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According to Bayesian models, both decisions and confidence are based on the
same precision-weighted integration of prior expectations (“priors”) and

incoming information (“likelihoods”). This assumes that priors are integrated
optimally and equally in decisions and confidence, which has not been tested.
In three experiments, we quantify how priors inform decisions and confidence.
With a dual-decision task we create pairs of conditions that are matched in
posterior information, but differ on whether the prior or likelihood is more
informative. We find that priors are underweighted in discrimination deci-
sions, but are less underweighted in confidence about those decisions, and this
is not due to differences in processing time. The same patterns remain with
exogenous probabilistic cues as priors. With a Bayesian model we quantify the
weighting parameters for the prior at both levels, and find converging evi-
dence that priors are more optimally used in explicit confidence, even when

underused in decisions.

Human perception has often been shown to be based on a Bayesian
inference process, in which the brain infers information about the
environment by integrating incoming information with previous
beliefs'. Computationally, this involves the integration of a prior dis-
tribution (“prior”) with a likelihood distribution (“likelihood”) to give a
posterior distribution (“posterior”), which then forms the basis of a
belief or percept. Many studies have shown evidence supporting the
idea that perception and decision-making can be explained as Bayesian
inference'”. Further, confidence, i.e. the sense of certainty that typi-
cally accompanies perceptual decisions, can also be explained by
Bayesian inference models.

In formal terms, Bayesian models propose that confidence cor-
responds to the perceived posterior probability of being correct about
our inferences, based on the relative strengths of the posterior prob-
abilities of each hypothesis being considered. This Bayesian con-
fidence model has been highly influential, and it has been tested and
supported empirically in both animals and humans®*, though

alternatives have been proposed”™. Importantly, this framework
considers that the posterior percept is based on the precision-
weighted integration of priors and likelihoods, and also that this
same posterior gives rise to decisions and confidence. This simple
formulation relies on two assumptions: first, that both decisions and
confidence integrate priors and likelihoods optimally; and further, that
confidence integrates priors and likelihoods in the same way as deci-
sions. But these assumptions must be empirically tested, as the alter-
native is also possible: either confidence, decisions, or both, might
integrate priors in systematically biased ways, and might do so
asymmetrically.

Meanwhile, there is evidence to suggest that these kinds of sub-
optimalities often occur in human perception and confidence. Various
systematic biases have been found in the information that enters
confidence, such as a bias towards decision-congruent evidence', or
an overweighting of perceived sensory noise'”*°. Furthermore, several
studies have found that confidence incorporates different or
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additional information compared to decisions? . This supports the
possibility that there are asymmetries in the way that certain sources of
information influence these different processing levels. With regard to
prior information, empirical work examining Bayesian confidence
models has typically used uninformative, ‘flat’ priors, so it has not been
possible to detect these potential biases or asymmetries. Two recent
studies have begun examining confidence under informative priors,
and found that confidence thresholds liberalise following prior-
congruent stimuli?’%, These results show that priors influence con-
fidence, but still cannot answer how optimal this influence is, and how
it compares to the influence on decisions. In order to understand how
our sense of confidence arises across different situations in which we
may have highly informative prior expectations, as well as to rigorously
test Bayesian confidence models, it is critical to understand quantita-
tively how priors are weighted relative to likelihoods in confidence
computations, and how this relates to their weighting in decisions.
More broadly, due to the pervasive role of priors in our processing,
studies assessing the Bayesian confidence model under informative
priors are important for generalizability.

Here, we examine (1) whether the use of prior information is
optimal relative to the use of new sensory information, and (2)
regardless of optimality, whether prior information is used the same
way at the level of decisions and confidence. We do this both beha-
viourally and by fitting a generative Bayesian model with free weight-
ing parameters that allows us to quantify the relative use of priors at
the level of decisions and confidence. Additionally, we assess whether
any possible asymmetries in the use of the prior at these different
processing levels could be explained by differences in evidence
accumulation time, or by the nature of the task and prior used.

In two (of three) experiments, participants complete a dual-
decision task in which they make right/left decisions about two con-
secutive dot motion stimuli per trial. Critically, participants are
informed about the added rule that, following correct responses to the
first (‘lead’) stimulus, the second (‘target’) stimulus will go to the right.
Conversely, incorrect decisions about the lead stimulus will be fol-
lowed by leftwards-moving target stimuli. This means that, in an
optimal Bayesian observer, the prior expectation for a rightward target
stimulus will be equal to the decision confidence about the lead sti-
mulus. In other words, if participants are very confident that their
response to the lead stimulus is correct, they will have a very strong
prior that the target will be a rightward stimulus. Conversely, if parti-
cipants are very unsure about their response to the lead, they will have
equal expectations that the target will go right or leftwards. A dual-
decision task with this same rule was used recently® to investigate the
influence of the prior on the decision level, which was interpreted as a
measure of implicit confidence. Here we build on that work in order to
assess the potentially differential role of priors in decisions and in
explicit, subjective confidence ratings.

In our design, we also make use of the task structure in order to be
able to vary the strength of priors and likelihoods on the same
dimension. Only this way can we directly, behaviourally compare the
relative influence of priors and likelihoods on responses. We do this by
building two conditions that are matched in the amount of total
available posterior information, but differ in whether the lead or target
is more informative. This allows us to measure whether accuracy,
confidence, and metacognitive efficiency differ between these two
conditions, which can indicate either over- or underweighting of the
priors relative to likelihoods. Going further, in order to quantify that
weighting in both decisions and confidence, and test the precise way in
which the use of prior information might differ at these different
processing levels, we fit a Bayesian model to the data with parameters
capturing the weighting of the prior in decisions and confidence. In the
second experiment, we then further investigate whether potential
asymmetries between the weighting of priors in decisions versus
confidence could be simply attributed to differences in processing

time. Finally, in the third experiment, we test whether the results
generalise to a single-decision task with exogenously cued probabil-
istic priors, which is a common task structure for manipulating prior
expectations”,

Results

Experiment 1: dual-decision task and conditions

On each trial of the dual-decision task, participants (NV=21) saw two
consecutive random dot motion stimuli and made a decision after
each about whether the coherent motion was to the right or left
(Fig. 1a), followed finally by a confidence rating about the second
decision. We told participants that their task was to herd a flock of
sheep (represented as dots in the RDK stimulus) towards the barn on
the right of the screen. We gamified the rule (linking correct lead-
decision responses to rightwards-moving target stimuli) and asked
participants to position a sheepdog by responding to the lead stimu-
lus. If the sheepdog was in the correct place, the sheep (coherently
moving dots) of the target stimulus would go to the right. This rule
meant that participants’ internal decision confidence about the lead
stimulus formed the strength of their prior for a rightward target sti-
mulus. In this way, the strength of the prior could be manipulated by
changing the coherence of the lead stimulus (with L: low, M: medium,
or H: high coherence), and the strength of the likelihood could be
manipulated by changing the coherence of the target stimulus (also L,
M, or H). This allowed us to create two conditions with the same
available posterior information to the optimal observer (‘posterior
level’): One in which there was more prior information due to a
stronger lead stimulus (Stronger-Lead) and one in which there was
more new sensory information due to a stronger target stimulus
(Stronger-Target) (Fig. 1b, c). These two conditions existed in matched
pairs across three overall levels of available posterior information
(Lpose: L+M or M+L, Mpos: L+H or H+L, and Hposee M+H or M+H).
With this experimental design, we were able to assess whether parti-
cipants’ accuracy, confidence and metacognitive performance
depended on the condition.

Manipulation check

We first ensured that response accuracy increased with increasing
coherence of the stimuli, indicating that we effectively manipulated
internal signal strength as intended. Additionally, we investigated
whether participants used the task structure as we wanted them to,
using the rule and hence their prior to guide their target decisions, at
least to some extent. If this were true, we expected participants to
perform better on the target decisions of each trial, on which they
had additional information from the prior (lead stimulus) to guide
their choice. To test both these predictions we built a logistic
regression model on response accuracy with fixed effects of infor-
mation level (L, M, H), decision order (lead or target), and their
interactions (see Table 1 for the model syntax). We found a significant
interaction between decision order and information level,
X(2)=43.53, p<0.001, BF,(=9.71x10* with differences between
information levels reduced in the target decisions. However, post-
hoc pairwise comparisons revealed that response accuracy remained
significantly higher with increasing information levels for both
decisions (all p <0.001), OR| ead:Low/Medium = 0.65, 95% CI [0.58, 0.74],
ORLead:Medium/High = 064, 95% Cl [0.56, 074], ORTarget:Low/
Medium = 0.83, 95% CI [0.72, 0.95], ORarget:Medium/igh = 0.78, 95% ClI
[0.68, 0.90], suggesting our coherence manipulation to work as
planned (Fig. 2a). Additionally, response accuracy was higher in the
target decision compared to the lead decision at each information
level, and this was significant at the low and medium information
levels (both p<0.001), OR ow:1ead/Target = 0.61, 95% CI [0.53, 0.69],
ORwmediumLead/Target = 0.77,  95% Cl [0.67, 0.88], ORpigh:Lead/
Target = 0.94, 95% CI [0.81, 1.09], revealing appropriate use of the task
structure.
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Fig. 1| Task and conditions sketch. a Gamified dual-decision paradigm. On each
trial, participants viewed and made right/left decisions about two consecutive dot
motion stimuli (lead and target), which they were told represented flocks of sheep.
We explicitly informed participants that if they were correct about the first deci-
sion, then the target stimulus would be going to the right, and if incorrect, then it
would be going to the left. This meant that, in an optimal observer, the prior for a
rightward target stimulus should be equal to the lead decision certainty. They also
rated their confidence in the target decision. In Experiment 2, the paradigm was the
same except there was a 2-s delay after viewing the target stimulus, before parti-
cipants were allowed to make the target decision. b Conditions. We manipulated
the coherence of the lead and target stimuli (each of which could have L: low, M:
medium, or H: high coherence), here depicted with the circle transparency, to
create two conditions that had matched available posterior information but dif-
fered in whether the lead or target stimulus was stronger. This was tested at three

Target Decision Confidence

How confident are you that
you got the sheep?

Did the sheep go left or right?

c
P(Correct) & Confidence

A

Stronger-Lead Stronger-Target

overall posterior levels - low posterior information (L + M), medium posterior
information (L + H), and high posterior information (M + H). ¢ Sketch of the
Stronger-Lead vs Stronger-Target manipulation. The posterior percept (orange)
should optimally be the precision-weighted integration of the prior (yellow), which
in our task was always rightward and could span from 50-100%, and likelihood
(red). Both conditions led to the same available amount of posterior information,
which (in the optimal case) leads to the same probability of a correct choice as well
as confidence. Hence, the target accuracy and confidence will only differ between
conditions if the two sources of information are not integrated optimally in the
decisions and/or confidence. Note that this is only a sketch aimed at conveying the
intuition of how the conditions were matched in terms of posterior information.

The prior for a rightward target stimulus is captured more accurately by a step
function, shown in Fig. 8a.

Dependence on condition reveals suboptimal prior weighting in
decisions

After ensuring that the manipulations worked as intended, we
investigated the use of prior information in decisions. We reasoned
that, if the prior were suboptimally weighted at the decision level,
performance on the target decision would depend on the condition
despite matched posterior information (Fig. 1c). To evaluate this, we
built a logistic mixed effects model on target decision response
accuracy. This included fixed effects of posterior level (L, M, H),
condition (Stronger-Lead, Stronger-Target), and their interaction
(Table 1). We did not find a significant interaction effect. In line with
our manipulation check, we found a significant main effect of pos-
terior level, x*(2) =175.77, p <0.001, BF;o = 6.12 x10%, with accuracy
increasing with higher available posterior information (Fig. 2b),
ORow/Medium = 0.71, 95% CI [0.64, 0.80], ORiow/migh=0.53, 95% CI
[0.47, 0.59], ORediumytigh = 0-74, 95% C1[0.65, 0.83]. We also found a
significant main effect of condition, x*(1)=9.06, p=0.003,
BFjo = 8.95, with better performance when the target was stronger,
0RStronger-Lead/Stronger-Target: 0.89, 95% ClI [0'821 0-96], Z=-3.09,
p=0.002 (Fig. 2b). This suggests that, despite an equal amount of
available posterior information, participants performed better when
more of that information was carried by the target stimulus, rather
than the lead stimulus, indicating that they dismissed some of the
prior information when making their decisions. In other words, this
revealed an underweighted use of the prior at the decision level,
relative to an optimal observer. Because there was potential for

response bias to lead to differences in accuracy across the conditions
regardless of how the prior information was weighted, we reran this
model, including a measure of response bias obtained from fitting
subject-wise psychometric functions to performance on the
unbiased first decisions (see Methods). This did not substantially
change the result or conclusions, as there were no significant effects
involving response bias.

Analysis of mean confidence reveals less underweighting of
priors than in decisions

Before looking at the use of prior information in confidence, we
investigated whether confidence followed the commonly found
‘folded-X’ pattern when collapsed across the Stronger-Lead and
Stronger-Target conditions. This would involve an interaction on
confidence between response accuracy and evidence strength. We
built a linear mixed effects model on confidence with fixed effects of
posterior level (L, M, H), target response accuracy (Correct, Incor-
rect), and their interaction. This revealed the expected interaction
between posterior level and response accuracy, F(2,14842)=24.5,
p< 0.001, BFIO =2.84 x 106r MDiff(Correct-Incorrect): Low = 6.52, 95% ClI
[5'1& 7.86], MDiff(Correct-lncorrect): Medium=9-37r 95% CI [7'9& 10~76],
MDiff(CorreCt-lncorrect): High = 10.66, 95% CI [9.23, 12.09], replicating the
folded-X confidence pattern. We then built a linear mixed effects
model on confidence with fixed effects of posterior level (L, M, H),
condition (Stronger-Lead, Stronger-Target), target response accu-
racy (Correct, Incorrect), and their interactions (Table 1). We found

Nature Communications | (2023)14:5473
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Table 1| Regression Models

Analysis Hypothesis

Model Formula

Manipulation Check
Decision vs Target Decision).

Accuracy depends on information level and on which decision it is (Lead

logit(Response Accuracy) ~ Information Level * Decision Order + (1|
Participant)

Type 1 Analysis

Target accuracy depends on posterior information level and, if priors are
used suboptimally, on the condition (Stronger-Lead vs Stronger-Target).

logit(Target Response Accuracy) ~ Posterior Level * Condition *
Response Bias + (1|Participant)

Type 2 Analysis

rect target decisions.

If priors are used suboptimally, condition modulates the effect of pos-
terior information on confidence differently following correct and incor-

Confidence ~ Posterior Level * Condition * Target Response
Accuracy * Response Bias + (Target Response Accuracy + Condi-
tion|Participant)
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Fig. 2| Behavioural results. In the raincloud plots of all panels, the right-half, split
violin plots correspond to the probability density, and the vertical black lines
correspond to the median, IQR. The hinges show the first and third quartiles, and
the vertical whiskers show +/- 1.5IQR. The binned dotplots on the left half show
each individual subject (N=21) as a point. a Manipulation check. As expected by
experimental design, increasing the information level increased accuracy in both
the lead decisions (M eaq = 0.63, SD =0.04; My eaq=0.71, SD=0.02;

M Lead = 0.80, SD =0.02) and target decisions (M, targec = 0.71, SD=0.04;

M Targec = 0.78, SD = 0.03; My targec = 0.82, SD = 0.03), suggesting that changes in
dot coherence successfully increased the strength of the internal signal. Accuracy
was also higher in the target decisions compared to the lead decisions, suggesting
at least some use of the task structure and prior information. b Effect of condition
on accuracy. We found a significant effect of the condition (which stimulus was
stronger) on accuracy, despite matched available posterior information, sug-
gesting participants to give suboptimal relative weights to priors and likelihoods
in their decisions. Participants performed significantly better in the Stronger-
Target condition (M stronger-Target = 0.72, SD = 0.05; My stronger-Target = 0.79, SD =

Condition

Stronger—Lead [l Stronger-Target

0.04; My_ stronger-Target = 0.84, SD = 0.04) compared to the Stronger-Lead condi-
tion (ML,Stronger—Lead =0.70,SD=0.05; M stronger-Lead = 0.76,SD = 0.05; My stronger-
Lead = 0.81, SD = 0.05), pointing to a relative underweighting of prior information.
c Effect of condition on confidence. We found no effect of condition on con-
fidence following correct trials (with differences between conditions—Stronger-
Target minus Stronger-Lead—of: M, = 0.15, SD =2.19; My; = 0.40, SD =2.34;

My =-0.07, SD = 2.15), but an effect of condition following incorrect trials, with
lower confidence in the Stronger-Lead condition (with differences between
conditions—Stronger-Target minus Stronger-Lead—of: M, = 0.66, SD = 2.51;

My =198, SD =2.50; My; =3.15, SD =2.54). From the decision level as a baseline,
this result indicates greater use of the prior in confidence than in decisions.

d M-Ratio estimates. M-Ratios per participant for each condition, measured
across all posterior levels. As expected if (as b and ¢ suggest) valid prior infor-
mation informed confidence ratings more than discrimination decisions,
M-Ratios were significantly higher in the Stronger-Lead condition than in the
Stronger-Target condition. Source data are provided as a Source Data file.

evidence for a three-way interaction from Bayesian statistics
BFx=70.83 (Fig. 2c) but not from frequentist tests
(F(2,14832)=2.66, p=0.070). Post-hoc pairwise comparisons
revealed a significant effect of condition on confidence only for
incorrect trials at the high posterior level, t(1281) =-3.52, p < 0.001,

BI:10=6-14', MDiff(Stronger-Target - Stronger-Lead)=3-15r 95% CI [1-45,
4.85], and medium posterior level, t(839)=-2.16, p=0.030,
MDiff(Stronger-Target - Stronger-Lead):1-74r 95% CI [0.23, 3.24], although
the Bayesian statistics suggest evidence against the effect at the
medium level (BF;o=0.46). There were no significant effects of the
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condition following correct trials, with evidence for the null
hypothesis at all posterior levels (all BF <0.02). Because the sub-
optimal weighting of the prior at the decision level can impact con-
fidence distributions, a statistically significant effect of condition on
confidence cannot be interpreted in isolation. Instead, we must
consider the decision level result as a baseline. Simulations shown
below revealed that, given any underweighting of the prior in deci-
sions, the following pattern holds: If the prior was even further
underweighted in confidence than in decisions, we would expect
confidence in the Stronger-Target condition to be higher following
correct trials and lower following incorrect trials. Contrary to this,
the result of no difference following correct trials and lower con-
fidence in the Stronger-Lead condition following incorrect trials
indicates that the prior is less underweighted than at the decision
level, and is hence used more optimally in confidence. To quantify
this effect and concretely compare the weighting of the prior at the
decision versus confidence level, we used computational modelling.
Further in line with this idea, we found significantly higher M-Ratios
in the Stronger-Lead condition (M=0.87, SD=0.27) than in the
Stronger-Target condition (M=0.71, SD=0.25), t(16)=3.64,
p=0.002, n*,=0.01, 95% CI [0.14, 1.00] (Fig. 2d), suggesting that the
relative use of priors and likelihoods is more optimal at the meta-
cognitive level than at the level of decisions.

Bayesian model fits different weights of priors in confidence and
decisions

Overall, the behavioural analyses revealed that, while decisions
underweighted the available prior information, confidence seemed to
use the prior information more optimally. To account for these results,
and to be able to compare the effects at these two levels of processing
more directly and quantitatively, we use a computational model.
Additionally, the models we fit to the data do not rely on the matched
pairs of posterior information, and can hence provide important
converging lines of evidence to validate the model-free results in case
the conditions were not perfectly matched in their internal processing,.
We built and fit a Bayesian model of decisions and confidence under
informative priors that included a weighting parameter for the prior
(relative to the likelihood), for both the decision (wepnoice) and the
confidence rating (wenp). These weighting parameters reflected
potential over- or underestimation of the precision of the prior, hence
weighting its influence over behaviour relative to the likelihood. They
were also computationally identical in their impact, scaling the per-
ceived variance of the prior, allowing us to directly compare them. We
first estimated internal noise and decision bias (not under the influence
of a prior) per participant on separate data using the Akaike-weighted
combination of four fit psychometric functions (see Methods), and
then incorporated these subject-wise estimates into the model,
allowing us to account for them. The model additionally included a
parameter for confidence bias (b) that captured overall over- or
underconfidence in both stimuli. The model had three free parameters
(per participant as well as at the group level for a hierarchical imple-
mentation): Wenoices Weons and b. We checked that the parameters were
recoverable in a parameter recovery analysis (Supplementary Infor-
mation, Fig. S4). We also compared our full model, which we call the
Flexible model, to a variety of simpler models, to assess each main
research question in more depth.

At the decision level, the model predicted that if the prior was
optimally weighted relative to the likelihood, (wcxeice =1), there would
be no difference in accuracy between the two conditions (Fig. 3a, left
panel). If the prior was overweighted (W poice <1, capturing an under-
estimation of the variance of the prior), accuracy would be higher
when the lead was the stronger stimulus (Fig. 3a, middle panel). Con-
versely, if the prior was underweighted (wcpoice > 1), accuracy would be
higher when the target was the stronger stimulus (Fig. 3a, right panel).
We first fit the full model individually to each participant, limiting

complexity and allowing us to avoid the simplification needed for a
hierarchical implementation (see below). We found a mean
Wenoice = 242 (SD = 2.09) across participants. This suggests, in line with
the behavioural results, that priors are underweighted in decisions,
relative to an optimal observer. The simulated choice behaviour for
these model results is shown in Fig. 3b (right panel) and demonstrates
higher accuracy when the target is the stronger stimulus, just as we
found behaviourally. To analyse this formally at the group level,
making use of the Bayesian model fitting approach, the full hierarchical
model was fit. This model fit the data with a mean of the posterior for
the group mean parameter Weppice =2.17 (SE=0.007; Fig. 3c), again
suggesting the underweighting of the prior in decisions.

We then examined the model predictions for confidence, given
the result of the underweighted priors in decisions (Wcneice >1). With
overweighting of the prior in confidence (wcnr<1), the Stronger-Lead
condition tends to show higher confidence than the Stronger-Target
condition for correct trials, and lower for incorrect trials (Fig. 4a,
middle-left panel). In other words, wconr<1 will lead to differences in
mean confidence between correct and incorrect that are larger in the
Stronger-Lead condition than in the Stronger-Target condition. In
contrast, with underweighting of the prior (wc.> 1), it is the Stronger-
Target condition that tends to have larger differences in mean con-
fidence between correct and incorrect (Fig. 4a, middle-right panel). If
the prior weighting in both decisions and confidence were optimal, the
model predicts no difference in mean confidence between conditions.

Importantly however, w.,,rcannot be interpreted in isolation, and
must be always considered together with wueice- That is, it is useful to
focus on the difference Wenoice-Weony In particular, the pattern of results
that we described above for the case of Wenoice = 1and weone< 1is similar
t0 Wenoice>1, and an optimal w.,,r=1, as both cases correspond to
Wenoice>Weons: The model predicts more extreme confidence (higher for
correct, lower for incorrect) in the Stronger-Lead condition (Fig. 4a,
far-left panel). The behavioural pattern seen in confidence—of no dif-
ference between conditions following correct trials, and lower con-
fidence following incorrect trials in the Stronger-Lead condition—lies
somewhere in between the patterns predicted by optimal weighting
in confidence (Where Weons « Wepoice) and by equal underweighting
in confidence as in decisions (Wconf=Wenoice), and is hence captured
when the prior is less underweighted in confidence than in the decision
(Weonf < Wenoice) (Fig. 4a, far-right panel).

Fitting the full model individually to each participant yielded a
mean Weonr=1.97 (SD=1.81) across participants. Out of these 20 par-
ticipants, 15 had a fit w ., value that was smaller than their fit wexoice
value, indicating stronger weighting of the prior in confidence than in
decisions. We did an initial comparison of these individually fit wcppice
and wconr parameters per participant using a paired samples t-test,
which demonstrated that the wcyoice parameters were significantly
larger than the wc s parameters (Mp;=0.46, SDpjer = 0.69), t(19) = 2.97,
p=0.008, BF;o=6.25, nzp =0.32, 95% C1[0.06, 1.00]. This, in line with
the behavioural results, suggests the weighting of the prior in con-
fidence to be closer to optimal, compared to the weighting of the prior
in decisions. The simulated confidence for these model results (Fig. 4b)
successfully captures the pattern associated with the combination of
an underweighted prior in decisions and a less underweighted prior in
confidence (Fig. 4a, far-right panel).

To assess the weighting of confidence formally at the group level
using the hierarchical model, due to complexity constraints, we
required a simplification. We modelled confidence on each trial
assuming that the internal signal corresponded to the mean external
stimulus strengths from each stimulus coherence level (L, M, H). That
is, we did not fit the internal latent samples that are theoretically
generated from the external stimuli, as that would have led to an
overparameterized model with two free parameters per individual trial
(totalling close to 30000 free parameters). However, this meant that
for the simplified model, stimuli would always lead to internal samples
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Fig. 3 | Modelling discrimination decisions. a Model simulations of decision
accuracy. Target decisions were simulated from the Flexible model across different
posterior levels, between the two conditions, and at three different values of wenpice:
1 (optimal weighting of prior information), 0.33 (overweighting of prior), and 3
(underweighting of prior), shown from left to right respectively. These values are
representative of the range found in the data, and capture either over- or under-
estimated variance by a factor of 3. The resulting decision accuracies are shown
here. The model predicts that optimally using prior information will lead to no
difference in accuracy between the two conditions, whereas overweighting prior
information will lead to higher accuracy when the lead is stronger, and under-
weighting prior information will lead to higher accuracy when the target is stron-
ger. b Data and predictions of the individually fit model. The left panel shows the

mean observed accuracies per posterior level and condition. The right panel shows
the predicted accuracies generated from sampling each individual participant’s fit
posterior parameter distributions 10 times and simulating 720 trials for each of
those sampled parameters, also using that participant’s staircased coherences,
internal noise and decision bias. Error bars capture standard deviation (SD) of
accuracies across participants (N = 20). ¢ Hierarchical model posterior distribution
for wepoice- The posterior distribution for the group mean parameter of the
weighting of prior information in the decision, wcxeice- The blue shaded region
shows the 89% credible interval and the vertical black dashed line reflects optimal
weighting of the prior in the decision (Wepeice =1). A weight above 1 captures
overestimation of the variance and hence underweighting of the prior. Source data
are provided as a Source Data file.

on the correct side of the decision criterion, leading the model to
underestimate confidence overall. This predicted underestimation of
confidence is described in detail in Supplementary Information, but
critically, the simplification still allowed the model to capture differ-
ences between conditions, and hence our parameter of interest, W
Additionally, we showed that any impact that this could have had on
Weons Worked directly against our conclusions (see Supplementary
Information), making our interpretations more conservative. The fit
hierarchical model had a mean posterior of the group parameter
Weons=127 (SE=0.002), and of the group bias parameter b=2.18
(SE=0.003; Fig. 4c), further supporting the results from the non-
simplified model.

Finally, with this hierarchical modelling approach, with both the
Flexible model and simpler models, we were able to more directly
compare the relative weighting of priors and likelihoods at the

decision and confidence level (Fig. 5a-c). We found that wcppice Was
credibly different from wc,ns with the difference distribution just
excluding 0 in the 89% credible interval [0.03, 1.77] (Fig. 5b). This again
suggests the weighting of priors relative to likelihoods to differ at the
level of decisions and confidence.

Flexible model describes behaviour better than simpler models
We then compared the Flexible model to simpler models (Fig. 5a).
We checked that these models were distinguishable from one
another with a model recovery analysis (see Supplementary Infor-
mation, Fig. S6).

In addition to the (1) Flexible model, we built (2) the Flat Prior
model in which the lead stimulus information was not used at all and
the target stimuli were considered to occur under a flat prior (Wcpoice
and we.ns infinitely large), (3) the Optimal model in which wpeice and
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Fig. 4 | Modelling Confidence. a Model simulations of confidence. Confidence
ratings following correct and incorrect trials were simulated from the model across
different posterior information levels, between the two conditions. Simulations
used the wepoice value from the model fit, 2.17, and four different values of weopy 1
(optimal weighting of prior), 0.33 (3-fold overweighting of the prior), 3 (3-fold
underweighting of the prior), and 1.27 (the value obtained from the model fit,
underweighting the prior in confidence less than in the decision), shown from left
to right respectively. The resulting mean confidence values are shown here. The
model predicts mean confidence to increase with increased available posterior
information following correct decisions and decrease with increased available
posterior information following incorrect trials. As the prior is increasingly over-
weighted, the model predicts higher mean confidence in the Stronger-Lead con-
dition following correct decisions, and lower in the Stronger-Lead condition
following incorrect decisions (middle-left panel). As the prior is increasingly
underweighted, the opposite pattern is predicted (middle-right panel). Due to the
suboptimal weighting at the decision level, the model predicts differences in mean

Stronger-Lead # Stronger-Target

e - - - - =

2 3
b

confidence when wconyis optimal (far-left panel). When the prior is underweighted
in confidence, but less so than in the decision, the model can produce the pattern
seen behaviourally (far-right panel). b Data and predictions of the individually fit
model. On the left are the data, showing confidence following correct and incorrect
decisions per posterior level and condition. On the right is mean confidence gen-
erated from sampling each individual participant’s fit posterior parameter dis-
tributions 10 times and simulating 720 complete trials for each of those sampled
parameters, also using that participant’s staircased coherences, internal noise and
decision bias. Error bars capture standard deviation (SD) of mean confidence across
participants (V= 20). ¢ Hierarchical model posterior distribution for w,,rand b.
The top posterior distribution is for the group mean parameter of wcon- The lower
posterior distribution is for the group mean parameter of b. The blue shaded
regions show the 89% credible intervals and the vertical black dashed line corre-
sponds to the parameter values of an optimal observer. Source data are provided as
a Source Data file.

Weons Were both optimal (equal to 1), and (4) the Equal model in which
the prior was forced to be used to the same extent in decisions and
confidence (Wcpoice = Weon) and hence only one w parameter was fit. All
models included confidence bias as a free parameter. We fit these
models and compared their predictive performance against the Flex-
ible model using a 10-fold leave-one-group-out cross-validation
(LOGO-CV, where ‘groups’ correspond to participants). The Flexible
model predicted the data better than each of the other models, with a
difference in expected log pointwise predictive density (elpd_diff)
of —619688.2 (se_diff=16717.0) compared to the Flat Prior model, of
-11017.7 (se_diff=4534.4) compared to the Optimal model, and of
-76685.8 (se_diff=2147.4) compared to the Equal model (Fig. 5c). The
results of this formal model comparison are in line with both the
behavioural and the modelling results shown above: The difference to
the Flat Prior model suggested that participants used the prior infor-
mation to some extent, in line with our behavioural manipulation

check. The difference to the Optimal model suggested that partici-
pants used the prior information suboptimally. And, the difference to
the Equal model suggested that participants used the prior informa-
tion to a different extent in confidence than in decisions, in line with
our finding of a credible difference between wenoice and Weopy

Experiment 2: dual-decision task with delayed target decision

The finding from Experiment 1, that priors can be used more optimally
in confidence, might support the idea that priors are integrated gra-
dually, and that there is continued post-decisional evidence accumu-
lation that can then factor into confidence. This would be in line with
previous work suggesting that confidence computations incorporate
additional information that has accumulated after the first-order
decision?*?%3%31_Alternatively, it is possible that the additional use of
the prior in confidence is by virtue of the introspective act, and not
simply due to continued evidence accumulation. In support for the
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Fig. 5 | Model comparison results. a Schematic of the four compared models.
Schematics of the four models we compared, with the thickness of the light blue
arrows depicting the weighting of priors relative to likelihoods in the decision and
the thickness of the light green arrows depicting the weighting of the priors relative
to likelihoods in confidence. In the Flexible Model, relative weighting of priors and
likelihoods was allowed to differ between decisions and confidence (Wcpoice Was
allowed to differ from wc,,,p). The Flat Prior Model only has arrows from the target,
showing that the prior information was not used at all in decisions or confidence. In
the Optimal Model, Wepoice and weoneboth had to be optimal (equal to 1). In the Equal
Model, the weighting of priors relative to likelihoods was allowed to differ from
optimal but the pattern was the same between wpoice and Weo,, b Posterior group
difference distribution of wepeice =~ Weons The posterior distribution for the

Optimal Model Equal Model
Lead Lead
Info —>] Info
1 Decision Confidence
O N
O
Flexible Optimal Equal Flat

Model

difference in the group mean parameters wepoice and Weonr. The blue shaded region
shows the 89% credible interval and the vertical black dashed line reflects no dif-
ference in the two parameters (Wepoice ~ Weons= 0). O is just excluded from the 89%
credible interval, suggesting Wexoice aNd Weons to be credibly different from one
another. ¢ Expected Log Pointwise Predictive Density (ELPD) results from LOGO-
CV. The predictive capacity of each model is shown as the elpd value from the
LOGO-CV with 10 folds, leaving out and then predicting 2 participants per fold. This
shows the Flexible Model to have the highest predictive capacity, suggesting it as
the best model to explain the data. This is followed by the Optimal Model, Equal
Model and then Flat Prior Model. Error bars depict SE. Source data are provided asa
Source Data file.

latter alternative, previous work found enhanced metacognitive effi-
ciency following prior congruency, showing information from priors
to especially boost metacognitive judgements®. In order to investigate
these two possibilities further, we ran a second pre-registered
experiment (N =25) in which we repeated the same paradigm under
the same conditions, but we added a 2-s delay after the offset of the
target stimulus and before participants were allowed to report their
target decision. We chose the duration of the delay to approximately
match the peak of the distribution of reaction times between viewing
the target stimulus and giving the confidence rating from Experiment
1, which was 2.48 seconds. Therefore, if in Experiment 1 the more
optimal use of the priors in confidence was only due to the extra
processing time before giving the confidence rating, then delaying the
target decision until that time point in Experiment 2 should lead to
more optimal use of the prior information in the delayed target deci-
sion. If, however, the more optimal use of the prior was due to the
introspective confidence rating, delaying the target decision in
Experiment 2 should not change the pattern of results.

Priors underweighted in decisions despite increased proces-
sing time

We ran the same regression model on target response accuracy as in
Experiment 1 and found a significant interaction between posterior
level and condition, x*(2)=8.21, p=0.017, BF;p=2.68. In line with
Experiment 1, response accuracy was higher in the Stronger-Target
condition at each posterior level, although this was only significant at
the medium posterior level, z=-4.30, p<0.001, BF,,=138.49,
ORMedium:Stronger-Lead/Stronger-Target: 0.76, 95% Cl [0.63, 0-92] (Fig- 63)-
This suggests the prior to be underweighted in the target decisions,
even after the delay and hence the added opportunity for evidence

accumulation (for behavioural data, see Supplementary Information,
Fig. S1). At the confidence level, we found a significant main effect of
condition, F(1,17923) =16.84, p <0.001, BF;o =34.92, with confidence
increasing in the Stronger-Target condition following both correct and
incorrect trials, MDiff(Stronger-Target - Stronger-Lead):Correct = 057r 95% Cl
[0~19. 0'94], MDiff(Stronger-Target - Stronger-Lead):Incorrect = 1‘131 95% CI [0-41,
1.85]. This is slightly different from Exp. 1, where we found an inter-
action between the condition and response accuracy. However, due to
the finding of strongly underweighted prior in decisions, the beha-
vioural predictions at the confidence level and hence the interpreta-
tion of these results become less clear. To examine it precisely, and test
whether the same pattern of more optimal use of priors in confidence
remained, we again fit the Flexible model, this time as confirmatory
modelling analyses. Due to further complexity constraints, here we
only used the hierarchical model with the simplification. Replicating
the pattern found in Experiment 1, we found a mean of the posterior of
Wehoice=3.97 (SE=0.02; Fig. 6a) and a mean of the posterior of
Weons=1.39 (SE=0.01; Fig. 6b), with a credible difference between
them [0.50, 4.64] (Fig. 6c). Taken together, this suggests that prior
information is underweighted in decisions even when those decisions
occur at a similar time point as the confidence judgements in Experi-
ment 1, and, like in Experiment 1, confidence then more optimally uses
that prior information.

Experiment 3: single-decision task with cued probabilistic priors
In Experiments 1 and 2, we used the dual-decision task in order to allow
us to manipulate the strength of the prior and the likelihood on the
same scale. This made it, at least in principle, possible to create the
matched conditions, allowing us to do quantitative behavioural ana-
lyses along with the modelling. However, this comes at the cost of
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Fig. 6 | Experiment 2 results. a Decision level model results against data.The left
panel shows the observed accuracies per posterior level and condition (V=25
participants). The right panel shows the predicted accuracies generated from
sampling the fit posterior group mean parameter distributions 1000 times, and
simulating 720 trials per participant for each of those sampled parameters, also
using each participant’s staircased coherences, internal noise and decision bias.
Error bars capture standard deviation (SD) of accuracies across participants.

b Confidence level model results against data. On the left are the data, showing
confidence following correct and incorrect decisions per posterior level and con-
dition (N =25 participants). On the right is mean confidence generated from sam-
pling the fit posterior parameter distributions 1000 times and simulating 720
complete trials per participant based on those parameters, also using each

Stronger-Lead - Stronger-Target

participant’s staircased coherences, internal noise and decision bias. Note that
here, unlike in Fig. 4b, we show results from the hierarchical model for which, due
to the necessary simplification, the underestimated confidence is expected. How-
ever, this does not interfere with our interpretation of the differences between
conditions or weens Error bars capture standard deviation (SD) of mean confidence
across participants. ¢ Posterior group difference distribution of wepeice — Weons The
posterior distribution for the difference in the group mean parameters wepoice and
Weons. The blue shaded region shows the 89% credible interval and the vertical black
dashed line reflects no difference in the two parameters (Wexoice = Weons= 0). O is
excluded from the 89% credible interval, suggesting wpoice and We,neto be credibly
different from one another. Source data are provided as a Source Data file.

potentially reducing the generalizability to a more standard exogen-
ous cue task. Hence, we ran a third experiment (N=20) using exo-
genous probability cues as priors. In this task, participants were
explicitly told the probability of either a rightward or leftward stimu-
lus, after which they viewed the dot motion stimulus, made their single
decision, and then rated their confidence. The prior probabilities were
always true, and corresponded to either a 0.6, 0.7, 0.8, or 0.9 prob-
ability of the coherent motion going towards either the right or left,
counterbalanced across participants. There were also some trials
without an informative prior (0.5 probability of left versus right) which
were used to measure decision bias, internal noise, and metacognitive
noise, as these were necessary for the modelling (see Supplementary
Information).

We first investigated the behavioural results qualitatively by
comparing them to predictions from model simulations. If the priors
are used in decisions, we would expect a positive relationship between
the strength of the prior for a rightward stimulus and the probability of
choosing right. As the priors are more underweighted, this relationship

gets weaker (Fig. 7a). Looking at the results, we found a weaker rela-
tionship than would be expected of optimal prior use (Fig. 7b), sug-
gesting underweighting of priors in decisions. If priors are used in
confidence, we would expect higher confidence with stronger right-
ward and leftward priors, leading to a U-shaped relationship between
confidence and rightward priors from 0.1-0.9. As the priors are more
underweighted in confidence, this relationship flattens. Because the
expected patterns at the confidence level depend on the decision level
results, we simulated prior weighting in confidence that was either
equal to, stronger than, or weaker than the decision level (Fig. 7c).
Comparing the data to these predictions revealed a stronger U-shaped
relationship between confidence and rightward prior strengths than
would be expected of equal weighting (Fig. 7d), suggesting that con-
fidence used the priors more strongly than in decisions.

To formally assess this, we adapted and then fit the hierarchical
Flexible model to the data, including the same free weighting para-
meters and confidence bias parameter (see Supplementary Informa-
tion for details of the model adaptations to suit this task, and note that
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weighting (Wenoice = 2). The model predicts that weaker prior weighting in the
decision leads to a weaker relationship between the rightward prior strength and
the P(“R”). b Decision level results. Simulations from the fit model shown against
the data, with optimal weighting as a reference. This reveals a weaker slope of the
P(“R”) across rightward prior strengths compared to optimal, indicating under-
weighting of priors. ¢ Confidence level predictions. Confidence given each level of
rightward prior, simulated with three levels of prior weighting relative to decision
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(Weons=4) weighting. The model predicts that prior weighting in confidence influ-
ences the curvature of the relationship between confidence and prior strength. To
highlight that curvature, confidence is shown normalized to the flat prior condition
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that baseline. d Confidence level results. Simulations from the fit model shown
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against the data, with symmetrical weighting (Wconf= Wcnoice) Shown as a reference.
This reveals stronger concavity across rightward prior strengths compared to equal
weighting, indicating stronger prior weighting in confidence than in decisions.

e Posterior distribution for wcpeice.- The posterior distribution for the group mean
parameter of prior weighting in decisions, W xice. For e-g, blue shaded regions
show 89% credible intervals. The vertical dashed line reflects optimal prior
weighting (Wenoice = 1). f Posterior distribution for w,,rand b. The top posterior
distribution is for the group mean parameter of w,,s. The lower posterior dis-
tribution is for the group mean parameter of b. The vertical dashed line corre-
sponds to optimal observer parameter values. g Posterior group difference
distribution of Weneice-Weons The posterior distribution for the difference in the
group mean parameters Wepoice aNd Weons The vertical dashed line reflects no dif-
ference in the two parameters (WenoiceWeons=0). 0 is just excluded from the 89%
credible interval, suggesting that wyeice and weons are credibly different from one
another. Source data are provided as a Source Data file.

the model simplification was not required here). Replicating the pat-
terns found using the dual-decision paradigm, we found a mean of the
posterior of weppice=3.20 (SE=0.01; Fig. 7e) and a mean of the pos-
terior of weonr=1.86 (SE=0.008; Fig. 7f), with a credible difference
between them [0.15, 2.54] (Fig. 7g). We found a mean of the posterior
of b=1.56 (SE=0.003; Fig. 7f). This suggests that, even outside of the
dual-decision setup and using an exogenously cued prior, prior
information is underweighted in decisions and then used to a greater
extent in confidence about those decisions.

Discussion

In three experiments, we tested whether prior information influences
confidence optimally, and how this compares to its influence on per-
ceptual decisions. To do so, in the first two experiments, we compared
pairs of conditions that were matched in the available posterior
information but differed on whether the stronger source of informa-
tion was the prior or the new incoming information. We then evaluated
the differences between conditions (Stronger-Lead vs Stronger-Tar-
get) in both discrimination accuracy and mean confidence, and fit a
quantitative model to measure the weighting of prior information. This
revealed that priors are underweighted relative to likelihoods in dis-
crimination decisions. Conversely, confidence judgements incorpo-
rated prior information to a greater extent than discrimination
decisions did. Further, and in line with the idea that prior information is
processed more optimally at the metacognitive level compared to the

level of first-order decisions, we found that metacognitive efficiency
was higher when more information was carried by the prior, with first-
order performance hindered while confidence preserved the use of
this information. Taken together, these results suggest that we can
access and use information from priors in explicit, introspective con-
fidence judgements even to a greater extent than we use that infor-
mation to guide decisions. This pattern also generalised to a third
experiment that moved away from the dual-decision setup and used a
task structure commonly found in the literature.

These findings go against the assumptions, implicit in the Baye-
sian framework, of optimal and equal integration of priors in decisions
and confidence. While participants may not necessarily be expected to
behave as Bayesian optimal observers, these findings quantify pre-
cisely in which way they deviate from those assumptions. Although the
underweighted prior in decisions may, in isolation, be explainable by a
decay of the prior information over time, such a decay would make the
asymmetry between the decision and confidence levels even more
surprising, as the confidence judgements occurred even later. The
results of Experiment 2 revealed, further, that this asymmetry remains
even when additional processing time is given by forcing a delay
before the target decision. This suggests that this pattern cannot be
accounted for just by continued evidence accumulation before the
confidence rating, since a similar amount of evidence accumulation
should have occurred between the confidence ratings in Experiment 1
and the target decisions in Experiment 2. Instead, this points towards a
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Fig. 8 | Model schematic. a Model of conditions. In the model, lead decisions
occurred under a flat prior. The lead stimulus generated an internal response with
added internal noise, forming the likelihood and then posterior distribution. The
area (A in Stronger-Lead condition, B in Stronger-Target condition) of the posterior
on the chosen side of the decision boundary (vertical dashed line) equals con-
fidence in the lead decision (confieqq). confieqq formed the strength of the prior for a
rightward target stimulus. The target stimulus generated an internal response,
forming the target likelihood, which integrated with the prior to give the target
posterior (orange). This posterior led to the target decision and confidence rating.
The strength of the posterior probability of the winning hypothesis (opaque orange
area) is based on the combination of the prior strength (either A or B, depending on
condition) and likelihood strength (either B or A, depending on condition). Because
these combine to the same posterior strength (A*B or B*A), the model predicted
equal accuracy and mean confidence between conditions, given optimal relative

weighting of priors and likelihoods. The weighting parameters, Wcpnoice aNd Weonp
scaled the estimated variance of the lead, effectively scaling confie.q, and captured
the strength of prior that best explains target decisions and confidence ratings,
respectively. b Metacognitive noise in the model. In the dual-decision paradigm,
the target prior is susceptible to metacognitive noise, since it is based on an internal
confidence computation. Metacognitive noise adds noise to the first-order internal
response r (from the Type 1 distribution) for the confidence computation. Since r is
the mean of the Type 2 distribution on which confidence is computed, this jitters
the resulting confidence value (or the yellow area under the distribution—area A in
the leftmost panel of this figure). Note that this does not bias confidence, but makes
it more variable across trials, and less reflective of accuracy. Since the rightward
target decision prior equates to the confidence value on each trial, metacognitive
noise also makes the strength of the rightward target decision prior more variable
across trials, not biased overall.

more optimal use of prior information at the metacognitive level,
compared to first-order processing. In line with this, Balsdon and
colleagues demonstrated asymmetries in the information used by
decisions and confidence®*. They used series of stimuli and found
decisions to set covert bounds and stop collecting new evidence, while
confidence used more of the available information. In light of those
findings, our work shows a similar effect, where decisions make use of
less of the information available than confidence does. However, here,
we find that it is prior information that is more strongly dismissed in
decisions.

These results add an additional layer to recent findings by Lisi
et al.”?, who focussed on implicit, not explicit confidence. They, as we
did, found priors to be underweighted at the level of the decision, but
could not assess whether explicit confidence weighted them differ-
ently than decisions. Here we reveal important differences in how the
prior is used at different processing levels, by examining the weighting
of the prior in explicit confidence as well. Our results suggest that, even
though the prior is underweighted in a decision, people can access and
use this information better when asked to make an explicit intro-
spective judgement about that decision. A cognitive architecture in
which perceptual decisions can primarily respond to current incoming
evidence while higher order metacognitive processing integrates dif-
ferent sources of information and monitors their relative certainty
might be highly adaptive. For example, it might be beneficial to react
rapidly and in accordance with evidence for even an unlikely belief if
that would pose some threat, meanwhile having the metacognitive
system accurately track its posterior probability for appropriate
models of the world. Our results therefore provide crucial insight on a
dissociation between human behaviour and associated confidence.

We now consider our findings in light of several potential alter-
native explanations. First, given the nature of the dual-decision setup,
participants might behave in a confirmatory way: they might be biased
towards target decisions that support their lead decision. Although
this was not in line with the rule of the dual-decision task, other work
has found people to be confirmatory even at a perceptual level and it is
still possible that participants gathered evidence in this way** ™. To

assess this, we investigated whether the performance and confidence
on the target decision was higher when the target direction matched
the lead direction, as would be predicted of this confirmatory beha-
viour. This revealed participants not to have such a confirmatory bias,
and in fact to have a slight effect in the opposite direction, though this
repulsion effect also failed to explain the pattern of results (see Sup-
plementary Information). Next we consider alternative explanations
due to the nature of the prior as an internal confidence value. A ‘con-
fidence leak’ effect has been found in the literature, which involves
confidence from a previous decision influencing upcoming
confidence®. It is possible that the internal confidence from the lead
decisions therefore ‘leaked’ in this way to the target confidence. This
would not influence the decision level results, but would cause target
confidence to be more extreme in the Stronger-Lead condition, since
that condition would be associated with higher internal lead con-
fidence. However, these are not the patterns we see in the data, and
even when combined with the decision level result, this cannot
reproduce the asymmetry found between the decision and confidence
levels (see Supplementary Information). Finally, we consider the role
of metacognitive noise*® in our interpretations. Because the prior is an
internal confidence value in the dual-decision setup, computing it
could involve metacognitive noise (Fig. 8a, b). This noise would make
the estimated priors less reflective of the true priors, but would not
cause consistent over- or underestimation of the prior (Fig. 8b).
Therefore, this effect would not look like over- or underweighting of
priors, and would not cause differences between conditions. Still, to
further explore how this interacts with the model, we simulated three
different implementations of both Gaussian and log-normally dis-
tributed metacognitive noise (Supplementary Information). None of
these influence the differences between conditions or capture the
pattern of results. In sum, these other possible effects of the dual-
decision task and prior used in Experiment 1 and 2 cannot capture
the findings. Instead, the results can best be explained by a sub-
optimal and asymmetrical weighting of the prior: underweighting of
the prior in decisions and less underweighting of the prior in
confidence.
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The results of Experiment 3 also, importantly, showed this dis-
sociation to generalise outside of the context of a dual-decision task
and of a prior that is based on a confidence computation. Using exo-
genously cued probabilistic priors, participants still underweighted
the prior in decisions and used the prior more strongly in confidence.
This is a common task structure in work assessing the role of priors in
decisions, so the findings here should be considered carefully when
interpreting other results. For example, substantial other work has
found that probabilistic priors are underused in decisions, with parti-
cipants failing to shift their decision criterion as much as would be
optimal®’~*. However, our findings add an additional, critical layer to
these results, revealing that participants do still process and have
access to that ignored prior information, but that the use of this
information occurs at the metacognitive level. Therefore, a more
complete picture of the influence of priors on perceptual decision-
making should include confidence.

In this study, both paradigms used informative, high level priors.
Future work is necessary to investigate whether this result holds true
when different kinds of priors are used. First, lower-level priors such as
the light-from-above prior, cardinal orientation bias, or perceptual
history bias might affect decisions differently, as they may act at an
earlier stage and impact perception of the target stimulus more
directly***®, Second, non-informative or suboptimal priors might
reveal that the pattern we see here reflects a confidence bias towards
prior information, rather than more optimal use of priors in con-
fidence. If so, in cases of suboptimal priors, confidence would still be
more likely to be affected by the invalid prior information than deci-
sions. This possibility is in line with recent studies that have shown that
confidence is biased by suboptimal, false priors about stimulus
precision*’ or about task performance®. Other work testing the
Bayesian confidence model has found confidence to suboptimally
overweight evidence that is in line with the decision, leading to a form
of confirmation bias in perceptual confidence'®***". Our findings do not
show a confirmation bias in favour of information in line with the
decision, but might rather reflect a confidence confirmation bias in
favour of information in line with the prior, even in cases where this
actually contradicts the decision. Although at face value this may go
against the previous confirmation bias findings in perceptual con-
fidence, this might, speculatively, still be in line with the conclusions
drawn, namely that confidence favours evidence consistent with one’s
beliefs. This could also be a strategy aimed at self-consistency and
avoiding cognitive dissonance®*, leading people to be more con-
fident in response to information that fits in their belief system, and to
doubt themselves when they act against their prior world models.

Methods

The first two experiments were pre-registered (Experiment 1: https://
osf.io/qgpsr, 25.10.21 and Experiment 2: https://osf.io/tvyrz, 02.08.22),
and we respected the pre-registered plan unless stated otherwise.

Participants

For Experiment 1, we pre-registered that we would test 25 participants
across two sessions. We chose this sample size to be close to previous
studies using similar tasks and modelling methods®*, which included
between 15 and 26 participants. We also pre-registered six minimal
criteria to invite participants to the second session. The most impor-
tant of these criteria were (1) that response accuracy increased across
the three coherence levels—hence suggesting that the experimental
manipulation had the intended effect on internal signals —, and (2) that
response accuracy was (any amount) higher on the second decisions as
compared to the first, indicating basic use of the task structure. Fol-
lowing these criteria, we excluded 12 participants without inviting
them to take part in the second session, and collected data until we
reached 25 participants that met these criteria and were tested for two
sessions. Four of these participants were later excluded from analysis

because they no longer met these basic criteria after including data
from their second session, leaving a total of 21 participants (10 male, 11
female) included in the analyses. Participants were tested in Berlin,
were healthy and were between 18 and 37 years of age (M=25.7, SD =
4.6). For all experiments, participants’ gender was determined based
on free-form, optional self-reporting. No sex or gender-based analyses
were performed and we did not consider sex or gender in the study
design, as neither sex nor gender played a role in our research ques-
tions. Participants all reported to have normal or corrected-to-normal
vision, were fluent in English, and primarily right handed (Edinburgh
Handedness Inventory score: M=83.2, SD =28.5). Participants were
compensated with 8€ per hour or with equivalent course credit and
gave signed, informed consent before starting the experiment. The
ethics committee of the Institute of Psychology at the Humboldt-
Universitit zu Berlin approved the study (Nr. 2021-47), which con-
formed to the Declaration of Helsinki.

For Experiment 2, we pre-registered that we would test an
initial 25 participants that met the minimal exclusion criteria after
both sessions, after which we set a stopping rule, based on evidence
for or against the effect of condition on target response accuracy.
After 25 participants, we found substantial evidence for the alter-
native hypothesis and stopped collecting data. These 25 partici-
pants included 9 male, 15 female, and 1 that did not specify; were
between 19 and 34 years of age (M=25.4, SD =3.8); and were pri-
marily right handed (Edinburgh Handedness Inventory score:
M=86.3, SD =34.3—note one participant was excluded from this
due to missing data), as well as meeting the same inclusion criteria
as in Experiment 1.

For Experiment 3, based on sample sizes for Experiment 1 and 2,
we planned to include 20 participants with clean data. We set a priori
that participants would be excluded if they performed worse in the
90% prior condition (in which they have the most available informa-
tion) than in the 50% prior condition (in which they have the least
available information), as this would indicate failure to understand the
basic task structure. We tested 23 participants (4 male, 19 female) and
excluded 3 for that reason. This left a total of 20 participants included
in the analysis. They were between 19 and 33 years of age (M=23.7,
SD=3.9), and were primarily right handed (Edinburgh Handedness
Inventory score: M=85.4, SD =39.0).

Setup

The experiment was programmed in HTML/Javascript/CSS to run in
the browser. We used JATOS™ to store the result data. The study ran on
Google Chrome (version 94.0.4606.71) on a Dell Precision 5760 laptop
(Intel core i7 with 31GB of RAM) with a display resolution of
1,920 x 1,200 (refresh rate = 60 Hz).

Procedure

Control task. In each of the two sessions of Experiment 1and 2, prior to
starting the main task, participants first completed 90 trials of a con-
trol task. In Experiment 3, which was only one session, the second
round of this control task was done at the end of the session. Each trial
of the control task consisted of a single dot motion stimulus with a 50%
chance of the coherent motion going to the right vs left, followed by a
right/left decision, which participants made using the “S” or “A” keys,
respectively. The stimuli in the control task spanned six different
coherences, meant to capture a broad range of difficulties - 5%, 10%,
12%,15%,20% and 30% coherence. The resulting data were later used to
estimate participants’ internal noise and decision bias (see below). In
total across the two sessions, participants completed 180 control task
trials (30 per coherence level). In only Experiment 3, this control task
additionally included a confidence rating after each decision, on the
same continuous scale as the main task. This was then used to estimate
metacognitive noise, which was necessary for the full modelling ana-
lyses of Experiment 3. After the control task, we explained the
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instructions for the full task structure to participants both verbally and
in written instructions, and they then completed five demo trials to
familiarise themselves with the task and buttons, and then proceeded
to the main task.

Main task: experiment 1 and 2. On each trial of the main task, parti-
cipants completed two consecutive decisions consisting of a random
dot motion stimulus followed by a right/left decision using the “S” or
“A” keys (Fig. 1a). The first (lead) stimulus of each trial had a 50% chance
of the coherent motion going to the right vs left. The direction of
coherent motion of the second (target) stimulus depended determi-
nistically on the response accuracy of the first decision such that if they
were correct, the second stimulus would have coherent motion to the
right, and if they were incorrect, it would have coherent motion to the
left. Participants were informed of this rule and instructed to use this
to help them in the task. Following an optimal strategy, this conditional
rule meant that participants should expect a rightward second sti-
mulus with a strength of prior expectation proportional to their
decision confidence about the first decision. Following the second
decision, participants rated their confidence on a continuous sliding
scale from 50% (guessing) to 100% (totally sure), using the mouse. The
dual-decision task structure with the conditional rule was an extension
of a previous study investigating implicit confidence”.

The task was gamified to make it more engaging. The background
of the screen was an illustration of fields with a barn to the right, and
the stimulus display circle in the middle of the screen (Fig. 1a). The first
decision controlled the movement of a cartoon sheepdog to the right
or left of the stimulus display, and the second decision controlled the
movement of a cartoon farmer to the right or left of the stimulus
display. We explained to participants that the moving dot stimuli
depicted flocks of sheep, with some “leader” sheep that moved
coherently to either the left or right, and that they had to decide based
on the motion direction of the leader sheep whether to send their
sheepdog to the left or right. Participants were explicitly informed of
the rule: If they were correct, and hence the sheepdog was in the
correct place, the sheep would be herded toward the barn and on the
next stimulus, they would be going to the right. If, however, they were
incorrect and the sheepdog was not in the correct place, the sheep
would run away and on the next stimulus, they would be going to the
left. After the second stimulus, participants then had to make the final
decision to either send the farmer to the barn (to the right) to get the
sheep, or to send the farmer to herd them from the fields to the left.
They then rated their confidence that the farmer had successfully
gotten the sheep. We emphasised to participants that they should use
the rule to try to help them with the task, and that they should take
time to give as sensitive and meaningful confidence ratings as possible.

We manipulated the coherences of the stimuli to create three
stimulus levels, and the coherence levels of each of the two stimuli per
trial combined to form three overall posterior levels. The low posterior
information level consisted of one low and one medium coherence
stimulus (L+M or M+L), the medium posterior information level
consisted of one low and one high coherence stimulus (L+H or H+L),
and the high posterior information level consisted of one medium and
one high coherence stimulus (M+H or H+ M). These posterior infor-
mation levels existed across two conditions, a “Stronger-Lead” condi-
tion in which the lead stimulus was stronger, and a “Stronger-Target”
condition in which the target stimulus was stronger. The stimulus
coherence levels were staircased by staircasing lead stimuli, which
were not under the influence of an informative prior, with the medium
level staircased via a 2-down-1-up procedure targeting 71% accuracy,
and the high level staircased via a 3-down-1-up procedure targeting
79% accuracy. The low level was yoked to the medium staircase, but
remained 5% lower in coherence, as there was no N-down-1-up proce-
dure that would target an accuracy between 50% and 71%. The three
posterior information levels as well as the conditions were

counterbalanced across each block. Participants received feedback
about their performance on the target decisions at the end of each
block. Each block consisted of 36 trials, and participants completed 10
blocks per session for a total of 360 trials per session and 720 trials in
the experiment. Each session took between 1-1.5 h in total.

Experiment 2. The paradigm remained the same in Experiment 2
except that there was an added delay period of 2 s before participants
could enter the target decision using the “S” or “A” key, after viewing
the target stimulus. After these 2, a light grey ring appeared around
the viewing circle to indicate to participants that they could now
report their decision. Participants were instructed to try and avoid
pressing a key prematurely during the delay period, although trials
with premature presses were not excluded. Participants received
feedback at the end of each block about how many premature presses
were made, in order to remind them to limit this.

Stimuli. The dot motion stimuli were made using an adapted version of
an RDK jsPsych plugin®. Stimuli were composed of 100 total moving
white dots on a circular grey background. Each dot had a radius of 2
pixels and the background circle had a diameter of 425 pixels, with an
aperture diameter of 319 pixels (75% of the circle diameter). The noise
dots had constant directions that were randomly sampled, and the
coherent dots moved in a constant horizontal direction either to the
left or right. All dots moved 2 pixels per frame and had a dot life of 17
frames (i.e., each dot followed their trajectory for 17 frames before
being redrawn at a random location). Each stimulus was presented for
300 ms. Although some directional information was possible in the
random dots of each stimulus, we checked that this did not lead to an
overall bias in any participant, so that stimulus directions remained
balanced between left and right (for the lead decision, where they
were intended to be 50/50), even with the directional information
from the noise dots. None of the decisions or confidence ratings was
speeded.

Main task: experiment 3. On each trial of the main task in Experiment
3, participants made a single decision about the motion direction of a
random dot motion stimulus (the same stimuli as in Experiment 1 and
2). Before viewing the stimulus, participants were explicitly informed
of the probability that the stimulus would go towards the barn, which
was either always to the left or always to the right, counterbalanced
across participants. This probability was shown on the screen as either
60, 70, 80, or 90%, and either an “R” for right or an “L” for left, written
on the stimulus display circle. This was always the true probability of
the stimulus direction stated. Once participants had read and inter-
nalised this prior probability, they pressed space to view the stimulus.
They then made their decision and rated their confidence in exactly the
same way as in Experiment 1 (see above).

There were 100 trials per informative prior probability level (0.6,
0.7, 0.8, 0.9), and these were interleaved and counterbalanced across
10 blocks of 40 trials each. Additionally, there were 100 trials in which
there was no informative prior, with a 0.5 probability of right/left.
These were spread across 5 blocks of 20 trials each. The first block was
a‘flat prior block’ and these then occurred after every two ‘informative
prior blocks’. The flat prior blocks were used to staircase the stimulus
difficulty, using a 2-down-1-up procedure targeting 71% accuracy. The
stimulus difficulty used for the informative prior blocks was the end
point of the staircase from the previous flat prior block. This was done
because performance on the informative prior blocks also depended
on the prior weighting, which we were measuring, so we could not
adaptively adjust stimulus difficulty on the basis of performance on
those trials. Together, this totalled 500 trials of the main task,
including 400 with informative priors and 100 without. Participants
received feedback about their performance after each block. The
experiment took 1.5-2 h in total.
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Analysis
We removed any trials with reaction times >8s on any decision or
confidence ratings.

Our main behavioural hypotheses were tested using the ‘Ime4’
package* in R¥ for building linear and generalised linear mixed-effects
models. For each regression analysis, we used the most complex ran-
dom effects structure that converged on the full model*®, which meant
deviating from pre-registered random effects for analysing con-
fidence. Model syntaxes can be seen in Table 1. For linear mixed-effects
models, we ensured that the assumption of normally distributed
model residuals was met through visual inspection of residual plots. All
hypotheses were tested using two-tailed tests and an alpha level of
0.05, and reported x? values are based on a comparison of the model of
interest and null model with the same random-effects structure. We
computed effect sizes for single level models as n’,. We additionally
computed Bayes factors for our main hypotheses using the ‘Bayes-
TestR’ package®® and using Bayesian models with uniform priors with
the ‘brms’ package®. For these Bayesian regressions, we ran 4 chains of
10000 iterations, including 2000 burn-in samples, which gave a total
of 32,000 effective samples, and we ensured a R-hat close to 1. To
analyse whether the prior was suboptimally weighted at the decision
level, we deviated from our pre-registered regression approach of
examining the effect of condition on the probability of choosing
“right” given rightward stimuli. We realised from later simulations that
this would not sufficiently distinguish between an optimal and sub-
optimal weighting of the prior. We instead examined the effect of
condition on response accuracy, which could adequately address this
question.

In order to compare participants’ metacognitive efficiency
between conditions, we used the M-Ratio measure (meta-d”/d")
described in previous work®, with R scripts available from https://
github.com/craddm/metaSDT. Two participants were removed from
this analysis due to extreme confidence distributions, with over 40% of
trials at 100% confidence. Two further participants were removed due
to Type 1 hit rates above 0.95 in either condition, but the results did
not change when these two participants were included. For measuring
M-Ratio, we transformed participants’ continuous confidence ratings
to a 5-bin discrete scale using quantiles, computed on all ratings per
participant.

Modelling

To quantitatively assess how participants weighted the prior in their
decisions and confidence, we fit a Bayesian model to their data. The
specific model definitions, model fitting, model selection and evalua-
tion of model results were all exploratory and the details were not pre-
registered. The full model, which we refer to as the Flexible model,
includes two free weighting parameters, Wwepoice and Weony that capture
the weighting of the prior relative to the likelihood in the decision and
in confidence, respectively. These parameters act in the same way in
the model, scaling the estimate of the variance of the prior, and can
hence be directly compared. The model also takes as input a measure
of the internal noise and decision bias per subject, which were fit
independently using psychometric functions. The hierarchical model
implementations were fit to all participants’ trial-wise decisions and
confidence ratings together and all models were fit using a Markov
chain Monte Carlo (MCMC) approach in STAN®* and with the
‘cmdstanr’ package®’. R-hat values were close to 1 (<1.1) for all para-
meters. One outlier participant was removed from the hierarchical
modelling due to a weenr parameter that was 6.05SD from the group
mean (or 485.74SD from the group mean when fit without them)
which hence skewed the group-level fit. We analysed the posterior
distributions using 89% credible intervals, following the suggestion
that these are more stable than 95% intervals for analysing Bayesian
posterior distributions®*. Details of the model implementation in

STAN, the model fitting procedure, and the model simplification used
can be found in Supplementary Information.

Fitting internal noise and decision bias. To measure the internal noise
(Gprior and Giikelinooa) as Well as the decision bias for each participant, we
used the approach taken by Lisi et al.”’, and adapted the scripts avail-
able at https://osf.io/w74cn/. We assumed Gpyior and Giigelinood tO be the
same, as we used the same stimuli for leads and targets. We fit four
different psychometric functions to participants’ decisions in the
control task, as well as the first decision of each main task trial in Exp. 1
and 2, as these decisions all took place without informative priors (50/
50 chance of right vs left). The four psychometric functions were (1) a
simple function that includes only the internal noise as a free para-
meter, (2) a function with internal noise as well as decision bias, (3) a
function with internal noise as well as a lapse term, and finally (4) a
function that includes internal noise, decision bias, as well as lapse. The
lapse term accounts for the possibility that participants might have
made stimulus-independent lapses such as attentional or motor lapses.
These four functions were fit and we then used the parameter values
retrieved from taking an Akaike-weighted combination of the four
estimates. For the modelling analysis, we transformed each partici-
pants’ raw coherence values (coh) into units of their own internal noise.
We additionally transformed their right versus leftward coherence
values to take into account their own decision bias. Together, this
transformation yielded the following definition of normalized stimulus
strength s:

= (dir*coh) — bias
- o

@

where dir is equal to -1 for leftward stimuli and +1 for rightward stimuli.
This transformation allowed us to set the internal noise to 1 in all
equations below.

Flexible model. The Flexible model includes three free parameters per
participant—the prior weighting parameter at the decision level
(Wenoice), the prior weighting parameter at the confidence level (weonp,
and the confidence bias parameter (b). Wepoice quantifies the relative
influence of the prior (compared to the likelihood) in the target deci-
sion. This influence of the prior can be captured computationally by
shifting the decision criterion. Then, the probability of choosing right
(@rigne) in the target decision is based on the probability that the per-
ceived target stimulus was to the right of the shifted decision criterion.
The decision criterion (0) is shifted proportionally to the weighted
prior:

|I‘ Iead|
0= — == )]
Wehoice

where ryq is the internal response generated from the lead stimulus
and internal noise. This shifting of the decision criterion is computa-
tionally equivalent to having a rightward prior equal to the decision
confidence on the lead decision (Fig. 8a), but with the prior variance
misestimated according to Wepeice”- The likelihood of a rightward
target decision was then computed, exactly as in the work of Lisi
et al”, as:
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following a leftward lead decision, where s represents the stimulus and
d represents the decision. Because we as experimenters do not have
access to the internal signals of the participant, the left term in the
integral captures the probability of an internal target signal to the right
of the shifted decision criterion - shifted according to the weighted
prior signal, which derives from the lead stimulus. The right term
weights this by the likelihood of that internal prior signal, given the
lead stimulus, and these terms are marginalised across the possible
prior signal values. Note that the model had to be adapted slightly to
suit Experiment 3, which did not follow this dual-decision setup and
hence did not have the prior come from a lead stimulus. Details of the
necessary changes can be found in Supplementary Information
(Section ‘Flexible model—Experiment 3').

Confidence was then modelled as the perceived posterior prob-
ability of being correct, combining the prior and likelihood (Fig. 8a).
The relative influence of the prior on confidence is captured by wons
This weighted rightward prior in confidence (p(R)conp) is equal to the
decision confidence from the lead decision, with the variance of the
prior misestimated according to Wcons

conf

— [ ead!
p(R)conf =0 (W) (5)

The strength of the likelihood depends on the incoming infor-
mation from the target stimulus, and was defined as the likelihood of
having gotten the internal target signal (rrge) if there had been a
rightward target stimulus (R, Or S;arge: > 0):

r
p(rtarget‘R) =0 (%) (6)

Confidence bias, b, acts similarly to the weighting parameters,
capturing a misestimation of the variance of information. However,
unlike the weighting parameters (which only act on the prior), b cap-
tures an equal misestimation of both the prior variance and likelihood
variance, and therefore reflects an overall tendency to interpret sti-
mulus information as being either noisier or clearer than it really was.
b >1reflects a general overestimation of the signal variance, and scales
confidence in both choice alternatives towards 50%. b<1 reflects a
general underestimation of the signal variance, and scales confidence
in the chosen alternative towards 100% and the rejected alternative
towards 0%. While this still captures a general over- or under-
confidence, it is different from a report bias, which would just freely
shift the final confidence report. This was chosen because we wanted a
confidence bias that was more perceptual in nature, and less flexible
compared to a report bias, which would overpower the weighting
parameters.

The posterior combined the prior and likelihood according to
Bayes rule, and confidence in a rightward choice was then computed as:

= p(R)conf p(r target|R)
right 1= p(R)conr)d — p(rm,get|R)) + p(R)Confp(rmrget\R)

conf

@)

Confidence in a leftward choice was then equal to (1 - confrigne).
Similarly t0 Wcpoice» Weons captured the prior strength that would
account for each confidence rating by scaling the variance of the
internal prior signal relative to the internal likelihood signal. By
implementing these two weighting parameters in the same way, we
could then directly compare them. The Flexible model was the only
model in which the weighting of the prior information was allowed to
differ between discrimination decisions and confidence ratings.

Flat prior model. The Flat Prior model captured decisions and con-
fidence in the same way as the Flexible model except that the prior

information had no influence on the target decision or confidence, so
the lead and target decisions were modelled as independent and
confidence was modelled as the decision confidence about only the
target stimulus. Computationally this meant forcing the prior for a
rightward target stimulus to be equal to 0.5, or an uninformative prior,
which was analogous to setting wepoice and W onr to be infinitely large.
The only free parameter in this model was the confidence bias (b).

Optimal model. The Optimal model only differed from the Flexible
model in that it assumed the prior information to be optimally
precision-weighted relative to the likelihood. This meant that w pice
and wcons Were both equal to 1, with only b as a free parameter.

Equal model. The Equal model was also the same as the Flexible
model except that the use of the prior information was assumed to
be the same in decisions and confidence, although it could stray
from optimal. Computationally, this meant that wepgice aNd Weons
were forced to be equal to one another, and so only one weighting
parameter (w) was fit, which was then used as both wcpeice and weonys.
Again, b was still fit to capture an overall confidence bias in
this model.

Model comparison. We compared the ability of our four models to
account for the behavioural data of the remaining 20 participants
after removing the outlier participant. To do this, we performed a
10-fold LOGO-CV, in which we left out 2 participants at a time, fit
each model to the remaining 18 participants, and then measured
the predictive performance of those fit models for predicting the
data of the left-out participants using the ‘loo’ package®. The log
predictive density for each model for each fold was stored and we
then computed the overall expected log pointwise predictive
density for each model, and compared them. We considered a
model to fit the data better if the magnitude of the difference in
expected log pointwise predictive density (elpd_diff) was at least 4,
and at least 2 times larger than the standard error of the difference
(se_diff)°e.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The raw experimental data generated in these experiments have been
deposited in a public repository®” on Zenodo under https://doi.org/10.
5281/zenodo.8131976. Source data are provided with this paper.

Code availability
Reproducible analysis scripts and models are publicly available under
https://gitlab.com/MarikaConstant/priors-in-confidence.
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