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Abstract: In this paper we provide a metaheuristic method based on Particle Swarm
Optimization to solve the uncapacitated Multi Level Lot Sizing Problem. The PSO is based
on a cost modification heuristic. Eventually, the final solution is refined with a deterministic
local search. The whole method is tested on a set of small and medium size instances of the
literature. The global results are promising and we managed to improve the upper bound of one

of the instance.
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1. INTRODUCTION

Lot sizing problem aims to determine the optimal planning
in a production system with the best trade-off between
setup and holding costs. The uncapacitated mono-level
problem has been defined and solve optimally in poly-
nomial time by Wagner and Whitin (1958). This reso-
lution method is usually called Wagner-Whithin (WW)
algorithm. The Multi Level Lot-Sizing Problem (MLLS)
consider the whole Material Request Planning (MRP) to
determine the optimal planning for all the items and their
components. Contrary to the one level lot sizing problem,
the MLLS was proven strongly NP-hard by Arkin et al.
(1989).

In order to solve this problem, Afentakis and Gavish (1986)
propose a branch and bound algorithm using the echelon
stock notion introduced by Clark and Scarf (1960). More
works dealing with the MLLS developed approximate
approaches such as heuristics or metaheuristics. Several
heuristics solve the problem sequentially, following the bill
of material. First historical approaches consist in applying
mono-level heuristics or optimal algorithm iteratively. The
heuristic start by fixing the top level items and then fix
iteratively their components, level by level such as Yelle
(1979) with mono-level heuristics and Veral and LaForge
(1985) for the resolution with the Wagner-Whithin algo-
rithm. Following the same iterative solving process, some
works developed cost modification heuristics. The prin-
ciple stay the same as Veral and LaForge (1985) but the
difference is that the price considered to apply the Wagner-
Whithin algorithm are modified to consider the sub-item
cost. Several works propose different pricing strategy such
as Blackburn and Millen (1982), Bookbinder and Koch
(1990) and Dellaert and Jeunet (2000).

Finally, some resolution methods use metaheuristics to
solve the MLLS problem. Dellaert and Jeunet (2000)
designed a genetic algorithm, Pitakaso et al. (2007) de-
veloped a min-max ant colony resolution method, Tang

(2004), Kuik and Salomon (1990) and Jeunet and Jonard
(2005) proposed simulated annealing approaches to solve
the MLLS. The Particle Swarm Optimization (PSO)
method has already been used to solve the MLLS. Han
et al. (2009) defined a discrete version of the PSO to
solve the MLLS. Conversely, Deroussi and Lemoine (2013)
use the continuous PSO to modify the holding and setup
prices. The solution are obtain by solving each level with
WW is then applied at each step with the prices set with
the PSO. With this approach, they improved the results
obtained with the DPSO on the same set of small instances
used by Han et al. (2009). However the method still lack
of efficiency for the larger instances. Xiao et al. (2014)
proposed a Variable Neighborhood Search (VNS) using
many good properties to reduce the solution space. They
also provide a really efficient method for quickly calculate
the cost variation between two solutions. This method
is really efficient and improved many of the best known
solutions from literature data-sets.

We propose in this paper a PSO method based on a cost-
modification heuristic. We present in the Section 2 the
problem and its mathematical model. In Section 3 we
present the PSO algorithm, the solution representation
and the evaluation algorithm. We also discuss the optimal
accessibility to the optimal solution and propose a local
search to address this issue. Eventually in Section 4 we
present the results obtained with our method on two
classical sets of instances.

2. PROBLEM

In this section we describe the problem, its model and the
properties we use to solve it. We define in the Table 1 all
the notations used in this paper.

The mathematical model corresponding to the MLLS
problem is the following:
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Model
N Number of items
T Number of periods
D¢ Demand for item ¢ at period ¢
ajr j Number of item j required to produce one item j’
h; Holding cost for item 1
Si Setup cost for item
M A very large number
Qit Production quantity of item ¢ at period t
I ¢ Inventory for item ¢ at period ¢
Yit Binary variable indicating if a production is set in
period t for item 4
PSO
P Number of particles in the swarm
pBest, Best solution founded by particles p
[ Besty, Best solution founded by the neighbors of particles p
L Number of neighbors considered for each particle
MaxIte | Maximum number of iterations
Vp k The speed of particle p at iteration k
xPk The position/solution of particle p at iteration k
c1 The coefficient of influence of the pBest solution
co The coefficient of influence of the [ Best solution
w The coefficient of inertia
r A random value drawn uniformly in [0, 1]
Sub; Set of all direct and indirect sub-items of the item 4

Table 1. Notations used in this paper

T N

Minimize Z Z(hifi,t +5:Yit) (1)
t=1i=1

Vi t € [1,N] x [1,7]

N

Ly =1y 1 +Qis — Dy — Zaj,in,t (2)
i=1

Qit <MY, (3)

I 1, Qi € N27Yi,t € {0,1} (4)

The objective function (2) represent the sum of the setup
costs and holding costs of all the items. The constraint (2)
represent the inventory balance. The constraint (3) insure
that if a production is done for product ¢ in period ¢, a
setup cost is considered for this period.

3. RESOLUTION METHOD
3.1 The particle Swarm Optimization method

The Particle Swarm Optimization (PSO) is a metaheuris-
tic aiming to solve continuous optimization problem pro-
posed by Eberhart and Kennedy (1995). PSO has been
widely adapted and used to solve combinatorial problems
such as scheduling Farid et al. (2020) Xiong et al. (2019),
bin packing Pandiselvi and Sivakumar (2021) Laurent and
Klement (2019) or transportation problem Cansiz and
Gogmen (2018) Wu et al. (2018).

The method consist in a set of P particles representing
solutions, evolving through solution space by influencing
each other. We distinguish two influences for a particle:

e The personal influence (pBest). This influence for a
particle correspond to the best solution ever reached
by the particle itself.

e The global or local influence (1Best). This influence
correspond to the best solution founded by the other
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\‘ | Best,(L-2)

Fig. 1. The two influences of a particle

particles. The term topology is used to describe the
graph of influence between the particles, El Dor et al.
(2015) give an overview of different used topology.
If all the particles are connected in the graph, the
influence is called ”global”, otherwise if the influence
only come from a given set of particle, the influence is
called "local”. The parameter L define the number of
particle considered in the neighboring of each particle.

We give an illustration of both influences in Figure 1.

A particle is then defined by a solution (its position),
a speed and its local neighbors. At each iteration k, all
particles move in the search space depending on their
personal and local influence and their inertia. The inertia
correspond to the previous movement of the particle. The
new position of particle p at iteration k£ is computed as
equation (5) and the speed is computed as equation (6):

k+1

P =gk 4 U—>p,k+1 (5)

vpﬁkﬂ} = wip f; + clrlmp’kpBestp + CQTQl'p’leestp (6)

The three coefficients w, ¢l and ¢2 represent respectively
the coeflicient of inertia, the coefficient of personal in-
fluence and the coefficient of local influence. The value
r1 and 7y are two random variables drawn uniformly in

[0,1]. The two values 2P"*pBest, and xP'¥Best,, represent
respectively the distance vector from the current position
of the particle p to the best past position (pBest) and the
best past position of its neighbors (1Best).

The algorithm 1 describe the principle of PSO.

3.2 Solution encoding and decoding

A directed tree graph between items can be computed such
that an arc from item 7 to item j exists only if item ¢
requires at least one unit of item j (a; ; > 1). An example
of this graph is given in Figure 2.

We define the set A of all the items having no sub-item
dependency, such that:

A={j|Vj 3ay ; #0} (7)
The items in the set A are the leaf nodes (in dashed lines)
of the graph of relation previously presented in Figure 2.
The item ¢ having no sub-items (i € A), its optimal plan-
ning can be computed with Wagner Whithin algorithm
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Algorithm 1. Algorithm of principle of the PSO
Require: cy,co, P, L, MaxIte
Initialize the swarm
ite <1
while ite < MazlIte do
for each particle p do
Update the speed of p with equation (6)
Update the solution of p with equation (5)
Evaluate the new solution of particle p
if The new solution is better than pBest then
pBest, < The current solution
end if
end for
for each particle p do
for each particle p’ in the L neighbors of p do
if pBest, is better than [Best, then
[Best, < pBesty
end if
end for
end for
end while

h. . Level4
Fig. 2. Graph of items and their dependencies

(WW), with the demand for each period depending on
the planning of the production of items requiring item i.

We represent a particle p at iteration k with a vector zP»*

such that:

ko ko p.k ok
Pt = {a " ks (8)

With x;k representing a modified setup cost for all items
1 ¢ A

A solution for the MLLS is to give for each item ¢ and
for each period ¢, the quantity @;: produced. To obtain
this solution corresponding to the particle ¢ at step k the
sequential approach heuristic described in Algorithm 2 is
applied.

The evaluation algorithm first compute the optimal one
level planning for each item with WW| from the top level
item to the last level in the order of the bill of material (see
Figure 2). The setup price considered at for each item is
rather s; if ¢ € A or x; as presented in Figure 3. Then, the
total cost considering the real setup cost s; for all items 7 is
computed with the planning obtained from the sequential
heuristic.
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Algorithm 2. Algorithm of evaluation of a solution
Require: h, s, zP*
for each item i ordered by increasing level do
if item 7 requires at least one components then
Qi — WW (D, hi, 2P)
for each item j such that a; ; > 1 do
for each period ¢t do
Dji <+ Dji+ Qi X a5
end for
end for
else
Qi «— WW(Dy, hi, s;)
end if
end for
Compute the cost H of the solution considering &, s and

Q

return H,Q
WW(Xi,Hi,Di)
Dj=QiAi}j/ \D‘k=QiAik
WW(Xj,Hj,Dj) WW (Xk,Hk,Dk)
Y
WW(SI,HI,DI) WW(Sn,Hn,Dn)

Fig. 3. Diagram of sequence to compute a solution from
the setup prices X

8.8 Initialisation of the particles

The PSO method need an initialization of each particle.
This initialization is important to help the method to reach
a better solution, in a faster way. We fix the setup price
z? 0 of each item i ¢ A for each particle p as presented in

equation 9.

2P’ = (1, +0.5)(Sr;) + s5;¥p = 1,.., P;Vi = 1,.., N(9)

Sri= > ab% Vi=1,.,N (10)
i/|a- -/>1

i,/ =

With 7, a random value € [0, 1] to diversify the position
of particles in the search space. For each item i, its setup
is updated considering the setup cost of its sub-items.

8.4 Accessibility to optimal solution

The sequential approach heuristic used in this paper
consider only solution for which the mono-level planning
is reachable with WW algorithm. We present here a small
example of an instance were the optimal solution cannot
be reached with our PSO method.

Let define the following instance:

o T=3

o N=2

e Item 1
- Dy =[20,10,9]
- hy1 =0.1

'8121
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cai2 = 1
o Item 2
- D9 = [1000, 0, 1000]
- ho = 1000
- 89 = 1000

The optimal solution here is driven by the high cost of
item 2. The optimal production for item 1 is [30,0,9] and
[1030, 0, 1009] for item 2. Because of the high costs on item
2, no production should be done on period 2 for item 1 (to
avoid a setup cost or holding costs with item 2. However,
the production [30, 0, 9] is impossible to reach with a mono-
level optimal algorithm, with any setup cost x; considered.

Indeed, if we consider the setup cost of item 1 to z; and its
holding cost to hy. The total cost of the planning [30, 0, 9]
is equal to 2x1 + 10h;. However, the solution [20, 19, 0] has
an objective cost equals to 2z; +9h;. For any holding cost
hy > 0 and setup cost x; > 0, the second solution has
always a lower cost from a mono-level perspective. Thus,
the first solution cannot be reached with an optimal mono-
level algorithm.

From this observation we can assert that it exists instances
for which the optimal solution cannot be reached by our
algorithm and by any cost modification heuristic with an
optimal mono-level resolution.

To reduce the number of optimal solutions unreachable,
we propose to apply a local search after the PSO method.
We present this method in the next section.

8.5 Local search

When the stopping criterion of the PSO optimization is
reached, we perform a Local Search (LS) to improve the
best solution obtained. The principle of this LS is to test
small modifications on the best solution find, in order to
improve it. The algorithm 3 describe the behaviour of
the LS, with Y* the binary vector corresponding to the
production periods and x* the setup prices, both returned
by the PSO. We denote in this algorithm the set Sub; of
all the direct or indirect sub-items of item ¢. An item j
is included in the set Sub; if and only if in the graph of
relation (Figure 2) it exists a path from item ¢ to item j.

The principle of this LS is simple, for each period of
production of every items with components, we test to
move this production to the previous period or to the next
one. Then the mono-level optimal production planning is
computed (with WW) for each sub-items concerned by the
shift with the setup price * of the solution returned by
the PSO.

We do not claim that this LS solve the accessibility
issue pointed out in the previous section, however this
mechanism improve the result obtained in a reasonable
computation time.

4. RESULTS

We present in this section some results obtained with
the proposed method. The method is implemented in
Python and the experiment run using a processor 11th
Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz.

Arnaud Laurent et al. / IFAC PapersOnLine 55-10 (2022) 12431248

Algorithm 3. Algorithm of the local search performed after the
1;lsfgquire: ¥, Y*
for each item i ordered by increasing level do
if item 7 requires at least one components then
for each period ¢ > 1 such that Y, =1 do
> Move to the left
Y Y™
Y/, <0
Y;/,t—l 1
for each item j € Sub; do
Compute D} considering Y’
Q)  WW(Dj, hj, %)
Update Y] considering @
end for
Compute the cost of the new solution Y’
if solution Y’ has a lower cost then
Y*« Y’
else
> Mowve to the right
Y «Y*
Y/, <0
if t < T then
Vi 1
end if
for each item j € Sub; do
Compute Dj considering Y’
Q) < WW(Dj, hj, x7)
Update Y] considering @
end for
Compute the cost of the new solution Y’
if solution Y’ has a lower cost then
Y* Y’
end if
end if
end for
end if
end for
return Y*

4.1 Instances

We deal in this paper with two sets of instances used in
the literature. The first one is a set of 96 small instances
developed by Coleman and McKnew (1991) with 5 items
and a horizon of 12 periods. The second set is composed
of 40 medium size instances provided by Afentakis and
Gavish (1986) and Dellaert and Jeunet (2000) structured
with 40 to 50 items over 12 or 24 periods. For each instance
considered, each method is run 10 times.

4.2 Parameters and stopping criterion

To test our method we test empirically different sets of
parameters. We tested several topologies for the local
influence on the particle and retained the circle topology
defined by Mendes et al. (2004). We present here the
parameters used to obtain the results presented in Section
4.3. We use the following parameters:

e Number of particle (P): 32
e Number of neighbors considered for each particle (L):
4
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Method Gap to Optimal (%) Time (s) Method Gap to BKS (%) Time (s)

Min 1.390 Min 1.388

Init Max 1.908 0.02 Init Max 1.964 0.18
Average 1.591 Average 1.565
Min 0.006 Min 0.228

init+PSO Max 0.016 0.53 init+PSO Max 0.346 13.75
Average 0.007 Average 0.272
Min 0.000 Min 0.099

Init+PSO+LS Max 0.014 0.55 Init+PSO+LS Max 0.281 14.30
Average 0.004 Average 0.166
AvSTD 0.005 AvSTD 0.06

Xiao et al. (2014) 1 run 0.000 0.1 Xiao et al. (2014) 1 run 0.05 30

Table 2. Results on the small size instances

e The coefficient of influence of the pBest solution (c;):
1.0

e The coefficient of influence of the [ Best solution (c2):
1.0

e The coefficient of inertia (w): 0.8

We use two stopping criteria:

e The maximum number of iterations (MaxIte=1000)
is reached

e No improvement on the best solution found is done
during nolmp iterations. We use nolmp = 20 for
the small instances and noImp = 40 for the medium
instances.

When a stopping criterion is reached, the LS presented in
section 3.5 is executed. In order to reflect the performance
of PSO alone and the relevance of the LS, we also provide
the results obtained from the initialization method and
with the PSO without the LS.

4.8 Performance of the different methods

In this part we report the performance of the different
steps of the optimization method developed:

e The initialization method (see Section 3.3)
e The PSO (see Section 3.1)
e The LS executed when the PSO stop (see Section 3.5)

The results are presented in Table 2 for the small size
instance and in Table 3 for the medium size instances. In
this tables, we report the minimal, maximal and average
value obtained for each step of the defined method. The
gap to the Best Known Solution (BKS) is computed with
equation 11, with res the value return by the method. For
the small instances the BKS is optimal, but for the medium
ones, most of the values are upper bounds. We consider
the BKS reported by Xiao et al. (2014). We report the
average computation time of one run over one instance in
the column ”Time”. The AvST D value correspond to the
average value of the standard deviation obtained over 10
runs for each instance. We also report the result obtained
by Xiao et al. (2014) with the VNS giving the best results
over the given set of instances.

BKS — res

B * 100 (11)

Table 3. Results on the medium size instances

We note that the result obtained with the developed
method are quite encouraging. The method provide good
quality solution in average and in a short amount of time.
We improved the best known solution for the instance 21
in Xiao et al. (2014) with a value of 292,814 (BKS was
previously 292,820).

5. CONCLUSION

We provide in this paper an efficient method to solve the
Multi Level Lot Sizing problem. We used a PSO method
based on a cost modification heuristic inspired from the
work of Deroussi and Lemoine (2013). We improved the
method by reducing the number of variables in order
to converge toward good solutions in a short amount of
time, even for large instances. After that, a local search is
performed to improve locally the solution. We tested this
method on small and medium size instances and the results
were close to the best ones reported in the literature.

We do not provide in this study the results on large
instances. This study is a first step in solving the MLLS,
with the objective to deal with instances having a larger
number of items. However, the first results obtained on
the set of large instances proposed by Dellaert and Jeunet
(2000) seems promising. Indeed, during the first test runs
on this set, we managed to improve some of the best known
solutions of the literature.

To improve the resolution method for the set of large
instances we aims to strengthen the LS part of our method.
Indeed the LS used in this study is quite simple and can
be improved, based on the local search methods developed
by Xiao et al. (2014).
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