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Graph-Based Multilingual Label Propagation for Low-Resource Part-of-Speech Tagging

Part-of-Speech (POS) tagging is an important component of the NLP pipeline, but many lowresource languages lack labeled data for training. An established method for training a POS tagger in such a scenario is to create a labeled training set by transferring from high-resource languages. In this paper, we propose a novel method for transferring labels from multiple high-resource source to low-resource target languages. We formalize POS tag projection as graph-based label propagation. Given translations of a sentence in multiple languages, we create a graph with words as nodes and alignment links as edges by aligning words for all language pairs. We then propagate node labels from source to target using a Graph Neural Network augmented with transformer layers. We show that our propagation creates training sets that allow us to train POS taggers for a diverse set of languages. When combined with enhanced contextualized embeddings, our method achieves a new state-ofthe-art for unsupervised POS tagging of low resource languages.

Introduction

In many applications, Part-of-Speech (POS) tagging is an important part of the NLP pipeline. In recent years, high-accuracy POS taggers have been developed owing to advances in machine learning methods that combine pretraining on large unlabeled corpora and supervised fine-tuning on wellcurated annotated datasets. This methodology only applies to a handful of high-resource (HR) languages for which the necessary training data exists, leaving behind the majority of low-resource (LR) languages. When training resources are scarce, an established method for training POS taggers is to automatically generate the training data via crosslingual transfer [START_REF] Yarowsky | Inducing multilingual POS taggers and NP bracketers via robust projection across aligned corpora[END_REF][START_REF] Fossum | Automatically inducing a part-of-speech tagger by projecting from multiple source languages across aligned corpora[END_REF][START_REF] Agić | Multilingual projection for parsing truly low-resource languages[END_REF][START_REF] Eskander | Unsupervised cross-lingual part-ofspeech tagging for truly low-resource scenarios[END_REF] Figure 1: The sentence "Actions speak louder than words" in English and its translations in Persian, German, and Turkish, aligned at the word level. The POS tags for high-resource English and German are known. We use a GNN to exploit this graph structure and compute POS tags for low-resource Persian and Turkish. 2020). Typically, POS annotations are projected through alignment links from the HR source to the LR target of a word aligned parallel corpus.

In this paper, we propose GLP (Graph Label Propagation), a novel method for transferring labels simultaneously from multiple high-resource source languages to multiple low-resource target languages. We formalize POS tag projection as graph-based label propagation. Given translations of a sentence in multiple languages, we create a graph with words as nodes and alignment links as edges by aligning words for all language pairs. We then propagate POS labels associated with source language nodes to target language nodes, using a label propagation model that is formalized as a Graph Neural Network (GNN) [START_REF] Scarselli | The graph neural network model[END_REF]. Nodes are represented by a diverse set of features that describe both linguistic properties and graph structural information. In a second step, we additionally employ self-learning to obtain reliable training instances in the target languages.

Our approach is based on multiparallel corpora, meaning that the translation of each sentence is available in more than two languages. We exploit the Parallel Bible Corpus (PBC) of [START_REF] Mayer | Creating a massively parallel Bible corpus[END_REF],1 a multiparallel corpus that covers more than 1000 languages, many of which are extremely low-resource, by which we mean that only a tiny amount of unlabeled data is available or that no language technologies exist for them at all [START_REF] Joshi | The state and fate of linguistic diversity and inclusion in the NLP world[END_REF].

We evaluate our method on a diverse set of lowresource languages from multiple language families, including four languages not covered by pretrained language models (PLMs). We train POS tagging models for these languages and evaluate them against references from the Universal Dependencies corpus [START_REF] Daniel Zeman | Universal dependencies 2[END_REF]. We compare the results of our method against multiple stateof-the-art (SOTA) cross-lingual unsupervised and semisupervised POS taggers employing different approaches like annotation projection and zero-shot transfer. Our experiments highlight the benefits of our new transfer and self-learning methods; crucially, they show that reasonably accurate POS taggers can be bootstrapped without any annotated data for a diverse set of low-resource languages, establishing a new SOTA for high-resource-to-lowresource cross-lingual POS transfer. We also assess the quality of the projected annotations with respect to "silver" references and perform an ablation study. To summarize, our contributions are:2 

• We formalize annotation projection as graphbased label propagation and introduce two new POS annotation projection models, GLP-B (GLP-Base) and GLP-SL (GLP-SelfLearning).

• We evaluate GLP-B and GLP-SL on 17 lowresource languages, including 4 languages not covered by large PLMs.

• By comparing our method with various supervised, semisupervised, and PLM-based approaches for POS tagging of low-resource languages, we establish a new SOTA for unsupervised POS tagging.

Related work

POS tagging Part of Speech tagging aims to assign each word the proper syntactic tag in its context [START_REF] Manning | Foundations of Statistical Natural Language Processing[END_REF]. For highresource languages, for which large labeled training sets are available, high-accuracy POS tagging is achieved through supervised learning [START_REF] Kondratyuk | [END_REF][START_REF] Tsai | Small and practical bert models for sequence labeling[END_REF].

Zero-shot transfer In low-resource settings, one approach is to use cross-lingual transfer thanks to pretrained multilingual representations, thereby enabling zero-shot POS tagging. [START_REF] Kondratyuk | [END_REF] analyze the few-shot and zero-shot performance of mBERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] finetuning on POS tagging. We include this approach in our set of baselines below. [START_REF] Ebrahimi | How to adapt your pretrained multilingual model to 1600 languages[END_REF] and Wang et al. (2022a) analyze zeroshot POS tagging performance of XLM-RoBERTa [START_REF] Conneau | Unsupervised cross-lingual representation learning at scale[END_REF] and propose complementary methods such as continued pretraining, vocabulary expansion and adapter modules for better performance. We show that combining GLP with Wang et al. (2022a)'s embeddings further improves our base performance.

Annotation projection is another approach for annotation of low-resource languages. [START_REF] Yarowsky | Inducing multilingual POS taggers and NP bracketers via robust projection across aligned corpora[END_REF] first proposed the idea of projecting annotation labels across languages exploiting parallel corpora and word alignment. To reduce systematic transfer errors, [START_REF] Fossum | Automatically inducing a part-of-speech tagger by projecting from multiple source languages across aligned corpora[END_REF] extended this by projecting from multiple source languages. Agić et al. (2015a) and [START_REF] Agić | Multilingual projection for parsing truly low-resource languages[END_REF] exploit multilingual transfer setups to bootstrap POS taggers for low-resource languages starting from a parallel corpus and taggers and parsers for high-resource languages. Other works project labels by leveraging token and typelevel constraints [START_REF] Täckström | Token and type constraints for cross-lingual part-of-speech tagging[END_REF]Buys and Botha, 2016a;[START_REF] Eskander | Unsupervised cross-lingual part-ofspeech tagging for truly low-resource scenarios[END_REF]. The latter study notably proposes an unsupervised method for selecting training instances via cross-lingual projection and trains POS taggers exploiting contextualized word embeddings, affix embeddings and hierarchical Brown clusters [START_REF] Peter | Class-based n-gram models of natural language[END_REF]. This approach is also used as a baseline below.

Semi-supervised approaches have been proposed to mitigate the noise of projecting between languages. This can be achieved with auxiliary lexical resources [START_REF] Täckström | Token and type constraints for cross-lingual part-of-speech tagging[END_REF][START_REF] Ganchev | Crosslingual discriminative learning of sequence models with posterior regularization[END_REF][START_REF] Wisniewski | Crosslingual part-of-speech tagging through ambiguous learning[END_REF][START_REF] Li | Wiki-ly supervised part-of-speech tagging[END_REF] that guide unsupervised learning or act as an additional training signal [START_REF] Plank | Distant supervision from disparate sources for low-resource partof-speech tagging[END_REF]. Other works combine manual and projected annotations [START_REF] Garrette | Learning a part-of-speech tagger from two hours of annotation[END_REF][START_REF] Fang | Learning when to trust distant supervision: An application to lowresource POS tagging using cross-lingual projection[END_REF]. We outperform prior works without the use of additional resources (such as dictionaries and annotations).

Graph Neural Networks Many natural and reallife structures like physical systems, social networks & interactions, and molecular fingerprints have a graphical structure [START_REF] Liu | Introduction to graph neural networks[END_REF]. Graph neural networks have been successfully used to model them. Applications include social spammer detection [START_REF] Wu | Graph convolutional networks with markov random field reasoning for social spammer detection[END_REF], learning molecular fingerprints [START_REF] David K Duvenaud | Convolutional networks on graphs for learning molecular fingerprints[END_REF] and human motion prediction [START_REF] Li | Dynamic multiscale graph neural networks for 3d skeleton based human motion prediction[END_REF]. Recently, GNNs have been adopted for NLP tasks such as text classification [START_REF] Peng | Large-scale hierarchical text classification with recursively regularized deep graph-cnn[END_REF], sequence labeling [START_REF] Zhang | Sentencestate LSTM for text representation[END_REF][START_REF] Marcheggiani | Encoding sentences with graph convolutional networks for semantic role labeling[END_REF], neural machine translation [START_REF] Bastings | Graph convolutional encoders for syntax-aware neural machine translation[END_REF][START_REF] Beck | Graph-to-sequence learning using gated graph neural networks[END_REF], and alignment link prediction [START_REF] Imani | Graph neural networks for multiparallel word alignment[END_REF]. As far as we know, our work is the first to form the annotation projection problem as graph-based label propagation.

Multiparallel corpora A multiparallel corpus provides the translations of a source text in more than two languages. A few such corpora [START_REF] Agić | JW300: A widecoverage parallel corpus for low-resource languages[END_REF][START_REF] Mayer | Creating a massively parallel Bible corpus[END_REF][START_REF] Tiedemann | Parallel data, tools and interfaces in opus[END_REF] provide sentence-level aligned text for hundreds or thousands of languages; for many of these languages only a tiny amount of digitized content is available [START_REF] Joshi | The state and fate of linguistic diversity and inclusion in the NLP world[END_REF]. Although the amount of text found in existing multiparallel corpora is far less than in monolingual corpora, we believe that they can serve as cross-lingual bridges, with which effective representation for low-resource languages can be derived. Highly multiparallel corpora have been used for expanding pretrained models to more languages [START_REF] Ebrahimi | How to adapt your pretrained multilingual model to 1600 languages[END_REF]Wang et al., 2022b), word alignment improvement and visualization [START_REF] Imanigooghari | ParCourE: A parallel corpus explorer for a massively multilingual corpus[END_REF][START_REF] Imani | Graph neural networks for multiparallel word alignment[END_REF], embedding learning [START_REF] Dufter | Embedding learning through multilingual concept induction[END_REF], and annotation projection (Agić et al., 2015b;[START_REF] Severini | Towards a broad coverage named entity resource: A data-efficient approach for many diverse languages[END_REF].

Method

We now introduce our Graph Label Propagation (GLP) method, which formalizes the problem of annotation projection as graph-based label propagation. We first describe the graph structure, then the features associated with each node, and finally the architecture of our model.

Problem formalization

The multilingual alignment graph (MAG) of a sentence is formalized as follows. Each sentence σ in our multiparallel corpus exists in a set L of languages.3 L contains both high-resource source languages (in L s ) and low-resource target languages (in L t ) with L s ∪ L t = L. Each word in these |L| versions of σ will constitute a node in our graph.

We first automatically annotate the text in all the source languages using pre-existing taggers: these POS tags are node labels; they are only known for languages in L s , unknown otherwise. We then use Eflomal [START_REF] Östling | Efficient word alignment with Markov Chain Monte Carlo[END_REF], an unsupervised word alignment tool to compute alignment links for all |L| * (|L|-1) 2 language pairs: these links define the edges of our MAG. Figure 1 displays an example MAG for four languages, with English and German as sources and Turkish and Persian as targets. Note that both the word alignments and the node labels are noisy since we do not use gold data but statistical methods to generate them.

Features

To train graph neural networks, we represent each node using a set of features [START_REF] Duong | On node features for graph neural networks[END_REF]. In Figure 2 you see a simple illustration of how nodes are represented using a feature vector. The graph in this figure is part of the original graph in Figure 1. Two types of features are considered: features that represent the inherent meaning of a node/word (word representation features) and features that describe the position of a node within the graph (graph structural features). Word representation features consist of: XLM-R [START_REF] Conneau | Unsupervised cross-lingual representation learning at scale[END_REF] embeddings, the node's language and its position within the sentence. Since XLM-R embeddings are not available for all languages, we alternatively experiment with static word embeddings created using [START_REF] Levy | A strong baseline for learning cross-lingual word embeddings from sentence alignments[END_REF]'s sentence-ID method, which we train on PBC. Our graph structural features are similar to [START_REF] Imani | Graph neural networks for multiparallel word alignment[END_REF]'s work on link prediction. They include five centrality features: degree, closeness [START_REF] Linton C Freeman | Centrality in social networks conceptual clarification[END_REF], betweenness [START_REF] Brandes | A faster algorithm for betweenness centrality[END_REF], load (Newman, 2001), and harmonic centrality [START_REF] Boldi | Axioms for centrality[END_REF]. Each of these features describes the node's position within the graph from a different perspective. For example, degree is the number of neighbors of the node and harmonic centrality measures how important/influential a node is. They also include two community features corresponding to the ID of the node's communities computed respectively with the greedy modularity community detection method of [START_REF] Clauset | Finding community structure in very large networks[END_REF] and the label propagation algorithm of [START_REF] Cordasco | Community detection via semi-synchronous label propagation algorithms[END_REF]. These two methods detect communities of nodes such that there are many links within the communities and only a few between them. The encoder has two GATConv layers [START_REF] Veličković | Graph attention networks[END_REF]: given a graph with M nodes represented as x 1 , x 2 , ..., x M , with respective neighborhoods N (1), N (2), ..., N (M ), a GATConv layer computes a new representation x i for each node as:

GLP architecture

x i = j∈N (i)∪{i} α i,j Wx j , (1) 
with W a learnable weight matrix. α i,j measures how much node i "attends" to node j as follows:

α i,j = exp g a [Wx i Wx j ] k∈N (i)∪{i} exp (g (a [Wx i Wx k ]))
where stands for concatenation, g is the LeakyReLU (Maas et al.) and a is a weight vector. As neighborhoods only use alignment links, the representation of a node is only influenced by nodes in other languages. Also note that both source and target nodes are fed to the encoder.

We train two GLP models: GLP-Base (GLP-B) and GLP-SelfLearning (GLP-SL). The first one is the basic GNN architecture. It tags a token based on the other languages only, i.e., it makes no use of the sequence information of the token in its own language. The second additionally employs selflearning and is given access to the local context of each token in its own language.

GLP-B uses a multi-layer perceptron as classifier. We feed the node representations to the classifier and train the model end-to-end. We can only do this for source nodes since we have no training data for the target languages.

GLP-SL additionally employs self-learning and a better classifier. Self-learning takes advantage of node labels predicted by GLP-B in the first step: when the prediction confidence exceeds a threshold γ, these labels are deemed correct and the corresponding nodes are considered when training the classifier. GLP-SL uses a Transformer architecture to predict POS tags. The Transformer input consists of all translations of a sentence, where words are represented as GNN node embeddings. Each embedding is the concatenation of input (x i ) and output representations (x i ) of the corresponding node in the GNN. In addition to the information available from neighbor nodes in other languages, the Transformer can attend to other words of the sentence in the same language, some of which may already be (automatically) labeled. This is very different from the training of GLP-B, where the POS of words of the same language were either all known (for source languages) or all unknown (for target languages), and explains why we resorted to a simpler classifier in the first stage.

Similar to [START_REF] Eskander | Unsupervised cross-lingual part-ofspeech tagging for truly low-resource scenarios[END_REF][START_REF] Agić | Multilingual projection for parsing truly low-resource languages[END_REF], GLP-SL uses type-level information: for each word type, we create a tag distribution by accumulating counts of the number of times each tag was assigned. For source words, we use the training data to estimate the distribution. For target words, we use the predictions of GLP-B on PBC.

Neural POS tagger

We use the noisy labeled data, generated by GLP-B or GLP-SL, to train monolingual neural POS taggers. Each model is a Bi-LSTM (Bidirectional Long Short-Term Memory, (Hochreiter and Schmidhuber, 1997)) with XLM-RoBERTa embeddings [START_REF] Conneau | Unsupervised cross-lingual representation learning at scale[END_REF]. The input is a sentence labeled by GLP-B or GLP-SL. A token is assigned the NULL tag in case of missing labels. It is then ignored (i.e., masked) when computing the cross-entropy loss. To avoid predicting NULL, we set the corresponding output cell in the softmax to -∞, similar to [START_REF] Eskander | Unsupervised cross-lingual part-ofspeech tagging for truly low-resource scenarios[END_REF]. Prior work has used older versions of UD . We now compare against each baseline, evaluating on the relevant version of UD in each case.

Experimental setup

Annotation projection-based baselines

In this section, we compare with the unsupervised SOTA in cross-lingual POS tagging via annotation projection: ESKANDER [START_REF] Eskander | Unsupervised cross-lingual part-ofspeech tagging for truly low-resource scenarios[END_REF], AGIC [START_REF] Agić | Multilingual projection for parsing truly low-resource languages[END_REF] and BUYS (Buys and Botha, 2016b) as well as EFLOMAL. We also compare with a semi-supervised SOTA method that uses rapid annotation in addition to cross-lingual projection: CTRL [START_REF] Cotterell | Crosslingual character-level neural morphological tagging[END_REF].

Fully unsupervised baselines

EFLOMAL is a simple projection method using alignment links followed by majority voting, similar to early annotation projection methods (Agić et al., 2015b;[START_REF] Fossum | Automatically inducing a part-of-speech tagger by projecting from multiple source languages across aligned corpora[END_REF]. We first align all target sentences with the corresponding sentences in all training languages with Eflomal [START_REF] Östling | Efficient word alignment with Markov Chain Monte Carlo[END_REF]. Each target word is then tagged with the most common tag in the aligned source words. The annotation projection method ESKANDER [START_REF] Eskander | Unsupervised cross-lingual part-ofspeech tagging for truly low-resource scenarios[END_REF] uses alignment links and token and type constraints to project tags from source to target. The neural POS tagger features include XLM-R embeddings, affix embeddings, and word clusters created on PBC and Wikipedia of the target languages. [START_REF] Agić | Multilingual projection for parsing truly low-resource languages[END_REF] is a crosslingual POS tagger for low-resource languages based on PBC excerpts and translations of the Watchtower.8 BUYS (Buys and Botha, 2016b) extends previous approaches for projecting POS tags using bitexts to infer constraints on the possible tags for a given word type or token.

Table 4 shows that GLP outperforms AGIC and BUYS, except for Portuguese (BUYS), where our results are slightly below. BUYS projects from Spanish, which is closely related to Portuguese. [START_REF] Eskander | Unsupervised cross-lingual part-ofspeech tagging for truly low-resource scenarios[END_REF] showed that it can be advantageous to transfer only from one closely related language as opposed to a mix of close and distant languages. Note that BUYS performance for Portuguese drops down to 84.3 when transferring from English. BUYS also uses Europarl9 with up to 2M tokens which is closer in domain to UD than PBC. Thus, compared to BUYS, the parallel data we use are smaller, and from a more distant domain.

Semisupervised baseline

CTRL [START_REF] Cotterell | Crosslingual character-level neural morphological tagging[END_REF] is a characterlevel recurrent neural network for multi-task crosslingual transfer of morphological taggers. Their experiments include small sets of 100 and 1000 annotated target tokens. The bottom part of Table 4 shows that GLP-SL outperforms CTRL despite being fully unsupervised. [START_REF] Agić | Multilingual projection for parsing truly low-resource languages[END_REF], BUYS (Buys and Botha, 2016b), CTRL (Cotterell and Heigold, 2017) and GLP-SL. We also report the source language or "mul" for multilingual, and for CTRL, the number of the supervision tokens.

Zero-shot baselines

Cross-lingual projection is also possible thanks to multilingual pretrained language models (PLMs).

A PLM is first fine-tuned to POS tagging on source languages and then used to infer tags for target languages. While this approach performs well for some languages without requiring any parallel data, its performance tends to be poor for low-resource languages [START_REF] Hu | Explicit alignment objectives for multilingual bidirectional encoders[END_REF]. [START_REF] Joshi | The state and fate of linguistic diversity and inclusion in the NLP world[END_REF] clusters languages into six groups based on the amount of available unlabeled and labeled data that exists for them. Groups 1 and 2 consist of languages such as Manx and Yoruba with the least amount of available data, while group 5 contains languages like English and Spanish with the largest amount of available monolingual and labeled data. We compare our approach with three baselines using test languages from groups 1 and 2.

mBERT based baselines: [START_REF] Kondratyuk | [END_REF] use the zero-shot approach with multilingual BERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] as PLM. We train our POS taggers using mBERT (instead of XLM-R) embeddings for a fair comparison. Table 5 displays the results for the low-resource languages in group 1 and 2 also available in the compared work. GLP-SL outperforms zero-shot in all cases by at least 12 percentage points. This result suggests that annotation projection using GLP is more effective than using multilingual representations for truly low-resource languages (i.e., languages from the first two groups of [START_REF] Joshi | The state and fate of linguistic diversity and inclusion in the NLP world[END_REF]). To create proper representations for a language, PLMs require a huge amount of monolingual data that is not available for many languages. As Table 5 suggests, due to poor representations, zero-shot transfer to these languages is also poor. However, we could successfully exploit the Bible's parallel data in GLP for the benefit of these languages.

XLM-R based baselines: 6 Analysis

Ablation study

We conduct an ablation study to better understand what benefits our model.

"Eng" vs "All" Previous works highlighted the importance of a diverse set of source languages for cross-lingual transfer [START_REF] Lin | Choosing transfer languages for cross-lingual learning[END_REF][START_REF] Turc | Revisiting the primacy of english in zero-shot cross-lingual transfer[END_REF]. The last four lines of Table 3 report GLP-B and GLP-SL results when transferring from English (i.e., using English as the only source), and when transferring from the full set of source languages (see Table 1). The transfer from English has lower performance than from all languages (except for a decrease from 67.5 to 67.4 for Basque/GLP-B). This means that our projection method does benefit from more data and from the rich information present in the diversity of source languages. 2). In order to understand their usefulness in the transfer process, we compare with the performance obtained when static embeddings are used by GLP-SL. Results reported in Appendix B show an average improvement of 3 percentage points when XLM-R embeddings are used. The largest differences (> 5%) are observed for Hindi, Persian, and Marathi. However, for the four languages not supported by XLM-R, the POS tagging accuracy is substantially lower when using contextualized embeddings compared to static embeddings (16.6 points drop on average).
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GLP-B vs GLP-SL

Quality of artificial training sets

In order to evaluate the quality of the training sets generated by GLP-SL ("GLP sets"), we create a "silver" reference and compute the accuracy of GLP sets with respect to it. To build the silver reference, we annotate the training sets with the Stanza POS tagger for the languages for which it is available (12 out of 17). We obtain an average accuracy of 78.7, with Belarusian being the best and Basque the worst. The best predicted tokens are punctuation marks, coordinating conjunctions, and verbs, while the worst ones are symbols, interjections, and particles (see Figure 4). The high accuracy of 78.7 illustrates the ability of GLP-SL to successfully project annotations from high to low-resource languages.

Conclusion and future work

We presented GLP, a novel method for transferring labels from high-resource source to low-resource target languages, based on a formalization of annotation projection as graph-based label propagation. We exploited the Parallel Bible Corpus and showed that reasonably accurate POS taggers can be bootstrapped from projected labels. Since we do not use PBC-specific or language-specific features, GLP is in principle applicable to the more than 1000 languages of PBC and to any other multiparallel corpus.

One direction for the future is to employ a similar model to transfer higher-level structures such as dependency trees. Since our method works with graphical structures, one might be able to project dependency trees effectively. We could also extend our projection method to other tagging tasks like named entity recognition -although this requires using other parallel corpora to mitigate the domain shift problem of such a task. Another line for future work is to study the best combinations of source languages to transfer to any target language.

Limitations

Our method is evaluated on 17 languages carefully chosen to be from different families and scripts. However, we don't consider the other languages (more than 1000) in PBC due to computational constraints and lack of test sets.

A limitation of the GLP is that training over a MAG (multilingual alignment graph) created for all PBC languages requires a prohibitively large amount of resources, and based on our experiments, if we use a larger number of target languages at the same time, the performance will likely drop. Therefore one has to process languages in smaller batches (in our case, 36 languages). Accordingly, to cover all PBC subcorpora, 1341/36 = 38 GLP models should in principle be trained.

Ethic statement

Our work is based on the Parallel Bible Corpus of [START_REF] Mayer | Creating a massively parallel Bible corpus[END_REF] that consists of Bible verses and is tested on the Universal Dependency treebanks [START_REF] Daniel Zeman | Universal dependencies 2[END_REF], an ensemble of different data sources. We would like to clarify that we treat the data simply as a multiparallel corpus, and the content does not necessarily reflect the opinions of the authors nor of the institutions funding the authors.

Figure 2 :

 2 Figure 2: An example of how we represent nodes of an alignment graph using features for a part of the graph in Figure 1.

Figure 3

 3 Figure 3 displays the architecture of our GLP model; white nodes are for the source (= training) languages and green nodes for the target languages. The model has two parts: the GNN-based encoder turns the alignment graph into node representations and the classifier learns to label nodes based on these representations. The network is trained to reproduce POS tags for each source node; it is then used to predict the unknown tags for target nodes.The encoder has two GATConv layers[START_REF] Veličković | Graph attention networks[END_REF]: given a graph with M nodes represented as x 1 , x 2 , ..., x M , with respective neighborhoods N (1), N (2), ..., N (M ), a GATConv layer computes a new representation x i for each node as:

Figure 3 :

 3 Figure 3: The architecture of GLP (Graph Label Projector). Source nodes are in white, target nodes in green. For training, we first feed the alignment graph of a sentence to the encoder to compute a representation for each node. Next we feed the representations of the source nodes to the classifier. The training objective is cross entropy on prediction of POS tags. Note that we know the POS tags of the source nodes. After training, the model can generalize the POS tag prediction to target nodes.

Figure 4 :

 4 Figure 4: Average per tag accuracy of our GLP sets with respect to the "silver" reference.

Table 1 :

 1 Language family and number of verses in PBC for training, dev, and test languages in our experiments.

				Lang	ISO	Family	# verses
				Arabic	arb	Afro-Asiatic, Semitic
				Chinese	zho	Sino-Tibetan, Sinitic
				Danish	dan	Indo-European, Germanic
				English	eng	Indo-European
				Finnish	fin	Uralic, Finnic
				French	fra	Indo-European, Romance
		Training	languages	German Irish Italian	deu gle ita	Indo-European, Germanic Indo-European, Celtic Indo-European, Romance
				Polish	Pol	Indo-European, Slavic
				Russian	rus	Indo-European, Slavic
				Spanish	spa	Indo-European, Romance
				Swedish	swe	Indo-European, Germanic
				Tamil	tam	Dravidian, Southern Dravidian	7942
				Urdu	urd	Indo-European, Indic	7046
	Table 1 gives our split of languages into training	Dev	languages	Czech Greek Hebrew Hungarian Afrikans	ces ell heb hun afr	Indo-European, Slavic Indo-European, Greek Afro-Asiatic, Semitic Uralic, Ugric Indo-European, Germanic
	(15), development (4) and test (17) sets. The train-			Amharic Basque	amh Afro-Asiatic, Semitic eus Basque, Basque	7942 7958
	ing set contains the source languages used for the			Belarusian bel Bulgarian bul	Indo-European, Slavic Indo-European, Slavic	7958
	transfer, while the development set languages are			Hindi Indonesian ind hin	Indo-European, Indic Austronesian, Malayo-Sumbawan	7952
	used as targets for parameter tuning. Training and test languages represent diverse language families	Test	languages	Lithuanian lit Marathi mar Persian pes Portuguese pos	Indo-European, Baltic Indo-European, Indic Indo-European, Iranian Indo-European, Romance	7947 7931
	and diverse availability. Note that training and dev			Telugu Turkish	tel tur	Dravidian, South-Central Dravidian Altaic, Turkic
	languages are high-resource while test languages			Bambara Erzya	bam Mande, Western Mande myv Uralic, Mordvin	7958 7958
	are low-resource. For most of the test languages,			Manx Yoruba	glv yor	Indo-European, Celtic Niger-Congo, Defoid	3994
	there are fewer than 8000 verses available in the					
	Parallel Bible Corpus; 4 for Manx, fewer than 4000.					
	We evaluate POS tagging performance on Univer-					
	sal Dependencies (UD) (Zeman et al., 2019) test					
	sets. As UD and PBC tokenizations differ, we fur-					
	ther adopt the following rule: if a PBC token cor-responds to a sequence of several UD tokens, we replace the sequence with the original word, tagged with the tag of the UD token in the sequence that is highest in the dependency tree (cf. (Agić et al.,	alignments using Eflomal (Östling and Tiedemann, 2016), 6 a high-quality statistical word aligner, with the "intersection" symmetrization heuristic. Other than parallel data, Eflomal does not need any super-vision signal; we can thus use it for any language
		pair in PBC. Details on models' hyperparameters
		are in Appendix A.3. All tagging results reported
		below are averages over three runs of the neural

2016)). To tag the high-resource training and dev languages, we use Stanza

[START_REF] Qi | Stanza: A python natural language processing toolkit for many human languages[END_REF]

, 5 a stateof-the-art NLP Python library. We create word

  Table 3 compares EFLOMAL, ESKANDER and GLP. In this table -Eng stands for when only English is used as the source language in GLP and -All stands for when all training languages are used (see §6.1).

	GLP outperforms both baselines in all cases but In-
	donesian, where ESKANDER is 0.7 points better.
	However, they tune their hyperparameters on this
	language using dev data while we only tune them
	on dev languages. Compared to ESKANDER, we
	use a simpler neural POS tagger and less resources,
	as we do not use affix embeddings nor word clus-
	ters. Our initial experiments indicated that word
	clusters were not helping in our setup. The higher
	quality of the annotated data created by GLP may
	already contain the information provided by word
	clusters.
	Table 4 compares AGIC, BUYS, CTRL, and
	GLP-SL. AGIC

Table 2 :

 2 Accuracy on UD v2.10 test for GLP-SL when transferring from all training source languages (i.e., GLP-SL-All). See the other tables for comparison with prior work, which uses older versions of UD.

					with XLM-R								without XLM-R
	afr amh	eus	bul	hin	ind	lit	pes	por	tel	tur	bel mar	bam myv	glv	yor
	87.7 82.4 70.9 90.1 81.8 85.3 85.7 81.8 89.2 83.8 80.1 85.9 87.9	65.4 64.4 63.9 59.9
			afr amh	eus	bul	hin	ind	lit	pes	por	tel	tur AVG	bel mar AVG
	EFLOMAL-Eng	73.7 74.9 60.4 78.9 58.1 72.4 80.3 59.2 74.1 77.5 67.6 70.6	76.2 73.2 71.3
	EFLOMAL-All		83.9 79.3 64.5 85.0 68.1 78.4 82.8 68.6 83.8 77.1 74.8 76.9	79.6 77.8 77.2
	ESKANDER-Eng 86.9 75.3 67.3 85.6 73.9 84.1 80.9 77.2 86.1 80.0 74.3 79.2
	ESKANDER-All 89.3 79.3 67.1 88.2 72.8 83.0 82.5 77.3 87.8 77.1 74.6 79.9
	GLP-B-Eng		86.6 81.9 67.5 85.7 76.8 82.7 81.1 76.2 87.6 82.5 76.4 80.4	80.0 82.3 80.6
	GLP-SL-Eng		84.4 81.9 68.6 84.0 75.8 81.3 81.0 73.5 86.4 80.6 75.8 79.4	75.1 81.5 79.2
	GLP-B-All		89.7 83.6 67.4 89.7 79.9 82.8 85.9 79.6 87.7 81.4 80.3 82.5	87.9 83.2 83.0
	GLP-SL-All		87.5 82.9 70.6 89.7 81.9 83.4 85.8 81.9 89.6 83.7 78.4 83.2	88.8 88.4 84.0

Table 3 :

 3 Accuracy on UD v2.5 test for EFLOMAL, ESKANDER[START_REF] Eskander | Unsupervised cross-lingual part-ofspeech tagging for truly low-resource scenarios[END_REF] and GLP. "-Eng": transfer from English only. "-All": transfer from all training languages (see[START_REF] Eskander | Unsupervised cross-lingual part-ofspeech tagging for truly low-resource scenarios[END_REF] and Table1). Bold: best score for each language.

		Target	AGIC	GLP-SL-All
		bul	70.0 mul	86.1
	v1.2	hin ind	50.5 mul 75.5 mul	79.0 79.5
		pes	33.7 mul	75.2
		por	84.2 mul	87.7
		Target	BUYS	GLP-SL-All
	v1.2	bul por	81.8 eng 88.0 esp	86.1 87.7
		Target	CTRL	GLP-SL-All
		Bul	68.8 rus-100	89.3
	v2.0	Bul Por	83.1 rus-1000 81.8 esp-100	89.3 90.1
		Por	88.9 esp-1000	90.1

Table 4 :

 4 Accuracy on UD test for AGIC

Table 3

 3 

	reports results when

We do not use PBC-specific features. Thus, our work is in principle applicable to any multiparallel corpus.

Our code, data, and trained models are available at https: //github.com/ayyoobimani/GLP-POS

|L| might be different for different sentences.

Bible versions are described in Appendix A.1.

https://stanfordnlp.github.io/stanza/

7github.com/robert/eflomal

XLM-R embeddings are used even for languages unseen during its pretraining as they improve performance. This is probably due to the fact that some words (e.g., names) can be well represented even for an unseen language.

Obtained by crawling http://wol.jw.org

http://www.statmt.org/europarl/
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A Reproducibility details

A.1 Data editions Table 7 lists the edition used for all the experiments in this paper. 

A.2 Universal Dependency tests specification

A.3 Models parameters GLP

The GLP is implemented using the PyTorch geometric library. 11 All hyperparameters are tuned on the dev set. GLP-B has 2 layers of MLP of size 2048 while GLP-SL uses four layers of transformer with hidden size 2048 and 16 attention heads. Although we didn't observe a difference between different sizes from 512 to 2048. We tuned the learning rate, batch size, and γ (the self-learning threshold) over the validation languages. In GLP-B learning rate and batch size are respectively 0.001, 8, and in GLP-SL 0.00001, and 32. In general, when using XLM-R embeddings, the model has higher confidence, so the γ parameter is set to 0.95 when not using XLM-R embeddings and 0.98 when using XLM-R embeddings. The whole model needs about 16GB of GPU memory. GLP-B takes about 2 hours to train and GLP-SL about 12 hours. We 11 https://pytorch-geometric.readthedocs.io/en/ latest/ used early stopping with patience of 8 for both GLP-B and GLP-SL.

Neural POS tagger We run our method on up to 48 cores of Intel(R) Xeon(R) CPU E7-8857 v2 with 1TB memory and a single GeForce GTX 1080 GPU with 8GB memory. The POS tagger uses the Flair framework [START_REF] Akbik | FLAIR: An easy-to-use framework for state-of-theart NLP[END_REF] and Sequenc-eTagger model with 128 hidden size, the "xlmroberta-base" embeddings, and AdamW optimizer [START_REF] Loshchilov | Decoupled weight decay regularization[END_REF]. The hyperparameters, including the fixed number of epochs (15) are tuned using the UD development sets of the development languages. Each Neural POS tagger was trained in less than 30 minutes.

B Contextualized vs. Static embeddings

Table 9 shows results obtained with our GLP-SL with and without using XLM-R embeddings for projection. Note that the final neural POS tagger models always use XLM-R embeddings, even for languages unseen during XLM-R pretraining.