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Abstract

In this work, we study theoretically and numerically the equations of Stokes and Navier-

Stokes under power law slip boundary condition. We establish existence of a unique solution by

using the monotone operators theory for the Stokes equations whereas for the Navier-Stokes

equations, we construct the solution by means of Galerkin’s approximation combined with

some compactness results. Next, we formulate and analyze the finite element approximations

associated to these problems. We derive optimal and sub-optimal a priori error estimate for

both problems depending how the monotonicity is used. Iterative schemes for solving the non-

linear problems are formulated and convergence is studied. Numerical experiments presented

confirm the theoretical findings.

Keywords : power law slip boundary condition, Stokes equations, Navier-Stokes equations,

finite element method, monotonicity, error estimates, rate of convergence.

1 Introduction

Let Ω ⊂ Rd with d = 2, 3 a bounded domain occupied by a fluid with a boundary ∂Ω. We would

like to study the incompressible flows governed by the Stokes equations

−2ν divDu+∇p = f in Ω, (1.1)

divu = 0 in Ω , (1.2)

where; ν is the positive viscosity of the fluid velocity, u(x), the velocity, the pressure is p(x)

and f is the external force acting on the fluid, Du is the symmetric part of the velocity gradient

defined through 2Du = ∇u+(∇u)T . The equations (1.1) and (1.2) are supplemented by boundary

conditions that will be described next. We are interested in (1.1), (1.2) when the position and the

direction of the slip boundary condition are taken into account (see [1, 2]). We then assume that
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the boundary ∂Ω of Ω is made of two components S and Γ, such that ∂Ω = S ∪ Γ, with S ∩Γ = ∅.
We assume the homogeneous Dirichlet condition on S, that is

u = 0 on S . (1.3)

Thus S is the porous or artificial boundary where the fluid is prescribed. On Γ, we assume the

impermeability condition

u · n = 0 on Γ , (1.4)

where n : Γ −→ Rd is the normal outward unit vector to Γ. Γ is an impermeable solid surface

along which the fluid may slip. The force within the fluid is the Cauchy stress tensor T given

through

T = 2νDu− pI on Ω ,

with I the d-dimensional identity matrix. Taking the scalar product of u and (1.1), one has∫
Ω

T : Dudx+

∫
Γ

(−Tn)τ · uτ dσ =

∫
Ω

f · udx (1.5)

with dσ being the surface measure associated to Γ. We recall that for any vector w define on

∂Ω, we set wτ = w − (w · n)n. Thus (Tn)τ denotes the projection of the normal stress into the

corresponding tangent plane. Now, from a simple interpretation, (1.5) expresses the balance of

energy in the system.

∫
Ω

T : Dudx = 2ν

∫
Ω

|Du|2 dx being the dissipation mechanisms in bulk,

while

∫
Γ

(−Tn)τ · uτ dσ stands for dissipative processes on the boundary. We need a functional

relation between (Tn)τ and uτ that can render the dissipative energy on Γ non negative. For that

purpose, the most general relation between uτ and (Tn)τ is the implicit constitutive relation [3]

ψ(uτ , (Tn)τ ) = 0 (1.6)

where ψ is function. The simplest form of (1.6) that ensure the non-negativity of

∫
Γ

(−Tn)τ ·uτ dσ
is the choice

(−Tn)τ = αuτ dσ , α > 0 .

This is the Navier’s slip boundary conditions. If (Tn)τ = 0, then one gets a perfect slip boundary

condition, while if uτ = 0, then there is no slip. But in this work we are interested in power law

slip boundary condition given as follows

(Tn)τ + |Kuτ |s−2K2uτ = 0 on Γ , (1.7)

where |v|2 = v · v is the Euclidean norm. K is an anisotropic tensor, assumed to be uniformly

positive definite, symmetric, and bounded. s is a real, strictly positive number representing the

flow behaviour index. The tangential shear is a power law function of the tangential velocity.

Such a boundary condition arises when the contact surface is lubricated with a thin layer of a

non-Newtonian fluid. It is manifest that for s = 2 and K = I, (1.7) is reduced to the classical

Navier’s slip condition. In this work we will assume that s 6= 2.

We are also interested in the Navier-Stokes equations, where (1.1) is replaced by

−2ν divD(u) + (u · ∇)u+∇p = f in Ω, (1.8)

and (1.2)–(1.4), (1.7) are unchanged, and (v · ∇)v =

d∑
i=1

vi
∂v

∂xi
is the convection term. The

solvability of the Stokes and Navier-Stokes equations when (1.3), (1.4) and (1.7) are replaced by

u · n = 0 and (Tn)τ +H(uτ )uτ = g on ∂Ω ,

2



with g a tangential surface traction and H a bounded, uniformly Lipschitz continuous function

are examined by C. Le Roux in [1, 2]. The properties on the function H had helped Le Roux to

control the H1-norm of the velocity with only the slip boundary condition u · n = 0 on the entire

boundary because the Korn’s inequality in that context reads (see [4])∫
Ω

|Dv|2dx+

∫
∂Ω

|vτ |2 dσ ≥ c
∫

Ω

|∇v|2dx .

The situation in our hands is different. Indeed, for s 6= 2, the function u →
∫

Γ

|Kuτ |s−2dσ does

not have the properties enumerated for the function H. Hence the results obtained in [1, 2] are not

applicable here. It is therefore clear that the problems described need to be analysed. First, one

wishes to find a way to describe/construct the solution(s) of the resulting boundary value problems,

and secondly, how can we compute the solutions of the resulting boundary value problems. Our

interest to study this type of boundary conditions is mainly motivated by the desire of extending

some results known when classical boundary conditions are used. Thus this work also participates

in a better mathematical comprehension of fluids with non classical boundary conditions. From

the modelling perspective, flows of incompressible Newtonian/Non Newtonian fluids are most of

the times analysed with Dirichlet type (or periodic ) boundary conditions on the velocity field.

But, in some important situations such as oil ducts, water supply, microfluids channels or blood in

arteries, some formulations with boundary conditions involving components of the velocity field,

stress or pressure are of interest. A recent review of some of the formulations presented in the

literature, and their associated boundary conditions, with a focus on applications to air and blood

flows can be found in [5]. It is important to observe that most papers dealing with the Stokes

or Navier-Stokes equations are written by means of conservation of the momentum in terms of

the Laplacian of the velocity, whereas in this text we prefer the equivalent formulation given in

terms of the divergence of the symmetric gradient which is useful in the fluid-structure interaction

problems. This formulation has many important implications. At the continuous level, the well-

posedness of the problems are proved in the same functional spaces as for the standard boundary

conditions. Moreover, the discrete analysis allows us to obtain convergence (and even optimal one)

with standard inf-sup stable finite element spaces without requiring stabilized formulations. In

this work, one also observes that the mathematical and computational models share this important

feature: the fluid model is described in terms of mechanical stress tensor, which is more appropriate

from the modelling viewpoint, and it is able to properly take into account the fact that the flow

continues beyond the boundaries, thanks to the specific form of the boundary conditions.

If one considers that ∂Ω is not partitioned, with (1.7) and u · n = 0 on ∂Ω, then one deduces

that ∫
Ω

|Du|2 dx+

∫
∂Ω

|Kuτ |s dσ =

∫
Ω

f · udx .

Hence we will have some difficulties to control the velocity with H1-norm. To overcome this

deficiency, we have assumed that the boundary ∂Ω is divided into a porous or artificial boundary

where the fluid is prescribed, and the other part of the boundary is impermeable which may allow

the fluid to slip. Ultimately, we would like to address the problem when the distance between Γ

and S is zero, but this would introduce complications that go beyond the scope of this study. The

goal of this work is to analyse from the mathematical and numerical point of view both (1.1)–

(1.4), (1.7) and (1.2)–(1.4), (1.7) and (1.8). Firstly, for both problems, the existence of solution

is constructed without restriction on the data by using monotone theory for the problem related

to the Stokes equations, while for the problem associated with the Navier-Stokes equations, we

use Galerkin’s approximation, Brouwer’s fixed point and some compactness results. Secondly,
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both variational problems are discretized by finite element schemes in a polygonal or polyhedral

domain. We derive existence, uniqueness (conditional for the Navier-Stokes problem), and a priori

error estimates for the respective problems. Thirdly, for the implementation of the nonlinear finite

element problems, we formulate a solution technique based on the linearization of nonlinear terms.

Next, we studied its feasibility, and the convergence of the iterative scheme associated with the

problem with the Navier-Stokes equations. Finally, we present some numerical experiments that

confirm the theoretical findings. We shall mentioned at at this juncture that, we decide to focus

on the implementation of the nonlinear problem related to the Navier-Stokes equations because it

has more difficulties/nonlinearities than the problem related to the Stokes equations.

We note that partial differential equations with the nonlinear boundary condition (1.7) (without

(1.4)) have been used in the past by [6, 7, 8, 9] when studying bonded elastic materials in solid

mechanics. A nonlinear boundary condition similar to power law slip boundary condition (1.7)

were studied by [10, 11] for two coupled Stokes fluids with the nonlinear boundary condition

representing the transmission condition. The interface condition in the later representing many

situations; adhesion, friction, coupling of free-surface and exchange with ground water flows.

The study of flows whose motion is described by the Stokes or Navier-Stokes equations driven

by anisotropic slip boundary condition have been the subject of some publications recently (see

[1, 2, 12, 13, 14, 15, 16, 17]). But it is important to mention that the numerical analysis (solvability

and a priori error estimates) of these models has never been analysed in the literature. Although

this work takes into account the vast knowledge on the Stokes/Navier -Stokes analysis, it should be

mentioned that the nonlinear slip boundary condition (1.7) adds some difficulties in the treatment

of the resulting variational problems. The new challenge in the finite element analysis being the

derivation of the uniform a priori error estimate with respect to the parameter in the power law

constitutive relation. It should be noted that the power law boundary condition (1.7) we analyse in

the work is not the same as the power law fluid analysed in [18, 19, 20, 21]. The later being defined

on the flow domain Ω, and the constitutive relation bringing together the Cauchy stress tensor and

the symmetric part of the velocity gradient. Finally, we observe that (1.7) is a generalisation of the

Navier’s slip boundary condition, which is an active research direction (see [22, 23, 24, 25, 26, 27]).

The rest of the paper is organised in the following way. In Section 2, we present the variational

problems and study their solvability. Section 3 is devoted to the description and construction of the

finite element solution. Section 4 is devoted to the convergence of the finite element solution. Here

we establish the convergence of the finite element solution by showing that difference in appropriate

norm of the continuous and discrete solution tends to zero with the discretization parameter. In

Section 5, we formulate the iterative schemes associated to the finite element approximations. The

focus is mainly on the problem associated to the Navier-Stokes equations. We establish some

qualitative properties and perform numerical experiments with FreeFem code [37]. We complete

this study with some concluding remarks.

2 Analysis of the continuous problems

In this section, we formulate the weak problems associated respectively with (1.1)–(1.4), (1.7), and

(1.2)–(1.4), (1.7)–(1.8), and study their well posedness.

2.1 Variational analysis of the Stokes system

We first introduce some notations that will be used throughout this work. Next, we propose and

discuss the weak solution of (1.1)–(1.4), and (1.7).
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2.1.1 Notations

We adopt the standard definitions of Lebesgue and Sobolev spaces (see [28]). For 1 ≤ p <∞

Lp(Ω) = {v : Ω→ R; v is measurable and

∫
Ω

|v(x)|pdx <∞},

with associated norm

‖v‖pLp(Ω) =

∫
Ω

|v(x)|pdx

for which it is a Banach space, and for the special case p = 2, it is a Hilbert space with the norm

that will be denoted by ‖ · ‖. Finally for p =∞, one has

L∞(Ω) =

{
v : Ω→ R,

∣∣∣∣∣ v is measurable and there is a constant c

such that |v(x)| ≤ c a.e on Ω

}
,

with the associated norm

‖v‖L∞(Ω) = ‖v‖∞ = inf{c, |v(x)| ≤ c a.e on Ω} .

Now, for any non-negative integer m and a real number p ≥ 1, we defined the Sobolev space

Wm,p(Ω) = {v ∈ Lp(Ω), ∂αv(x) ∈ Lp(Ω) for all |α| ≤ m},

with α = (α1, ..., αd) the multi-index with |α| = α1 + · · · + αd, and ∂αv(x) the distributional

derivative of v given by

∂αv =
∂|α|v

∂xα1
1 · · · ∂x

αd
d

.

The space Wm,p(Ω) is equipped with the semi-norm and norm

|v|pWm,p(Ω) =
∑
|α|=m

∫
Ω

|∂αv(x)|p dx , ‖v‖pm,p =
∑

0≤|α|≤m

∫
Ω

|∂αv(x)|p dx .

The duality between, say, E and its dual E′ is denoted as 〈 · 〉. The bold characters denote vector

quantities and Lp(Ω) = Lp(Ω)d,Wm,p(Ω) = Wm,p(Ω)d, etc....

We note that Wm,2(Ω) = Hm(Ω) and H0(Ω) coincides with L2(Ω), for which the norm and inner

product are denoted as ‖ · ‖ and (·, ·), respectively. In order to introduce functions spaces related

to the equations (1.1)–(1.4), (1.7), we recall that (1.5) is re-written as follows

2ν

∫
Ω

|Du|2dx+

∫
Γ

|Kuτ |sdσ − 〈p, divu〉 = 〈f ,u〉 . (2.1)

Hence, it is manifest from (2.1) that for the velocity one needs u ∈H1(Ω), and uτ ∈ Ls(Γ). Then

the pressure must belong to L2(Ω) because divu ∈ L2(Ω). It should be noted that for v ∈H1(Ω),

vτ is an element of H1/2(S) ⊂ L2(Γ) which is not necessarily a subspace of Ls(Γ). Hence we have

two possibilities.

If 1 ≤ s < 2, we have ‖uτ ‖L1(Γ) ≤ c‖uτ ‖Ls(Γ) ≤ c‖uτ ‖L2(Γ). Hence the velocity is described

in

V = {v ∈H1(Ω) : with v|S = 0 and v · n|Γ = 0} ,

equipped with the regular H1-norm, while the pressure is in the space

M = {p ∈ L2(Ω) : (p, 1) = 0} = L2
0(Ω) .
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We mentioned that the zero mean value is added on the pressure to avoid the pressure given in

(1.1), (1.2) to be determined up to a constant.

For 2 < s, we have ‖uτ ‖L2(Γ) ≤ c‖uτ ‖Ls(Γ). Then the velocity is described in

V = {v ∈H1(Ω) , vτ ∈ Ls(Γ) : with v|S = 0 and v · n|Γ = 0}

equipped with the norm

|||v|||2 = ‖v‖21 + ‖vτ ‖2Ls(Γ) .

The pressure is described in the same function space L2
0(Ω), because we only need 〈p, divu〉 to

make sense with divu ∈ L2(Ω). We shall often use the following Sobolev imbedding (see [28]):

for any real number p ≥ 1 when d = 2, or 1 ≤ p ≤ 2d

d− 2
when d ≥ 3, there exist constants cp and

c0p such that

for all v ∈H1(Ω), ‖v‖Lp(Ω) ≤ cp‖v‖1,

for all v ∈ V , ‖v‖Lp(Ω) ≤ c0p‖∇v‖ .
(2.2)

We note that when p = 2, the second inequality in (2.2) is the Poincaré’s inequality. Also of

importance is the Korn’s inequality which reads (see [4]); there exists a constant c such that

for u ∈ V ,

∫
Ω

|Du|2dx ≥ c
∫

Ω

|∇u|2dx . (2.3)

2.1.2 Variational formulation

In this part, we formulate the weak problem associated with (1.1)–(1.4), (1.7) and construct the

weak solution.

We assume once and for all that for all that f ∈ L2(Ω).

Let q ∈ M , we multiply (1.2) by q, integrate the resulting equation over Ω. Next, we take the

dot product between (1.1) and v ∈ V and integrate the resulting equation over Ω. After utilization

of the Green’s formula, (1.3), (1.4) and (1.7), one obtains:
Find (u, p) ∈ V×M such that for all (v, q) ∈ V×M,

a(u,v) +

∫
Γ

|Kuτ |s−2Kuτ ·Kvτ dσ − b(v, p) = `(v) ,

b(u, q) = 0 ,

(2.4)

with

a(u,v) = 2ν

∫
Ω

Du : Dvdx , b(v, q) =

∫
Ω

q div vdx , `(v) =

∫
Ω

f · vdx,

where

A : B =
∑

1≤i,j≤d

AijBij .

In the derivation of (2.4), we have also used the identity
∑

1≤i,j≤d
Diju

∂vi
∂xj

=
∑

1≤i,j≤d

DijuDijv which

is the consequence of the symmetry of Du.

Remark 2.1 In some contributions, the conservation of the momentum is expressed in terms of

the Laplacian of the velocity which gives rise to the bilinear form ã(u,v) = 2ν (∇v,∇u), instead

of a(·, ·) defined before. Although at a continuous level

divu = 0 implies that 2 divDu = ∆u,
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from a modelling viewpoint it may be important to work with symmetric tensor. For instance, the

problem (1.1)–(1.4) and (1.7) gives directly the natural boundary condition in term of the force

(traction force) exerted by the fluid on its boundary.

Now with standard arguments, we can show the following equivalence result.

Lemma 2.1 The variational formulation (2.4) is equivalent in the sense of distribution to (1.1)–

(1.4), (1.7).

Hence we have the definition.

Definition 2.1 A couple (u, p) is called weak solution of (1.1)–(1.4), (1.7) if (u, p) ∈ V×M and

satisfy (2.4).

One of the key step in the study of mixed variational problem like (2.4) is the definition of the

kernel of the bilinear form b(·, ·) which permits the elimination of the pressure in the problem.

Thus we consider the space

Vdiv = {v ∈ V, for all q ∈M, b(v, q) = 0} = {v ∈ V, div v = 0} .

With the space Vdiv, the variational problem (2.4) is equivalent to
Find u ∈ Vdiv such that for all v ∈ Vdiv,

a(u,v) +

∫
Γ

|Kuτ |s−2Kuτ ·Kvτ dσ = `(v) .
(2.5)

In the study of mixed problem like (2.4), the compatibility or inf-sup condition on b(·, ·) is very

important. It reads; there exists β > 0 such that

inf
q∈M

sup
06=v∈V

b(v, q)

‖v‖V ‖q‖
≥ β . (2.6)

Actually for 1 ≤ s < 2, one has V = {v ∈ H1(Ω) : with v|S = 0 and v · n|Γ = 0} and

M = L2
0(Ω) . Eq. (2.6) is obtained by observing that H1

0(Ω) ⊂ V and the pair (H1
0(Ω), L2

0(Ω)) is

inf-sup stable (see [29, 30]), hence (2.6) holds.

For 2 < s, V = {v ∈ H1(Ω) , vτ ∈ Ls(S) : with v|S = 0 and v · n|Γ = 0} and M = L2
0(Ω). We

were not able to obtain (2.6) which is a key point in obtaining the pressure when studying (2.4).

In the rest of this analysis, we consider 1 < s < 2. This corresponds to the tangential shear

thinning with same physical interpretation as the power law fluid (see [18, 19, 20]).

To study (2.5) or (2.4) it is convenient to recall the following monotonicity and continuity

properties (see [19, 20]): there exists a constant c independent of x,y elements of Rn such that for

1 ≤ s < 2;

(|y|+ |x|)2−s (|y|s−2y − |x|s−2x,y − x
)
≥ c|x− y|2 , (2.7)

and ∣∣ |x|s−2x− |y|s−2y
∣∣ ≤ c|x− y|s−1 . (2.8)

Now we introduce the mapping v −→ A(v) defined as follows

for all w ∈ Vdiv , A(v)w = a(v,w) +

∫
Γ

|Kvτ |s−2Kvτ ·Kwτ dσ . (2.9)

We have the following properties for A.

Lemma 2.2 Let 1 < s < 2, then
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(a) A maps Vdiv into its dual V
′

div, and is bounded on all bounded subsets of Vdiv .

(b) For all v,u elements of Vdiv

‖A(v)−A(u)‖V′ ≤2ν‖v − u‖1 + c‖K‖sL∞(Γ) ‖u− v‖
s−1
1 .

Proof. Let u,v,w elements of Vdiv. From Hölder’s and Cauchy-Schwarz’s inequalities, we

have

A(v)w ≤2ν‖v‖1‖w‖1 + ‖K‖sL∞(Γ)

∫
Γ

|vτ |s−1 |wτ | dσ

≤2ν‖v‖1‖w‖1 + c‖K‖sL∞(Γ)‖v‖
s−1
1 ‖w‖1 ,

so ‖A(v)‖V′ ≤ 2ν‖v‖1 + c‖K‖sL∞(Γ)‖v‖
s−1
1 .

Next, from (2.8), Hölder’s and Cauchy-Schwarz’s inequalities and since K is bounded, one has

(A(v)−A(u),w) ≤2ν‖v − u‖1‖w‖1 +

∫
Γ

∣∣∣ |Kuτ |s−2
Kuτ − |Kvτ |s−2

Kvτ

∣∣∣ |Kwτ | dσ

≤2ν‖v − u‖1‖w‖1 + c‖K‖L∞(Γ)

∫
Γ

|Kuτ −Kvτ |s−1 |wτ | dσ

≤2ν‖v − u‖1‖w‖1 + c‖K‖sL∞(Γ) ‖u− v‖
s−1
1 ‖w‖1 ,

hence ‖A(v)−A(u)‖V′ ≤ 2ν‖v − u‖1 + c‖K‖sL∞(Γ) ‖u− v‖
s−1
1 . �

2.1.3 Existence of solutions

Here we construct a solution of (2.4) by using the theory of monotone operator. We first start by

indicating the following result

Proposition 2.1 The problem (2.5) is equivalent to the problem (2.4) .

This is a standard result for the Stokes problem and we refer the reader to [29, 31] where similar

proofs are given. �

Owing to the equivalence in Proposition 2.1, we can restrict the analysis to problem (2.5). We

shall prove that A is strictly monotone, coercive and hemi-continuous in V. Then the existence

and uniqueness of (2.5) will follow by standard arguments, see [31, Chapter 2]. We first start with

the monotonicity property of A.

Lemma 2.3 The mapping v → Av defined by (2.9) is strictly monotone from Vdiv into V
′

div:

For all v,w ∈ Vdiv, (Av −Aw)(v −w) > 0 .

Proof. Consider the functional J : Vdiv → R defined by

J(v) =
1

2
a(v,v) +

1

s

∫
Γ

|Kvτ |s dσ .

The first derivative of J is

J ′(u) · v = a(u,v) +

∫
Γ

|Kuτ |s−2
Kuτ ·Kvτ dσ , (2.10)
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and the second derivative is

J (2)(u) · (v,w) =a(v,w) + (s− 2)

∫
Γ

|Kuτ |s−4
(Kuτ ·Kwτ ) (Kuτ ·Kvτ ) dσ

+

∫
Γ

|Kuτ |s−2
Kwτ ·Kvτ dσ .

(2.11)

Note that J (2) is symmetric and positive definite. Indeed J (2)(u) · (v,w) = J (2)(u) · (w,v) and

J (2)(u) · (v,v) =a(v,v) + (s− 2)

∫
Γ

|Kuτ |s−4
(Kuτ ·Kvτ ) (Kuτ ·Kvτ ) dσ

+

∫
Γ

|Kuτ |s−2
Kvτ ·Kvτ dσ .

From the assumption on K, one deduces that K2 is symmetric and uniformly positive definite.

Let αmin > 0 be the smallest eigenvalue of K2 over Γ, that is

∀x ∈ Γ, ∀w ∈ Rd, K2(x)w ·w = |K(x)w|2 ≥ αmin|w|2 .

Then

∀x ∈ Γ, ∀w ∈ Rd, (K2(x)w ·w)s/2 = |K(x)w|s ≥ αs/2min|w|
s . (2.12)

Since 1 ≤ s < 2, one has

J (2)(u) · (v,v) ≥ a(v,v)−
∫

Γ

|Kuτ |s−2 |Kvτ |2 dσ +

∫
Γ

|Kuτ |s−2 |Kvτ |2 dσ = a(v,v) ≥ 0 .

One notes from (2.10) that

(A(v)−A(w))(v −w) =J ′(v) · (v −w)− J ′(w) · (v −w)

=

∫ 1

0

J (2)(w + θ(v −w)) · (v −w,v −w)dθ ≥ 0

because the second derivative is positive definite. We then conclude that A is monotone (in fact

strictly monotone). �

Secondly, we have the following hemi-continuity result for A.

Lemma 2.4 A is hemi-continuous in Vdiv, that is for u,v in Vdiv, the mapping t −→ A(u+ tv)v

is continuous from R into R.

Proof. Indeed for any t1, t2 in R, we can write from (2.10) that

(A(u+ t1v)−A(u+ t2v)) · v = (J ′(u+ t1v)− J ′(u+ t2v)) · v

=(t1 − t2)

∫ 1

0

J (2)(u+ t2v + θ(t1 − t2)v) · (v,v)dθ .

Since u and v are fixed, it follows from (2.11) that the right hand side term on the second equality

tends to zero with t1 − t2. �

Finally we show that A is coercive in the following way

Lemma 2.5 A is coercive, that is lim
‖v‖1→∞

(
1

‖v‖1
A(v)v

)
=∞
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Proof.

From (2.12), (2.3) and (2.2) one has

1

‖v‖1
A(v)v ≥min(2ν, α

s/2
min)
‖Dv‖2 + ‖vτ ‖sLs(Γ)

‖v‖1
≥ min(2ν, α

s/2
min)
‖∇v‖2 + ‖vτ ‖sLs(Γ)

‖∇v‖
.

From which we deduce that

lim
‖∇v‖→∞

A(v)v

‖∇v‖
=∞ .

�

From Lemma 2.3, Lemma 2.5, and Lemma 2.4, we deduce the following existence result.

Theorem 2.1 If 1 < s < 2, then the variational problem (2.4) has a unique solution (u, p) ∈
V×M , which moreover satisfy the bounds

νc‖∇u‖2 +

∫
S

|Kuτ |s dσ ≤ c‖f‖2 ,

‖p‖ ≤ 2ν‖∇u‖+ ‖K‖sL∞(Γ) ‖uτ ‖
s−1
Ls(Γ) + c‖f‖ .

Remark 2.2 The contribution of the nonstandard boundary condition (1.7) to the a priori esti-

mate in Theorem 2.1 is manifest by the presence of the boundary term Kuτ .

2.2 Variational analysis of the Navier-Stokes system

This part is devoted to the analysis of the problem related to (1.2)–(1.4), (1.7) and (1.8). The weak

solution is constructed using a combination of approaches such as; Faedo-Galerkin’s approximation,

Brouwer’s fixed point and compactness properties. The reader will find more details for example

in [31, Chap 2].

2.2.1 Existence and uniqueness of solution

Turning to the Navier-Stokes system, the weak formulation associated with (1.2), (1.3), (1.4), (1.7)

and (1.8) reads
Find (u, p) ∈ V×M such that for all (v, q) ∈ V×M,

a(u,v) +

∫
Γ

|Kuτ |s−2Kuτ ·Kvτ dσ + d(u,u,v)− b(v, p) = `(v),

b(u, q) = 0 ,

(2.13)

with d(u,v,w) =

∫
Ω

(u · ∇)v ·wdx . We recall that

d(u,v,w) = −d(u,w,v) for allu,v,w ∈ Vdiv ×H1(Ω)×H1(Ω)

d(u,v,v) = 0 for allu,v ∈ Vdiv ×H1(Ω) .
(2.14)

We discuss next, the existence and uniqueness of solution of (2.13). We state the following result.

Proposition 2.2 For any data f ∈ L2(Ω), the variational problem (2.13) has at least one solution

(u, p) ∈ V×M if 1 < s < 2, moreover there is a constant c such that

νc‖u‖21 +

∫
Γ

|Kuτ |sdσ ≤
c

ν
‖f‖2 ,

‖p‖ ≤ 1

β

(
2ν‖u‖1 + ‖K‖sL∞(Γ)‖uτ ‖

s−1
Ls−1(Γ) + c‖u‖21 + ‖f‖

)
.
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If moreover

ν2 > c‖f‖ , (2.15)

then the solution is unique.

Proof. It is performed in several steps.

We recall (2.13) is equivalent to
Find u ∈ Vdiv such that for all v ∈ Vdiv,

a(u,v) +

∫
Γ

|Kuτ |s−2Kuτ ·Kvτ dσ + d(u,u,v) = `(v) .
(2.16)

We first construct the solution u ∈ Vdiv solution of (2.16).

Step 1: Existence of approximate solutions.

Since Vdiv is separable, then there exist an increasing sequence a countable basis {ψi}i≥1. Let Km
be the space spanned by the first m basis functions, {ψi}1≤i≤m. The problem (2.16) is discretized

in Km by the square system of nonlinear equations:

Findum ∈ Km such that for all v ∈ Km,

a(um,v) +

∫
Γ

|Kuτ ,m|s−2Kuτ ,m ·Kvτ dσ + d(um,um,v) = `(v) .
(2.17)

to prove the existence of um, we use fixed point by considering the mapping F : Km −→ Km
defined as follows

F (u)v = a(u,v) +

∫
Γ

|Kuτ |s−2Kuτ ·Kvτ dσ + d(u,u,v)− `(v) .

We first show that F is continuous. Let u,v,w in Km, we have

|(F (u)− F (v))w| ≤2ν‖u− v‖1‖w‖1 + |d(u− v,u,w)|+ |d(v,u− v,w)|

+

∫
Γ

∣∣|Kuτ |s−2Kuτ − |Kvτ |s−2Kvτ
∣∣ |Kwτ | dσ

≤2ν‖u− v‖1‖w‖1 + ‖u− v‖L4(Ω)‖∇u‖‖w‖L4(Ω) + ‖v‖L4(Ω)‖∇(u− v)‖‖w‖L4(Ω)

+

∫
Γ

∣∣|Kuτ |s−2Kuτ − |Kvτ |s−2Kvτ
∣∣ |Kwτ | dσ ,

together with the inequalities (2.8), implies that F is continuous. On the other hand, for v ∈ Km,

one has

F (v)v =a(v,v) +

∫
Γ

|Kvτ |sdσ − `(v)

≥2νc‖v‖21 +

∫
Γ

|Kvτ |s dσ − ‖f‖‖v‖1

≥ (2νc‖v‖1 − ‖f‖) ‖v‖1 +

∫
Γ

|Kvτ |s dσ .

Choosing r such that r > c
ν ‖f‖, it follows that for any v ∈ Km, with ‖v‖1 = r, we have F (v)v > 0.

We deduce from a corollary of the Brouwer’s fixed point (see [29]), that there exists um ∈ Km
solution of (2.17).

Step 2: Estimates and passage to the limit.

We take v = um in (2.17), using standard inequalities, this gives

νc‖um‖21 +

∫
Γ

|Kuτ ,m|sdσ ≤
c

ν
‖f‖2 . (2.18)
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Hence there exists a subsequence, still denoted by um such that

um → u weakly in H1(Ω),

Bum →W weakly in V′,
(2.19)

because ‖Bv‖ ≤ c‖v‖s−1
1 , with

B(u)v =

∫
Γ

|Kuτ |s−2Kuτ ·Kvτ dσ.

Owing to the compactness of the imbedding of H1(Ω) into L4(Ω), there exists a subsequence, still

denoted by um, which converges weakly to u ∈ H1(Ω) and strongly in L4(Ω)d. We easily check

that divu = 0 in Ω, u · n|Γ = 0 and u|S = 0. Passing to the limit on m is direct for the linear

term because one only needs weak convergence, but for the term (um ·∇)um, one needs the strong

convergence of um on L4(Ω)d (see [29, Chap 5, Thm 1.4]). Indeed

|d(um,um,v)− d(u,u,v)| = |d(um − u,um,v) + d(u,um − u,v)|

≤‖um − u‖L4(Ω)‖∇um‖‖v‖L4(Ω) + |d(u,um − u,v)| ,
(2.20)

and the right hand side of (2.20) tends to zero with m. Hence d(um,um,v) tends to d(u,u,v).

Finally for the term on Γ, we need to show that W = Bu. First, we deduce from the weak

convergence on H1(Ω), that

um → u strongly in L2(Ω)) .

The mapping u 7−→ uτ is continuous from H1(Ω) to L2(Γ). Then

um|Γ → uτ |Γ weakly in L2(Γ).

Now one can use the fact that the mapping v → Bv is monotone, and hemi-continuous to show

that (see [31, Chap 2]) W = Bu.

Therefore, with the help of the density of Km in Vdiv, one deduces that the limit u satisfies the

equation 
for all v ∈ Vdiv,

a(u,v) +

∫
Γ

|Kuτ |s−2Kuτ ·Kvτ dσ + d(u,u,v) = `(v) .
(2.21)

Taking v = u in (2.21), and using standard inequalities, one obtains the a priori estimate on the

velocity announced.

Step 3: Construction of the pressure.

For 1 < s < 2, the inf-sup condition (2.6) holds and owing to (2.21), there exists a p in M see [29,

Chap I, Lemma 4.1] such that
for all (v, q) ∈ V×M,

a(u,v) +
(
|Kuτ |s−2Kuτ ,Kvτ

)
Γ

+ d(u,u,v)− `(v) =

∫
Ω

div vpdx∫
Ω

q divudx = 0 .

(2.22)

The a priori estimate on the pressure is obtained by using the inf-sup condition and the velocity

equation.

Step 4: Uniqueness.
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Let (u1, p1) and (u2, p2) be two solutions of (2.22). Setting for a while u = u1−u2 and p = p1−p2,

we deduce that

a(u,v) +

∫
Γ

(
|Ku1,τ |s−2Ku1,τ − |Ku2,τ |s−2Ku2,τ

)
·Kvτ dσ + d(u1,u1,v)− d(u2,u2,v)

=

∫
Ω

div vpdx .

We take successively v = u1, and v = u2, and take the difference of the resulting equations. This

gives

a(u,u) +

∫
Γ

(
|Ku1,τ |s−2Ku1,τ − |Ku2,τ |s−2Ku2,τ

)
· (Ku1,τ −Ku2,τ )︸ ︷︷ ︸

≥0

dσ = −d(u,u2,u) ,

(2.23)

which implies that

2νc‖u‖21 ≤‖u‖2L4(Ω)‖∇u2‖ ≤ c‖u‖21‖u2‖1 ≤ c
‖f‖
ν
‖u‖21 ,

which gives us the condition for the unique solvability. Next, the function p = p1 − p2 satisfies

∀v ∈ V ,

∫
Ω

div vpdx = 0

which together with (2.6), implies that p1 = p2 . �

Remark 2.3 The smallness condition for uniqueness is not surprising given that we have a non-

linear problem. On the other hand, that condition is similar to the uniqueness condition for the

Navier-Stokes equations with Dirichlet boundary condition. The similarity in our view is due to

the fact that the “extra” nonlinear term is monotone and can be removed from the equation when

analysing (see (2.23)).

The next section is about the construction of finite element solutions of (2.4) and (2.13).

3 Finite element approximation

This section is twofold. First, we introduce the basics tools for the formulation of the finite

element approximation of (2.4) and (2.13). Secondly, we discuss the solvability of the nonlinear

finite elements problems.

3.1 Preliminaries

From now on, we assume that Ω is a polygon in two dimensions or polyhedron in three dimensions,

so it can be entirely triangulated by triangles or tetrahedron, according to the dimensions d. A

regular family of triangulations (Th)h of Ω, is a set of closed non degenerate triangles or tetrahedra,

called elements, satisfying (see [32])

(i) For each h, Ω is the union of all elements of Th, that is

Ω =
⋃

K∈Th

K .
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(ii) The ratio of the diameter of an elementK ∈ Th to the diameter of its inscribed circle

or ball is bounded by a constant independent ofh. This is to say that there exists a con-

stantσ, independent of h andK such that

∀ K ∈ Th ,
hK
ρK

= σK ≤ σ ,

where hK is the diameter of K, and ρK is the diameter of the sphere (circle) inscribed in

K.

(iii) The intersection of two distinct elements of Th is either empty, a common vertex, or an

entire common edge or face.

As usual, h is the maximal diameter of all elements of Th. For every K ∈ Th, we denote by Pk the

space of restrictions to K of polynomials of degree k in d variables and total degree at most k.

In what follows, c stand for a generic constant which may vary from line to line but are always

independent of h.

Remark 3.1 In this work, we do not address the situation with curved boundary, but we refer the

interested readers to the work in [25, 26].

3.2 Discretization of the Stokes system

Finite element approximation.We discretize the velocity and the pressure respectively in the

spaces Vh and Mh defined as follows

Vh =
{
vh ∈ V ∩ C0(Ω)d, for all T ∈ Th, vh|K ∈ (P1(T ) + bubble)d

}
,

L2
h =

{
qh|qh ∈ C0(Ω), qh|T ∈ P1, for all T ∈ Th

}
,

Mh =

{
qh|qh ∈ L2

h,

∫
Ω

qhdx = 0

}
,

(3.1)

where P1(T )+bubble is the sum of a polynomial of P1(T ) and a bubble function bT (x) = α1(x)α2(x)α3(x),

for any T ∈ Th, and denoting the vertices of T ∈ Th by ai, 1 ≤ i ≤ 3, and its corresponding barycen-

tric coordinates by αi. Note that bT (x) = 0 on T and that bT (x) > 0 on T .

With the above spaces it is quite natural to approximate (2.4) (with obvious notation) by:
Find (uh, ph) ∈ Vh ×Mh such that for all (vh, qh) ∈ Vh ×Mh

a(uh,vh) +

∫
Γ

|Kuτ ,h|s−2Kuτ ,h ·Kvτ ,hdσ − b(vh, ph) = `(vh) ,

b(uh, qh) = 0 .

(3.2)

For 1 < s < 2, the discrete inf-sup holds, that is, there exists β̃ > 0 such that

inf
qh∈Mh

sup
06=vh∈Vh

b(vh, qh)

‖vh‖1 ‖qh‖
≥ β̃ . (3.3)

We recall that on the space

Vdiv,h =

{
vh ∈ Vh :

∫
Ω

qh div vhdx = 0 for all qh ∈Mh

}
,

(3.2) is equivalent to:
Finduh ∈ Vdiv,h such that for allvh ∈ Vdiv,h

a(uh,vh) +

∫
Γ

|Kuτ ,h|s−2Kuτ ,h ·Kvτ ,hdσ = `(vh) .
(3.4)
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Remark 3.2 It is noted that a function in Vh is reduced to polynomial of degree one on each side

e of the element K and also on each boundary side. So, the condition uh ·n|Γ = 0 implies that uh

vanishes at each corner of Γ.

The velocity and pressure are interpolated respectively by the operators Πh ∈ L(V;Vh) and rh ∈
L(M ;Mh) constructed in Girault and Hecht [33, Chap 5]. These operators satisfy, for each real

number α ∈ [0, 1] and for each number m ≥ 2, the following properties. (1) There exists a

constant c, independent of h such that

for allv ∈Wα+1,m(Ω)2 ∩ V , |Πhv − v|W 1,m(Ω) ≤ ch
α |v|Wα+1,m(Ω) . (3.5)

(2) There exists a constant c, independent of h such that

for all q ∈Wα,m(Ω)2 ∩M , ‖rhq − q‖Lm(Ω) ≤ ch
α |v|Wα,m(Ω) . (3.6)

A key issue when studying the mixed formulation (3.2) with the spaces Vh and Mh is the discrete

inf-sup condition (3.3). Its proof consists in using the trick introduce by Fortin (see [29]) based on

the operator

H(v) = Πh(v) +
∑
K∈Th

aK(v)bK

where

aK(v) =
1∫

K
bKdx

∫
K

(v −Πh(v))dx .

Existence and uniqueness. The Existence of a solution of (3.4) (and (3.2)) can be obtained

by repeating the steps of paragraph 2.2. One observes that the variational problem (3.4) is a

finite dimensional, square system of nonlinear equations. Thus just like the continuous analysis,

we introduce the following mapping; for all (vh,wh) ∈ Vdiv,h × Vdiv,h

Ah(vh)wh = a(vh,wh) +

∫
Γ

|Kvτ ,h|s−2Kvτ ,h ·Kwτ ,hdσ .

We can show that for all 1 < s < 2, Ah is strictly monotone, coercive and hemi-continuous. Thus,

the analog of theorem 2.1 reads as follows.

Theorem 3.1 For 1 < s < 2, the problem (3.2) has exactly one solution (uh, ph) in Vh ×Mh,

and there exists c independent of h such that the following a priori estimates hold

‖∇uh‖2 +

∫
Γ

|Kuτ ,h|s dσ ≤ c‖f‖2 ,

‖ph‖ ≤ 2ν‖∇uh‖+ ‖K‖sL∞(Γ) ‖uτ ,h‖
s−1
Ls(Γ) + c‖f‖ .

3.3 Analysis of the Navier-Stokes system

Finite element approximation. The velocity and pressure are taken as before. We consider

the following finite element scheme
Find (uh, ph) ∈ Vh ×Mh such that for all (vh, qh) ∈ Vh ×Mh,

a(uh,vh) +

∫
Γ

|Kuτ ,h|s−2Kuτ ,h ·Kvτ ,hdσ + d̃(uh,uh,vh)− b(vh, ph) = `(vh),

b(uh, qh) = 0 ,

(3.7)
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with the trilinear form d̃(·, ·, ·) given by R.Temam [35]

d̃(vh,uh,wh) = d(vh,uh,wh) +
1

2
((div vh)uh,wh) =

1

2
(d(vh,uh,wh)− d(vh,wh,uh)) .

It is noted that d̃(·, ·, ·) is consistent with d(·, ·, ·) in the sense that

for all (v,u,w) ∈ Vdiv ×H1(Ω)×H1(Ω) , d̃(v,u,w) = d(v,u,w) .

Furthermore d̃(·, ·, ·) is anti-symmetry meaning that

for all (vh,uh,wh) ∈H1(Ω)× Vh × Vh , d̃(vh,uh,wh) = −d̃(vh,wh,uh) .

Existence and uniqueness. The kernel of divergence in Vh is Vdiv,h, and for 1 ≤ s < 2, (3.7)

is equivalent to
Find uh ∈ Vdiv,h such that for all vh ∈ Vdiv,h,

a(uh,vh) +

∫
Γ

|Kuτ ,h|s−2Kuτ ,h ·Kvτ ,hdσ + d̃(uh,uh,vh) = `(vh) .
(3.8)

(3.8) is a finite dimensional, square system of nonlinear equations. We address next the solvability

of (3.8) by Brouwer’s Fixed point argument. To this end, for fixed uh ∈ Vdiv,h, one introduces

F (uh) in Vdiv,h by

(F (uh),vh) =a(uh,vh) + d̃(uh,uh,vh) +

∫
Γ

|Kuτ ,h|s−2Kuτ ,h ·Kvτ ,hdσ −
∫

Ω

f · vh dx .

From the analysis in the continuous formulation, we deduce that the mapping F : Vdiv,h −→ Vdiv,h

is continuous. Next, using the anti-symmetry property of d̃(·, ·, ·),

(F (vh),vh) =a(vh,vh) +

∫
Γ

|Kvτ ,h|sdσ −
∫

Ω

f · vh dx

≥‖vh‖1 (2νc‖vh‖1 − ‖f‖) +

∫
Γ

|Kvτ ,h|sdσ .

Thus (F (vh),vh) is non-negative for all vh ∈ Vh, with ‖vh‖1 = r >
c

ν
‖f‖. So, this proves existence

of at least one solution of (3.8). Using the equivalence between (3.7) and (3.8), we construct the

pressure and we have the following result.

Proposition 3.1 The finite element problem (3.7) admits at least one solution (uh, ph) ∈ Vh×Mh,

and there exist positive constant c such that

νc‖uh‖21 +

∫
Γ

|Kuτ ,h|sdσ ≤
c

ν
‖f‖2 ,

β̃‖ph‖ ≤ 2ν‖uh‖1 + ‖K‖sL∞(Γ)‖uτ ,h‖
s−1
Ls−1(Γ) + c̃‖uh‖21 + ‖f‖ .

The estimate above is obtained in the standard way (see proposition 2.2). One can observe the

small difference between the estimate on the pressure in proposition 2.2 and proposition 3.1. This

difference being the fact that in the discrete setting divuh is non zero.

We end this analysis with the result below.

Proposition 3.2 Let (uh, ph) ∈ Vh×Mh be the solution of (3.7). There exists a positive constant

c̃ depending only on Ω such that if for ν, f , the relation

ν2 ≥ c̃‖f‖ ,

is satisfied, then the solution of (3.7) is unique.
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Proof. Let (u1, p1) and (u2, p2) be two solutions of (3.7). Setting for a while u = u1 − u2

and p = p1 − p2. the equation (2.23) is

a(u,u) +

∫
Γ

(
|Ku1,τ |s−2Ku1,τ − |Ku2,τ |s−2Ku2,τ

)
· (Ku1,τ −Ku2,τ )︸ ︷︷ ︸

≥0

dσ = −d̃(u,u2,u) ,

(3.9)

this leads to

2νc‖u‖21 ≤‖u‖2L4(Ω)‖∇u2‖ ≤ c̃‖u‖21‖u2‖1 ≤ c̃
‖f‖
ν
‖u‖21 ,

which gives us the condition for the unique solvability. Secondly, the function p satisfies

∀v ∈ Vh ,
∫

Ω

div vpdx = 0

which together with the discrete inf-sup condition (3.3), implies that p1 = p2 . �

Remark 3.3 The condition obtained for the unique solvability of (3.7) in Proposition 3.2, is not

the same condition obtained in (2.15) for the unique solvability of (2.13). This difference being

that in the discrete setting divuh is non zero. Hence the constants are not the same.

At this juncture, knowing that solution of (3.7) and (3.2) are well defined and computable, we next

study the convergence of the finite element solution (uh, ph). This exercise is very important in

numerical analysis because by doing it we check the “reliability” of the approximation.

4 A priori error analysis

We now study the convergence of the finite element solution (uh, ph) by computing an upper bound

of the quantity ‖u− uh‖1 + ‖p− ph‖. The problems (3.7) and (3.2) are well defined, hence study

the convergence of the finite element solution make perfect sense. It is important to recall that

without uniqueness no convergence result can be formulated.

4.1 A priori error analysis: the Stokes equations

We start with the convergence of the solution (uh, ph) of (3.2). It holds that

Theorem 4.1 For 1 < s < 2, let (u, p) be the solution of (2.4) and (uh, ph) the solution of (3.2).

Then there is a positive constant c independent of h such that

‖u− uh‖1 + ‖p− ph‖+ ‖uτ − uτ ,h‖Γ ≤ c inf
vh∈Vh

‖uτ − vτ ,h‖1/2Γ + c inf
vh∈Vh

‖∇(u− vh)‖+ c inf
qh∈Mh

‖qh − p‖ .

Proof. Step 1: Inf-sup condition.

Let (uh, ph) be the unique solution of (3.2). Let qh ∈Mh, then ph− qh ∈Mh and in particular,

there exists β̃ independent of h such that

β̃‖ph − qh‖ ≤ sup
06=vh∈Vh∩{vh|Γ=0}

b(vh, ph − qh)

‖vh‖1
. (4.1)

We take the difference between (2.4) and (3.2) and obtain (after observing that Vh ⊂ V and

Mh ⊂M) 

for all (vh, qh) ∈ Vh ×Mh ,

a(u− uh,vh) +
(
|Kuτ |s−2

Kuτ − |Kuτ ,h|s−2
Kuτ ,h , Kvτ ,h

)
Γ

= b(vh, p− ph) ,

b(u− uh, qh) = 0 .

(4.2)
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We solve for b(vh, ph − qh) in the first equation of (4.2), report the result to (4.1), and using

Cauchy-Schwarz’s, Hölder’s and trace’s inequality gives

β̃‖ph − qh‖ ≤ sup
06=vh∈Vh∩{vh|Γ=0}

|a(u− uh,vh)− b(vh, qh − p)|
‖vh‖1

≤ 2ν‖∇(u− uh)‖+ ‖qh − p‖ . (4.3)

Step 2: Monotonicity.

Set Buτ = |Kuτ |s−2
Kuτ . Let wh ∈ Vh, take vh = wh − uh, (4.2) leads to


for all (wh, qh) ∈ Vh ×Mh ,

a(u− uh,wh − uh) +

∫
Γ

(Buτ − Buτ ,h) · (Kwτ ,h −Kuτ ,h)dσ = b(wh − uh, p− ph) ,

b(u− uh, qh − ph) = 0 .

which is re -written as follows
a(wh − uh,wh − uh) +

∫
Γ

(Buτ − Buτ ,h) · (Kwτ ,h −Kuτ ,h)dσ

= a(wh − u,wh − uh) + b(wh − uh, p− ph)

b(wh − uh, p− ph) = b(wh − u, qh − ph) + b(uh −wh, qh − p) .

(4.4)

We use the second equation of (4.4) in the first one and obtain that

a(wh − uh,wh − uh) +

∫
Γ

(Buτ − Buτ ,h) · (Kwτ ,h −Kuτ ,h)dσ

=a(wh − u,wh − uh) + b(wh − u, qh − ph) + b(uh −wh, qh − p) .
(4.5)

From linearity we have∫
Γ

(Buτ − Buτ ,h) · (Kwτ ,h −Kuτ ,h)dσ

=

∫
Γ

(Buτ − Buτ ,h) · (Kwτ ,h −Kuτ )dσ +

∫
Γ

(Buτ − Buτ ,h) · (Kuτ −Kuτ ,h)dσ .

(4.6)

Thus (4.5) becomes

a(wh − uh,wh − uh) +

∫
Γ

(Buτ − Buτ ,h) · (Kuτ −Kuτ ,h)dσ

=a(wh − u,wh − uh) + b(wh − u, qh − ph) + b(uh −wh, qh − p)

+

∫
Γ

(Buτ − Buτ ,h) · (Kuτ −Kwτ ,h)dσ

(4.7)

From (2.7), it was shown that (see [20]): there exist α1, α2 two positive constants such that

α1
‖uτ − uτ ,h‖2Γ

α2 + ‖uτ ‖2−sΓ + ‖uτ ,h‖2−sΓ

≤
∫

Γ

(Buτ − Buτ ,h) · (Kuτ −Kuτ ,h) dσ . (4.8)

Now since 1 < s < 2, we use (2.8), (4.8), triangle’s inequality and (2.3) in (4.7) and get

2νc‖∇(wh − uh)‖2 + α1
‖uτ − uτ ,h‖2Γ

α2 + ‖uτ ‖2−sΓ + ‖uτ ,h‖2−sΓ

≤2ν‖∇(wh − u)‖‖∇(wh − uh)‖+ ‖∇(wh − u)‖‖qh − ph‖+ ‖∇(uh −wh)‖qh − p‖

+ c‖uτ − uτ ,h‖s−1
Γ ‖uτ −wτ ,h‖Γ
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from which after utilization of (4.3), the estimates in Theorem 2.1, Theorem 3.1, and young’s

inequality leads to

‖∇(wh − uh)‖2 + ‖uτ − uτ ,h‖2Γ ≤c ‖uτ −wτ ,h‖Γ + c‖∇(u−wh)‖2

+ c‖qh − p‖2 .
(4.9)

Hence the result announced is obtained after utilization of triangle’s inequality and (4.9). �

From Theorem 4.1, one concludes that the a priori error is independent of s, dominated by the

interpolation error on the slip zone Γ, and depends on the regularity of the weak solution on the

slip zone Γ. In the next result, we demonstrate that the a priori error may depend on s if one uses

the monotonicity of B differently.

Theorem 4.2 For 1 < s < 2, let (u, p) be the solution of (2.4) and (uh, ph) the solution of (3.2).

Then there is a positive constant c independent of h such that

‖u− uh‖1 + ‖p− ph‖ ≤ c inf
vh∈Vh

‖uτ − vτ ,h‖s−1
Γ + c inf

vh∈Vh

‖∇(u− vh)‖+ c inf
qh∈Mh

‖qh − p‖ .

Proof. We follow the proof of Theorem 4.1.

We have∫
Γ

(Buτ − Buτ ,h) · (Kwτ ,h −Kuτ ,h)dσ =

∫
Γ

(Buτ − Bwτ ,h) · (Kwτ ,h −Kuτ ,h)dσ

+

∫
Γ

(Bwτ ,h − Buτ ,h) · (Kwτ ,h −Kuτ ,h)dσ .

(4.10)

Thus from (4.10), inserting the second equation of (4.4) into the first one yields

2ν‖D(wh − uh)‖2 +

∫
Γ

(Bwτ ,h − Buτ ,h) · (Kwτ ,h −Kuτ ,h) dσ

=− (Buτ − Bwτ ,h,Kwτ ,h −Kuτ ,h)Γ + a(wh − u,wh − uh)

+ b(wh − u, qh − ph) + b(uh −wh, qh − p) .

(4.11)

From (2.7), it was shown that (see [20]): there exist α1, α2 two positive constants such that

α1
‖wτ ,h − uτ ,h‖2Γ

α2 + ‖wτ ,h‖2−sΓ + ‖uτ ,h‖2−sΓ

≤
∫

Γ

(Bwτ ,h − Buτ ,h) · (Kwτ ,h −Kuτ ,h) dσ . (4.12)

Now since 1 < s < 2, we use (2.8), (4.12), triangle’s inequality and (2.3) in (4.11) and get

2νc‖∇(wh − uh)‖2 + α1
‖wτ ,h − uτ ,h‖2Γ

α2 + c‖wτ ,h − uτ ‖2−sΓ + c‖uτ ‖2−sΓ + ‖uτ ,h‖2−sΓ

≤c
∫

Γ

|Kuτ −Kwτ ,h|s−1 |Kwτ ,h −Kuτ ,h| dσ + 2ν‖∇(u−wh)‖‖∇(wh − uh)‖

+ ‖∇(wh − u)‖‖qh − ph‖+ ‖∇(uh −wh)‖‖qh − p‖

≤c ‖uτ −wτ ,h‖s−1
Γ ‖wτ ,h − uτ ,h‖Γ + 2ν‖∇(u−wh)‖‖∇(wh − uh)‖

+ ‖∇(wh − u)‖‖qh − ph‖+ ‖∇(uh −wh)‖‖qh − p‖ ,

from which after utilization of (4.3), the trace’s inequality, and young’s inequality leads to

‖∇(wh − uh)‖2 + c1
‖wτ ,h − uτ ,h‖2Γ

c+ c‖wτ ,h − uτ ‖2−sΓ + c‖uτ ‖2−sΓ + c‖uτ ,h‖2−sΓ

≤c ‖uτ −wτ ,h‖2(s−1)
Γ + c‖∇(u−wh)‖2 + c‖qh − p‖2 ,

(4.13)

which together with the triangle’s inequality gives the asserted result. �
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Remark 4.1 It is manifest that the rate of convergence in Theorem 4.2 depends on the parameter

s and the regularity of the weak solution on the slip zone Γ. This is different to the conclusion

obtained in Theorem 4.1. Hence the relations (4.6), and (4.10) play a big role in the analysis of

the convergence of the finite element solution (uh, ph) of (3.2).

Remark 4.2 From (4.13), we deduce that

‖wτ ,h − uτ ,h‖Γ ≤c
(
c+ ‖wτ ,h − uτ ‖(2−s)/2Γ + ‖uτ ‖(2−s)/2Γ + ‖uτ ,h‖(2−s)/2Γ

)
×
(
‖uτ −wτ ,h‖s−1

Γ + c‖∇(u−wh)‖+ c‖qh − p‖
)
.

Remark 4.3 (a) Taking (wh, qh) = (Πhu, rhp), the right hand sides of the error estimates

obtained in theorem 4.1 or theorem 4.2 tend to zero as h tends to zero.

(b) Let (u, p) in H2(Ω)2 ×H1(Ω), we take (wh, qh) = (Πhu, rhp) and we recall that (see [34,

p.39]), there exists c such that

‖uτ −wτ ,h‖Γ ≤ c ‖u−wh‖1/2 ‖u−wh‖1/21 .

Then

‖u− uh‖1 + ‖p− ph‖ ≤ c

hmin(3(s−1)/2,1) from theorem 4.2

h3/4 from theorem 4.1 .

(c) If uτ ∈ H2(Γ), then ‖wτ ,h − uτ ‖Γ ≤ ch2. So assuming that the weak solution (u, p) is

in H2(Ω)2 ×H1(Ω), we take (wh, qh) = (Πhu, rhp), and we deduce that

‖u− uh‖1 + ‖p− ph‖ ≤ c

hmin(2(s−1),1) from theorem 4.2

h from theorem 4.1 .

4.2 A priori error analysis: the Navier-Stokes system

We address the convergence of the finite element approximation (uh, ph), solution of (3.7) by

showing that the upper bound of the term ‖u−uh‖1 +‖p−ph‖ tend to zero when h tends to zero.

This a priori error estimate is obtained with the assumption that the problems (3.7) and (2.13) are

uniquely solvable. In this sub-section, we continue in the footsteps of Theorem 4.1, and Theorem

4.2. It holds that

Theorem 4.3 Let (u, p) be the solution given by (2.13) and (uh, ph) the solution of (3.7). Assume

that

c‖f‖ ≤ ν2 .

Then there is a positive constant c independent of h such that for 1 < s < 2

‖u− uh‖1 + ‖uτ − uτ ,h‖Γ + ‖p− ph‖ ≤c inf
wh∈Vh

‖uτ −wτ ,h‖1/2Γ + c inf
wh∈Vh

‖∇(u−wh)‖+ c inf
qh∈Mh

‖qh − p‖ .

Proof. Step 1: Inf-sup condition. We subtract (2.13) to (3.7), and taking into account the

fact that Vh is a subset of V, we arrived at
∀vh ∈ Vh ,

b(vh, ph − qh) = b(vh, p− qh) + a(u− uh,vh) +

∫
Γ

(
|Kuτ ,h|s−2

Kuτ ,h − |Kuτ |s−2
Kuτ

)
·Kvτ ,hdσ

+d̃(u− uh,u,vh) + d̃(uh,u− uh,vh) .
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Using Cauchy-Schwarz’s, Hölder’s and trace’s inequality, one gets

b(vh, ph − qh) ≤2ν‖∇(u− uh)‖‖vh‖1 + ‖qh − p‖‖vh‖1 + c‖u− uh‖1 (‖u‖1 + ‖uh‖1) ‖vh‖1

+

∫
Γ

(
|Kuτ ,h|s−2

Kuτ ,h − |Kuτ |s−2
Kuτ

)
·Kvτ ,hdσ

which after inserting it in (4.1) and making use of (2.8), and the estimates in proposition 2.2 and

proposition 3.1, one has

β̃‖ph − qh‖ ≤ 2ν‖∇(u− uh)‖+ ‖qh − p‖+ c‖u− uh‖1 (‖u‖1 + ‖uh‖1)

≤ 2ν‖∇(u− uh)‖+ ‖qh − p‖+
c

ν
‖f‖‖u− uh‖1 . (4.14)

Step 2: Monotonicity. We let Buτ = |Kuτ |s−2
Kuτ . We subtract (2.13) to (3.7) and obtain

a(u− uh,vh) + d̃(u− uh,u,vh) + d̃(uh,u− uh,vh)

+ (Buτ − Buτ ,h,Kvτ ,h)Γ = b(vh, p− ph) ,

b(u− uh, qh) = 0 .

(4.15)

Let wh ∈ Vh, we take vh = wh −uh in (4.15), and after using linearity of operators involved, one

gets

a(u−wh,wh − uh) + a(wh − uh,wh − uh) +

∫
Γ

(Buτ − Buτ ,h) · (Kuτ −Kuτ ,h) dσ

+d̃(u−wh,u,wh − uh) + d̃(wh − uh,u,wh − uh)

+d̃(uh,u−wh,wh − uh) + d̃(uh,wh − uh,wh − uh)

= −
∫

Γ

(Buτ − Buτ ,h) · (Kwτ ,h −Kuτ ) dσ + b(wh − uh, p− ph)

b(wh − uh, p− ph) = b(wh − u, qh − ph) + b(uh −wh, qh − p) .
(4.16)

Thus inserting the second equation into the first one gives

2ν‖D(wh − uh)‖2 +

∫
Γ

(Buτ − Buτ ,h) · (Kuτ −Kuτ ,h) dσ

= −d̃(u−wh,u,wh − uh)− d̃(wh − uh,u,wh − uh)− d̃(uh,u−wh,wh − uh)

−
∫

Γ

(Buτ − Buτ ,h) · (Kwτ ,h −Kuτ ) dσ − a(u−wh,wh − uh)

+ b(wh − u, qh − ph) + b(uh −wh, qh − p) .

(4.17)

Now since 1 < s < 2, then using (2.8) and (2.3) in (4.17), one obtains

2νc‖∇(wh − uh)‖2 +

∫
Γ

(Buτ − Buτ ,h) · (Kuτ −Kuτ ,h) dσ

≤ c
ν
‖f‖‖∇(u−wh)‖‖∇(wh − uh)‖+

c

ν
‖f‖‖∇(wh − uh)‖2 +

c

ν
‖f‖‖∇(u−wh)‖‖∇(wh − uh)‖

+ c‖K‖sL∞(Γ) ‖uτ − uτ ,h‖
s−1
L2(Γ) ‖wτ ,h − uτ ‖L2(Γ) + 2ν‖∇(u−wh)‖‖∇(wh − uh)‖

+ ‖∇(wh − u)‖‖qh − ph‖+ ‖∇(uh −wh)‖‖qh − p‖ ,

from which after utilization of (4.14), (4.12), the trace’s inequality, and young’s inequality leads to(
ν − c

ν
‖f‖

)
‖∇(wh − uh)‖2 + α1

‖uτ ,h − uτ ‖2Γ
c+ c‖uτ ‖2−sΓ + ‖uτ ,h‖2−sΓ

≤c ‖uτ −wτ ,h‖Γ + c‖∇(u−wh)‖2 + c‖qh − p‖2 ,
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which together with the triangle’s inequality gives the result announced.

�

Following the proof of Theorem 4.2, we can show that

Theorem 4.4 Let (u, p) be the solution given by (2.13) and (uh, ph) the solution of (3.7). Assume

that

c‖f‖ ≤ ν2 .

Then there is a positive constant c independent of h such that for 1 < s < 2

‖u− uh‖1 + ‖p− ph‖ ≤c inf
wh∈Vh

‖uτ −wτ ,h‖s−1
Γ + c inf

wh∈Vh

‖∇(u−wh)‖+ c inf
qh∈Mh

‖qh − p‖ .

The next section is concerned with the solution strategy for (3.2) and (3.7), and their numerical

simulations.

5 Iterative schemes and Simulations

The finite element problems (3.2) and (3.7) are nonlinear. Hence iterative/incremental schemes

need to be formulated for their effective resolution. It should be noted that since s is in (1, 2),

the expression (|Kuτ ,h|s−2Kuτ ,h,Kvτ ,h)Γ has a poor differentiability. So a numerical solution

of (3.2) or (3.7) with Newton’s method or conjugate gradient may not converge at all. A direct

strategy to make the above systems less nonlinear and weaken the nonlinearities in the systems is

to linearize the nonlinear terms by considering the approximations

(|Kun+1
τ ,h |

s−2Kun+1
τ ,h ,Kvτ ,h)Γ ≈ (|Kunτ ,h|s−2Kun+1

τ ,h ,Kvτ ,h)Γ,

d̃(un+1
h ,un+1

h ,vh) ≈ d̃(unh,u
n+1
h ,vh) .

In the lines that follows, we concentrate on the iterative method for solving (3.7) since the

nonlinear system of equations (3.2) can be viewed as a special case of (3.7).

5.1 Iterative scheme for (3.7)

We solve (3.7) by adopting the following strategy. Let u0
h ∈ Vh be a given initial guess, we generate

the sequence (un, pnh) for n ≥ 1, until an adequate stopping condition is satisfied, by computing

(un+1
h , pn+1

h ) solution of
for all (vh, qh) ∈ Vh ×Mh ,

a(un+1
h ,vh) +

(
|Kunτ ,h|s−2Kun+1

τ ,h , Kvτ ,h

)
Γ

+ d̃(unh,u
n+1
h ,vh)− b(vh, pn+1

h ) = `(vh) ,

b(un+1
h , qh) = 0 .

(5.1)

After the convergence of the system (5.1), we get the numerical solution uh of the discrete system

(3.7). One of the principal interests of the scheme (5.1) (which by the way is a fixed point algorithm)

is that it converges to the unique fixed point for any starting point, but that convergence is slow.

Remark 5.1 Similar to the iterative scheme (5.1), the iterative scheme we may consider for (3.2)

is the following: Let u0
h a given element of Vh. For n ≥ 1 and having unh in Vh, we compute until

22



an adequate stopping condition is satisfied, (un+1
h , pn+1

h ) solution of
for all (vh, qh) ∈ Vh ×Mh ,

a(un+1
h ,vh) +

∫
Γ

|Kunτ ,h|s−2Kun+1
τ ,h ·Kvτ ,hdσ − b(vh, p

n+1
h ) = `(vh) ,

b(un+1
h , qh) = 0 .

(5.2)

After the convergence of the system (5.2), we get the numerical solution uh of the discrete system

(3.2).

The variational problem (5.1) is linear, and from Babuska-Brezzi’s theory for mixed problems

(see [29, 30]), (un+1
h , pn+1

h ) is well defined. Continuing on the qualitative analysis on (5.1), we

claim that

Lemma 5.1 (see [36]) The algorithm (5.1) is consistent with (3.7) in the sense that if (u1
h, p

1
h) =

(uh, ph) with (uh, ph) solution of (3.7), then for all n ≥ 2, (unh, p
n
h) = (uh, ph).

Proof. It is done by indiction on n. So, we assume that (unh, p
n
h) = (uh, ph), and we will show

that (un+1
h , pn+1

h ) = (uh, ph).

We use the induction hypothesis, take the difference between (5.1) and (3.7) and obtain that

for all (vh, qh) ∈ Vh ×Mh ,

a(un+1
h − uh,vh) +

(
|Kuτ ,h|s−2Kun+1

τ ,h − |Kuτ ,h|
s−2Kuτ ,h,Kvτ ,h

)
Γ

+d̃(uh,u
n+1
h ,vh)− d̃(uh,uh,vh)− b(vh, pn+1

h − ph) = 0 ,

b(un+1
h − uh, qh) = 0 .

(5.3)

We take vh = uh − un+1
h and qh = ph − pn+1

h in (5.3), and obtain

a(un+1
h − uh,un+1

h − uh) +

∫
Γ

|Kuτ ,h|s−2
∣∣∣Kun+1

τ ,h −Kuτ ,h
∣∣∣2 dσ = 0

from which we deduce that un+1
h = uh.

Equations (5.3) become

for all vh ∈ Vh , b(vh, p
n+1
h − ph) = 0 . (5.4)

We use the inf-sup condition on b(·, ·) and one obtains that pn+1
h = ph. �

In order to justify why we use the iterative scheme (5.1) (implemented in paragraph 5.2) to

compute the solution of (3.7), we shall prove a convergence result. First we state that the sequence

generated by Algorithm (5.1) is bounded.

Lemma 5.2 Let (un+1
h , pn+1

h ) the solution of the algorithm (5.1). Then there exists a constant c

independent of h such that

‖∇un+1
h ‖+ ‖pn+1

h ‖ ≤ c .

Proof. We take vh = un+1
h in (5.1) and obtain

a(un+1
h ,un+1

h ) +

∫
Γ

|Kunτ ,h|s−2
∣∣∣Kun+1

τ ,h

∣∣∣2 dσ =`(un+1
h ) ≤ c‖f‖‖Dun+1

h ‖

which implies that

‖∇un+1
h ‖ ≤ c

ν
‖f‖ .
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From the inf-sup condition, we obtain that

‖pn+1
h ‖ ≤ c‖f‖+

c

ν2
‖f‖2 .

�

We have the following abstract convergence result

Theorem 5.1 Let (un+1
h , pn+1

h ) ∈ Vh ×Mh the solution of (5.1). Let (uh, ph) solution of (3.7).

Assume that there exists c positive constant independent of h such that ‖f‖ ≤ ν2

c
. Then

lim
n→∞

unh = uh weakly inV .

Proof. By virtue of the bound obtained in Lemma 5.2, there is a subsequence, still denoted by

{unh}n such that

lim
n→∞

unh = ũh weakly in H1(Ω) . (5.5)

Clearly, we need to show that ũh = uh, meaning thatfor all vh ∈ Vdiv,h ,

a(ũh,vh) +
(
|Kũτ ,h|s−2Kũτ ,h , Kvτ ,h

)
Γ

+ d̃(ũh, ũh,vh) = `(vh) .
(5.6)

Actually, since Vdiv,h is closed, it follows from (5.5) that ũh ∈ Vdiv,h. Owing to the compactness

of the imbedding of H1(Ω) into L4(Ω), there exists a subsequence, still denoted by {unh}n, which

converges weakly to ũh ∈ H1(Ω) and strongly in L4(Ω). For vh ∈ Vdiv,h, passing to the limit on

n in (5.1) is direct for the linear term because one only needs weak convergence, but for the term

d̃(·, ·, ·), one needs the strong convergence of unh on L4(Ω) (see [29, Chap 5, Thm 1.4]). In fact∣∣∣d̃(unk ,u
n+1
h ,vh)− d̃(ũh, ũh,vh)

∣∣∣ =
∣∣∣d̃(unk − ũh,un+1

h ,vh) + d̃(ũh,u
n+1
h − ũh,vh)

∣∣∣
≤‖unk − ũh‖L4(Ω)‖∇un+1

h ‖‖vh‖L4(Ω) +
∣∣∣d̃(ũh,u

n+1
h − ũh,vh)

∣∣∣
−→ 0 .

Next, for the term on Γ, we deduce from the weak convergence of unh on H1(Ω), that

unh → ũh strongly in L2(Ω) ,

which together with the continuity of the trace implies that

unh|Γ → ũτ ,h|Γ weakly in L2(Γ).

But from [31, Chap 2], we have that

lim
n

(
|Kunτ ,h|s−2Kun+1

τ ,h , Kvτ ,h

)
Γ

=
(
|Kũτ ,h|s−2Kũτ ,h , Kvτ ,h

)
Γ
.

Hence, ũh satisfy (5.6), which has a unique uh if ‖f‖ ≤ ν2

c
. Then ũh = uh

Since the solution of (5.6) is unique (under the condition ‖f‖ ≤ ν2

c
), then the entire sequence

converges weakly to uh. �
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5.2 Simulations

In this section we study the numerical behaviour of the algorithm (5.1) which is more general than

the algorithm (5.2). The test problems used are designed to illustrate the numerical behaviour of

the algorithm in two dimensions.

All the numerical simulations showed in this section are performed with FreeFem code [37] by

taking u0
h = 0 and by using the following stopping criterion:

||un+1
h − unh||1
||un+1

h ||1
≤ 10−5. (5.7)

In all examples, Vh and Mh are given by (3.1).

5.2.1 Rate of convergence

In this first example, we consider the following geometry Ω = (0, 1)2 where each edge is divided

into N segments of equal length. Thus the corresponding mesh contains 2N2 elements. We set

ν = 1, K = I and f = (x2 + y2, 1)T . We take the anisotropic slip boundary condition (1.7),

on right and top boundaries of Ω, that is on Γ = {(x, y)| x = 1 or y = 1} = Γ2 ∪ Γ3, and the

homogeneous Dirichlet boundary condition u = 0 on the bottom and left boundaries S = Γ1 ∪ Γ4.

We have s ∈ (1, 2), and we are interested in computing the rate of convergence of the finite element

solution (uh, ph). We recall that (see Theorem 4.3)

‖u− uh‖1 + ‖p− ph‖ ≤ ch if (u, p) ∈H2(Ω)×H1(Ω) ,uτ ∈H2(Γ) . (5.8)

As we do not have the exact solution u corresponding to this case, we will approximate it by

computing the numerical solution of the iterative system (5.1) for N = 400 which will be designated

as the reference solution say, (uref , pref ) and which depends on s ∈ (1, 2). Next, we compute the

numerical solution for N = 10, 15, 20, . . . , 50. Fig. 1 show the graph of the relative error

Eerr =
||uref − uh||1 + ||pref − ph||

||uref ||1 + ||pref ||

with respect to h =
1

N
in logarithmic scale for s = 1.2, 1.5, 1.8. These lines have slopes 1.07, 1.05, 1.04

respectively. We can deduce for this particular case that the numerical slope is one and is inde-

pendent of s. In all these cases, the numerical slopes satisfy the condition (5.8)

5.2.2 Flow in rectangle

In this second example, we consider the following geometry Ω = (0, l1)×(0, l2) with l1 = 10, l2 = 1.

We divide the edges of the boundary ∂Ω into segments of equal lengths, and we define N = 40 to

be the number of such mesh segments per unit length. We set ν = 1, f = 0, s = 3/2 or s = 4/3,

and the tensor K one of this two cases:

K1 =

[
1 0

0 2

]
and K2 =

[
5 −1

−1 4

]
.

We consider the isotropic slip boundary condition (1.4), (1.7), on bottom (Γ1) and top (Γ3)

boundaries of Ω, that is on Γ = {(x, y)| y = 0 or y = l2} = Γ1 ∪ Γ3. A non-homogeneous

Dirichlet boundary condition is imposed on the left (Γ4) and right (Γ2) boundaries of Ω, that is

S = {(x, y)| x = 0 or x = l1} = Γ2 ∪ Γ4 :

u|Γ2
= u|Γ4

=

[
y(1− y)

−y(1− y)

]
. (5.9)

25



Figure 1: The a priori error estimates with respect to the mesh step h in logarithmic scale for

s = 1.2, 1.5, 1.8.

Thus, the velocity on S has a parabolic profile with a critical point at y = 1/2 with u|S =

(1/4,−1/4)T . Thus it is manifest that anisotropic slip is expected on the upper and lower bound-

aries. In Figure 2 we have shown the velocity profiles for s = 3/2 and K = K1 and K = K2.

On S, one notes the parabolic profiles of the velocity. The fluid along Γ and far away from S is

unidirectional.

Figure 2: The velocity plots for s = 3/2, K = K1 (up) and K = K2 (down).

Figure 3 shows the graphs x→ u1(x, 1/2) and x→ u2(x, 1/2) for s = 3/2 and K = K1 orK2. One

notes that u1 (resp. u2) is equal to 1/4 (resp. −1/4) on x = 0 (resp. x = 10) which is coherent

with the boundary condition (5.9) for y = 1/2. Furthermore, Figure 4 plots the tangential velocity

on Γ1 and Γ3 (uτ (x, 0) and uτ (x, 1)) for s = 3/2 and K = K1.

Next, Figure 5 show the velocity plots on the line y = 1/2 for K = K1 and s = 4/3 or 3/2. We

note the dependence on s of the velocity on the line y = 1/2.

5.2.3 Driven cavity flow

In this paragraph, we consider the numerical results for the Lid Driven cavity with the Navier-

Stokes flows under the power law slip boundary condition by the numerical scheme (5.1). This
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K=K1
K=K2

U1

x

K=K1
K=K2

U2

x

Figure 3: The numerical velocity (u1 right, u2 left) on the line y = 1/2 for s = 3/2, K = K1 and

K = K2.

U1

x

Y=0

U1

x

Y=1

Figure 4: The tangential velocity on the line y = 0 (left) and y = l2 (right) for s = 3/2 and

K = K1.

U1

x

S=4/3
S=3/2

U2

x

S=4/3
S=3/2

Figure 5: The numerical velocity (u1 right, u2 left) on the line y = 1/2 for K = K1, s = 4/3 or

s = 3/2.
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problem is very popular example that can be seen in [38, 39, 40]. The fluid is confined in the

domain Ω = (0, 1)2 and the boundary condition for the velocity field on the top is given by

u = (16x2(x− 1)2, 0)T on y = 1 0 < x < 1 .

Thus one has a smooth start of the flow, and the lid velocity attains its maximum, u = (1, 0)T , at

the centre x = 1/2. This boundary condition has the effect of avoiding local singularities at the

top-right and top-left corners as it ensures both the velocity and velocity gradient vanish at the

corners. On the other parts of the boundary, we consider the isotropic slip boundary condition. In

all the numerical results considered in this section, we set K = I, f = 0 and ν = 1/Re where Re

designates the Reynolds number.

Here also, each edge is divided into N = 100 segments of equal length. Thus the corresponding

mesh contains 2N2 elements.

We begin ours numerical results with Re = 1. Figures 6 and 7 shows the numerical velocity

for s = 1.1, 1.5 and 1.9. One notes the formation of a vortex which is typical for this problem.

Furthermore, we show in figure 8 the first and second components of the velocity on the line

y = 1/2 for s = 1.1, 1.5 and 1.9. Again, one observes the dependence on s of the velocity on the

line y = 1/2.

Figure 6: The numerical velocity for s = 1.1 (left) and s = 1.5 (right).

Figure 7: The numerical velocity for s = 1.9.

Next, we take s = 3/2 andRe = 1000 and 2000. Figure 9 shows the repartition of the velocity for

the corresponding Reynolds numbers. Thus, our algorithm converges when the Reynolds number
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Figure 8: The numerical velocity (u1, u2) for s = 1.1, 1.5 and 1.9.

is big.

Figure 9: The numerical velocity for s = 3/2, Re = 1000 (left) and Re = 2000 (right).
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5.3 Conclusions

The goal of the present work is to propose a novel formulation for the Stokes and Navier-Stokes

equations with a direction dependent slip on a part of the boundary. The variational formulations

can be regarded are perturbations of classical variational formulations encountered with standard

boundary conditions. In this work we have

− Constructed the weak solutions of the Stokes and Navier-Stokes equations with power law

slip boundary condition by using the same functional framework as for the standard boundary

conditions.

− Formulated and studied the finite element approximations associated to these problems. In

particular we have derived optimal convergence when the tangential part of the velocity on the

slip zone has enough regularity.

− Constructed and studied an iterative scheme associated to the equations of Navier-Stokes, and

derived some qualitative properties.

− The numerical experiments reveal optimal convergence rate, which is uniform with respect to

the power law parameter s. As expected, one can observe the dependence of the velocity with

respect to the power law parameter s in all examples treated. Finally, the convergence of the

iterative scheme is observed for big Reynolds number.

The current methodology should be further extended, in particular by

(i) devising an adaptive mesh strategy based on a posteriori error estimate;

(ii) devising an adapted discretization approach for the case of a curved boundary and applica-

tion in computational hemodynamics;

(iii) implementation of the current problems by combining alternative directions method of mul-

tiplier(s) and augmented Lagrangian formulations;

(iv) extending the present analysis to generalised non-Newtonian models;

(v) extending the present analysis to discontinuous Galerkin methods and virtual element ap-

proach;

(vi) extending the present analysis to time dependent problem.
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