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Abstract 
According to Bayesian models, both decisions and confidence are based on the same 

precision-weighted integration of prior expectations (“priors”) and incoming information 

(“likelihoods”). This assumes that priors are integrated optimally and equally in decisions and 

confidence, which has not been tested. In two experiments, we quantitatively assessed how priors 

inform both decisions and confidence. With a gamified dual-decision task we controlled the 

strength of priors and likelihoods to create pairs of conditions that were matched in posterior 

information, but differed on whether the prior or likelihood was more informative. We found that 

priors were underweighted in discrimination decisions, but used to a greater extent in confidence 

about those decisions, and this was not due to differences in processing time. With a Bayesian 

model we quantified the weighting parameters for the prior at both levels, and confirmed that 

priors are more optimally used in explicit confidence, even when underused in decisions.  
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 Human perception has often been shown to be based on a Bayesian inference process, 

in which the brain infers information about the environment by integrating incoming information 

with previous beliefs1. Computationally, this involves the integration of a prior distribution (“prior”) 

with a likelihood distribution (“likelihood”) to give a posterior distribution (“posterior”), which then 

forms the basis of a belief or percept. Many studies have shown evidence supporting the idea 

that perception and decision-making can be explained as Bayesian inference1–7. Further, 

confidence, i.e. the sense of certainty that typically accompanies perceptual decisions, can also 

be explained by Bayesian inference models. 

In formal terms, Bayesian models propose that confidence corresponds to the perceived 

posterior probability of being correct about our inferences, based on the relative strengths of the 

posterior probabilities of each hypothesis being considered. This Bayesian confidence model has 

been tested and supported empirically, in both animals and humans8–14. For example, evidence 

supporting the Bayesian confidence model has been found at the neural level in rats, with firing 

rates producing a signature “folded-X” pattern10. In humans, this same Bayesian confidence 

model can quantitatively capture confidence reports, as well as predicting critical qualitative 

signatures of confidence, including the same characteristic folded-X pattern14. The Bayesian 

approach has been highly influential (although non-Bayesian alternatives have been 

proposed15,16). Importantly, this framework considers that the posterior percept is based on the 

precision-weighted integration of priors and likelihoods, and also that this same posterior gives 

rise to decisions and confidence. This simple formulation relies on two assumptions: first, that 

both decisions and confidence integrate priors and likelihoods optimally; and further, that 

confidence integrates priors and likelihoods in the same way as decisions. But these assumptions 

must be empirically tested, as the alternative is also possible: either confidence, decisions, or 

both, might integrate priors in systematically biased ways, and might do so asymmetrically.  

Meanwhile, there is evidence to suggest that these kinds of suboptimalities often occur in 

human perception and confidence. Various systematic biases have been found in the information 

that enters confidence, such as a bias towards decision-congruent evidence17, or an 

overweighting of perceived sensory noise18,19. Furthermore, several studies have found that 

confidence incorporates different or additional information compared to decisions20–25. This 

supports the possibility that there are asymmetries in the way that certain sources of information 

influence these different processing levels. With regard to prior information, empirical work 

examining Bayesian confidence models has typically used uninformative, ‘flat’ priors, so it has not 

been possible to detect these potential biases or asymmetries. Two recent studies have begun 

examining confidence under informative priors, and found that confidence thresholds liberalise 
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following prior-congruent stimuli26,27. These results show that priors influence confidence, but still 

cannot answer how optimal this influence is, and how it compares to the influence on decisions. 

In order to understand how our sense of confidence arises across different situations in which we 

may have highly informative prior expectations, as well as to rigorously test Bayesian confidence 

models, it is critical to understand quantitatively how priors are weighted relative to likelihoods in 

confidence computations, and how this relates to their weighting in decisions. More broadly, due 

to the pervasive role of priors in our processing, studies assessing the Bayesian confidence model 

under informative priors are important for generalizability. 

 Here, we examined (1) whether the use of prior information is optimal relative to the use 

of new sensory information, and (2) regardless of optimality, whether prior information is used the 

same way at the level of decisions and confidence. We did this both behaviourally and by fitting 

a generative Bayesian model with free weighting parameters that allowed us to quantify the 

relative use of priors at the level of decisions and confidence. Additionally, we assessed whether 

any possible asymmetries in the use of the prior at these different processing levels could be 

explained by differences in evidence accumulation time. 

In two experiments, participants completed a gamified dual-decision task in which they 

made right/left decisions about two consecutive dot motion stimuli per trial. Critically, participants 

were informed about the added rule that, following correct responses to the first (‘lead’) stimulus, 

the second (‘target’) stimulus would go to the right. Conversely, incorrect decisions about the lead 

stimulus would be followed by leftwards-moving target stimuli. This meant that, in an optimal 

Bayesian observer, the prior expectation for a rightward target stimulus would be equal to the 

decision confidence about the lead stimulus. In other words, if participants were very confident 

that their response to the lead stimulus was correct, they would have a very strong prior that the 

target would be a rightward stimulus. Conversely, if participants were very unsure about their 

response to the lead, they would have equal expectations that the target would go right or 

leftwards. A dual-decision task with this same rule was used recently28 to investigate the influence 

of the prior on the decision level, which was interpreted as a measure of implicit confidence. Here 

we build on that work in order to assess the potentially differential role of priors in decisions and 

in explicit, subjective confidence ratings.  

In our design, we also made use of the task structure in order to be able to vary the 

strength of priors and likelihoods on the same dimension. Only this way could we directly, 

behaviourally compare the relative influence of priors and likelihoods on responses. We did this 

by building two conditions that were matched in the amount of total available posterior information, 

but differed in whether the lead or target was more informative. This allowed us to measure 
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whether accuracy, confidence, and metacognitive efficiency differed between these two 

conditions, which could indicate either over- or underweighting of the priors relative to likelihoods. 

Going further, in order to quantify that weighting in both decisions and confidence, and test the 

precise way in which the use of prior information might differ at these different processing levels, 

we fit a Bayesian model to the data with parameters capturing the weighting of the prior in 

decisions and confidence. In the second experiment, we then further investigated whether 

potential asymmetries between the weighting of priors in decisions versus confidence could be 

simply attributed to differences in processing time. 

 

Results 
 
Experiment 1 

Dual-Decision Task and Conditions. On each trial of the gamified dual-decision task, 

participants (N=21) saw two consecutive random dot motion stimuli and made a decision after 

each about whether the coherent motion was to the right or left (Figure 1A), followed finally by a 

confidence rating about the second decision. We told participants that their task was to herd a 

flock of sheep (represented as dots in the RDK stimulus) towards the barn on the right of the 

screen. We gamified the rule (linking correct lead-decision responses to rightwards-moving target 

stimuli) and asked participants to position a sheepdog by responding to the lead stimulus. If the 

sheepdog was in the correct place, the sheep (coherently moving dots) of the target stimulus 

would go to the right. This meant that participants’ internal decision confidence about the lead 

stimulus formed the strength of their prior for a rightward target stimulus. In this way, the strength 

of the prior could be manipulated by changing the coherence of the lead stimulus (with L: low, M: 

medium, or H: high coherence), and the strength of the likelihood could be manipulated by 

changing the coherence of the target stimulus (also L, M, or H). This allowed us to create two 

conditions with the same available posterior information to the optimal observer (‘posterior level’): 

One in which there was more prior information due to a stronger lead stimulus (Stronger-Lead) 

and one in which there was more new sensory information due to a stronger target stimulus 

(Stronger-Target) (Figure 1B). These two conditions existed in matched pairs across three overall 

levels of available posterior information (Lpost: L+M or M+L, Mpost: L+H or H+L, and Hpost: M+H or 

M+H). With this experimental design, we were able to assess whether participants’ accuracy, 

confidence and metacognitive performance depended on the condition.  
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Figure 1. Task and Conditions Sketch. A. Gamified dual-decision paradigm. On each trial, participants 
viewed and made right/left decisions about two consecutive dot motion stimuli (lead and target), which they 
were told represented flocks of sheep. We explicitly informed participants that if they were correct about 
the first decision, then the target stimulus would be going to the right, and if incorrect, then it would be going 
to the left. This meant that, in an optimal observer, the prior for a rightward target stimulus should be equal 
to the lead decision certainty. They also rated their confidence in the target decision. In Experiment 2, the 
paradigm was the same except there was a 2-second delay after viewing the target stimulus, before 
participants were allowed to make the target decision. B. Conditions. We manipulated the coherence of 
the lead and target stimuli (each of which could have L: low, M: medium, or H: high coherence), here 
depicted with the circle transparency, to create two conditions that had matched available posterior 
information but differed in whether the lead or target stimulus was stronger. This was tested at three overall 
posterior levels - low posterior information (L+M), medium posterior information (L+H), and high posterior 
information (M+H). C. Sketch of the Stronger-Lead vs Stronger-Target Manipulation. The posterior 
percept (orange) should optimally be the precision-weighted integration of the prior (yellow), which in our 
task was always rightward and could span from 50-100%, and likelihood (red). Both conditions led to the 
same available amount of posterior information, which (in the optimal case) leads to the same probability 
of a correct choice as well as confidence. Hence, the target accuracy and confidence will only differ between 
conditions if the two sources of information are not integrated optimally in the decisions and/or confidence. 
Note that this is only a sketch aimed at conveying the intuition of how the conditions were matched in terms 
of posterior information. The prior for a rightward target stimulus is captured more accurately by a step 
function, shown in Figure 7.  
 

Manipulation Check. We first ensured that response accuracy increased with increasing 

coherence of the stimuli, indicating that we effectively manipulated internal signal strength as 
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intended. Additionally, we investigated whether participants used the task structure as we wanted 

them to, using the rule and hence their prior to guide their target decisions, at least to some extent. 

If this were true, we expected participants to perform better on the target decisions of each trial, 

on which they had additional information from the prior (lead stimulus) to guide their choice. To 

test both these predictions we built a logistic regression model on response accuracy with fixed 

effects of information level (L, M, H), decision order (lead or target), and their interactions (see 

Table 1 for the model syntax). We found a significant interaction between decision order and 

information level (𝜒2(2)=43.53, p<0.001, BF10!"#$%&'&%(4), with differences between information 

levels reduced in the target decisions. However, post-hoc pairwise comparisons revealed that 

response accuracy remained significantly higher with increasing information levels for both 

decisions (all p<0.001), suggesting our coherence manipulation to work as planned (Figure 2A). 

Additionally, response accuracy was higher in the target decision compared to the lead decision 

at each information level, and this was significant at the low and medium information levels (both 

p<0.001), revealing appropriate use of the task structure.  

 

 
Figure 2. Behavioural Results. A. Manipulation check. As expected by experimental design, increasing 
the information level increased accuracy in both the lead decisions (ML_Lead=0.63, SD=0.04; MM_Lead=0.71, 
SD=0.02; MH_Lead=0.80, SD=0.02) and target decisions (ML_Target=0.71, SD=0.04; MM_Target=0.78, SD=0.03; 
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MH_Target=0.82, SD=0.03), suggesting that changes in dot coherence successfully increased the strength of 
the internal signal. Accuracy was also higher in the target decisions compared to the lead decisions, 
suggesting at least some use of the task structure and prior information. In the raincloud plots, the right-
half, split violin plots show the probability density, and vertical black lines show the median, IQR, hinges 
showing the first and third quartiles, and vertical whiskers showing +/- 1.5IQR. The binned dotplots on the 
left half show each individual subject as a point. B. Effect of condition on accuracy. We found a significant 
effect of the condition (which stimulus was stronger) on accuracy, despite matched available posterior 
information, suggesting participants to give suboptimal relative weights to priors and likelihoods in their 
decisions. Participants performed significantly better in the Stronger-Target condition (ML_Stronger-Target=0.72, 
SD=0.05; MM_Stronger-Target =0.79, SD=0.04; MH_ Stronger-Target =0.84, SD=0.04) compared to the Stronger-Lead 
condition (ML_Stronger-Lead=0.70, SD=0.05; MM_Stronger-Lead=0.76, SD=0.05; MH_Stronger-Lead=0.81, SD=0.05), 
pointing to a relative underweighting of prior information. C. Effect of condition on confidence. We found 
no effect of condition on confidence following correct trials (with mean differences between conditions – 
Stronger-Target minus Stronger-Lead – of: ML=0.15, SD=2.19; MM=0.40, SD=2.34; MH=-0.07, SD=2.15). 
But, we found an effect of condition following incorrect trials, with lower confidence in the Stronger-Lead 
condition (with mean differences between conditions – Stronger-Target minus Stronger-Lead – of: ML=0.66, 
SD=2.51; MM=1.98, SD=2.50; MH=3.15, SD=2.54). From the decision level as a baseline, this result 
indicates greater use of the prior in confidence than in decisions. D. M-Ratio estimates. M-Ratios per 
participant for each condition, measured across all posterior levels. As expected if (as panels B. and C. 
suggest) valid prior information informed confidence ratings more than discrimination decisions, M-Ratios 
were significantly higher in the Stronger-Lead condition than in the Stronger-Target condition.  
 

Dependence on Condition Reveals Suboptimal Prior Weighting in Decisions. After 

confirming that the manipulations worked as intended, we investigated the use of prior information 

in decisions. We reasoned that, if the prior were suboptimally weighted at the decision level, 

performance on the target decision would depend on the condition despite matched posterior 

information (Figure 1C). To evaluate this, we built a logistic mixed effects model on target decision 

response accuracy. This included fixed effects of posterior level (L, M, H), condition (Stronger-

Lead, Stronger-Target), and their interaction (Table 1). We did not find a significant interaction 

effect. In line with our manipulation check, we found a significant main effect of posterior level 

(𝜒2(2)=175.77, p<0.001, BF10=)#%*& '& %(36), with accuracy increasing with higher available 

posterior information (Figure 2B). We also found a significant main effect of condition, 𝜒2(1)=9.06, 

p=0.003, BF10=8.95, with better performance when the target was stronger, ORStronger-Lead/Stronger-

Target=0.89, 95% CI [0.82, 0.96], Z=-3.09, p=0.002 (Figure 2B). This suggests that, despite an 

equal amount of available posterior information, participants performed better when more of that 

information was carried by the target stimulus, rather than the lead stimulus, indicating that they 

dismissed some of the prior information when making their decisions. In other words, this revealed 

an underweighted use of the prior at the decision level, relative to an optimal observer. Because 

there was potential for response bias to lead to differences in accuracy across the conditions 

regardless of how the prior information was weighted, we reran this model, including a measure 
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of response bias obtained from fitting subject-wise psychometric functions to performance on the 

unbiased first decisions (see Methods). This did not substantially change the result or 

conclusions, as there were no significant effects involving response bias.   

 
Analysis of Mean Confidence Reveals Greater Use of Priors Than in Decisions. We 

then built a linear mixed effects model on confidence with fixed effects of posterior level (L, M, H), 

condition (Stronger-Lead, Stronger-Target), target response accuracy (Correct, Incorrect), and 

their interactions (Table 1). We found evidence for a three-way interaction from Bayesian statistics 

BF10=70.83 (Figure 2C) but only a trend from frequentist tests (F(2,14832)=2.66, p=0.070). Post-

hoc pairwise comparisons revealed a significant effect of condition on confidence only for 

incorrect trials at the high posterior level, t(1281)=-3.52, p<0.001, BF10=6.14, η2
p=0.01, and 

medium posterior level, t(839)=-2.16, p=0.03, η2
p=0.006, although the Bayesian statistics suggest 

evidence against the effect at the medium level (BF10=0.46).  There were no significant effects of 

the condition following correct trials, with evidence for the null hypothesis at all posterior levels 

(all BF<0.02). Because the suboptimal weighting of the prior at the decision level can impact 

confidence distributions, a statistically significant effect of condition on confidence cannot  be 

interpreted in isolation. Instead, we must consider the decision level result as a baseline. 

Simulations shown below (Figure. 4A, third panel) revealed that, given any underweighting of the 

prior in decisions, the following pattern holds: If the prior was even further underweighted in 

confidence than in decisions, we would expect confidence in the Stronger-Target condition to be 

higher following correct trials and lower following incorrect trials. Contrary to this, the result of no 

difference following correct trials and lower confidence in the Stronger-Lead condition following 

incorrect trials indicates that the prior is less underweighted than at the decision level, and is 

hence used more optimally in confidence. To quantify this effect and concretely compare the 

weighting of the prior at the decision versus confidence level, we used computational modelling. 

Further in line with this idea, we found significantly higher M-Ratios in the Stronger-Lead condition 

(M=0.87, SD=0.27) than in the Stronger-Target condition (M=0.71, SD=0.25), t(16)=3.64, 

p=0.002, η2
p=0.01, 95% CI [0.14, 1.00] (Figure 2D), suggesting that the relative use of priors and 

likelihoods is more optimal at the metacognitive level than at the level of decisions.  

 
Bayesian Model Fits Different Weights of Priors in Confidence and Decisions. 

Overall, the behavioural analyses revealed that, while decisions underweighted the available prior 

information, confidence seemed to use the prior information more optimally. To account for these 

results, and to be able to compare the effects at these two levels of processing more directly and 
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quantitatively, we use a computational model. We built and fit a Bayesian model of decisions and 

confidence under informative priors that included a weighting parameter for the prior (relative to 

the likelihood), for both the decision (wchoice) and the confidence rating (wconf). These weighting 

parameters reflected potential over- or underestimation of the precision of the prior, hence 

weighting its influence over behaviour relative to the likelihood. They were also computationally 

identical in their impact, scaling the perceived variance of the prior, allowing us to directly compare 

them. We first estimated internal noise and decision bias (not under the influence of a prior) per 

participant on separate data using the Akaike-weighted combination of four fit psychometric 

functions (see Methods), and then incorporated these subject-wise estimates into the model, 

allowing us to account for them. The model additionally included a parameter for confidence bias 

(b) that captured overall over- or underconfidence in both stimuli. The model had three free 

parameters (per participant and at the group level): wchoice, wconf, and b. We confirmed the 

parameters to be recoverable in a parameter recovery analysis (Supplementary Materials, Figure 

S2B). We also compared our full model, which we call the Flexible model, to a variety of simpler 

models, to assess each main research question in more depth.  

 Flexible Model Results. At the decision level, the model predicted that if the prior was 

optimally weighted relative to the likelihood, (wchoice = 1), there would be no difference in accuracy 

between the two conditions (Figure 3A, left panel). If the prior was overweighted (wchoice < 1, 

capturing an underestimation of the variance of the prior), accuracy would be higher when the 

lead was the stronger stimulus (Figure 3A, middle panel). Conversely, if the prior was 

underweighted (wchoice > 1), accuracy would be higher when the target was the stronger stimulus 

(Figure 3A, right panel). The full hierarchical model fit the data with a mean of the posterior for 

the group mean parameter wchoice = 2.17 (SE=0.007; Figure 3C). This suggests, in line with the 

behavioural results, that priors are underweighted in decisions, relative to an optimal observer. 

The simulated choice behaviour for these model results is shown in Figure 3B (right panel) and 

demonstrates higher accuracy when the target is the stronger stimulus, just as we found 

behaviourally.  
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Figure 3. Modelling Discrimination Decisions. A. Model simulations of decision accuracy. Target 
decisions were simulated from the Flexible model across different posterior levels, between the two 
conditions, and at three different values of wchoice: 1 (optimal weighting of prior information), 0.33 
(overweighting of prior), and 3 (underweighting of prior), shown from left to right respectively. These values 
are representative of the range found in the data, and capture either over- or underestimated variance by 
a factor of 3. The resulting decision accuracies are shown here. The model predicts that optimally using 
prior information will lead to no difference in accuracy between the two conditions, whereas overweighting 
prior information will lead to higher accuracy when the lead is stronger, and underweighting prior information 
will lead to higher accuracy when the target is stronger. B. Data and predictions of the fit model. The left 
panel shows the observed accuracies per posterior level and condition. The right panel shows the predicted 
accuracies generated from sampling the fit posterior group mean parameter distributions 1000 times, and 
simulating 720 trials per participant for each of those sampled parameters. Note that we use the sample 
group mean parameter for simulating trials, but still used each participant’s staircased coherences, internal 
noise and decision bias. Error bars capture standard deviation (SD) of accuracies across participants. C. 
Posterior distribution for wchoice. The posterior distribution for the group mean parameter of the weighting 
of prior information in the decision, wchoice. The blue shaded region shows the 89% credible interval and the 
vertical black dashed line reflects optimal weighting of the prior in the decision (wchoice = 1). A weight above 
1 captures overestimation of the variance and hence underweighting of the prior.  
 

We then examined the model predictions for confidence, given the result of the 

underweighted priors in decisions (wchoice>1). With overweighting of the prior in confidence 
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(wconf<1), the Stronger-Lead condition tends to show higher confidence than the Stronger-Target 

condition for correct trials, and lower for incorrect trials (Figure 4A, middle-left panel). In other 

words, the differences in mean confidence between correct and incorrect are larger in the 

Stronger-Lead condition than in the Stonger-Target condition. The model predicts these 

differences between conditions to become more extreme as the prior is weighted more strongly 

in confidence (as wconf decreases). In contrast, with underweighting of the prior (wconf>1), it is the 

Stronger-Target condition that tends to have larger differences in mean confidence between 

correct and incorrect (Figure 4A, middle-right panel). Again, the model predicts this pattern to get 

more extreme as the prior is weighted more weakly (as wconf increases). If the prior weighting in 

both decisions and confidence were optimal, the model predicts no difference in mean confidence 

between conditions. However, due to the suboptimal weighting found at the decision level, the 

model predicts differences between conditions with optimal wconf = 1, shown in  Figure 4A, far-left 

panel. The behavioural pattern seen in confidence — of no difference between conditions 

following correct trials, and lower confidence following incorrect trials in the Stronger-Lead 

condition — can only be produced if the prior is weighted more strongly in confidence than in the 

decision, and the model predicts such a pattern when the prior is underweighted, but less so than 

in decisions (Figure 4A, far-right panel).   

Due to complexity constraints, we modelled confidence on each trial assuming that the 

internal signal corresponded to the mean external stimulus strengths from each stimulus 

coherence level (L, M, H). That is, we did not fit the internal latent samples that are theoretically 

generated from the external stimuli, as that would have led to an overparameterized model with 

two free parameters per individual trial (totalling close to 30000 free parameters). This 

simplification still included a parameter that corresponded to the internal noise for each 

participant, which was used in the confidence computation (see Methods). As a result of this 

simplification, the model underestimated mean confidence and impacted primarily the confidence bias 

parameter b. However, this still allowed the model to capture differences between conditions, and 

hence our parameter of interest, wconf. Additionally, we confirmed that any impact that this had on 

wconf worked directly against our conclusions (see Supplementary Materials), making our 
interpretations more conservative.  

The fit hierarchical model had a mean posterior of the group parameter wconf =  1.27 

(SE=0.002), and of the group bias b = 2.18 (SE=0.003; Figure 4C). This, in line with the 

behavioural results, suggests the weighting of the prior in confidence to be closer to optimal, 

compared to the weighting of the prior in decisions. The simulated confidence for these model 

results at the group level (Figure 4B) successfully captures the pattern associated with the 
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combination of an underweighted prior in decisions and a less underweighted prior in confidence 

(Figure 4A, far-right panel).  

Finally, we directly compared the relative weighting of priors and likelihoods at the decision 

and confidence level. wchoice was credibly different from wconf, with the difference distribution just 

excluding 0 in the 89% credible interval [0.03, 1.77] (Figure 5B). This again suggests the weighting 

of priors relative to likelihoods to differ at the level of decisions and confidence.  

 

 
Figure 4. Modelling Confidence. A. Model simulations of confidence. Confidence ratings following 
correct and incorrect trials were simulated from the model across different posterior information levels, 
between the two conditions. Simulations used the wchoice value from the model fit, 2.17, and four different 
values of wconf: 1 (optimal weighting of prior), 0.33 (3-fold overweighting of the prior), 3 (3-fold 
underweighting of the prior), and 1.27 (the value obtained from the model fit, underweighting the prior in 
confidence less than in the decision), shown from left to right respectively. The resulting mean confidence 
values are shown here. The model predicts mean confidence to increase with increased available posterior 
information following correct decisions and decrease with increased available posterior information 
following incorrect trials. As the prior is increasingly overweighted, the model predicts higher mean 
confidence in the Stronger-Lead condition following correct decisions, and lower in the Stronger-Lead 
condition following incorrect decisions. As the prior is increasingly underweighted, the opposite pattern is 
predicted, with higher mean confidence in the Stronger-Target condition following correct trials, and lower 
confidence in the Stronger-Target condition following incorrect trials. If the prior weighting was optimal in 
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both decisions and confidence, there would be no differences predicted in mean confidence between 
conditions. However, due to the suboptimal weighting at the decision level, the model predicts differences 
in mean confidence when wconf is optimal, as shown in the far-left panel. When the prior is underweighted 
in confidence, but less so than in the decision, the model can produce the pattern seen behaviourally, in 
which there is no difference between conditions following correct trials, but lower confidence in the Stronger-
Lead condition following incorrect trials. B. Model results against data. On the left are the data, showing 
confidence following correct and incorrect decisions per posterior level and condition. On the right is mean 
confidence generated from sampling the fit posterior parameter distributions 1000 times and simulating 720 
complete trials per participant based on those parameters. Note that we use the sample group mean 
parameters for simulating trials, but still used each participant’s staircased coherences, internal noise and 
decision bias. The error bars capture standard deviation (SD) of the mean confidence across participants. 
C. Posterior distribution for wconf and b. The top posterior distribution is for the group mean parameter 
of wconf. The lower posterior distribution is for the group mean parameter of b. The blue shaded regions 
show the 89% credible intervals and the vertical black dashed line corresponds to the parameter values of 
an optimal observer. 
 

Flexible Model Describes Behaviour Better Than Simpler Models. We then compared 

the Flexible model to simpler models (Figure 5A). We confirmed these models to be 

distinguishable from one another with a model recovery analysis (see Supplementary Materials, 

Figure S4).  

In addition to the (1) Flexible model, we built (2) the Flat Prior model in which the lead 

stimulus information was not used at all and the target stimuli were considered to occur under a 

flat prior (wchoice and wconf infinitely large), (3) the Optimal model in which wchoice and wconf were 

both optimal (equal to 1), and (4) the Equal model in which the prior was forced to be used to the 

same extent in decisions and confidence (wchoice=wconf) and hence only one w parameter was fit. 

All models included confidence bias as a free parameter. We fit these models and compared their 

predictive performance against the Flexible model using a 10-fold leave-one-group-out cross-

validation (LOGO-CV, where ‘groups’ correspond to participants). The Flexible model predicted 

the data better than each of the other models, with a difference in expected log pointwise 

predictive density (elpd_diff) of -619688.2 (se_diff=16717.0) compared to the Flat Prior model, of 

-11017.7 (se_diff=4534.4) compared to the Optimal model, and of -76685.8 (se_diff=2147.4) 

compared to the Equal model (Figure 5C). The results of this formal model comparison are in line 

with both the behavioural and the modelling results shown above: The difference to the Flat Prior 

model confirmed that participants used the prior information to some extent, in line with our 

behavioural manipulation check. The difference to the Optimal model confirmed that participants 

used the prior information suboptimally. And, the difference to the Equal model confirmed that 

participants used the prior information to a different extent in confidence than in decisions, in line 

with our finding of a credible difference between wchoice and wconf.  
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Figure 5. Model Comparison Results.  A. Schematic of the Four Compared Models. Schematics of 
the four models we compared, with the thickness of the light blue arrows depicting the weighting of priors 
relative to likelihoods in the decision and the thickness of the light green arrows depicting the weighting of 
the priors relative to likelihoods in confidence. In the Flexible Model, relative weighting of priors and 
likelihoods was allowed to differ between choices and confidence (wchoice was allowed to differ from wconf). 
The Flat Prior Model only has arrows from the target, showing that the prior information was not used at all 
in decisions or confidence. In the Optimal Model, wchoice and wconf both had to be optimal and equal to 1. In 
the Equal Model, the weighting of priors relative to likelihoods was allowed to differ from optimal but the 
pattern was the same between wchoice and wconf. B. Posterior Group Difference Distribution of wchoice - 
wconf. The posterior distribution for the difference in the group mean parameters wchoice and wconf. The blue 
shaded region shows the 89% credible interval and the vertical black dashed line reflects no difference in 
the two parameters (wchoice - wconf = 0). 0 is just excluded from the 89% credible interval, suggesting wchoice 
and wconf to be credibly different from one another. C. Expected Log Pointwise Predictive Density (ELPD) 
Results from LOGO-CV. The predictive capacity of each model is shown as the elpd value from the LOGO-
CV with 10 folds, leaving out and then predicting 2 participants per fold. This shows the Flexible Model to 
have the highest predictive capacity, suggesting it as the best model to explain the data. This is followed 
by the Optimal Model, Equal Model and then Flat Prior Model. Error bars depict SE. 
 
Experiment 2 

Dual-Decision Task with Delayed Target Decision. The finding from Experiment 1, that 

priors can be used more optimally in confidence, might support the idea that priors are integrated 

gradually, and that there is continued post-decisional evidence accumulation that can then factor 

into confidence. This would be in line with previous work suggesting that confidence computations 

incorporate additional information that has accumulated after the first-order decision20–23,25,29,30. 

Alternatively, it is possible that the additional use of the prior in confidence is by virtue of the 

introspective act, and not simply due to continued evidence accumulation. In support for the latter 

alternative, previous work found enhanced metacognitive efficiency following prior congruency, 

showing information from priors to especially boost metacognitive judgments27. In order to 
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investigate these two possibilities further, we ran a second pre-registered experiment (N=25) in 

which we repeated the same paradigm under the same conditions, but we added a 2-second 

delay after the offset of the target stimulus and before participants were allowed to report their 

target decision. We chose the duration of the delay to approximately match the peak of the 

distribution of reaction times between viewing the target stimulus and giving the confidence rating 

from Experiment 1, which was 2.48 seconds. Therefore, if in Experiment 1 the more optimal use 

of the priors in confidence was only due to the extra processing time before giving the confidence 

rating, then delaying the target decision until that time point in Experiment 2 should lead to more 

optimal use of the prior information in the delayed target decision. If, however, the more optimal 

use of the prior was due to the introspective confidence rating, delaying the target decision in 

Experiment 2 should not change the pattern of results.   

  

Priors Underweighted in Decisions Despite Increased Processing Time. We ran the 

same regression model on target response accuracy as in Experiment 1 and found a significant 

interaction between posterior level and condition, 𝜒2(2)=8.21, p=0.017, BF10=2.68. In line with 

Experiment 1, response accuracy was higher in the Stronger-Target condition at each posterior 

level, although this was only significant at the medium posterior level, z=-4.30, p<0.001, 

BF10=138.49 (Figure 6A). This suggests the prior to be underweighted in the target decisions, 

even after the delay and hence the added opportunity for evidence accumulation (for behavioural 

data, see Supplementary Materials, Figure S5). To examine whether the same pattern of more 

optimal use of priors in confidence remained, we again fit the Flexible model, this time as 

confirmatory modelling analyses. Replicating the pattern found in Experiment 1, we found a mean 

of the posterior of wchoice = 3.97 (SE=0.02; Figure 6A) and a mean of the posterior of wconf = 1.39 

(SE=0.01; Figure 6B), with a credible difference between them [0.50, 4.64] (Figure 6C). Taken 

together, this suggests that prior information is underweighted in decisions even when those 

decisions occur at a similar time point as the confidence judgments in Experiment 1, and, like in 

Experiment 1, confidence then more optimally uses that prior information. 
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Figure 6. Experiment 2 Results. A. Decision level model results against data. The left panel shows 
the observed accuracies per posterior level and condition. The right panel shows the predicted accuracies 
generated from sampling the fit posterior group mean parameter distributions 1000 times, and simulating 
720 trials per participant for each of those sampled parameters, also using each participant’s staircased 
coherences, internal noise and decision bias. Error bars capture standard deviation (SD) of accuracies 
across participants. B. Confidence level model results against data. On the left are the data, showing 
confidence following correct and incorrect decisions per posterior level and condition. On the right is mean 
confidence generated from sampling the fit posterior parameter distributions 1000 times and simulating 720 
complete trials per participant based on those parameters, also using each participant’s staircased 
coherences, internal noise and decision bias.  Error bars capture standard deviation (SD) of mean 
confidence across participants. C. Posterior Group Difference Distribution of wchoice - wconf. The 
posterior distribution for the difference in the group mean parameters wchoice and wconf. The blue shaded 
region shows the 89% credible interval and the vertical black dashed line reflects no difference in the two 
parameters (wchoice - wconf = 0). 0 is excluded from the 89% credible interval, suggesting wchoice and wconf to 
be credibly different from one another.  
  
Discussion 

In two experiments, we tested whether prior information influences confidence optimally, 

and how this compares to its influence on perceptual decisions. To do so, we compared pairs of 

conditions that were matched in the available posterior information but differed on whether the 

stronger source of information was the prior or the new incoming information. We then evaluated 
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the differences between conditions (Stronger-Lead vs Stronger-Target) in both discrimination 

accuracy and mean confidence, and fit a quantitative model to measure the weighting of prior 

information. This revealed that priors are underweighted relative to likelihoods in discrimination 

decisions. Conversely, confidence judgments incorporated prior information to a greater extent 

than discrimination decisions did. Further, and in line with the idea that prior information is 

processed more optimally at the metacognitive level, we found that metacognitive efficiency was 

higher when more information was carried by the prior, with first-order performance hindered while 

confidence preserved the use of this information. Taken together, these results suggest that we 

can access and use information from priors in explicit, introspective confidence judgments even 

to a greater extent than we use that information to guide decisions. 

This pattern goes against the assumptions, implicit in the Bayesian framework, of optimal 

and equal integration of priors in decisions and confidence. While participants may not necessarily 

be expected to behave as Bayesian optimal observers, these findings quantify precisely in which 

way they deviate from those assumptions. Although the underweighted prior in decisions may, in 

isolation, be explainable by a decay of the prior information over time, such a decay would make 

the asymmetry between the decision and confidence levels even more surprising, as the 

confidence judgments occurred even later. The results of Experiment 2 revealed, further, that this 

asymmetry remains even when additional processing time is given by forcing a delay before the 

target decision. This suggests that this pattern cannot be accounted for just by continued evidence 

accumulation before the confidence rating, since a similar amount of evidence accumulation 

should have occurred between the confidence ratings in Experiment 1 and the target decisions in 

Experiment 2. Instead, this points towards a more optimal use of prior information at the 

metacognitive level, compared to first-order processing. In line with this, Balsdon and colleagues 

demonstrated asymmetries in the information used by decisions and confidence24,25. They used 

series of stimuli and found decisions to set covert bounds and stop collecting new evidence, while 

confidence used more of the available information. In light of those findings, our work shows a 

similar effect, where decisions make use of less of the information available than confidence does. 

However, here, we find that it is prior information that is more strongly dismissed in decisions.  

These results add a novel layer to recent findings by Lisi et al.28, who focussed on implicit, 

not explicit confidence. They, as we did, found priors to be underweighted at the level of the 

decision, but could not assess whether explicit confidence weighted them differently than 

decisions. Here we reveal important differences in how the prior is used at different processing 

levels, by examining the weighting of the prior in explicit confidence as well. Our results suggest 

that, even though the prior is underweighted in a decision, people can access and use this 
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information better when asked to make an explicit introspective judgment about that decision. A 

cognitive architecture in which perceptual decisions can primarily respond to current incoming 

evidence while higher order metacognitive processing integrates different sources of information 

and monitors their relative certainty might be highly adaptive. For example, it might be beneficial 

to react rapidly and in accordance with evidence for even an unlikely belief if that would pose 

some threat, meanwhile having the metacognitive system accurately track its posterior probability 

for appropriate models of the world. Our results therefore provide crucial insight on a dissociation 

between human behaviour and associated confidence. 

 In this study, we used a paradigm with informative, high level priors. Future work is 

necessary to investigate whether this result holds true when different kinds of priors are used. 

First, lower-level priors such as the light-from-above prior, cardinal orientation bias, or perceptual 

history bias might affect decisions differently, as they may act at an earlier stage and impact 

perception of the target stimulus more directly31–33. Second, non-informative or suboptimal priors 

might reveal that the pattern we see here reflects a confidence bias towards prior information, 

rather than more optimal use of priors in confidence. If so, in cases of suboptimal priors, 

confidence would still be more likely to be affected by the invalid prior information than decisions. 

This possibility is in line with recent studies that have shown that confidence is biased by 

suboptimal, false priors about stimulus precision34 or about task performance35. Other work testing 

the Bayesian confidence model has found confidence to suboptimally overweight evidence that 

is in line with the decision, leading to a form of confirmation bias in perceptual confidence17,36,37. 

Our findings do not show a confirmation bias in favour of information in line with the decision, but 

might rather reflect a confidence confirmation bias in favour of information in line with the prior, 

even in cases where this actually contradicts the decision. Although at face value this may go 

against the previous confirmation bias findings in perceptual confidence, this might, speculatively, 

still be in line with the conclusions drawn, namely that confidence favours evidence consistent 

with one’s beliefs. This could also be a strategy aimed at self-consistency and avoiding cognitive 

dissonance37–39, leading people to be more confident in response to information that fits in their 

belief system, and to doubt themselves when they act against their prior world models. 

 
Methods 

Both experiments were pre-registered (Experiment 1: https://osf.io/qgpsr and Experiment 

2: https://osf.io/tvyrz), and we respected the pre-registered plan unless stated otherwise.  

 
Participants 
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For Experiment 1, we pre-registered that we would test 25 participants across two 

sessions. We chose this sample size to be close to previous studies using similar tasks and 

modelling methods8,28, which included between 15 and 26 participants. We also pre-registered 

six minimal criteria to invite participants to the second session. The most important of these criteria 

were (1) that response accuracy increased across the three coherence levels — hence 

suggesting that the experimental manipulation had the intended effect on internal signals —, and 

(2) that response accuracy was (any amount) higher on the second decisions as compared to the 

first, indicating basic use of the task structure. Following these criteria, we excluded 12 

participants without inviting them to take part in the second session, and collected data until we 

reached 25 participants that met these criteria and were tested for two sessions. Four of these 

participants were later excluded from analysis because they no longer met these basic criteria 

after including data from their second session, leaving a total of 21 participants (10  male, 11 

female) included in the analyses. Participants were tested in Berlin, were healthy and were 

between 18 and 37 years of age (M=25.7, SD=4.6). Participants all reported to have normal or 

corrected-to-normal vision, were fluent in English, and primarily right handed (Edinburgh 

Handedness Inventory score: M=83.2, SD=28.5). Participants were compensated with 8€ per 

hour or with equivalent course credit and gave signed, informed consent before starting the 

experiment. The ethics committee of the Institute of Psychology at the Humboldt-Universität zu 

Berlin approved the study (Nr. 2021-47), which conformed to the Declaration of Helsinki.  

For Experiment 2, we pre-registered that we would test an initial 25 participants that met 

the minimal exclusion criteria after both sessions, after which we set a stopping rule, based on 

evidence for or against the effect of condition on target response accuracy. After 25 participants, 

we found substantial evidence for the alternative hypothesis and stopped collecting data. These 

25 participants included 9 male, 15 female, and 1 that did not specify; were between 19 and 34 

years of age (M=25.4, SD=3.8); and were primarily right handed (Edinburgh Handedness 

Inventory score: M=86.3, SD=34.3 - note one participant was excluded from this due to missing 

data), as well as meeting the same inclusion criteria as in Experiment 1.  

 

Setup 

 The experiment was programmed in HTML/Javascript/CSS to run in the browser. We used 

JATOS47 to store the result data. The study ran on Google Chrome (version 94.0.4606.71)  on a 

Dell Precision 5760 laptop (Intel core i7 with 31GB of RAM) with a display resolution of 1,920 x 

1,200 (refresh rate=60Hz).  
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Procedure 
 Control Task. In each of the two sessions, prior to starting the main task, participants first 

completed 90 trials of a control task. Each trial of the control task consisted of a single dot motion 

stimulus with a 50% chance of the coherent motion going to the right vs left, followed by a right/left 

decision, which participants made using the “S” or “A” keys, respectively. The stimuli in the control 

task spanned six different coherences, meant to capture a broad range of difficulties - 5%, 10%, 

12%, 15%, 20% and 30% coherence. The resulting data were later used to estimate participants’ 

internal noise and decision bias (see below). In total across the two sessions, participants 

completed 180 control task trials (30 per coherence level). After the control task, we explained 

the instructions for the full task structure to participants both verbally and in written instructions, 

and they then completed five demo trials to familiarise themselves with the task and buttons, and 

then proceeded to the main task. 

 
 Main Task. On each trial of the main task, participants completed two consecutive 

decisions consisting of a random dot motion stimulus followed by a right/left decision using the 

“S” or “A” keys (Figure 1A). The first (lead) stimulus of each trial had a 50% chance of the coherent 

motion going to the right vs left. The direction of coherent motion of the second (target) stimulus 

depended deterministically on the response accuracy of the first decision such that if they were 

correct, the second stimulus would have coherent motion to the right, and if they were incorrect, 

it would have coherent motion to the left. Participants were informed of this rule and instructed to 

use this to help them in the task. Following an optimal strategy, this conditional rule meant that 

participants should expect a rightward second stimulus with a strength of prior expectation 

proportional to their decision confidence about the first decision. Following the second decision, 

participants rated their confidence on a continuous sliding scale from 50% (guessing) to 100% 

(totally sure), using the mouse. The dual-decision task structure with the conditional rule was an 

extension of a previous study investigating implicit confidence28.  

 The task was gamified to make it more engaging. The background of the screen was an 

illustration of fields with a barn to the right, and the stimulus display circle in the middle of the 

screen (Figure 1A). The first decision controlled the movement of a cartoon sheepdog to the right 

or left of the stimulus display, and the second decision controlled the movement of a cartoon 

farmer to the right or left of the stimulus display. We explained to participants that the moving dot 

stimuli depicted flocks of sheep, with some “leader” sheep that moved coherently to either the left 

or right, and that they had to decide based on the motion direction of the leader sheep whether to 

send their sheepdog to the left or right. Participants were explicitly informed of the rule: If they 
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were correct, and hence the sheepdog was in the correct place, the sheep would be herded 

toward the barn and on the next stimulus, they would be going to the right. If, however, they were 

incorrect and the sheepdog was not in the correct place, the sheep would run away and on the 

next stimulus, they would be going to the left. After the second stimulus, participants then had to 

make the final decision to either send the farmer to the barn (to the right) to get the sheep, or to 

send the farmer to herd them from the fields to the left. They then rated their confidence that the 

farmer had successfully gotten the sheep. We emphasised to participants that they should use 

the rule to try to help them with the task, and that they should take time to give as sensitive and 

meaningful confidence ratings as possible. 

We manipulated the coherences of the stimuli to create three stimulus levels, and the 

coherence levels of each of the two stimuli per trial combined to form three overall posterior levels. 

The low posterior information level consisted of one low and one medium coherence stimulus 

(L+M or M+L), the medium posterior information level consisted of one low and one high 

coherence stimulus (L+H or H+L), and the high posterior information level consisted of one 

medium and one high coherence stimulus (M+H or H+M). These posterior information levels 

existed across two conditions, a “Stronger-Lead” condition in which the lead stimulus was 

stronger, and a “Stronger-Target” condition in which the target stimulus was stronger. The 

stimulus coherence levels were staircased by staircasing lead stimuli, which were not under the 

influence of an informative prior, with the medium level staircased via a 2-down-1-up procedure 

targeting 71% accuracy, and the high level staircased via a 3-down-1-up procedure targeting 79% 

accuracy. The low level was yoked to the medium staircase, but remained 5% lower in coherence, 

as there was no N-down-1-up procedure that would target an accuracy between 50% and 71%. 

The three posterior information levels as well as the condition were counterbalanced across each 

block. Participants received feedback about their performance on the target decisions at the end 

of each block. Each block consisted of 36 trials, and participants completed 10 blocks per session 

for a total of 360 trials per session and 720 trials in the experiment. Each session took between 

1-1.5 hours in total.  

Experiment 2. The paradigm remained the same in Experiment 2 except that there was 

an added delay period of 2 seconds before participants could enter the target decision using the 

“S” or “A” key, after viewing the target stimulus. After these 2 seconds, a light grey ring appeared 

around the viewing circle to indicate to participants that they could now report their decision. 

Participants were instructed to try and avoid pressing a key prematurely during the delay period, 

although trials with premature presses were not excluded. Participants received feedback at the 
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end of each block about how many premature presses were made, in order to remind them to 

limit this.  

 

Stimuli. The dot motion stimuli were made using an adapted version of an RDK jsPsych 

plugin48. Stimuli were composed of 100 total moving white dots on a circular gray background. 

Each dot had a radius of 2 pixels and the background circle had a diameter of 425 pixels, with an 

aperture diameter of 319 pixels (75% of the circle diameter). The noise dots had constant 

directions that were randomly sampled, and the coherent dots moved in a constant horizontal 

direction either to the left or right. All dots moved 2 pixels per frame and had a dot life of 17 frames 

(i.e., each dot followed their trajectory for 17 frames before being redrawn at a random location). 

Each stimulus was presented for 300 ms. Although some directional information was possible in 

the random dots of each stimulus, we confirmed that this did not lead to an overall bias in any 

participant, so that stimulus directions remained balanced between left and right (for the lead 

decision, where they were intended to be 50/50), even with the directional information from the 

noise dots. None of the decisions or confidence ratings was speeded.  

 
Analysis 
 We removed any trials with reaction times longer than 8 seconds on any decision or 

confidence ratings.  

 Our main behavioural hypotheses were tested using the ‘lme4’ package49 in R50 for 

building linear and generalised linear mixed-effects models. For each regression analysis, we 

used the most complex random effects structure that converged on the full model51, which meant 

deviating from pre-registered random effects for analysing confidence. Model syntaxes can be 

seen in Table 1. All hypotheses were tested using two-tailed tests and an alpha level of 0.05, and 

reported 𝜒2 values are based on a comparison of the model of interest and null model with the 

same random-effects structure. We computed effect sizes for the linear mixed-effects analyses 

as η2
p and reported 95% confidence intervals whenever they were available. We additionally 

computed Bayes factors for our main hypotheses using the ‘BayesTestR’ package52 and using 

Bayesian models with uniform priors with the ‘brms’ package53. For these Bayesian regressions, 

we ran 4 chains of 10000 iterations, including 2000 burn-in samples, which gave a total of 32,000 

effective samples, and we ensured a R-hat close to 1. To analyse whether the prior was 

suboptimally weighted at the decision level, we deviated from our pre-registered regression 

approach of examining the effect of condition on the probability of choosing “right” given rightward 

stimuli. We realised from later simulations that this would not sufficiently distinguish between an 
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optimal and suboptimal weighting of the prior. We instead examined the effect of condition on 

response accuracy, which could adequately address this question.  

 

Table 1. Regression Models 

Analysis Hypothesis Model Formula 

Manipulation 
Check 

Accuracy depends on information level 
and on which decision it is (Lead 
Decision vs Target Decision). 

logit(Response Accuracy) ~ 
Information Level * Decision Order + 
(1|Participant) 

Type 1 
Analysis 

Target accuracy depends on posterior 
information level and, if priors are used 
suboptimally, on the condition 
(Stronger-Lead vs Stronger-Target). 

logit(Target Response Accuracy) ~ 
Posterior Level * Condition * 
Response Bias + (1|Participant) 

Type 2 
Analysis 

If priors are used suboptimally, 
condition modulates the effect of 
posterior information on confidence 
differently following correct and 
incorrect target decisions. 

Confidence ~ Posterior Level * 
Condition * Target Response 
Accuracy * Response Bias + (Target 
Response Accuracy + 
Condition|Participant) 

 

 In order to compare participants’ metacognitive efficiency between conditions, we used 

the M-Ratio measure (meta-d´/d´) described in previous work54, with R scripts available from 

https://github.com/craddm/metaSDT. Two participants were removed from this analysis due to 

extreme confidence distributions, with over 40% of trials at 100% confidence. Two further 

participants were removed due to Type 1 hit rates above 0.95 in either condition, but the results 

did not change when these two participants were included. For measuring M-Ratio, we 

transformed participants' continuous confidence ratings to a 5-bin discrete scale using quantiles, 

computed on all ratings per participant.  

 

Modelling  
 To quantitatively assess how participants weighted the prior in their decisions and 

confidence, we fit a Bayesian model to their data. The specific model definitions, model fitting, 

model selection and evaluation of model results were all exploratory and the details were not pre-

registered. The full model, which we refer to as the Flexible model, included two free weighting 

parameters, wchoice and wconf, that captured the weighting of the prior relative to the likelihood in 

the decision and in confidence, respectively. These parameters acted in the same way in the 

model, scaling the estimate of the variance of the prior, and could hence be directly compared. 

The model also took as input a measure of the internal noise and decision bias per subject, which 
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were fit independently using psychometric functions. All models were hierarchically structured 

and fit to all participants’ trial-wise decisions and confidence ratings together using an Markov 

chain Monte Carlo (MCMC) approach in STAN55 and with the ‘cmdstanr’ package56. R-hat values 

were close to 1 (<1.1) for all parameters. One outlier participant was removed from the 

hierarchical modelling due to a wconf parameter that was 6.05 SD from the group mean (or 485.74 

SD from the group mean when fit without them) which hence skewed the group-level fit. We 

analysed the posterior distributions using 89% credible intervals, following the suggestion that 

these are more stable than 95% intervals for analysing Bayesian posterior distributions57. Details 

of the model implementation in STAN, the model fitting procedure, and the model simplification 

used can be found in Supplementary Materials. 

  
Fitting Internal Noise and Decision Bias. To measure the internal noise (𝝈prior and 

𝝈likelihood) as well as the decision bias for each participant, we used the approach taken by Lisi et 

al.28, and adapted the scripts available at https://osf.io/w74cn/. We assumed 𝝈prior and 𝝈likelihood to 

be the same, as we used the same stimuli for leads and targets. We fit four different psychometric 

functions to participants’ decisions in the control task, as well as the first decision of each main 

task trial, as these decisions all took place without informative priors (50/50 chance of right vs 

left). The four psychometric functions were (1) a simple function that included only the internal 

noise as a free parameter, (2) a function with internal noise as well as decision bias, (3) a function 

with internal noise as well as a lapse term, and finally (4) a function that included internal noise, 

decision bias, as well as lapse. The lapse term accounted for the possibility that participants might 

have made stimulus-independent lapses such as attentional or motor lapses. These four functions 

were fit and we then used the parameter values retrieved from taking an Akaike-weighted 

combination of the four estimates. For the modelling analysis, we transformed each participants’ 

raw coherence values (coh) into units of their own internal noise. We additionally transformed 

their right versus leftward coherence values to take into account their own decision bias. Together, 

this transformation yielded the following definition of normalized stimulus strength s: 

 

𝑠	 = 	
(𝑑𝑖𝑟	 ∗ 	𝑐𝑜ℎ) 	− 	𝑏𝑖𝑎𝑠

σ
	 

 

where dir is equal to -1 for leftward stimuli and +1 for rightward stimuli. This transformation allowed 

us to set the internal noise to 1 in all equations below.  
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Flexible Model. The flexible model included three free parameters per participant - the 

prior weighting parameter at the decision level (wchoice), the prior weighting parameter at the 

confidence level (wconf), and the confidence bias parameter (b). wchoice quantified the relative 

influence of the prior (compared to the likelihood) in the target decision. This influence of the prior 

could be captured computationally by shifting the decision criterion. Then, the probability of 

choosing right (𝛷right) in the target decision was based on the probability that the perceived target 

stimulus was to the right of the shifted decision criterion. The decision criterion (𝛳) was shifted 

proportionally to the weighted prior:  

 

𝜃	 = 	−
|𝑟789:|
𝑤<=>?<8

	 

 

where rlead is the internal response generated from the lead stimulus and internal noise. This 

shifting of the decision criterion is computationally equivalent to having a rightward prior equal to 

the decision confidence on the lead decision (Figure 7), but with the prior variance misestimated 

according to wchoice
28. The likelihood of a rightward target decision was then computed, exactly as 

in the work of Lisi et al.28, as: 

 

∫ 𝑝(𝑑B9CD8B
C?D=B 	|	𝜃 = 	− CEFGH

IJKLMJF
	 , 𝑠B9CD8B	)	𝑝(𝑟789:	|	𝑑789:

C?D=B	, 𝑠789:	)	𝑑𝑟789:
OP
Q   

 

following a rightward lead decision, and as: 

 

 ∫ 𝑝(𝑑B9CD8B
C?D=B 	|	𝜃 = 	 CEFGH

IJKLMJF
	 , 𝑠B9CD8B	)	𝑝(𝑟789:	|	𝑑789:

78RB 	, 𝑠789:	)	𝑑𝑟789:	
Q
SP  

 

following a leftward lead decision, where s represents the stimulus and d represents the decision. 

Because we as experimenters do not have access to the internal signals of the participant, the 

left term in the integral captures the probability of an internal target signal to the right of the shifted 

decision criterion – shifted according to the weighted prior signal, which derives from the lead 

stimulus. The right term weights this by the likelihood of that internal prior signal, given the lead 

stimulus, and these terms are marginalised across the possible prior signal values.  

Confidence was then modelled as the perceived posterior probability of being correct, 

combining the prior and likelihood (Figure 7). The relative influence of the prior on confidence was 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2022. ; https://doi.org/10.1101/2022.10.26.513829doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.26.513829
http://creativecommons.org/licenses/by/4.0/


25 

captured by wconf. This weighted rightward prior in confidence (p(R)conf) was equal to the decision 

confidence from the lead decision, with the variance of the prior misestimated according to wconf :  

 

𝑝(𝑅)<>UR 	= 	𝛷(
|𝑟789:	|
𝑏		𝑤<>UR		

) 

 

The strength of the likelihood depended on the incoming information from the target stimulus, and 

was defined as the likelihood of having gotten the internal target signal (rtarget) if there had been a 

rightward target stimulus (R, or starget>0): 

 

	𝑝(𝑟B9CD8B|𝑅) = 	𝛷(
𝑟B9CD8B	
𝑏

) 

 

Confidence bias, b, captured misestimation of the prior variance as well as an equal misestimation 

of the likelihood variance, therefore reflecting an overall over- or underconfidence. The posterior 

combined the prior and likelihood according to Bayes rule, and confidence in a rightward choice 

was then computed as: 

 

𝑐𝑜𝑛𝑓C?D=B 	= 		
𝑝(𝑅)<>UR	𝑝(𝑟B9CD8B|𝑅)

(1 − 𝑝(𝑅)<>UR) Y1 − 	𝑝Z𝑟B9CD8B[𝑅\] +	𝑝(𝑅)<>UR	𝑝(𝑟B9CD8B|𝑅)
 

  

Confidence in a leftward choice was then equal to (1 - confright). Similarly to wchoice, wconf captured 

the prior strength that would account for each confidence rating by scaling the variance of the 

internal prior signal relative to the internal likelihood signal. By implementing these two weighting 

parameters in the same way, we could then directly compare them. The Flexible model was the 

only model in which the weighting of the prior information was allowed to differ between 

discrimination decisions and confidence ratings.  
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Figure 7. Model Schematic. According to the model, in both conditions, the lead decision occurred under 
a flat prior. The lead stimulus then generated an internal response with some added internal noise, which 
formed the likelihood distribution and then the posterior. The area of the posterior on the chosen side of the 
decision boundary (vertical dashed line) corresponds to the confidence in the lead decision (conflead), 
captured by area A (Stronger-Lead condition panel) or B (Stronger-Target condition panel). This confidence 
in the lead decision then formed the strength of the prior for a rightward target stimulus. The target stimulus 
generated an internal response that formed the target likelihood, and the prior was then integrated with the 
target likelihood to give the posterior for the target (orange). This posterior then led to the target decision 
and confidence rating. The strength of the posterior probability of the winning hypothesis, depicted by the 
opaque orange area, is based on the combination of the strength of the prior – from the confidence in the 
lead stimulus – and the strength of the likelihood – from the confidence in the target stimulus. Our two 
conditions, Stronger-Lead (left) and Stronger-Target (right), simply swapped the strengths of the lead 
versus target stimulus. But, the confidence in these stimuli (areas A and B) still combine to the same 
posterior strength (A*B or B*A). Hence, the model predicted equal accuracy and mean confidence between 
conditions, if the relative weighting of priors and likelihoods was optimal. The weighting parameters, wchoice 
and wconf, acted by scaling the estimated variance of the lead, effectively scaling conflead and capturing the 
strength of prior for a rightward target that best explains target decisions and confidence ratings, 
respectively.  
 

Flat Prior Model. The flat prior model captured decisions and confidence in the same way 

as the Flexible model except that the prior information had no influence on the target decision or 

confidence, so the lead and target decisions were modelled as independent and confidence was 

modelled as the decision confidence about only the target stimulus. Computationally this meant 

forcing the prior for a rightward target stimulus to be equal to 0.5, or an uninformative prior, which 

was analogous to setting wchoice and wconf to be infinitely large. The only free parameter in this 

model was the confidence bias (b).  

 
Optimal Observer Model. The optimal observer only differed from the Flexible model in 

that it assumed the prior information to be optimally precision-weighted relative to the likelihood. 

This meant that wchoice and wconf were both equal to 1, with only b as a free parameter.  
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Equal Model. The equal model was also the same as the Flexible model except that the 

use of the prior information was assumed to be the same in decisions and confidence, although 

it could stray from optimal. Computationally, this meant that wchoice and wconf were forced to be 

equal to one another, and so only one weighting parameter (w) was fit, which was then used as 

both wchoice and wconf. Again, b was still fit to capture an overall confidence bias in this model. 

  
 Model Comparison. We compared the ability of our four models to account for the 

behavioural data of the remaining 20 participants after removing the outlier participant. To do this, 

we performed a 10-fold LOGO-CV, in which we left out 2 participants at a time, fit each model to 

the remaining 18 participants, and then measured the predictive performance of those fit models 

for predicting the data of the left-out participants using the ‘loo’ package58. The log predictive 

density for each model for each fold was stored and we then computed the overall expected log 

pointwise predictive density for each model, and compared them. We considered a model to fit 

the data better if the magnitude of the difference in expected log pointwise predictive density 

(elpd_diff) was at least 4, and at least 2 times larger than the standard error of the difference 

(se_diff)59. 
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Supplementary Materials 
 
Flexible Model Definition 
 In the model, the lead stimulus, slead, generated an internal signal, rlead, by adding normally 

distributed internal noise, Ɲ(0, 𝝈prior). The lead decision was made by comparing this internal 

signal to the decision criterion – signals to the right of the criterion led to a rightward decision, and 

signals to the left led to a leftward decision. This lead decision then also led to an internal 

confidence value according to:  

 𝑐𝑜𝑛𝑓789: 	= 	𝛷( |CEFGH	|
_∗	`abMLb

) 

where b is the confidence bias, captured by a general over- or underestimation of the signal 

variance. The strength of the rightward prior in the target decision was then equal to this conflead, 

weighted by the weighting parameter at the decision level, wchoice: 

 𝑝(𝑅)<=>?<8 	= 	𝛷( |CEFGH	|
_		IJKLMJF		`abMLb

) 

The target stimulus, which was rightward if the lead decision was correct and leftward if 

not, then generated an internal signal, rtarget, by adding normally distributed internal noise, Ɲ(0, 

𝝈likelihood). The target decision was based on the posterior probability of a rightward target stimulus, 

which was determined by the integration of the likelihood and the prior. As shown previously by 

Lisi et al.28, this was computationally equivalent to shifting the target decision criterion and 

comparing rtarget to that shifted decision criterion: 

𝜃	 = 	−
𝜎7?d87?=>>:
𝑤<=>?<8𝜎eC?>C

|𝑟789:|	 

Then, explicit confidence in the target decision was computed as the perceived posterior 

probability correct, given the evidence and decision. The posterior was again the product of the 

likelihood and weighted prior, but now the prior was weighted according to the weighting 

parameter at the confidence level, wconf: 

 𝑝(𝑅)<>UR 	= 	𝛷( |CEFGH	|
_		IJLfg		`abMLb

) 

 

to give: 

 𝑐𝑜𝑛𝑓C?D=B 	= 		
e(h)JLfg	e(CiGbjFi|h)

(kSe(h)JLfg)(kS	e(CiGbjFi|h))Oe(h)JLfg	e(CiGbjFi|h)	
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=	
𝑝(𝑅)𝑐𝑜𝑛𝑓	(1	+	𝑒𝑟𝑓	m

𝑟𝑡𝑎𝑟𝑔𝑒𝑡
𝑏	𝜎𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	r2

t	)

1	+	Y2𝑝(𝑅)𝑐𝑜𝑛𝑓	−	1]𝑒𝑟𝑓	m
𝑟𝑡𝑎𝑟𝑔𝑒𝑡

𝑏	𝜎𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	r2
t	
  

 

This was the predicted confidence (model_conf) following rightward decisions and confleft = (1-

confright) was model_conf following leftward decisions.  

 

Model Fitting 

We fit each model using 6000 effective samples across 3 chains, as well as 2000 burn-in 

samples per chain. All initial parameter values were sampled from a uniform distribution between 

0.5 and 1.5. We ensured that all R-hat values were lower than 1.1, indicating good convergence. 

Lognormal priors were set on the group mean parameters - wchoice_mu, wconf_mu, and b_mu, and 

subject-wise parameters wchoice, wconf and b were modelled as being normally distributed around 

group mean parameters. Target decisions were modelled as being Bernoulli distributed. Following 

the procedure used in previous work with a similar modelling approach60, we allowed for a small 

degree of noise (𝜎=0.0125) between the predicted confidence outlined above (model_conf) and 

the observed confidence ratings, accounting for some imprecision of participants’ confidence 

ratings. Posterior predictive checks revealed the model to well capture choice probabilities, as 

well as differences between conditions in confidence (Figure S1), although confidence was 

predictably underestimated due to the simplification, explained below. 

 

Priors: 
wchoice_mu ~ Lognormal(0,0.5) 
wconf_mu ~ Lognormal(0,0.5) 
b_mu ~ Lognormal(0,0.5) 
 
wchoice_sd ~ Lognormal(0,0.5) 
wconf_sd ~ Lognormal(0,0.5) 
b_sd ~ Lognormal(0,0.5) 
 
Model:  
wchoice ~  Ɲ(wchoice_mu , wchoice_sd) 
wconf ~ Ɲ(wconf_mu , wconf_sd) 
b ~ Ɲ(b_mu , b_sd) 
 
choice ~ bernoulli(𝛷right) 

conf ~ Ɲ(model_conf, 0.0125) 
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Figure S1. Posterior Predictive Checks. A. Modelling discrimination decisions. The light blue bars (y) 
show the true choice probabilities per posterior level in the data, with rightward target decisions shown at 
1, and leftward target decisions shown at 0. The dark blue points (yrep) reflect the predicted choice 
probabilities from the model, generated by sampling from the posterior distribution and simulating target 
decisions from those samples. B. Modelling confidence.  In dark blue are the kernel density distributions 
of confidence in the data per condition (y). In light blue are the predicted kernel density distributions for 
confidence per condition from the model (yrep), generated by sampling from the posterior distribution and 
simulating target decisions and then confidence from those samples. These are split by the condition to 
demonstrate that, although the model predictably underestimates confidence, yrep is shifted relative to y 
similarly in both conditions, therefore allowing us to capture differences in conditions, and this is our primary 
interest. 
 
Model Simplification 

The 𝛷right and model_conf values were computed as outlined in the main text, however, 

instead of fitting internal signal values rlead and rtarget on every trial, which would lead to an 

overparameterized model and complexity issues in the sampling procedure, we simplified the 

model by fitting confidence based on the external stimulus values. The external stimulus values 

reflect the mean of the internal signal distribution. We still used the internal noise in the model as 

otherwise specified. The choice probability was computed by taking the integral across all 

possible rlead values, weighted by their likelihood, and hence was not impacted by this 

simplification. For confidence however, fixing the internal signals at the means meant that the 

model underestimated confidence in expected ways, particularly following incorrect choices. This 

primarily impacted the confidence bias parameter b, and because this was particularly strong 

following incorrect trials, b was skewed to be inflated in order to increase the value of confIncorrect, 

and in turn decrease the value of confidence in the correct option (confCorrect) which is equal to 1-

confIncorrect. Admittedly, this simplification affected not only the bias parameter b but also slightly 

impacted wconf. However we note that it had an effect in a direction directly against our results, as 

it increased wconf. We confirmed this with a parameter recovery analysis in which we simulated 
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data with free internal signals but fit the simplified model, which led to slightly inflated recovery of 

wconf (Figure S2). Hence, if we assume participants to also have internal signals, we can expect 

their true wconf values to be slightly lower than the values we fit, which is even further in line with 

our finding that wconf was lower than wchoice.  

 

 
Figure S2. Parameter Recovery Analyses. A. Fixed internal signals (simplified model). Parameter 
recovery after simulating from the simplified model. The black line indicates perfect parameter recovery. 
This reveals good parameter recovery of the model when data is simulated from it. Points reflect the mean 
recovered parameter values across 20 repetitions of simulating data and fitting the model, and error bars 
reflect SEM across these repetitions. B. Free internal signals. Parameter recovery after simulating internal 
signals but then fitting with the simplified model. This reveals parameters to be reasonably well recovered, 
despite the simplification. The largest impact is on recovery of b, which is inflated relative to the simulated 
confidence bias. The simplification also leads to a slightly inflated recovery of wconf, but this works directly 
against our conclusion that wconf is smaller than wchoice, and therefore that the prior is weighted more strongly 
in confidence than in the decision. Points reflect the mean recovered parameter values across 20 repetitions 
of simulating data and fitting the model, and error bars reflect SEM across these repetitions. 
 

We also include a model in which we forced any confidence below 0.5 to be set to 0.5, the 

minimum of the scale, to prevent the skewing of parameters, and that model confirms these 

results (Figure S3), although there were some convergence challenges when introducing the 

lower confidence bound. 
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Figure S3. Posterior Group Parameter Distributions for the Bounded Confidence Model. In the 
bounded confidence model, everything was the same as in the Flexible Model except that any predicted 
confidence below 0.5 was set to 0.5, which was the minimum of the scale provided to participants. This 
prevented skewing of parameters due to the model simplification, described above. However, there were 
some convergence issues due to the discontinuity this introduced. All group parameters converged (R-hat 
< 1.1) but four individuals within the model had parameters that did not converge. We were, however, able 
to fit the model individually, and then it converged for all except one participant, and led to similar estimates 
as in the hierarchical fit. A. Posterior distribution for wchoice. The posterior distribution for the group mean 
parameter of the weighting of prior information in the decision, wchoice. The blue shaded region shows the 
89% credible interval and the vertical black dashed line reflects optimal weighting of the prior in the decision 
(wchoice = 1). B. Posterior distribution for wconf and b. The top posterior distribution is for the group mean 
parameter of wconf. The lower posterior distribution is for the group mean parameter of b. The blue shaded 
regions show the 89% credible intervals and the vertical black dashed line corresponds to the parameter 
values of an optimal observer. Note that the estimates for both of these parameters are lower here in 
comparison to the unbounded version of the model, as this helps reduce the skew due to the model 
simplification. C. Posterior Group Difference Distribution of wchoice - wconf. The posterior distribution for 
the difference in the group mean parameters wchoice and wconf. The blue shaded region shows the 89% 
credible interval and the vertical black dashed line reflects no difference in the two parameters (wchoice - 
wconf  = 0). 0 is excluded from the 89% credible interval, suggesting wchoice and wconf to be credibly different 
from one another. 
 
Model Recovery 

In order to ensure that our models were adequately distinguishable from one another, we 

performed a model recovery analysis in which we simulated data from parameters that were 

associated with the different models, and checked whether the correct models were recovered. 

We simulated data from each of the simpler models, as well as two parameter combinations of 

the Flexible Model, one case with wchoice greater than wconf, and one with that reversed, and then 

compared the model fits in each case using the PSIS-LOO CV approach58. This was repeated 10 

times for every model/parameter combination. We considered a model to better predict the data 

if the ELPD was higher by at least 4, and with a magnitude of difference that was at least 2 times 

the standard error of the difference. We expected that, when fitting data simulated from the Equal 

Model, both the Flexible and Equal Model would be able to predict the data, since the Flexible 
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Model is able to give equal wchoice and wconf parameters as well. When data were simulated from 

the Optimal Model, we expected the Flexible, Equal, and Optimal Models to all predict the data 

equally well, since all three models can account for wchoice and wconf values of 1. The most critical 

test for us was that the Flexible Model was only a superior model fit when the data came from 

that model. This was confirmed with the model recovery analysis, with the Flexible Model winning 

only when data was simulated from the Flexible Model, in either parameter combination (Figure 

S4). Also in line with our expectations, data from the Equal Model was best predicted by either 

the Equal Model or Flexible Model, which were not distinguishable; data from the Optimal Model 

was best predicted by either the Optimal Model, Equal Model, or Flexible Model, which were not 

distinguishable; and data from the Flat Prior Model was best predicted by the Flat Prior Model 

(Figure S4). This confirmed that the Flexible Model was distinguishable from the simpler models, 

in that it would only win the comparison when data was truly simulated from that model, and hence 

wchoice and wconf were different from optimal, different from each other, and different from infinite 

(flat prior).  

 

 
Figure S4. Model Recovery Analysis. To test model recovery, we simulated data from each model and 
then compared the predictive performance of all models on that data. We consider a model to perform 
better when the ELPD is higher by at least 4, and when the magnitude of the difference is at least 2 times 
the standard error of the difference. Bars indicate the difference in ELPD divided by the SE of the difference, 
always in comparison to the true model, labelled above each facet. Negative values suggest the model to 
have a lower ELPD than the true model, but bars are coloured light blue if this difference meets the other 
criteria, namely having a magnitude of at least 4 and at least 2 times the standard error of the difference. 
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Therefore, negative light blue bars indicate a significantly worse predictive performance, compared to the 
true model. Bars are coloured grey if these criteria are not met and hence the models are not 
distinguishable. We simulated data from the Flexible Model using two different parameter combinations – 
one in which wchoice was larger than wconf (wchoice = 2, wconf = 1) and one in which this was reversed (wchoice = 
1, wconf = 2). For the Equal Model, we simulated data with the weighting parameter w set to 2 (for both 
decisions and confidence). For the Optimal Model, the weighting of prior information was optimal (1 in both 
decisions and confidence). For the Flat Prior Model, decisions and confidence were simulated without any 
use of prior information (equivalent to wchoice and wconf being infinitely large). Importantly, the only time in 
which the Flexible Model was conclusively superior in terms of predictive performance was when data were 
simulated from that model, and hence when wconf and wchoice were really different than optimal, different than 
each other, and not infinitely large, suggesting the models to be distinguishable in the required way.  
 
 
Experiment 2 

 
Figure S5. Experiment 2 Behavioural Results. A. Effect of condition on accuracy. We found a 
significant interaction between the effects of condition (which stimulus was stronger) and posterior level on 
target decision accuracy. Decision accuracy was higher in the Stronger-Target condition and this effect was 
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the strongest at the medium posterior level, suggesting participants to underweight prior information in their 
decisions, as in Experiment 1. In the raincloud plots, the right-half, split violin plots show the probability 
density, and vertical black lines show the median, IQR, hinges showing the first and third quartiles, and 
vertical whiskers showing +/- 1.5IQR. The binned dotplots on the left half show each individual subject as 
a point. B. Effect of condition on confidence. We found a significant effect of condition on confidence, 
with higher confidence in the Stronger-Target condition.  
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