vi9FKqkDMBr8V2oiGm7IH2oGWgpCFoL829vtoVw3TtIFLmSbRz9ndFSkOth6FvlCHFvp7OZeR/uVaCwamXchknCJKNPgoSYWNkZ4PbXa6AoRgaQJnixqvN+lRRhmY9E50QawEVGg7zQreGKgEvFdwHM6GcGvCJqsfES1/48ST/I/dSCQN8zn1PKG5dL812kLktmiu40zv/C+6Oqq5Tda+OSmfn43sskl2yTw6IS07IGbkkddIgjPTIG3knH4Uva9vasfZGUqswrtkmE2FVvgFRY72c</latexit><latexit sha1_base64="OMnNTGovR1XG8QpPTKW9vuQySPw=">AAACa3icbVHbSsNAEN3Ge73rm/oQbAs+SElE0JeC6IuP9VIttKFstpN2cbOJuxNrDX6Cr/ptfoT/4CYtYqsDC4czZ2bPzPix4Bod57NgzczOzS8sLhWXV1bX1jc2t+50lCgGDRaJSDV9qkFwCQ3kKKAZK6ChL+Def7jI8vdPoDSP5C0OY/BC2pM84IyioW7Kg3Jno+RUnTzsv8AdgxIZR72zWbhudyOWhCCRCap1y3Vi9FKqkDMBr8V2oiGm7IH2oGWgpCFoL829vtoVw3TtIFLmSbRz9ndFSkOth6FvlCHFvp7OZeR/uVaCwamXchknCJKNPgoSYWNkZ4PbXa6AoRgaQJnixqvN+lRRhmY9E50QawEVGg7zQreGKgEvFdwHM6GcGvCJqsfES1/48ST/I/dSCQN8zn1PKG5dL812kLktmiu40zv/C+6Oqq5Tda+OSmfn43sskl2yTw6IS07IGbkkddIgjPTIG3knH4Uva9vasfZGUqswrtkmE2FVvgFRY72c</latexit>

<latexit sha1_base64="wx/vi7bS25QlkX7h3lMwGbV5paM=">AAACBXicbVC7TsMwFHXKq5RXgZElokViqpIKAWMFC2OR6ENqo8pxnNaq7UT2DaKKOrOzwi+wIVa+gz/gM3DaDLTlSJaOzrkvHz/mTIPjfFuFtfWNza3idmlnd2//oHx41NZRoghtkYhHqutjTTmTtAUMOO3GimLhc9rxx7eZ33mkSrNIPsAkpp7AQ8lCRjAYqVvtB5QDrg7KFafmzGCvEjcnFZSjOSj/9IOIJIJKIBxr3XOdGLwUK2CE02mpn2gaYzLGQ9ozVGJBtZfO7p3aZ0YJ7DBS5kmwZ+rfjhQLrSfCN5UCw0gve5n4n9dLILz2UibjBKgk80Vhwm2I7OzzdsAUJcAnhmCimLnVJiOsMAET0cKWbHYM4mlaMtG4y0Gskna95l7WLu7rlcZNHlIRnaBTdI5cdIUa6A41UQsRxNELekVv1rP1bn1Yn/PSgpX3HKMFWF+/IDCY7Q==</latexit>

d
<latexit sha1_base64="5N8Sq9B6Ew7p4wvcomqJgG5htpY=">AAACB3icbVDLTgIxFO3gC/GFunQzEUzcSGaIUZdENy4xkUeECel0OtDQdibtHSMhfIB7t/oL7oxbP8M/8DPswCwEPEmTk3Puq8ePOdPgON9WbmV1bX0jv1nY2t7Z3SvuHzR1lChCGyTikWr7WFPOJG0AA07bsaJY+Jy2/OFN6rceqdIskvcwiqkncF+ykBEMRnoou2fdgHLA5V6x5FScKexl4makhDLUe8WfbhCRRFAJhGOtO64TgzfGChjhdFLoJprGmAxxn3YMlVhQ7Y2nF0/sE6MEdhgp8yTYU/VvxxgLrUfCN5UCw0Aveqn4n9dJILzyxkzGCVBJZovChNsQ2en37YApSoCPDMFEMXOrTQZYYQImpLkt6ewYxNOkYKJxF4NYJs1qxb2onN9VS7XrLKQ8OkLH6BS56BLV0C2qowYiSKIX9IrerGfr3fqwPmelOSvrOURzsL5+AQPomV8=</latexit>

1�d
<latexit sha1_base64="waXJA2hmT21SxtyHpU8HYoTt6mc=">AAACAnicbVDLTgIxFO3gC/GFunTTCCaucIYYdUl04xITB0hgQjqlAw2dzqS9oxLCzr1b/QV3xq0/4h/4GXZgFgKepMnJOffV48eCa7Dtbyu3srq2vpHfLGxt7+zuFfcPGjpKFGUujUSkWj7RTHDJXOAgWCtWjIS+YE1/eJP6zQemNI/kPYxi5oWkL3nAKQEjuWXn7LHcLZbsij0FXiZORkooQ71b/On0IpqETAIVROu2Y8fgjYkCTgWbFDqJZjGhQ9JnbUMlCZn2xtNjJ/jEKD0cRMo8CXiq/u0Yk1DrUeibypDAQC96qfif104guPLGXMYJMElni4JEYIhw+nPc44pRECNDCFXc3IrpgChCweQztyWdHUP4NCmYaJzFIJZJo1pxLirnd9VS7ToLKY+O0DE6RQ66RDV0i+rIRRRx9IJe0Zv1bL1bH9bnrDRnZT2HaA7W1y8qsJdA</latexit>

1/w

Figure 5: The chain is in state 1 ≤ p ≤ w if the minimizer starts at position p in the k-mer. Different
edge colors represent different probabilities.

Proof. We have to represent the three components fm, L, and P . The MPHF fm can be realized using
2n/(w+1)·log2 e bits. The array L stores 2n/(w+1) integers whose sum is n since each element represents
the number of k-mers in a super-k-mer. Therefore L can be represented with Elias-Fano [16, 14] using
at most 2n

w+1 · (log2(w+1
2) + 2 + o(1)) bits. We can also represent P using this space bound. In fact, note

that since |g| − k+ 1 ≤ pg,1 ≤ w for Property 2, we can store the quantities (pg,1− (|g| − k+ 1)) in P for
any super-k-mer g. If we compute the prefix-sums for the array P , we can encoded it with Elias-Fano.
The last element in the prefix-summed P is at most

∑
g(w− (|g| − k + 1)) = w · 2n

w+1 − n < 2n− n = n.
Summing these spaces, the claimed space bound follows.

Proof of Theorem 3

Theorem 3. Given a random minimizer scheme (k,m, h) with m > (3 + ε) log4(w + 1) for any ε > 0
and w = k −m+ 1, there exists a (1− ε)-LP MPHF for a SPSS S which takes

n · 2

w + 1
·
(

log2

(
e

16 · 21/4

3
· (w + 1)

)
+ o(1)

)
bits (7)

with ε = 2
w+1 and n = |spectrumk(S)|.

Before proving Theorem 3, we need to compute the proportions of the different types of super-k-mers
as given by the FL rule. For ease of notation, let Plr = P[g is left-right-max], Pl = P[g is left-max],
Pr = P[g is right-max], Pn = P[g is non-max], for any super-k-mer g.

Remark 1. The FL rule is a partitioning rule, i.e., Plr + Pl + Pr + Pn = 1 for any super-k-mer.

We now want to derive the expression for the probabilities Plr, Pl, Pr, and Pn, parametric in k
and m. Let X : Σk → {1, . . . , w} be a discrete random variable, modelling the starting position of the
minimizer in a k-mer. The corresponding Markov chain is illustrated in Figure 5. Each state of the chain
is labelled with the corresponding value assumed by X, i.e., with each value in {1, . . . , w}. Clearly, we
have a left-right-max super-k-mer if, from state w we transition to state w− 1, then to w− 2, . . ., down
to state 1. Each state has a “fall-back” probability to go to state w which corresponds to the event that
the right-most m-mer (that coming next to the right) is the new minimizer. If the chain reaches state 1,
instead, we know that we are always going to see a new minimizer next. If c ∈ [1..∆] is the code assigned
to the current minimizer by the coding function h used by µ, for some ∆ (e.g, c is a 64-bit hash code, so
∆ = 264), the probability for any m-mer to become the new minimizer is equal to δ = c−1

∆ . Vice versa,
the probability of keeping the same minimizer when sliding one position to the right, is 1− δ. Whenever
we change minimizer, we generate a new code c and, hence, the probability δ changes with every formed
super-k-mer. Nonetheless, the following Theorem shows that the probabilities Plr, Pl, Pr, and Pn, do
not depend on δ.

Theorem 4. For any random minimizer scheme (k,m, h) we have

Plr = P[g is left-right-max] = W 2 + 1/w

Pl = P[g is left-max] = W (1−W)

Pr = P[g is right-max] = W (1−W)

Pn = P[g is non-max] = W 2

where W = 1
2 · (1− 1

w) and w = k −m+ 1.

15

We give the following Lemma to prove Theorem 4. (When we write “first”/“last” k-mer we are going
to silently assume “of a super-k-mer”.)

Lemma 3. P[X = 1] = 1
2 and P[X = w] = 1

2 · (1 + 1
w).

Proof. First note that

P[X = p in the first k-mer] = P[X = 1] · 1

w
, for any 1 ≤ p ≤ w − 1. (8)

Then we have the following equivalences.

w∑
p=1

P[X = p in the first k-mer] = 1 ⇐⇒

P[X = w] +

w−1∑
p=1

P[X = p in the first k-mer] = 1 ⇐⇒

P[X = w] + P[X = 1] ·
(

1− 1

w

)
= 1, using Equation 8. (9)

Now note that
P[X = w] = Plr + Pr (10)

because the starting position of the minimizer of the first k-mer of any left-right-max and of any right-
max super-k-mer is w. In a similar way, we have that

P[X = 1 in the last k-mer] =

P[X = 1] + P[X = 1 in the first k-mer] =

P[X = 1] ·
(

1 +
1

w

)
= Plr + Pl (11)

because the starting position of the minimizer of the last k-mer of any left-right-max and of any left-max
super-k-mer is 1. Now we prove that

Pl = Pr. (12)

In fact, we have

Pl = P[X = w in first k-mer] · P[X 6= 1 in last k-mer] =

= (1− P[X 6= w in first k-mer]) · (1− P[X = 1 in last k-mer]) =

=
(

1− P[X = 1] ·
(

1− 1

w

))
·
(

1− P[X = 1] ·
(

1 +
1

w

))
=

= (P[X = 1])2 ·
(

1− 1

w2

)
, and similarly

Pr = P[X 6= w in first k-mer] · P[X = 1 in last k-mer] =

= P[X = 1] ·
(

1− 1

w

)
· P[X = 1] ·

(
1 +

1

w

)
=

= (P[X = 1])2 ·
(

1− 1

w2

)
.

So from Equation 12 we have Plr + Pr = Plr + Pl which, using Equation 11 and 10, yields

P[X = w] = P[X = 1] ·
(

1 +
1

w

)
. (13)

Lastly the Lemma follows by using Equation 13 into Equation 9.

Now we prove Theorem 4.

Proof. Since the FL rule induces a partition:

Plr + Pr + Pl + Pn = 1 ⇐⇒
Plr + Plr + Pr + Pl + Pn = 1 + Plr (adding Plr to both sides) ⇐⇒
2P[X = w] + Pn = 1 + Plr (knowing that Plr + Pr = Plr + Pl = P[X = w]) ⇐⇒

Plr = Pn +
1

w
(for Lemma 3). (14)

16

Again exploiting the fact that Plr + Pr = Plr + Pl = P[X = w], we also have

Pl = Pr = P[X = w]− Plr =
1

2
·
(

1 +
1

w

)
− Pn −

1

w
. (15)

We have therefore to compute Pn to also determine Plr, Pl, and Pr.

Pn = P[X 6= w in first k-mer] · P[X 6= 1 in last k-mer] = (16)

P[X = 1] ·
(

1− 1

w

)
· (1− P[X = 1 in last k-mer]) =

P[X = 1] ·
(

1− 1

w

)
·
(

1− P[X = 1] ·
(

1 +
1

w

))
=
(1

2
·
(

1− 1

w

))2

for Lemma 3.

Now letting W = 1
2 · (1 − 1

w) and substituting Pn = W 2 (Equation 16) into Equation 14 and 15, the
Theorem follows.

Lastly in this section, we prove Theorem 3.

Proof. We have to represent the following components: the minimizer MPHF fm, the array R storing the
types of the super-k-mers, and the arrays Ll, Lr, Ln, and Pn. The MPHF fm takes (i) 2n/(w+1) · log2 e
bits and R takes (ii) 2n/(w + 1) · (2 + o(1)) bits as already discussed. For sufficiently large w, the
proportions of super-k-mers are all ≈1/4 for Theorem 4 so that we have n

2(w+1) super-k-mers of each

type. (This also means that the choice of 2-bit codes for the symbols of R is essentially optimal.) For
the left-right-max super-k-mers we do not store anything and they cover w · n

2(w+1) ≈ n/2 of the k-mers.

The other half of the k-mers is handled by the other three super-k-mer types: we do not know the
exact amount of k-mers per type; yet, we are sure that the worst case for the space happens when each
partition takes the same amount of k-mers (uniform partitioning), i.e., n/6. The space for Ll plus that
for Lr is then (iii) 2 · n

2(w+1) · (log2(n/6 · (w + 1)/(2n)) + 2 + o(1)) = n
w+1 · (log2((w + 1)/3) + 2 + o(1))

bits. Similarly, the array Ln takes n
2(w+1) · (log2((w + 1)/3) + 2 + o(1)) bits. The space for the array

Pn is instead n
2(w+1) · (log2(2(w + 1)/3) + 2 + o(1)) bits following a similar argument to that used in

the proof of Theorem 2: the last element in the prefix-summed Pn is at most
∑
g is non-max(w − (|g| −

k + 1)) = w · n
2(w+1) − n/6 < n/2 − n/6 = n/3. Therefore, the space for Ln plus that for Pn is (iv)

n
w+1 · (log2((w+ 1)/3) + 5/2 + o(1)) bits. Summing spaces (i), (ii), (iii), (iv) together, the claimed space
bound follows.

17

	1 Introduction
	2 Locality-Preserving Minimal Perfect Hashing of k-mers
	3 Information-Theoretic Lower Bound
	4 Construction
	4.1 Data Structure
	4.2 Partitioned Data Structure
	4.3 Ambiguous Minimizers

	5 Experiments
	6 Conclusion and Open Questions

