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The Adiabatic Wigner-Weisskopf Model

We consider a slowly varying time dependent d´level atom interacting with a photon field. Restricted to the single excitation atom-field sector, the model is a time-dependent generalization of the Wigner-Weisskopf model describing spontaneous emission of an atomic excitation into the radiation field. We analyze the dynamics of the atom and of the radiation field in the adiabatic and small coupling approximations, in various regimes. In particular, starting with an excited atomic state, we provide a description of both the radiative decay of the atom and of the buildup of the photon excitation in the field.

Introduction

This paper is concerned with the dynamics of an open 'system-bath' model. The system is a d-level 'atom', placed in a 'bath', or radiation field, which is modeled by a free Bose field. The system Hamiltonian, H a ptq, depends slowly (adiabatically) on time. Generally, rigorously deriving the effective reduced dynamics of an open quantum system is a primary task in qunatum theory. Even in the easier case when H a does not depend on time, a treatment is not simple. In the literature, often the 'bath' (radiation field) is considered in a state of thermal equilibrium and one asks whether the coupled system-bath complex converges to the joint, interacting equilibrium in the limit of large times -a phenomenon called 'return to equilibrium'. This effect happens when atomic and field modes are exchanging energy, generating transitions between the system levels leading to the thermal distribution of the original system energies, to lowest order in the system-bath interaction. A different line of inquiry, towards which we aim to contribute here, considers the process of emission of an excitation. In this setting, the interaction between the atom and the field enables transitions between the excited atomic states and its ground state only, not between excited states directly. As a result, the atom is driven, generically, towards its ground state, losing the excitation to the field. It describes the spontaneous emission of an excitation.

The Wigner-Weisskopf model introduced in [WW] provides a simple description of the exponential in time de-excitation of an atom coupled to a field of photons. It considers a single-excitation process between the levels of the atom and one photon only. The interaction term in the Hamiltonian is a rank two coupling operator, a structure which allows for a mathematically rigorous analysis of the dynamics. Our version of this model includes a possible time dependence (an additional external influence) of the atomic Hamiltonian. We study this generalized Wigner-Weisskopf atom in the adiabatic and small coupling asymptotic regime. Our main results are a detailed expansion of the dynamics of the initially excited atom (the population of each level), as well as the buildup of the excitation in the field in various asymptotic regimes.

From the point of view of adiabatic quantum control, the problem at hand addresses the following situation. Given a smooth time dependent d-level Hamiltonian with simple eigenvalues, an initial eigenstate evolves to a state close to the corresponding instantaneous eigenstate obtained by continuity, provided the time variation of the Hamiltonian is slow enough. This simple version of the adiabatic theorem of quantum mechanics [START_REF] Born | Beweis des Adiabatensatzes[END_REF][START_REF] Kato | On the Adiabatic Theorem of Quantum Mechanics[END_REF][START_REF] Nenciu | On the adiabatic theorem of quantum mechanics[END_REF][START_REF] Avron | Adiabatic theorems and applications to the quantum Hall effect[END_REF] allows one to perform quantum engineering on the system provided one has sufficient control on its time dependent Hamiltonian. When the d-level system is further subject to interactions with an environment, the adiabatic picture is blurred and a quantification of the effect of the environment becomes of practical interest. This question was addressed in [JMS] for a two-level system coupled to a Bose field by means of an instantaneous energy conserving interaction, in which the interaction operator commutes with the system two-level Hamiltonian at any moment in time. By contrast, the interaction between the d-level atom and the field we consider in this present work is much more generic, as it is not assumed to be energy conserving. Accordingly, the dynamics of the atom in the adiabatic and small coupling regime differs from that found in [JMS], and it is closer to that expected for a generic energy-exchanging model. Indeed, our results are in keeping with those established in [J2] for a similar physical situation addressed within the framework of an effective dynamics generated by a Lindbladian with a time dependent Hamiltonian and a generic dissipator, in the corresponding adiabatic and small amplitude of the dissipator regimes. Correspondingly, the results of [JMS] are comparable to those obtained for effective dynamics generated by dephasing Linbdbladians, in the sames asymptotic regimes, see [START_REF] Avron | Adiabatic theorems for generators of contracting evolutions[END_REF][START_REF] Avron | Landau-Zener Tunneling for Dephasing Lindblad Evolutions[END_REF].

Model and main results

We consider an idealized atom having d possibly time-dependent, simple excited energy levels 0 ă α 1 ptq ă . . . ă α d ptq with normalized eigenstates φ j ptq and a ground state energy α 0 " 0 with a corresponding time-independent, normalized eigenstate φ 0 . The atom is in contact with a radiation field, modeled by photons with momenta k P R 3 in a state of thermal equilibrium at temperature T ě 0. We assume that the atomic energy spectrum has a gap, inf tě0 min j,k: j‰k |α j ptq ´αk ptq| " ∆ 0 ą 0.

(2.1)

The interaction allows for excitations to be exchanged between the atom and the field, such that the total number of excitations is conserved. The total (possibly time-dependent) Hamiltonian, acting on the Hilbert space C d`1 b F, where F is the Fock space over the single-particle space L 2 pR 3 , d 3 kq describing the field, is given by

Hptq " H a ptq `Hf `λV ptq, (2.2)

where the free atom and field Hamiltonians are

H a ptq " d ÿ j"1 α j ptq|φ j ptqyxφ j ptq|, H f " ż R 3
ωpkqa ˚pkqapkqd 3 k.

(2.3)

To simplify the notation, we write H a ptq and H f instead of H a ptq b 1l and 1l b H f , and we recall H a ptqφ 0 " 0.

The quantity λ in (2.2) is a (real) interaction constant and V ptq "

d ÿ j"1 v j ptq|φ j ptqyxφ 0 | b apgq `h.c.
(2.4)

Here, v j ptq are smooth complex valued functions of time and apgq " ż R 3 gpkq apkqd 3 k (2.5) for a form factor g P L 2 pR 3 , d 3 kq. The term |φ j ptqyxφ 0 | b apgq in the interaction (2.4) describes the process of absorption of an excitation from the field accompanied by a transition from the ground state to the jth excited state in the atom.

Remark: Positive temperatures. For concreteness, the field is presented to be described by the Fock space F over the single-particle space L 2 pR 3 , d 3 kq. The vacuum state in F is the equilibrium state of the field at zero temperature. However, our analysis carries through without modification to the positive temperature case. Indeed, it suffices to replace the Fock space F by a new Fock space F β , constructed over a new single-particle space L 2 pR ˆS2 q. The detail of this procedure in our context are explained in [JMS].

We will work under the following regularity hypothesis:

Assumption (A). The atomic Hamiltonian R `Q t Þ Ñ H a ptq P M d pCq and coupling amplitudes R `Q t Þ Ñ v j ptq P C are C 8 pR `q, with finite derivatives at t " 0 `. Here R `" tx ě 0u.

Note that assumption (A) together with the gap condition (2.1), ensures by perturbation theory (see Lemma 3.3), that under the condition

4λ 2 ∆ 0 }v} 2 8 }γ} L 1 ă 1, (2.6)
the eigenvalues α j ptq of H a ptq are simple, smooth, and the normalized eigenvectors φ j ptq can be chosen to form a smooth orthonormal basis of C d . In (2.6),

γptq " xg, e ´iωt gy L 2 " ż R 3 e ´iωpkqt |gpkq| 2 d 3 k, t P R, (2.7)
is the field correlation function, and we view vptq as a vector in C d , having components v j ptq. We use the notation, for any time-dependent vector xptq P C d ,

}x} 8 " sup tě0 }xptq} C d .
Adiabatic scaling. We consider the time-dependence of the Hamiltonian to be governed by a parameter ε ą 0, that is, we examine the Schrödinger equation

iB s ψ ε psq " Hpεsqψ ε psq, ψ ε p0q " ψ p0q , s P R `.
(2.8)

For ε small, the Hamiltonian varies very slowly in time and undergoes a change of order one on a time scale of order 1{ε. Introducing the rescaled time t " εs, the corresponding transformed wave function φpt, εq " ψ ε pt{εq satisfies

iB t φpt, εq " i ε pB t ψ ε qpt{εq " 1 ε Hptqψ ε pt{εq " 1 ε Hptqφpt, εq.
(2.9)

We thus consider the adiabatic Schrödinger equation (rename the wave function φp¨, εq Ñ ψp¨q) iεB t ψptq " Hptqψptq, ψp0q " ψ p0q , t P R `.

(2.10)

If ψptq solves (2.10) then ψpεsq solves the original (2.8). In the equation involving the rescaled time t, (2.10), the Hamiltonian undergoes a change of order one on a time scale of order one. We will analyze the solutions of (2.10).

Note that for a time-independent Hamiltonian Hptq " H for all t, the solutions of (2.8) and (2.10) read ψ ε psq " e ´isH ψ p0q , ψptq " e ´i ε tH ψ p0q .

(2.11) Therefore, in this autonomous setup, we can recover the long time behaviour of the system described by (2.10) by setting t " 1 and considering ε Ñ 0, or setting ε " 1 and allowing t Ñ 8.

In what follows, we will always consider 0 ă ε ď 1.

Single excitation manifold. The Schrödinger evolution (2.10) leaves invariant the space of single excitation atom-field wave functions

P 1 " ! ψ P C 2 bF : ψ " d ÿ j"1 z j φ j p0qbΩ f `φ0 ba ˚pf qΩ f , z j P C, f P L 2 pR 3 , d 3 kq ) , (2.12)
where Ω f is the vacuum state in F. Then the solution of (2.10) within the subspace P 1 has the form ψptq "

d ÿ j"1 z j ptq φ j p0q b Ω f `φ0 b a ˚pf t qΩ f (2.13)
and since Hptq is self-adjoint, the norm of ψptq is conserved,

}ψptq} 2 " d ÿ j"1 |z j ptq| 2 `}f t } 2 L 2 pR 3 ,d 3 kq " 1, t ě 0. (2.14)
We collect the components z j ptq into a vector, written in the eigenbasis tφ j p0qu d j"1 of H a p0q, as zptq " ¨z1 ptq . . .

z d ptq ‹ '" d ÿ j"1 z j ptqφ j p0q.
(2.15) At time t " 0, the probability of finding the system in its excited state φ j ptq is simply p j p0q " |z j p0q| 2 . The probability of finding the system in the jth instantaneous excited state φ j ptq at time t is p j ptq " xψptq, `|φ j ptqyxφ j ptq| b 1l f ˘ψptqy " ˇˇd ÿ "1 z ptqxφ j ptq, φ p0qy ˇˇ2 " ˇˇxφ j ptq, zptqy ˇˇ2 .

(2.16) The sum ř n j"1 p j ptq is the probability to find the excitation in the atom (that is, in any of the instantaneous excited states) at time t, and one gets from (2.16), and since tφ j ptqu d j"1 is an orthonormal basis,

d ÿ j"1 p j ptq " d ÿ j"1 |z j ptq| 2 " }zptq} 2 .
(2.17)

We denote both inner products of C d and of L 2 pR 3 , d 3 kq by x¨, ¨y, the arguments making it clear which space is meant.

Main results

We present our main results below in this section. We discuss them in detail and compare them to previous results in Sections 2.2 and 2.3. The field correlation function, defined by (2.7) and its Fourier transform,

p γpαq " 1 ? 2π ż R e iαt γptqdt,
play an important role in the dynamics. We will assume the following decay and regularity hypotheses on γ.

Assumption (B). The field correlation function γptq (2.7) belongs to L 1 pRq, and further satisfies

i) t Þ Ñ t 2 γptq P L 1 pR `q, t Þ Ñ B t γptq P L 1 pR `q,
ii) |γptq| ď C γ {p1 `tq m @t P R `, for some m ą 2 and some 0 ă C γ ă 8.

Remark: Positive temperatures. In the positive temperature setting (see the remark after (2.5)), γptq is the thermal field correlation function, see for instance [START_REF] Joye | Adiabatic transitions in a two-level system coupled to a free Boson reservoir[END_REF][START_REF] Merkli | Quantum Markovian master equations: Resonance theory shows validity for all time scales[END_REF][START_REF] Merkli | Dynamics of Open Quantum Systems I, Oscillation and Decay[END_REF][START_REF] Merkli | Dynamics of Open Quantum Systems II, Markovian Approximation[END_REF].

Since γptq is a positive definite, continuous function of t P R, Bochner's theorem asserts that the inverse Fourier transform q γpαq " p2πq ´1{2 ş R e ´iαt γptqdt ě 0 is a positive function. But q γp´αq " p γpαq, so we have p γpαq ě 0, α P R.

For t ě 0, j " 1, . . . , d, we define the quantities β j ptq " a π{2 |v j ptq| 2 p γ `αj ptq ˘ě 0 and r α j ptq " ? 2π|v j ptq| 2 Im { pχ `γq `αj ptq ˘, (2.18)

where χ `ptq is the indicator function of r0, 8q, as well as the Berry phase (Lemma 3.6)

ξ j ptq " i ż t 0 xφ j puq|B t φ j puqydu P R. (2.19)
Our first result gives an expansion of the vector zptq, (2.15), when the excitation is initially entirely concentrated in the atom, meaning that }zp0q} " 1 (c.f. (2.17)).

Theorem 2.1 (Dynamics of the atom) Assume (A) and (B), take zp0q P C d with }zp0q} " 1 and suppose that (2.6) holds. Then, for all 0 ă ε ď 1,

sup 0ďtď1 › › zptq ´d ÿ j"1 e ´i ε ş t 0 rα j puq`λ 2 r α j puqsdu e ´λ2 ε ş t 0 β j puqdu e iξ j ptq z j p0qφ j ptq › › ď C ´ε `λ2 `λ4 ε ¯,
(2.20) for a constant C independent of ε, λ.

The approximating dynamics of zptq contains an oscillatory phase and a decaying part ( ş t 0 β j puqdu ą 0). It describes the decay of the excitation away from the atom into the field. In particular, Theorem 2.1 implies the following estimate on the probabilities of the instantaneous excited levels, p j ptq " |xφ j ptq|zptqy| 2 (see (2.16).

Corollary 2.2 (Population of excited atomic levels) Under the conditions of Theorem 2.1, the probability p j ptq of finding the atom in the instantaneous excited state φ j ptq at time t, for j " 1, . . . , d, satisfies

p j ptq " e ´2 λ 2 ε ş t 0 β j puqdu p j p0q `Opε `λ2 `λ4 ε q.
(2.21)

Our derivation of the above results for time-dependent H a ptq, can also be used to analyze the case when H a is constant in t. The expressions (2.18) become time-independent, and we set

α 1 j " r α j ´iβ j " ? 2π|v j | 2 Im { pχ `γqpα j q ´ia π{2|v j | 2 p γpα j q.
(2.22) Let P j be the spectral projection of H a onto the eigenvalue α j of H a .

Corollary 2.3 (Atom evolution for time-independent H a ) Assume (B) ii) and take zp0q P C d with }zp0q} " 1. There is a λ 0 ą 0 such that for λ ď λ 0 ,

sup tě0 › › zptq ´d ÿ j"1
e ´itpα j `λ2 α 1 j q P j zp0q

› › ď Cλ 2 ,
for a constant C independent of λ.

The last Corollary shows that zptq is approximated by the semigroup e tL on C d , generated by the operator L " ´i ř d j"1 pα j `λ2 α 1 j qP j , uniformly in time t ě 0. The generator is dissipative, ReL ď 0. Under the 'Fermi Golden Rule condition' min 1ďjďd |v j | 2 p γpα j q ą 0, e tL converges to zero exponentially quickly in t, at a rate 9λ 2 . In our next result, we analyze the properties of the excitation emitted from the atom into the field. The probability density for the field excitation to have momentum k P R 3 at time t is given by |f t pkq| 2 , see Section 3.2. This motivates the analysis of averages of the form ş R 3 Bpkq|f t pkq| 2 d 3 k for suitable test functions Bpkq. We consider the class

B : R 3 Ñ C such that γ B ptq :" ż R 3
Bpkq|gpkq| 2 e ´itωpkq d 3 k P L 1 pR, dtq

(2.23) (compare with (2.7)). The following is a well-coupledness condition, inf tě0 β j ptq ą 0, (2.24)

where we recall that β j is defined in (2.18). Here is our result on the emitted field excitation momentum density distribution |f t pkq| 2 :

Theorem 2.4 (Momentum distribution of emitted excitation) Assume (A), (B), and suppose that the initial excitation is localized entirely on the excited atomic level j (1 ď j ď d), meaning that |z j p0q| " 1 and z k p0q " 0 for k ‰ j. Suppose also that (2.24) holds and let B be any test function satisfying (2.23). Then (A) In the limit ε, λ,

λ 3 ε Ñ 0, λ 2 ε Ñ 8, lim ż R 3 Bpkq|f t pkq| 2 d 3 k " p γ B pα j p0qq p γpα j p0qq .
(2.25) (B) In the limit ε, λ Ñ 0 such that λ 2 ε " r ą 0 is fixed, (2.26)

lim ż R 3 Bpkq|f t pkq| 2 d 3 k " ? 2π r ż t 0 |xwpsq, φ j psqy| 2 e ´2r

Discussion of main results

Generally, our results show the details of the emission of the excitation from the atom to the field, meaning that |zptq| Ñ 0 as t Ñ 8. In the time-independent case (Hptq " H), Corollary 2.3 shows that the population p j ptq " |z j ptq| 2 of the excited level j satisfies p j ptq " e ´2λ 2 β j t p j p0q `Opλ 2 q, uniformly in t ě 0, and where β j is defined in (2.22). When H a ptq depends on time and varies slowly with adiabatic parameter 0 ă ε ď 1, the decay rates β j ptq become timedependent (see (2.18)) and the population of the atomic excitations follow the estimate (2.21) of Corollary 2.2, p j ptq " e ´2 λ 2 ε ş t 0 β j puqdu p j p0q `Opε `λ2 `λ4 ε q.

In neither case will initially unpopulated atomic excited levels become populated at later times, beyond an amount bounded by the error terms.

Discussion of Theorem 2.1

For the error term in (2.20) to be small both the coupling constant λ and the adiabatic parameter ε as well as the ratio λ 4 {ε have to be small. We identify three regimes:

1) Strong coupling relative to adiabatic speed: ε ! λ 2 ! ? ε ! 1. In this case, the adiabatic time scale of the Hamiltonian is large with respect to the relaxation time of the system induced by field (9λ ´2) and the coupled system has time enough for the field to absorb the initial excitation on the atom. Namely, for 0 ď t ď 1, }zptq} ď e At the 'end of the process', when t " 1 (which corresponds to the physical time s " 1{ε which is very large), the excitation survival amplitude is bounded above by e ´λ2 ε τ `Opλ 4 {εq, which is very small if the coupling is effective, meaning that τ " a π{2 min 1ďjďd ş 1 0 |v j puq| 2 γpα j puqqdu ą 0.

2) Comparable coupling strength and adiabatic speed: λ 2 " ε ! 1. The estimate (2.20) gives zptq " d ÿ j"1 e ´şt 0 β j puqdu e ´i ş t 0 r 1 ε α j puq`r α j puqsdu e iξ j ptq z j p0q φ j ptq `Opεq.

In this regime, in which the coupling constant multiplied by the time scale is fixed, the effect of the field is to decrease the initial amplitude of the excited state of the atom by an explicit finite correction along each level of the atom. This is the analog of the weak coupling regime which Davies considered for the stationary case (H independent of time), [D1].

3) Weak coupling relative to adiabatic speed: λ 2 ! ε ! 1. We distinguish two subregimes. For ε 2 ! λ 2 ! ε ! 1 an expansion of the exponentials in (2.20) gives zptq "

d ÿ j"1 e ´i ε ş t 0 α j puqdu e iξ j ptq z j p0qφ j ptq ˆ´1 ´i λ 2 ε ż t 0 r α j puqdu ´λ2 ε ż t 0 β j puqdu ¯`O `ε `λ4 ε 2 ˘,
where the integral terms are significant relative to the remainder (as ε 2 ! λ 2 ). In this regime, we find an explicit decrease of the initial amplitude of the excitation of the atom of the order λ 2 {ε. When this ratio tends to zero the initial excitation is not transferred to the field, the atom stays excited, }zptq} " 1.

In the second regime, λ 2 ď ε 2 ! ε ! 1, the expansion of the exponentials in (2.20) gives zptq "

d ÿ j"1
e ´i ε ş t 0 α j puqdu e iξ j ptq z j p0qφ j ptq `Opεq.

Again, }zptq} " 1 and the atom does not get de-excited. In both regimes, the interaction with the reservoir is too weak to significantly alter the dynamics of the atom alone, which evolves adiabatically with its own Hamiltonian.

Recall that we consider initially excited atoms, meaning that }zp0q} 2 " 1. The probability for the atom to be in the ground state φ 0 at time t is given by 1 ´}zptq} 2 , see (2.16), (2.17). We thus define the de-excitation probability at time t as p Ó ptq " 1 ´}zptq} 2 .

(2.27)

Our findings in the different regimes 1)-3) discussed above then imply the following.

1') For ε ! λ 2 ! ? ε ! 1 we have virtually full de-excitation: p Ó ptq ě 1 ´C λ 8 ε 2 " 1.

2') For λ 2 " ε ! 1 we have partial de-excitation: p Ó ptq " 1 ´řd j"1 e ´2 ş t 0 β j puqdu |z j p0q| 2 Òpεq.

3') For λ 2 ! ε ! 1 we have virtually no de-excitation:

If ε 2 ! λ 2 ! ε ! 1 then p Ó ptq " 2 λ 2 ε ř d j"1 |z j p0q| 2 ş t 0 β j puqdu `Opε `λ4 ε 2 q ! 1. If λ 2 ď ε 2 ! ε ! 1 then p Ó ptq " Opεq ! 1.
In [JMS] the authors studied the adiabatic transition (scale ε) probability of a time dependent two-level system interacting with a Bose field by means of an instantaneous energy conserving interaction, with coupling constant λ. This kind of coupling induces transitions between the two levels that are likely to be small, since in a time independent situation it conserves the populations exactly. By contrast, the interaction we consider in the present work allows for instantaneous energy exchange and is more likely to induce transitions between excited and ground states.

The transition probability from the excited to the ground state for the energy conserving model, found in [JMS], is given by

p ec Ó ptq " $ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' % λ 2 ε ż 1 0 Kpsqp γp∆psqqds `opλ 2 εq if ε ! λ 2 ! ? ε ! 1 ε 2 ´ż t 0 Kpsqp γp∆psqqds `Qptq ¯`opε 2 q if λ 2 " ε ! 1 ε 2 Qptq `opε 2 q if λ 2 ! ε ! 1.
(2.28)

Here K and Q are explicit non negative functions constructed from the Hamiltonian, ∆psq ą 0 is the energy gap of the two-level system, p γ is the Fourier transform of the correlation function of the field. Comparing (2.28) with p Ó ptq we observe the following:

(a) p ec Ó ptq ! p Ó ptq in all regimes, and (b) p ec Ó ptq vanishes in all regimes (as ε, λ Ñ 0), while p Ó ptq is of order one unless

λ 2 ! ε ! 1.
The behaviour of p Ó ptq detailed in 1') -3') above is similar to that of the adiabatic transition probabilities between the levels of a time dependent gapped Hamiltonian evolving according to a Lindblad equation modeling a weak reservoir interaction, with a dissipator of order g ą 0, [J2]. In this setup, the adiabatic transition probability p L Ó ptq between the excited state of a two-level system at time zero to its ground state at time t was shown in [J2] to be

p L Ó ptq " $ ' ' ' ' ' ' & ' ' ' ' ' ' % R 1 ptq `Opg 2 {ε `ε{gq if ε ! g ! ? ε ! 1 R 2 ptq `Opεq if g " ε ! 1 g ε ż t 0 Jpsqds `Opg `ε2 `g2 {ε 2 q if g ! ε ! 1.
Here, the non negative functions R 1 , R 2 and J depend on the Lindbladian considered, and R 1 ptq ď 1. With the identification g " λ 2 , the leading order asymptotics for p Ó ptq and p L Ó ptq have the same behaviour as functions of the coupling constant g " λ 2 and the adiabatic parameter ε: they are of order one, unless g " λ 2 ! ε ! 1 in which case they are of order g{ε " λ 2 {ε. The actual values of the time dependent coefficients depend on the details of the models. of Theorem 2.4. (1) The meaning of p γ B pαq and energy conservation. We have

Discussion

p γ B pαq " 1 ? 2π ż R e iαt " ż R 3 Bpkq|gpkq| 2 e ´itωpkq d 3 k ı dt " 1 ? 2π lim RÑ8 ż R 3 Bpkq|gpkq| 2 " ż R ´R e ´ipωpkq´αqt dt ı d 3 k " a 2{π lim RÑ8 ż R 3 Bpkq|gpkq| 2 sin `Rpωpkq ´αq ωpkq ´α d 3 k,
Commonly one writes lim RÑ8 sinpRpωpkq´αqq ωpkq´α " πδpωpkq ´αq, since 1 π sinpRx{xq is a representation of δp0q in one dimension as R Ñ 8, and so

p γ B pαq " ? 2πBpkq|gpkq| 2 δ `ωpkq ´α˘.
Example. Suppose ωpkq " |k|. Then using spherical coordinates pω, σq P R `ˆS 2 , we have for α ą 0,

ż R 3 Bpkq|gpkq| 2 sin `Rpωpkq ´αq ωpkq ´α d 3 k " ż 8 0 ω 2 Jpωq sinpRpω ´αqq ω ´α dω Ñ πα 2 Jpαq
in the limit R Ñ 8, where Jpωq " ş S 2 Bpω, σq|gpω, σq| 2 dσ, and provided that Jpωq is differentiable on R `and its derivative satisfies J 1 P L 1 pR `, dωq. This illustrates the usefulness of the notation with the delta function.

(2) The results (2.25), (2.26) are a Fermi Golden Rule, describing a process of transition into continuous spectrum. It shows in particular energy conservation (delta function). In the regime (A), the limit is independent of time as the emission process happens right away: }zptq} " e ´λ2 t{ε " 0 for all t ą 0 in the limit considered. The emitted momentum density only depends on the energies of the atomic Hamiltonian at time t " 0. In contrast, in the regime (B), the emission happens gradually, its amplitude grows in t to its final value and the eigenvalue α j psq and eigenvector φ j psq contribute to the amplitude, for all 0 ď s ď t.

(3) We have (see (2.18) for β j ptq) (4) For the constant function Bpkq " 1, we have γ 1 " γ, which is defined in (2.7). It follows from (2.25) that in the parameter regime (A), lim }f t } 2 2 " 1, which is the probability of emission of the excitation into the field. In the regime (B), this probability depends on time and is given, according to (2.26), by

lim rÑ8 ? 2π r ż t 0 |xwpsq, φ j psqy| 2 e ´2r ş s 0 β j puqdu p γ B `
lim }f t } 2 2 " ? 2π r ż t 0 |xwpsq, φ j psqy| 2 e ´2r ş s 0 β j p γ `αj psq ˘ds.

Links to previous literature

The dynamics of the Wigner-Weisskopf model in the time independent setup (time independent H a ) was investigated in details by means of spectral methods in [D1]; see also [JKP] for a more recent account. In the time dependent framework (time dependent H a ptq) we consider in the current work, we use a different approach, similar in spirit to that used for deriving master equations, along the lines of [START_REF] Davies | Markovian Master Equations[END_REF][START_REF] Davies | Open Quantum Systems with Time-Dependent Hamiltonians and Their Linear Response[END_REF]. For detailed information on master equations and the weak coupling limit, the reader may consult [START_REF] Trushechkin | Open quantum system dynamics and the mean force Gibbs state[END_REF][START_REF] Merkli | Quantum Markovian master equations: Resonance theory shows validity for all time scales[END_REF][START_REF] Merkli | Dynamics of Open Quantum Systems I, Oscillation and Decay[END_REF][START_REF] Merkli | Dynamics of Open Quantum Systems II, Markovian Approximation[END_REF][START_REF] Alicki | Quantum Dynamical Semigroups and Applications[END_REF][START_REF] Derezinski | Fermi Golden Rule and Open Quantum Systems[END_REF] and their references. The authors of [DS] address the adiabatic dynamics of a time dependent d-level system weakly coupled to a Fermi field, corresponding to the regime λ 2 " ε ă ă 1. They derive the asymptotic system state, for a somewhat different class of interactions than we consider here, and they do not analyze the details of the state (such as the evolution of the populations -which is one of our goals). Related models, in which the bath effect is incorporated into the system Hamiltonian as an effective time dependent term (so-called 'classical noise') is commonly used to describe noise assisted quantum excitation transfer processes, see for instance [Ne] and references therein. Very recently, time dependent variants of the Wigner-Weisskopf model have been used to investigate properties of non-autonomous Lindblad dynamics, with particular focus on their markovian properties [CHL, CL]. Variants of the Wigner-Weisskopf model are used to describe, more abstractly, the coupling of a small quantum system coupled to a large environment characterized by continuous spectrum, see e.g.

[Ma, DF1, AJPP, DK] and references therein.

There are adiabatic approximation results for instantaneous generators with eigenvalues embedded in continuous spectrum [AE, Te]. However, in our situation, the instantaneous Hamiltonian (2.2) restricted to the single excitation sector, has purely absolutely continuous spectrum over the whole time span considered, for small enough non zero coupling strength [START_REF] Davies | Dynamics of a multilevel Wigner-Weisskopf atom[END_REF][START_REF] Jaksic | Mathematical theory of the Wigner-Weisskopf atom[END_REF]. The above mentioned results and tools are thus not amenable for us. In particular, our model and results differ from those of [CJKN], where the authors consider a Wigner-Weisskopf type model with a single (d " 1) uncoupled excited energy level αptq, varying in such a way that the eigenvalue of the coupled model moves in and out of the absolutely continuous spectrum. They analyze the adiabatic limit of p Ó ptq in the situations where the instantaneous eigenvalue remains embedded in the spectrum, or where it becomes a resonance. Related results on adiabatic pair creation processes in the Dirac equation are studied in [START_REF] Nenciu | Existence of the spontaneous pair creation in the external field approximation of Q[END_REF][START_REF] Pickl | On Adiabatic Pair Creation[END_REF].

In our master equation approach, on the other hand, we have an effective time dependent generator with simple eigenvalues. However, the generator is not self-adjoint and also depends on the adiabatic parameter ε in a singular way. Non self-adjoint generators are known to be amenable to adiabatic techniques, [START_REF] Nenciu | On the adiabatic theorem for nonself-adjoint Hamiltonians[END_REF][START_REF] Joye | General Adiabatic Evolution with a Gap Condition[END_REF][START_REF] Avron | Adiabatic theorems for generators of contracting evolutions[END_REF][START_REF] Schmid | Adiabatic theorems with and without spectral gap condition for nonsemisimple spectral values[END_REF], but in the present situation, extra care and detail in the analysis is required to control the propagators, due to the singular ε-dependence.

3 Proofs of the main results

Dynamics of the atom and proof of Theorem 2.1

Let tφ j p0qu d j"1 be the fixed, time-independent basis of the excited atomic space C d consisting of normalized excited eigenstates of H a p0q. With respect to this basis, each instantaneous eigenvector φ j ptq is given by a d-dimensional time-dependent vector,

φ j ptq " d ÿ "1
xφ p0q, φ j ptqy φ p0q.

(3.1)

The atomic Hamiltonian H a ptq and the interaction V ptq then take the form Note that vptq " pv 1 ptq, ¨¨¨, v d ptqq T in (2.4) is obtained from wptq by the unitary map (3.3).

The parameters z j ptq P C and f t : k Þ Ñ f t pkq P L 2 pR 3 , d 3 kq of (2.13) satisfy the following closed system of coupled equations,

iεB t z j ptq " d ÿ "1 rH a ptqs j z ptq `λw j ptqxg, f t y (3.4) iεB t f t pkq " ωpkqf t pkq `λ d ÿ "1
w ptqz ptq gpkq.

(3.5)

We write (3.4), (3.5) in vector form,

iεB t zptq " Aptqzptq `λwptqxg, f t y, (3.6) iεB t f t " ωf t `λxwptq, zptqy g, (3.7)
where Aptq is the hermitian d ˆd matrix representing the restriction of H a ptq to the subspace spanned by tφ j p0qu d j"1 and zptq " ¨z1 ptq . . .

z d ptq ‹ ', wptq " ¨w1 ptq . . . w d ptq ‹ '.
(3.8)

Let U ε pt, sq be the free atomic propagator, solving the evolution equation

iεB t U ε pt, sq " AptqU ε pt, sq, U ε ps, sq " 1l. (3.9)
As Aptq is hermitian, U ε pt, sq is unitary, U ε pt, sq ˚" U ε pt, sq ´1 " U ε ps, tq. We will also use the notation U ε ptq " U ε pt, 0q. For a time-dependent vector xptq P C d , we set

}x} 8 " sup tě0 }xptq} C d .
Proposition 3.1 (Expansion of excited state amplitudes) Suppose the initial condition ψ P P 1 is such that f t"0 " 0, so the excitation is initially in the atom. Then

iεB t zptq " " Aptq ´iλ 2 wptqxQ ε ptqwptq| ‰ zptq `R0 pt, λ, εq, (3.10) 
where

Q ε ptq " 1 ε ż t 0 γ ´t ´s ε ¯Uε pt, sqds (3.11)
with a remainder satisfying

}R 0 pt, λ, εq} ď λ 4 }v} 4 8 }γ} L 1 }tγptq} L 1 `λ2 ε }w} 8 }B t w} 8 }tγptq} L 1 .
(3.12)

In the time-independent case Aptq " A we have U ε pt, sq " e ´i ε pt´sqA and a simple change of variables in (3.11) gives Q ε ptq " ş t{ε 0 e ´ixA γpxqdx, see Section 3.3. In the general, time-dependent case Aptq, we can expand the operator Q ε ptq, (3.11) using usual methods of adiabatic dynamics, involving Kato's intertwining operator, at the cost of additional ε-dependent error terms. To do so, we define the operator Γ ε ptq "

ż t{ε 0 e ixAptq γpxqdx.
(3.13)

Then we have the following result.

Proposition 3.2 We have › › ›Q ε ptq ´Γε ptq ˚› › › ď εC 1 `ε2 C 2 (3.14)
where

C 1 " c d 2 ∆ 0 max j }B t P j } 8 }γ} L 1 `d2 max j }B t P j } 8 }tγ} L 1 `d max j }B t α j } 8 }t 2 γ} L 1 C 2 " c d 2 ∆ 0 }tγ} L 1 " p1 `d}A} 8 q max j }B t P j } 2 8 `max j }B 2 t P j } 8 `max j |B t α j | 8 ∆ 0 max j }B t P j } 8 ı , (3.15)
for a numerical constant c.

By 'numerical constant c' we mean a constant c ą 0 which can be taken as an 'absolute' integer, not depending on any of the parameters of the problem, such as A, d, ε, t, λ.

Combining (3.14) with (3.10) gives the following evolution equation for z,

iεB t zptq " G ε,λ ptqzptq `R1 pt, λ, εq, (3.16) where G ε,λ ptq " Aptq ´iλ 2 |wptqyxwptq| Γ ε ptq, (3.17) 
where the remainder has the bound (use

ε 2 ď ε in (3.14))
}R 1 pt, λ, εq} ď }R 0 pt, ε, λq} `ελ 2 }w} 2 8 pC 1 `C2 q.

(3.18)

As we are interested in the possible decay of }zptq} that would describe the de-excitation of the atom, we want to study the contraction properties of G ε,λ ptq, (3.17). For each t fixed, the Lumer-Phillips theorem says that G ε,λ ptq generates a contraction semigroup if and only if Re G ε,λ ptq ď 0 (G ε,λ ptq is dissipative), see e.g [EN]. However, the latter property fails to hold for any non-selfadjoint rank one perturbation of Aptq " Aptq ˚that does not commute with Aptq. Hence, in order to control the propagator generated by G ε,λ ptq, we further simplify it by perturbation theory in λ.

Lemma 3.3 (Analytic perturbation theory for G ε,λ ptq) Suppose that (2.6) holds. Then we have the following, for any values of t ě 0, 1 ě ε ą 0:

(a) G ε,λ ptq has simple eigenvalues α j pt, ε, λq, j " 1, . . . , d, each one lying close to an eigenvalue α j ptq of Aptq, satisfying

ˇˇα j pt, ε, λq ´`α j ptq `λ2 α 1 j pt, εq ˘ˇď 8 d ∆ 2 0 λ 4 }v} 4 8 }γ} 2 L 1 p}A} 8 `∆0 {2q, (3.19)
where

α 1 j pt, εq " ´i|v j ptq| 2 ż t{ε 0 e ixα j ptq γpxqdx. (3.20) (b)
The rank-one spectral projections P j ptq and P j pt, ε, λq of Aptq and G ε,λ ptq, respectively, for j " 1, . . . , d, satisfy

› › P j pt, ε, λq ´Pj ptq › › ď 4λ 2 ∆ 0 }v} 2 8 }γ} L 1 . (3.21) (c)
We have }P j pt, ε, λq} ď 2 and the time derivative of this projection has the bound

}B t P j pt, ε, λq} ď 8 ∆ 0 " }B t A} 8 `λ2 `2}B t w} 8 }w} 8 }γ} L 1 `}v} 2 8 }tγptq} L 1 }B t A} 8 }w} 2 8 λ 2 ε |γpt{εq| ı . (3.22)
Moreover, there is a constant C (for which one can give an expression similar to the right side of (3.22), see (4.44)), independent of ε, λ, such that

}B t P j pt, ε, λq ´Bt P j ptq} " Cλ 2 `1 `1 ε |γpt{εq| ˘(3.23)
and

}B 2 t P j pt, ε, λq} ď C ´1 `λ2 `λ2 ε 2 p|γpt{εq|p1 `tq `|pB t γqpt{εq| `λ4 ε 2 |γpt{εq| 2 ¯. (3.24)
Using the spectral representation G ε,λ ptq " 

ř d j"1 α j pt,
}R 2 pt, ε, λq} ď }R 1 pt, ε, λq} `16 d 2 ∆ 2 0 λ 4 }v} 4 8 }γ} 2 L 1 p}A} 8 `∆0 {2q. (3.27)
The right hand side of (3.26) is the spectral representation of the operator G ε,λ ptq.

We refrain from writing down the explicit dependence of all estimates in the various norms of the functions that define the problem. Instead, in the following, all quantities that are independent of t ě 0, 0 ď ε ď 1, λ are denoted by the generic symbols C, C 0 , C 1 . . . , which may vary from line to line.

Our next task is to integrate the equation (3.25). Denote the evolution operator associated to the linear part of (3.25) by U ε,λ pt, sq, iεB t U ε,λ pt, sq " G ε,λ ptqU ε,λ pt, sq, U ε,λ ps, sq " 1l.

(3.28)

As the left side carries a factor ε in front of the derivative, this equation is amenable to the usual adiabatic treatment, even though here the non-self-adjoint generator G ε,λ ptq depends on ε in a singular way, see (3.17), (3.20). Denote the associated Kato generator by

K ε,λ ptq " d ÿ j"1
`Bt P j pt, ε, λq ˘Pj pt, ε, λq " ´d ÿ j"1 P j pt, ε, λq `Bt P j pt, ε, λq ˘(3.29)

and denote the Kato intertwining operator by W ε,λ pt, sq, which is the solution of

B t W ε,λ pt, sq " K ε,λ ptqW ε,λ pt, sq, W ε,λ ps, sq " 1l. (3.30)
The latter satisfies the intertwining relations, see e.g. [START_REF] Krein | Linear Differential Equations in Banach Space[END_REF][START_REF] Kato | Perturbation Theory for Linear Operators[END_REF] W ε,λ pt, sqP j ps, ε, λq " P j pt, ε, λqW ε,λ pt, sq, j " 1, . . . , d.

(3.31)

The adiabatic evolution operator V ε,λ pt, sq is the solution of the equation

iεB t V ε,λ pt, sq " " G ε,λ ptq `iεK ε,λ ptq ‰ V ε,λ pt, sq, V ε,λ ps, sq " 1l. (3.32)
Proposition 3.4 Under the condition (2.6), the adiabatic evolution has the following properties.

1. V ε,λ pt, sq has the decomposition V ε,λ pt, sq " W ε,λ pt, sqΨ ε,λ pt, sq, Ψ ε,λ pt, sq " d ÿ j"1 P j ps, ε, λqe ´i ε ş t s rα j puq`λ 2 α 1 j pu,εqsdu .

(3.33)

2. There are constants C 1 , C 2 such that for any 0 ă ε ď 1, 0 ď s ď t,

}V ε,λ pt, sq} ď 2de pt´sqC 1 `λ2 C 2 , }U ε,λ pt, sq} ď 2d e pt´sqC 1 `λ2 C 2 .
(3.34)

3. V ε,λ pt, sq approximates the dynamics U ε,λ pt, sq (3.28) as follows. Further assuming that

|γpxq| ď C γ p1 `|x|q m ,
for some m ą 2, (3.35)

we have for any 0 ď s ď t

› › ›V ε,λ pt, sq ´Uε,λ pt, sq › › › ď Ce Cpt´sq pε `λ2 q, (3.36)
for constants C, C independent of ε, λ.

Remark 3.5 The construction and the properties of the adiabatic evolution obviously hold for λ " 0 as well, in which case G ε,0 ptq " Aptq " Aptq ˚is the atomic Hamiltonian and U ε,0 pt, sq " U ε pt, sq is the evolution (3.9). The eigenprojectors P j ptq are orthogonal and yield the ε´independent anti-symmetric Kato generator Kptq " ř d j"1 `Bt P j ptq ˘Pj ptq. In turn, the corresponding Kato intertwining operator W pt, sq is unitary and independent of ε, while the unitary phase operator reads Ψ ε pt, sq " ř d j"1 P j psqe ´i ε ş t s α j puqdu . The unitary adiabatic operator given by V ε pt, sq " W pt, sqΨ ε pt, sq approximates of the evolution operator U ε pt, sq in the sense

}U ε pt, sq ´Vε pt, sq} ď εrC 1 1 `C1 2 pt ´sqs.
This is detailed in the Proof of Proposition 3.2, Section 4.2

By the Duhamel principle, the solution of (3.25) is

zptq " U ε,λ pt, 0qzp0q `1 iε ż t 0 U ε,λ pt, sqR 2 ps, ε, λqds. (3.37)
Then we obtain from (3.36), }zp0q} ď 1 and sup 0ďsďtď1 }U ε,λ pt, sq} ď C 0 (see (3.34) or (4.66)), so that, uniformly in 0 ď t ď 1,

› › zptq ´Vε,λ pt, 0qzp0q › › ď C `ε `λ2 `1 ε sup 0ďsď1 }R 2 ps, ε, λq} ˘, (3.38) 
with the bound (3.27) on R 2 . Recall the product structure (3.33) of V ε,λ pt, sq, in which the phase term (complex phases) evolves quickly for small ε and where W ε,λ ptq satisfies (3.30). As the projections P j pt, ε, λq are not generally orthogonal, the operator K ε,λ ptq (3.29) is not anti-selfadjoint, and thus W ε,λ ptq is not unitary. The size of V ε,λ ptq is thus not dictated by the phase term Ψ ε,λ pt, sq alone. We now compare W ε,λ ptq with the unitary operator W ptq which is defined as the solution of

B t W pt, sq " KptqW pt, sq, W ps, sq " 1l with Kptq " d ÿ j"1
rB t P j ptqsP j ptq.

(3.39)

For later purposes, we recall here that since the spectrum of Aptq is simple, we can make W pt, sq explicit, following [B]: Lemma 3.6 (Berry phase) Given the smooth eigenbasis tφ k ptqu 1ďkďd of Aptq and 1 ď j ď d, 0 ď s, t we have ϕ j pt, sq :" W pt, sqφ j psq " e iξ j pt,sq φ j ptq, where ξ j pt, sq " i ż t s xφ j puq|B t φ j puqydu. (3.40) ξ j pt, sq is real, it is called the Berry phase.

The operator W pt, sq does not depend on ε nor on λ and is unitary, W pt, sq ˚" W pt, sq ´1 " W ps, tq. We have 

B
P j p0qe ´i ε ş t 0 rα j puq`λ 2 α 1 j pu,εqsdu zp0q › › ď C ´ε `λ2 `λ4 ε ¯, (3.51)
where W ptq " W pt, 0q is the solution of (3.39). The leading term in (3.51) can be simplified using Lemma 3.6, W ptqP j p0qzp0q " z j ptqW ptqφ j p0q " z j p0qe iξ j ptq φ j ptq,

where we write for short ξ j ptq " ξ j pt, 0q for the Berry phase. where χ `pxq " 1 for x ě 0 and χ `pxq " 0 else. As }W ptq} " 1, }P j p0q} " 1, |zp0q| ď 1 and α j puq P R, we can use (3.57) in (3.53) and we obtain Theorem 2.1.

State of the emitted excitation and proof of Theorem 2.4

The average of a field observable B (acting on L 2 pR 3 , d 3 kq) in the state ψptq, (2.13), is

xBy t " xψptq, p1l a b Bqψptqy " }zptq} 2 xΩ f , BΩ f y `xΩ f , apf t qBa ˚pf t qΩ f y " xΩ f , rapf t q, Bsa ˚pf t qΩ f y `xΩ f , BΩ f y, (3.58) 
where we used that apf t qa ˚pf t qΩ f " }f t } 2 Ω f " p1 ´}zptq} 2 qΩ f (see (2.14)). Let us examine the probability density of the field excitation to have a specific fixed momentum k 0 P R 3 . For this we take B " a k0 a k 0 . Then rapf t q, a k0 a k 0 s " f t pk 0 qa k 0 and xa k0 a k 0 y t " |f t pk 0 q| 2 .

(3.59)

In other words, |f t pk 0 q| 2 is the probability density of finding the field excitation in the momentum k 0 at time t.

Proof of Theorem 2.4

The equation (3.7) with the initial condition f 0 " 0 yields

f t pkq " ´i λ ε gpkq ż t 0 xwpsq|zpsqye ´i pt´sq ε ωpkq ds. (3.60)
Then

xBy t :" ż R 3 Bpkq|f t pkq| 2 d 3 k " λ 2 ε 2 ż t 0 ds ż t 0 ds 1 xwpsq|zpsqyxwps 1 q|zps 1 qyγ B `s ´s1 ε ˘(3.61)
where γ B is defined in Theorem 2.4. From Theorem 2.1, setting ϕ j psq " e iξ j psq φ j psq, xwpsq, zpsqyxwps 1 q, zps 1 qy "

" xwpsq, ϕ j psqy e i ε ş s 0 rα j `λ2 r α j s e ´λ2 ε ş s 0 β j `O`ε `λ2 `λ4 ε ˘‰ ˆ"xwps 1 q, ϕ j ps 1 qy e ´i ε ş s 1 0 rα j `λ2 r α j s e ´λ2 ε ş s 1 0 β j `O`ε `λ2 `λ4 ε ˘‰ " xwpsq, ϕ j psqyxwps 1 q, ϕ j ps 1 qy e i ε ş s s 1 rα j `λ2 r α j s e ´λ2 ε r ş s 1 0 `şs 0 sβ j `O`ε `λ2 `λ4 ε ˘. (3.62)
The remainder term of (3.62), inserted into (3.61), gives

λ 2 ε 2 O `ε `λ2 `λ4 ε ˘ż t 0 ds ż t 0 ds 1 γ B `s ´s1 ε ˘" O `λ2 `λ4 ε `λ6 ε 2 ˘, (3.63) because 0 ď t ď 1 and | ş t 0 dxγ B px{εq| ď ε}γ B } L 1 . It follows that xBy t " λ 2 ε 2 ż t 0 ds ż t 0 ds 1 hpsqhps 1 q e i ε ş s s 1 rα j `λ2 r α j s e ´λ2 ε r ş s 1 0 `şs 0 sβ j γ B `s ´s1 ε Ȏ`λ 2 `λ4 ε `λ6 ε 2 ˘, (3.64) 
hpsq :" xwpsq, ϕ j psqy.

Morally, the oscillatory term in the integral has a phase " s´s 1 ε while the decaying one scales as " λ 2 ε ps `s1 q. This is why we are going to switch to the coordinates x " s ´s1 P r´t, ts, y " s `s1 P r0, 2ts, and scale those separately. The square r0, ts ˆr0, ts to be integrated over in the variables ps, s 1 q becomes, in the px, yq plane, the square with one diagonal given by x " 0 and 0 ď y ď 2t. Given x P r´t, ts, the variable y varies between |x| ď y ď 2t ´|x|. Moreover, s " y`x 2 , s 1 " y´x 2 and the Jacobian of the transformation is 1 2 . Upon making the changes of variables x{ε Þ Ñ x and then λ 2 2ε y Þ Ñ y, the main term on the right side of (3.64) is ' Consider first the regime (A). The right hand side of (3.68) is integrable in px, yq P R ˆR`a nd so by the dominated convergence theorem (recall (3.65)),

λ 2 2ε 2 ż t ´t dx ż 2t´|x| |x| dy h ´y `x 2 ¯h´y ´x 2 ¯γB ´x ε ¯e i ε ş py`xq{2 py´xq{2 rα j `λ2 r α j s e ´λ2 ε r ş py´xq{2 0 `şpy`xq{2 0 sβ j " λ 2 2ε ż t{ε ´t{ε dxγ B pxq ż 2t´ε|x| ε|x| dy h ´y `εx 2 ¯h´y ´εx 2 ¯e i ε ş py`εxq{2 py´εxq{2 rα j `λ2 r α j s e ´λ2 ε r ş py´εxq{2 0 `şpy`εxq{2 0 sβ j " ż t{ε ´t{ε dxγ B pxq ż λ 2 t{ε´λ 2 |x|{2 λ 2 |x|{2 dy h ´ε λ 2 y `ε 2 x ¯h´ε λ 2 y ´ε 2 x ¯e i ε ş yε{λ 2 `εx{2 yε{λ 2 ´εx{2 rα j `λ2 r α j s ˆe´λ 2 ε r ş yε{λ 2 ´εx{2 0 `şyε{λ 2 `εx{2 0 sβ j " ż R dx ż 8 0 dyF px,
lim ε, λ, ε{λ 2 Ñ 0 ż R dx ż 8 0 dy F px, y, t, ε, λq " ż R dx ż 8 0 dy lim ε, λ, ε{λ 2 Ñ 0 F px, y, t, ε, λq. (3.69)
We now calculate the pointwise limit of F . We have lim ε, λ, ε{λ 2 Ñ 0 h ´ε λ 2 y ˘ε 2

x ¯" hp0q " xwp0q, φ j p0qy (3.70) and, denoting by Aptq the anti-derivative of α j ptq `λ2 r α j ptq, i ε

ż yε{λ 2 `εx{2 yε{λ 2 ´εx{2 rα j `λ2 r α j s " i ε " A ´yε λ 2 `εx 2 ¯´A ´yε λ 2 ´εx 2 ¯‰ " i ε εx " α j pτ q`λ 2 r α j pτ q ‰ , (3.71)
where we have used the mean value theorem in the last step, and where τ , which depends on x, y, ε, λ, satisfies |τ ´yε (3.73) which follows from lim

λ 2 | ď ε|x| 2 . It follows that lim ε, λ, ε{λ 2 Ñ 0 e i ε ş yε{λ 2 `εx{2 yε{λ 2 ´εx{2 rα j `λ2 r α j s " e ixα j p0q . (3.72) Next, lim ε, λ, ε{λ 2 Ñ 0 e ´λ2 ε ş yε{λ 2 ˘εx{2 0 β j " e ´yβ j p0q ,
λ 2 {εÑ8 ´λ2 ε ż yε{λ 2 0 β j " ´y lim rÑ8 r ż 1{r 0 β j " ´yβ j p0q lim ε, λ, ε{λ 2 Ñ 0 ´λ2 ε ż yε{λ 2 ˘εx{2 yε{λ 2 β j " lim ε, λ, ε{λ 2 Ñ 0 ¯λ2 x 2 β j pτ q " 0,
where we used the mean value theorem, as above in (3.71), with |τ ´yε λ 2 | ď ε|x| 2 . We combine the limits (3.70), (3.72), (3.73) into lim ε, λ, ε{λ 2 Ñ 0 F px, y, t, ε, λq " γ B pxq|xwp0q, ϕ j p0qy| 2 e ixα j p0q e ´2yβ j p0q . For the last equality, we use ξ j p0q " 0 (Berry phase) and due to (3.3), xwp0q, φ j p0qy " w j p0q " v j p0q and the definition of the Fourier transform,

Note finally that Opλ

2 `λ4 ε `λ6 ε 2 q " Op λ 6 ε 2 q in regime A.
p γ B pαq " 1 ? 2π ż R e itα γ B ptqdt.
' Next consider the regime (B). We can still use the dominated convergence theorem to calculate lim

ε, λÑ 0, λ 2 {ε"r ż R dx ż 8 0 dy F px, y, t, ε, λq " ż R dx ż 8 0 dy lim ε, λÑ 0, λ 2 {ε"r
F px, y, t, ε, λq. (3.75)

Now the pointwise limit of F is lim ε, λÑ 0, λ 2 {ε"r F px, y, t, ε, λq " χ `0 ď y ď rt ˘γB pxq|hpy{rq| 2 e ixα j py{rq e ´2r ş y{r 0 β j , (3.76) the error term is Opεq, from which (2.26) follows at once. This concludes the proof of Theorem 2.4. l Remark 3.7 One can further prove the following estimate in the regime λ 2 ď ε:

xBy t " λ 2 ε ? 2π ż t 0 |v j psq| 2 βpα j psqqds `O´λ 2 `λ4 ε 2 ¯, (3.77)
further assuming |γ B ptq| ď C B p1 `|t|q ´µ, with µ ą 2.

The time independent case, proof of Corollary 2.3

We consider here the special case where the total Hamiltonian (2.2) is time independent, Hptq " H. In keeping with the observation following (2.11), we will set ε " 1 and consider t ě 0. The time independent quantities appearing in the Hamiltonian are then denoted without the argument t: A, w, and so on.

In the time independent case, Propositions 3.1 and (3.2) reduce to the following result.

Proposition 3.8 Suppose the Hamiltonian (2.2) is time independent and the initial condition ψ P P 1 is such that f t"0 " 0, so the excitation is initially in the atom. Then

iB t zptq " " A ´iλ 2 |wyxw|Γptq ‰ zptq `R 0 pt, λq, (3.78)
where

Γptq " (3.79) and the remainder satisfies

ż t 0 e ixA γpxqdx,
sup tě0 } R0 pt, λq} ď λ 4 }w} 4 }γ} L 1 }tγptq} L 1 .
The generator (3.17) of the linear approximation of zptq is replaced in the time independent case here by

G λ ptq " A ´iλ 2 |wyxw|Γptq, (3.80)
with associated propagator U λ , defined as the solution of iB t U λ pt, sq " G λ ptqU λ pt, sq, U λ ps, sq " 1l.

(3.81)

As above, we will also write U λ ptq for U λ pt, 0q. Define (3.83)

We adopt the well-coupledness assumption (2.24) modified to the time-independent setting,

β min " min 1ďjďd β j " min 1ďjďd a π{2|w j | 2 p γpα j q ą 0. (3.84)
Proposition 3.9 Assume (3.84). For any 0 ă β ˚ă β min , there exists λ 0 ą 0 and C 0 ą 0 such that if λ ď λ 0 then the solution of (3.81) satisfies for all t ě 0,

}U λ ptq ´e´itpA´iλ 2 |wyxw|Γ `q} ď λ 2 }w} 2 C 2 0 e C 0 λ 2 }w} 2 }Γ´Γ `}L 1 e ´β˚t λ 2 ż t 0 }Γpsq ´Γ`} ds. (3.85)
Moreover, for all t ě s ě 0, We estimate the remainder term employing (3.86), where C 1 " }w} 2 C 2 0 e C 0 λ 2 }w} 2 }Γ´Γ `}L 1 p}Γ ´Γ`} L 8 `}Γ ´Γ`} L 1 q and we have taken into account that

}e ´itpA´iλ 2 |wyxw|Γ `q} ď C 0 e ´β˚t λ 2 , }U λ pt, sq} ď C 0 e ´β˚p t´sqλ 2 e C 0 λ 2 }w} 2 }Γ´Γ
› › › › ż t 0 U λ pt, sq R0 ps, λqds › › › › ď C R λ 4 ż t 0 e ´β˚p t´sqλ 2 ds ď C R β ˚λ2 `1 ´e´β ˚tλ 2 ˘, (3.88) with C R " }w} 4 }γ} L 1 }tγptq} L 1 C 0 e C 0 λ 2 }w} 2 }Γ´Γ
ż t 0 }Γpsq ´Γ`} ds ď " t}Γ ´Γ`} L 8 }Γ ´Γ`} L 1 ď `}Γ ´Γ`} L 8 `}Γ ´Γ`} L 1 ˘minpt, 1q.
Combining (3.87), (3.88) and (3.89) yields the following result.

Corollary 3.10 Under the assumptions of Proposition 3.9, for λ ď λ 0 , and any t ě 0,

}zptq ´e´itpA´iλ 2 |wyxw|Γ `qzp0q} ď C 2 λ 2 ´minpt, 1qe ´β˚t λ 2 `p1 ´e´β ˚tλ 2 q ¯, (3.90) for C 2 " }w} 2 C 2 0 e C 0 λ 2 }w} 2 }Γ´Γ `}L 1 t }w} 2 β ˚}γ } L 1 }tγ} L 1 `C0 p}Γ ´Γ`} L 8 `}Γ ´Γ`} L 1 qu.
Remarks. i) By the Lumer-Phillips criterion, e ´itpA´iλ 2 |wyxw|Γ `q is a contraction semigroup if and only if ´iA ´λ2 |wyxw|Γ `is dissipative. However, the rank two operator Re p´iA ´λ2 |wyxw|Γ `q " ´λ2 2 `|wyxw|Γ ``pΓ `q˚| wyxw| has positive and negative eigenvalues unless w is an eigenvector of pΓ `q˚, i.e. an eigenvector of A, which is forbidden by the well-coupledness assumption (3.84). In other words, there exists zp0q of norm one such that for t ą 0 small enough, }e ´itpA´iλ 2 |wyxw|Γ `qzp0q} ą 1, before the exponential decay kicks in.

ii) The estimate (3.90) holds in particular for t " 0 or λ " 0, in which cases the approximation is trivially exact and the error term vanishes.

iii) The error term in (3.90) is Opλ 2 q uniformly in t ě 0.

We may diagonalize A ´iλ 2 |wyxw|Γ `" ř d j"1 α j pλqP j pλq and carry out analytic perturbation theory in λ, to obtain e ´itpA´iλ 2 |wyxw|Γ `q " d ÿ j"1 e ´itα j pλq P j pλq " d ÿ j"1 e ´itα j pλq P j `O`λ 2 e ´λ2 tβ min ˘.

(3.91) provided λ is small enough (see also (3.84)). Here, P j is the eigenprojection of A (associated to the eigenvalue α j ) and α j pλq " α j `λ2 α 1 j `Opλ 4 q, (3.92)

where α 1 j " r α j ´iβ j is given in (2.22)(see the proof of Proposition (3.9)). Combining (3.91) and (3.90), sup tě0 }zptq ´d ÿ j"1 e ´itα j pλq P j zp0q} ď Cλ 2 .

(3.93)

One further simplify the exponents by retaining only the the Opλ 2 q term in α k pλq, according to (3.92). Using that for any

ζ P C, |e ζ ´1| " | ş ζ 0 e z dz| ď |ζ|e |ζ| ,
ˇˇe ´itα j pλq ´e´itpα j `λ2 α 1 j q ˇˇ" e ´βj tλ 2 ˇˇe ´itOpλ 4 q ´1ˇď e ´βj tλ 2 |tOpλ 4 q|e |tOpλ 4 q| ď ctλ 4 e ´βmin tλ 2 e ctλ 4 ď ctλ 4 e ´1 2 β min tλ 2 ď 2c eβ min λ 2 .

(3.94)

In the third step, we used that |Opλ 4 q| ď cλ 4 for some c ě 0 and in the fourth step we took λ 2 ă β min 2c . We combine (3.93) and (3.94) into Corollary 2.3. The advantage of Corollary 2.3 over Corollary 3.10 is that the generator of the approximate evolution is simpler as it only contains energy corrections of Opλ 2 q and it is provided by a contraction semigroup. On the flip side, the remainder term in Corollary 3.10 is better for small times (it vanishes at t " 0) while in Corollary (2.3) the remainder is only guaranteed to be Opλ 2 q.

Proof of Proposition 3.9. We consider (3.81) in the interaction picture with G λ " A ´iλ 2 |wyxw|Γ `(3.95) so that for 0 ď s ď t U λ pt, sq " e ´ipt´sqG λ ´λ2 ż t s e ´ipt´rqG λ |wyxw|pΓpsq ´Γ`q U λ pr, sqdr.

(3.96)

The adaptation of the perturbation Lemma 3.3 to the ε and time independent operator G λ in (3.95) yields for λ small,

e ´itG λ " d ÿ j"1
e ´itα j pλq P j pλq,

where α j pλq " α j `λ2 α 1 j `Opλ 4 q with α 1 j " ´i|w j | 2 ş 8 0 e ixα j γpxqdx and P j pλq " P j `Opλ 2 q has norm bounded by 2. Here α j and P j are the eigenvalues and eigenprojectors of A. The decomposition of α 1 j in real and imaginary parts is (see also see (2.18)),

α 1 j " ? 2π|w j | 2 Im { pχ `γqpα j q ´ia π{2|w j | 2 p γpα j q " r α j ´iβ j .
Thus, for any 0 ă β ˚ă min 1ďjďd β j , there exists of λ 0 and C 0 such that if |λ| ď λ 0 then }e ´itG λ } ď C 0 e ´β˚t λ 2 for all t ě 0. Hence we deduce from (3.96) by iteration, or via Gronwall Lemma, that under the same conditions, and for all t ě s ě 0,

}U λ pt, sq} ď C 0 e ´β˚p t´sqλ 2 e C 0 λ 2 }w} 2 }Γ´Γ `}L 1 .
Consequently, plugging these estimates in (3.96) for s " 0 yields (3.85). This completes the proof of the proposition. l 4 Proofs of auxiliary results

4.1 Proof of Proposition 3.1.

We eliminate the free dynamics by changing the variables,

yptq " U ε ptq ´1zptq, h t " e i ωt ε f t (4.1)
where U ε ptq is given in (3.9). The equations resulting from (3.6) and (3.5) for the new variables yptq, h t are,

iεB t yptq " λxg, e ´i ωt ε h t y U ε ptq ´1wptq (4.2) iεB t h t " λxwptq, U ε ptqyptqy e i ωt ε g. (4.3)
True to the Wigner-Weisskopf procedure, we now integrate the equation for h t and insert the result in the equation for yptq. The initial condition, describing the setup of spontaneous radiative decay of the atom, satisfies h t"0 pkq " f t"0 pkq " 0. (4.4)

Thus equation ( 4.3) gives

h t " ´iλ ε ż t 0 xwpsq, U ε psqypsqye i ωs ε ds g, (4.5) 
which together with (4.2) leads to

B t yptq " ´λ2 ε 2 βptq ż t 0 xβpsq, ypsqy γ `t ´s ε ˘ds, (4.6) 
where we have introduced βptq " U ε ptq ´1wptq (4.7)

and the field correlation function γ is given in (2.7) Next we replace ypsq in the integral on the right side of (4.6) by yptq. More precisely, as

}βpuq} C 2 " }U ε puq ´1wpuq} C d " }wpuq} C d " " d ÿ j"1 |w j puq| 2 ‰ 1{2 " " d ÿ j"1 |v j puq| 2 ‰ 1{2 " }vpuq} C d
and }ypsq} ď 1, the relation (4.6) implies

}B t yptq} ď λ 2 ε 2 }v} 2 8 ż t 0 |γ `t ´s ε ˘|ds ď λ 2 ε }v} 2 8 }γ} L 1 . (4.8)
where

}v} 8 " sup tě0 }vptq} C d " sup tě0 " d ÿ j"1 |v j ptq| 2 ‰ 1{2 . (4.9)
Therefore, for t ě s ě 0,

}yptq ´ypsq} ď ż t s }B u ypuq}du ď λ 2 }v} 2 8 }γ} L 1 t ´s ε . (4.10) 
Using this bound in (4.6) yields

B t yptq " ´λ2 ε 2 βptq @ ż t 0 βpsqγ `t ´s ε ˘ds, yptq D `T1 ptq, (4.11) 
where

}T 1 ptq} ď λ 4 ε 2 }v} 4 8 }γ} L 1 ż t 0 t ´s ε ˇˇγ `t ´s ε ˘ˇd s ď λ 4 ε }v} 4 8 }γ} L 1 }tγptq} L 1 . (4.12)
The derivative of βpsq " U ε psq ´1wpsq is " ε ´1 due to the rapidly oscillating phases, iB s U ε psq ´1 is of order ε ´1 (see (3.9), (4.7)). So we replace only the part wpsq by wptq within βpsq in the integrand of (4.11): Both W pt, sq and Φ ε pt, sq are unitary. The point of this factorization of V ε is to separate out the quickly varying (ε small) phase term Φ ε . The adiabatic evolution V ε pt, sq approximates U ε pt, sq,

ż t 0 xU ε psq ´1wpsq
› › V ε pt, sq ´Uε pt, sq › › ď ε " C 1 1 `pt ´sqC 1 2 ‰ , (4.23) 
where Hence the spectrum of G ε,λ ptq lies in a neighbourhood of the size λ 2 }v} 2 8 }γ} L 1 of the spectrum of Aptq. This shows that the eigenvalues of G ε,λ ptq are simple, and ˇˇα j pt, ε, λq άj ptq ˇˇď λ 2 }v} 2 8 }γ} L 1 . We will prove the bound (3.19) below, after analyzing the spectral projections.

C 1 1 " c d 2 ∆ 0 max j }B t P j } 8 C 1 2 " c d 2 ∆ 0 " p1 `
› › ›Q ε ptq ´1 ε ż t 0 γ `t ´s ε ˘Vε pt, sqds › › › ď εC 1 1 1 ε ż t 0 ˇˇγ `t ´s ε ˘ˇˇd s `εC 1 2 1 ε ż t 0 ˇˇγ `t ´s ε ˘ˇˇp t ´sqds ď εC 1 1 }γ} L 1 `ε2 C 1 2 }tγ} L 1 . (4.
P j ptq 1 ε ż t 0 γ `t ´s ε ˘e´i ε ş t s α j puqdu ds › › › ď ε `C1 1 }γ} L 1 `d2 max j }B t P j } 8 }tγ} L 1 ˘`ε 2 C 1 2 }tγ} L 1 . (4.
(b) Let C j ptq be a circle around α j ptq, with radius ∆ 0 {2 (c.f. (2.1)). Since due to (2.6) we have λ 2 }v} 2 8 }γ} L 1 ă ∆ 0 {4 the contour C j ptq lies in the resolvent set of G ε,λ ptq and the Riesz projection We now show (3.19). We have G ε,λ ptqP j pt, ε, λq " α j pt, ε, λqP j pt, ε, λq. Since P j pt, ε, λq is a rank-one projection it has unit trace, and so α j pt, ε, λq " tr G ε,λ ptqP j pt, ε, λq.

P j pt,
(4.52)

We use G ε,λ ptqpG ε,λ ptq ´zq ´1 " 1l `zpG ε,λ ptq ´zq ´1 and get from (4.34), dr n V pt, r 1 qKpr 1 qV pr 1 , r 2 qKpr 2 q ¨¨V pr n´1 , r n qKpr n qV pr n , sq.

α j pt, ε, λq " tr ´1 2πi ¿ C j z pG ε,λ ptq ´zq ´1dz. ( 4 
(4.95)

The bound on V ε,λ pt, sq in (3.34) implies

}V pt, r 1 qKpr 1 q ¨¨¨Kpr n qV pr n , sq} ď p2dq n`1 e pt´sqC 1 e pn`1qλ 

´λ2 ε min 1ďjďd ş t 0

 0 β j puqdu `Opλ 4 {εq.

wv

  a ptqs m,n |φ m p0qyxφ n p0q|, rH a ptqs m,n " xφ m p0q, H a ptq φ n p0qy, j ptq|φ j p0qyxφ 0 | b apgq `h.c., w j ptq " ptqxφ j p0q, φ ptqy.(3.3) 

  tq m´1 P L 1 pRq.

  s ´Wε,λ pt, sqW pt, sq ´rB t P j ptqsP j ptq ´rB t P j pt, ε, λqsP j pt, ε, λq ¯(3.43) rB t P j ptqspP j ptq ´Pj pt, ε, λqq ´pB t P j pt, ε, λq ´Bt P j ptqqP j pt, ε, λq.Using the estimates }P j pt, ε, λq ´Pj ptq} ď 4λ 2 ∆ 0 }v} 2 8 }γ} L 1 (see (3.21)) and (3.23), we obtain from (3.43) the bound Cp1`λ 2 qpt´sq e Cλ 2 . Crpt ´sqp1 `λ2 q `λ2 }γ} L 1 s. We combine (3.45) with (3.46) into }W ε,λ pt, sq ´W pt, sq} ď Cλ 2 e Cpλ 2 `t´sq , for any s ď t.

								Moreover, we show below,
	see (4.86) and (4.93), that				
			´1¯" }Ψ ε,λ psq} ď 2d max j e λ 2 }v} 2 W ε,λ pt, sq 8 r}γ} L 1 " `Cγ Kpsq ´Kε,λ psq ‰ pm´1qpm´2q2 m´2 s ď C. W pt, sq ´1,	(3.41) (3.49)
	which gives upon integration,				
	ż t Thus, from (3.27), (3.18), (3.12) we get			
	W pt, sq ´Wε,λ pt, sq " Next, we write 1 ε sup 0ďsď1 }R 2 ps, ε, λq} ď C `λ2 `λ4 s W ε,λ pt, uq " Kpuq ´Kε,λ puq ‰ ε ˘.	W pu, sqdu.	(3.42) (3.50)
	d Replacing in Ψ ε,λ ptq, (3.33), the projection P j p0, ε, λq by P j p0q we incur an error of order
	Kptq ´Kε,λ ptq " λ 2 (see(3.21)) and thus finally have the following result from (3.48)-(3.50): ÿ
			j"1				
	0ďtď1 sup	" › zptq ´W ptq d ÿ ›				
			j"1				
			› › Kpuq ´Kε,λ puq › › ď Cλ 2 `1	`1 ε	|γpu{εq| ˘.	(3.44)
	Now, since }W pt, sq} ď 1 we obtain from (3.42)
						ż t	
			› › W ε,λ pt, sq ´W pt, sq	› › ď Cλ 2	s	}W ε,λ pt, uq} `1	`1 ε	|γpu{εq| ˘du.	(3.45)
	The usual Dyson series expansion based on (3.30) gives the bound
			}W ε,λ pt, sq} ď e ş t				(3.46)
	To show the second inequality in (3.46), we note that (see (3.22) and (3.29))
			}K ε,λ puq} ď 2d max					λ2 `λ2 ε	|γpu{εq| ˘,
	so that	ş t s }K ε,λ puq}du ď (3.47)
	We now combine the bound (3.47) with (3.38),
	sup	› › zptq ´W ptqΨ ε,λ ptqzp0q › ›				
	0ďtď1						
			ď C `ε `λ2 `1 ε	sup	

s }K ε,λ puq}du ď e j }B t P j pt, ε, λq} ď C `1 `0ďsď1 }R 2 ps, ε, λq} ˘`λ 2 C sup 0ďsď1 }Ψ ε,λ psq}, (3.48)

where we set for short W ptq " W pt, 0q, Ψ ε,λ ptq " Ψ ε,λ pt, 0q. d ÿ j"1

  C|z ´z1 | (where C is the sup of |e ζ | as ζ varies on the straight line joining z and z 1 ), we conclude that

	Since |e z ´ez 1	| " |	ş z 1
					ˇˇe ´iλ 2 ε	ş t 0 α 1 j pu,εqdu ´e´λ 2 ε	ş t 0 |v j puq| 2	"	ş 8 0 e ixα j puq γpxqdx ‰	du	ˇˇď Cλ 2 ,	(3.57)
	uniformly in 0 ď t ď 1. Next, as γp´xq " γpxq,
					Re	ż 8 0	e ixα γpxqdx "	1 2	ż R	e ixα γpxqdx "	a π{2 p γpαq ě 0,
					Im	ż 8	e ixα γpxqdx "	? 2π Imp y χ `γqpαq,
								0
									Hence (3.51) becomes
	sup 0ďtď1	› › zptq	´d ÿ j"1	e ´i ε	ş t 0 rα j puq`λ 2 α 1	› › ď C ´ε `λ2 `λ4 ε	¯.	(3.53)
	We finally simplify the expression e ´i λ 2 ε	ş t 0 α 1 j pu,εqdu in (3.53). We have from (3.20)
						ż t	α 1 j pu, εqdu "	´i ż t	|v j puq| 2	" ż u{ε	e ixα j puq γpxqdx	ı du	(3.54)
								0	0	0
	We first simplify the integral over x by extending its upper bound to 8. From (3.35),
	ˇˇˇˇż 0 u{ε	e ixα j puq γpxqdx	´ż 8 0	e ixα j puq γpxqdx	ˇˇˇˇď C γ	ż 8 u{ε	dx p1 `xq m ď	C γ pm ´1qp1 `u{εq m´1 ,
									(3.55)
	and in view of (3.54),	ş t 0	|v j puq| 2 p1`u{εq m´1 du ď ε sup sě0 |v j psq| 2 ş 8 0	dy p1`yq m´1 " Cε. Therefore,
					ˇˇż	t	α 1 j pu, εqdu	`i ż t	|v j puq| 2	" ż 8	e ixα j puq γpxqdx ı du ˇˇď Cε.	(3.56)
					0			0	0

j pu,εqsdu e iξ j ptq z j p0qφ j ptq z e ζ dζ| ď

  It follows from (3.78), the definition of U λ pt, sq given in (3.81) and from the Duhamel formula, that

	zptq " U λ ptqzp0q	´i ż t	U λ pt, sq R0 ps, λqds.	(3.87)
		0		

`}L 1 . (3.86) 

  `}L 1 . Next we use the estimate (3.85) to obtain }U λ ptqzp0q ´e´itpA´iλ 2 |wyxw|Γ `qzp0q} ď C 1 λ 2 e

	´β˚t λ 2 minpt, 1q,	(3.89)

  }γ} L 1 }tγptq} L 1 `λ2 }B t w} 8 }w} 8 }tγptq} L 1 . ptq " |φ j ptqyxφ j ptq| the spectral projections of Aptq. Since Aptq is self-adjoint and Kptq ˚" ´Kptq the solution V ε pt, sq of (4.19) is unitary, V ε pt, sq ˚" V ε pt, sq ´1 " V ε ps, tq. Defining the ε-independent Kato intertwining operator W ptq as the solution of the ε-independent equationB t W pt, sq " KptqW pt, sq, W ps, sq " 1l (4.21)one readily checks the relation (use the intertwining relation W pt, sqP j psq " P j ptqW pt, sq)V ε pt, sq " W pt, sqΦ ε pt, sq, Φ ε pt, sq "

	we obtain										
		|T 2 ptq| ď	ż t 0	}wptq ´wpsq} }yptq} ˇˇγ	`t	´s ε	˘ˇd s
		ď }B t w} 8	ż t 0	pt ´sq ˇˇγ	`t	´s ε	˘ˇd s ď ε 2 }B t w} 8 }tγptq} L 1 .	(4.15)
	Combining (4.13), (4.15) with (4.11) shows that
		B t yptq "	´λ2 ε 2 βptq	@	ż t 0	U ε psq ´1wptqγ	`t	´s ε	˘ds, yptq	D	`T3 ptq,	(4.16)
	with	}T 3 ptq} ď	λ 4 ε	}v} 4 8 (4.17)
	In terms of the original variable zptq " U ε ptqyptq (see (4.1)), (4.16) reads
		B t zptq "	´i ε	Aptqzptq	´λ2 ε	wptqxQ ε ptqwptq, zptqy `T4 ptq,	(4.18)
												1l,	(4.19)
	where Kato's generator is							
											d
											ÿ
							Kptq "	rB t P j ptqsP j ptq	(4.20)
											j"1
	with										
	Using }wptq ´wpsq} ď	, yptqy γ ş t s }B u wpuq}du ď pt ´sq}B t w} 8 , with `t ´s ε ˘ds " ż t 0 xU ε psq ´1wptq, yptqy γ `T2 ptq. }B t w} 8 " sup tě0 }B t wptq} C d P j d ÿ P j psqe ´i ε ş t s α j puqdu . `t ´s ε	˘ds	(4.13) (4.14) (4.22)
												j"1

where }T 4 ptq} " }T 3 ptq} and where Q ε ptq is given in

(3.11)

. This finishes the proof of Proposition 3.1. l

4.2 Proof of Proposition 3.2

We introduce the atomic adiabatic evolution V ε pt, sq iεB t V ε pt, sq " `Aptq `iεKptq ˘Vε pt, sq, V ε ps, sq "

  d}A} 8 q max

	j	}B t P j } 2 8 `max j	}B 2 t P j } 8	`max j |B t α j | 8 ∆ 0	max j	}B t P j } 8	ı ,
	and where c is a numerical constant. A proof (4.23) is rather standard. We present the
	details in Section 4.4, (4.61)-(4.80), in the more complicate setting where V ε , U ε ((3.9),
	(4.19)) are replaced by V ε,λ , U ε,λ ((3.32), (3.28)).				
	Approximating U ε pt, sq in (3.11) by V ε pt, sq we obtain from (4.22), (4.23)		

  W pu, sqdu} ď pt ´sq}K} 8 ď dpt ´sq max j }B t P j } 8 . Then,

														24)
	Next we use (4.22),								
	V ε pt, sq "	ÿ	W pt, sqP j psqe ´i ε	ş t s α j puqdu "	ÿ	P j ptqW pt, sqe ´i ε	ş t s α j puqdu
			j											j
					"	ÿ j	P j ptqe ´i ε	ş t s α j puqdu `ÿ j	s `ż t P j ptq	B u W pu, sqdu ˘e´i ε	ş t s α j puqdu . (4.25)
	Now } s B u › ş t › › 1 ε ż t 0 γ `t	´s ε	˘Vε pt, sqds	´d ÿ j"1	P j ptq	1 ε	ż t 0	γ	`t	´s ε	˘e´i ε	ş t s α j puqdu ds	› › ›
				ď d 2 max j	}B t P j } 8	1 ε	ż t 0	|γ	`t	´s ε	˘|pt ´sqds ď εd 2 max j	}B t P j } 8 }tγ} L 1 . (4.26)
	Combining (4.24) and (4.26) yields	
	› › ›Q ε ptq	´d ÿ										
		j"1										

  Take z P C which is separated from specpAptqq by at least some distance a ą 0. Then for λ 2 }v} 2 8 }γ} L 1 {a ă 1, the resolvent pG ε,λ ptq ´zq ´1 is a bounded operator, given by the convergent Neumann series

	Next, we have								
						1 ε	ż t 0	γ	`t	´s ε	˘e´i ε	ş t s α j puqdu ds "	0 ż t{ε	γpxqe ´i ε	ş t t´εx α j puqdu dx	(4.28)
	and since |e ia ´eib | " |	ş b a e iy dy| ď |b ´a|,
		ˇˇe ´i ε	ş t t´εx α j puqdu ´e´ixα j ptq ˇˇď	1 ε	ż t t´εx	|α j puq ´αj ptq|du
													ď }B t α j } 8	1 ε	ż t t´εx	pt ´uqdu "	1 2	εx 2 }B t α j } 8 . (4.29)
	Combining this with (4.28) and (4.27) gives
	ˇˇ1 ε	ż t 0	γ	`t	´s ε	˘e´i ε	ş t s α j puqdu ds	´ż t{ε 0	γpxqe ´ixα j ptq dx ˇˇď	1 2	ε}B t α j } 8 }t 2 γ} L 1	(4.30)
	and finally										
	› › ›Q ε ptq	´d ÿ j"1	P j ptq	ż t{ε 0	› e ´ixα j ptq γpxqdx › › ď ε `C1 1 }γ} L 1 `d2 max j	}B t P j } 8 }tγ} L 1	ε2
													C 1 2 }tγ} L 1	`d 2	ε}B t α j } 8 }t 2 γ} L 1 .	(4.31)
	This is the result (3.14), showing Proposition 3.2.	l
	4.3 Proof of Lemma 3.3
	(a) For z P C in the resolvent set of Aptq, we have
													› › pAptq ´zq	´1› › ď	1 distpspecpAptqq, zq	.	(4.32)
	pG ε,λ ptqq ´zq ´1 " pAptq ´zq	´1 ÿ	" iλ 2 |wptqyxwptq| Γ ε ptq pAptq ´zq	´1ı n	.	(4.33)
													ně0
													27)

  Thus the ranks of P j pt, ε, λq and P j ptq are equal, namely one. It follows that G ε ptq has a single, simple eigenvalue inside C j ptq, with associated Riesz projection (4.34). This shows (b).We give a proof of (c) now. From (4.34) and (4.36) we have }P j pt, ε, λq} ď ∆ 0It is not necessary to consider the t-derivative of the curve C j ptq as this curve can be taken constant in t for t in a neighbourhood of the point where the derivative is taken. From (3.17),B t G ε,λ ptq " B t Aptq´2iλ 2 Re `|B t wptqyxwptq| ˘Γε ptq ´iλ 2 |wptqyxwptq|B t Γ ε ptq. }B t G ε,λ ptq} ď }B t A} 8 `2λ 2 }B t w} 8 }w} 8 }γ} L 1 `λ2 }v} 2 }B t A} 8 `}B t G ε,λ ptq ´Bt Aptq} 2{∆ 0 , }pG ε,λ ptq´zq ´1} ď 4{∆ 0 (see (4.36)) and (see (4.33)) max zPC j ptq }pG ε,λ ptqź q ´1 ´pAptq ´zq ´1} ď 4λ 2 ∆ 0 }w} 2 8 }γ} L 1 . Now from (4.38) and (4.41), }B t G ε,λ ptq ´Bt Aptq} ď 2λ 2 }w} 8 }B t w} 8 }γ} L 1 `λ2 }w} 2 8 `1 ε |γpt{εq| `}tγ} L 1 }B t A} 8 for a (traceable) constant C independent of ε, λ and t ě 0. Next, }pG ´zq ´1pB 2 t GqpG źq ´1} ď C}B 2 t G}. We apply B t to (4.38) and obtain }B 2 t Gptq} ď }B 2 t A} 8 `4λ 2 `}w} 8 }B 2 t w} 8 `}B t w} 2 8 ˘}γ} L 1 `2λ 2 }w} 8 }B t w} 8 }B t Γptq} `λ2 }w} 2 To estimate B 2 t e ixAptq , we take B t on both sides of (4.40) and use the unitarity of e iyAptq , any y P R, to get }B 2 t e ixAptq } ď 2x 2 }B t A} 2 8 `x}B 2 t A} 8 . We then get the following upper bound on (4.49), |γpt{εq| }B t A} 8 `2}B t A} 2 8 }x 2 γpxq} L 1 `}B 2 t A} 8 }xγpxq} L 1 . (4.50)

	We use the bound (4.41) in (4.38),
	ε, λq " Now we use this to bound }B t P j pt, ε, λq} as per (4.37), ´1 2πi ż C j ptq pG ε,λ ptq ´zq ´1dz 8 " 1 |γpt{εq| `}tγptq} L 1 }B t A} 8 (4.34) ‰ . ε (4.42) 8 }B 2 t Γptq}. (4.48)
	is well defined. Next, › › P j pt, ε, λq ´Pj ptq › › ď ď 1 λ 2 2π 2 λ 2 ∆ 0 }v} 2 › › › ż C j ptq pG ε,λ ptq ´zq ´1|wptqyxwptq|Γ ε ptqpAptq ´zq ´1dz 8 }γ} L 1 max zPC j ptq }pG ε,λ ptq ´zq ´1} 2∆ ´1 0 . (4.35) › › › From (4.33), we obtain the following bound for all z P C j ptq, }B t P j pt, ε, λq} ď ∆ 0 2 }B t G ε,λ ptq} max zPC j ptq }pG ε,λ ptq ´zq ´1} 2 ď 8 }B t G ε,λ ptq}, The first derivative of Γptq is estimated in (4.41). Next, from (4.39), (4.40), (4.43) ∆ 0 where we have also employed (4.36). Combining the last bound with (4.42) yields the B 2 t Γ ε ptq " 1 ε γpt{εq ż 1 0 e i r ε tAptq i ε B t ptAptqqe i 1´r ε tAptq dr ε Aptq pB t γqpt{εq `1 ε 2 e i t desired (3.22). Our next task is to show (3.23). From (4.37), }BP j pt, ε, λq ´Bt P j ptq} " C j ptq 2π } pG ε,λ ptq ´zq ´1`B t G ε,λ ptq ˘pG ε,λ ptq ´zq ´1 1 ż " 0 `1 ε γpt{εq `Bt e ixAptq ˘|x"t{ε `ż t{ε `B2 t e ixAptq ˘γpxqdx. (4.49)
	}pG ε,λ ptq ´zq ´1} ď 2∆ ´1 0 ´pAptq ´zq ´1`B ÿ ně0 rλ 2 2∆ ´1 0 }v} 2 8 }γ} L 1 s n ď 4∆ ´1 0 . t Aptq ˘pAptq ´zq ´1ı dz}	(4.36)
	Combining this bound with (4.35) gives ď c ∆ 0 " λ 2 }w} 2 › › P j pt, ε, λq ´Pj ptq 8 }γ} L 1 ı › , (4.44) where c is a numerical constant. To get this estimate we used the identity (dropping the variables and subscripts) }B 2 t Γ ε ptq} ď 1 ε 2 |γpt{εq| `}A} 8 `t}B t A} 8 ˘`1 ε 2 |pB t γqpt{εq| › ă 1. 2 4∆ ´1 0 " 2. Next, from (4.34), B t P j pt, ε, λq " ´1 2πi ż C j ptq B t pG ε,λ ptq ´zq ´1dz pG ´zq ´1`B t G ˘pG ´zq ´1 ´pA ´zq ´1`B t A ˘pA ´zq ´1 " pG ´zq ´1`B ´1˘`B t A ˘pG ´zq ´1 `pA ´zq ´1`B t A ˘`pG ´zq ´1 ´pA ´zq ´1˘, (4.45) `t ε 2 Combining this with (4.48) yields
	" t Gptq} ď C `1 `λ2 `λ2 1 2πi ż C j ptq pG ε,λ ptq ´zq }B 2 ε 2 p|γpt{εq|p1 `tq `|pB t γqpt{εq| ˘(4.51) ´1`B t G ε,λ ptq ˘pG ε,λ ptq ´zq ´1dz. (4.37) for a constant C independent of ε, λ and t ě 0. Finally, we combine the estimates (4.46), }pAptq´zq ´1} " ˘. (4.47) (4.51) to arrive at (3.24).
	Combining this with (4.44) yields (3.23), with a constant C we can make explicit if need
	be.		
	(4.38) t P j . From (4.37), and simply writing G for We now bound the second derivative, B 2
	From (3.13), G ε,λ ptq,		
	B 2 t P j pt, ε, λq "	B t Γ ε ptq " ż ´1 C j ptq 2πi pG ´zq 1 ε e i t ε Aptq γpt{εq ´1" 2pB t GqpG ´zq ´1pB t Gq ´B2 `ż t{ε 0 `Bt e ixAptq ˘γpxqdx t G ‰ pG ´zq ´1dz. (4.46) (4.39)
	and using that Now by (4.36) and (4.42)	ż 1
	B t e ixAptq " }pG ´zq ´12pB t GqpG ´zq ´1pB t GqpG ´zq ´1} ď 0 e irxAptq `ixB t Aptq ˘eip1´rqxAptq dr 128 }B t G} 2 ∆ 3 0 we obtain }B t Γ ε ptq} ď 1 ε |γpt{εq| `}tγptq} L 1 }B t A} 8 . ď C ´1 `λ2 `λ2 ε |γpt{εq| `1	`λ2 ε	(4.40) (4.41) |γpt{εq| ˘¯(4.47)

t G ´Bt A ˘pG ´zq ´1 ``pG ´zq ´1 ´pA ´zq

  The remainder term is estimated as follows. Use that for any d ˆd matrix X one has |trX| ď tr|X| ď d}X} and that |C j ptq| " 2π∆ 0 {2, }pAptq ´zq ´1} ď 2{∆ 0 , }Γ ε ptq} ď }γ} L 1 and the bound }p|wptqyxwptq|q} ď }v} 2 8 , as well as (4.36), and |z| ď |α j ptq| `∆0 {2 ď }A} 8 `∆0 {2. ThenThe first term on the right side of (4.55) equals the trace of α j ptqP j ptq (eigendata of Aptq), which is just α j ptq. Next, using that the P ptq are a complete set of orthonormal projections, tr pAptq ´zq ´1|wptqyxwptq|Γ ε ptqpAptq ´zq ´1 " iεB t `Wε,λ pt, sqΨ ε pt, sq ˘" iεK ε,λ ptqW ε,λ pt, sqΨ ε,λ pt, sq Now we use V pt, rqGprq " ´iεB r V pt, rq ´iεV pt, rqKprq and GprqU pr, sq " iεB r U pr, sq to write }R j pr, B t P j prqq} ď 2d }B t P j prq} max 1ďjďd }P j } 8 min j,k : j‰k min 0ďtď1 |r α j ptq ´r α k ptq| tqR j `r, B t P j prq ˘U pr, sq ‰ dr › › ď ε}V pr, tqR j `r, B t P j prq ˘U pr, sq} independent of ε, λ and 0 ď s ď t ď 1. In the last step, we have made use of the estimate (3.22) on the derivative of the projection.Next we estimate the second term on the right side of (4.65). We start withV pt, rqKprqR j `r, B t P j prq ˘U pr, sqdr › › ď εC 2 0 e C0 pt´sq }B t P j prq} 2 dr, (4.71) where we have taken into account (4.68) and that }Kprq} ď 2d max j }B t P j prq} (see (3.29) and use }P j } ď 2). Next, according to (3.22), }B t P j prq} 2 ď C `1`λ }B t P j prq} 2 dr ď C ´t ´s `λ2 }γ} L 1 Ce C0 pt´sq `εpt ´sq `ελ 2 `λ4 q. (4.72) Next we deal with the other term within the second integral on the right side of (4.65), V pt, rqB r tR j `r, B t P j prq ˘uU pr, sqdr }B r tR j pr, B t P j prqqu}dr. (4.73) By using the quotient rule for derivatives in (4.67), }B r tR j pr, B t P j prqqu} ď |B t pr α ´r α j q| 8 Using the bounds }P j } 8 ď 2 (see before (3.22)) and |r α | 8 ď |α | 8 `λ2 }v} 2 8 }γ} L 1 , we simplify the estimate (4.74) to }B r tR j pr, B t P j prqqu} ď P j prq} 2 `max |B t r α j ptq| ď |B t α j ptq| `λ2 ˇˇB t " |v j ptq| 2 ż t{ε 0 e ixα j ptq γpxqdx ‰ˇď |B t α j | 8 `λ2 " 2}v} 8 }B t v} 8 }γ} L 1 `}v} 8 }B r tR j pr, B t P j prqqu} ď C max j `}B t P j prq}p1 `λ2 ε |γpr{εq|q `}B t P j prq} 2 `}B 2 t P j prq} ˘. (4.77) The norms }B t P j prq} and }B 2 t P j prq} are estimated in (3.22) and (3.24) and so (4.77) becomes }B r tR j pr, B t P j prqqu} ď C `1 `λ2 `λ2 ε 2 p|γpr{εq|p1 `rq `|pB t γqpr{εq|q `λ4 ε 2 |γpr{εq| 2 ˘. (4.78)V pt, rqB r tR j `r, B t P j prq ˘uU pr, sqdr › › ď Ce C0 pt´sq `εpt ´sqp1 `λ2 q `ελ 2 }rγprq} L 1`λ2 p}γ} L 1 `}B t γ} L 1 q `λ4 }γ 2 } L 1 ˘. (4.79)Putting together the relations (4.64), (4.65), (4.70), (4.72) and (4.79) we are rewarded with the bound }V pt, sq ´U pt, sq} ď Ce Cpt´sq pε `λ2 q, (4.80)where C ą C0 , which holds for λ satisfying (2.6), and all 0 ă ε ď 1, 0 ď s ď t as given in (3.36).Finally we need to check the validity of (3.34), point 2) of Proposition 3.4, which in term implies (4.66). To bound V ε,λ pt, sq we use the relation (3.33). First we see that}W ε,λ pt, sq} ď e }K ε,λ puq}du ď pt ´sqC 1 `}w} 2 A} 8 `λ2 `2}B t w} 8 }w} 8 }γ} L 1 `}v} 2 8 }tγptq} L 1 }B t A} 8 ˘ı. |γpu{εq|du ď }γ} L 1 , we conclude from (4.81) that for all 0 ď s ď t ă 8, }W ε,λ pt, sq} ď e pt´sqC 1 `λ2 }w} 2 8 }γ} L 1 . (4.85) This upper bound is uniform in ε ą 0. The next step in our quest to control }V ε,λ pt, sq} is an upper bound on the phase term Ψ ε,λ pt, sq in (3.33). As }P j ps, ε, λq} ď 2 (Lemma 3.3(c)), }Ψ ε,λ pt, sq} ď 2d max From (3.20) and the property γp´xq " γpxq (see (2.7)), we obtain Im α 1 j pt, εq " ´|v j ptq| 2 Re As |α 1 j pt, εq| ď }v j } 2 8 }γ} L 1 (see (3.20)), the first integral on the right side of (4.88) is bounded above by u 0 }v j } 2 8 }γ} L 1 . The second integral is |v j pu `sq| 2 ´ż|x|ěpu`sq{ε e ixα j pu`sq γpxqdx ¯du ˇď C γ }v j } 2 Imα 1 j pu, εqdu ď u 0 }v j } 8 }γ} L 1 `Cγ }v j } 2Upon choosing u 0 " ε we get for 0 ď s ď t ă 8, and C γ are from (4.84),(3.35). This shows the bound on V ε,λ in (3.34).Next, we bound }U ε,λ pt, sq} " }U pt, sq}. We use the first equality in (4.64) and iterate it, U pt, sq " V pt, sq

	and inserting this into the integral on the right side of (4.53), over the domain r ranging from s to t, and using (4.61)-(4.63), we obtain where we have used the condition (2.6) in the last step. We now estimate the first term Then by (3.22), Using the bound (3.35) we estimate
	α j pt, ε, λq " tr `iλ 2 ´1 2πi ¿ 2πi ´1 C j ptq z tr pAptq ´zq ´1|wptqyxwptq|Γ ε ptqpAptq ´zq ´1dz ¿ C j ptq zpAptq ´zq ´1dz `Tj pt, ε, λq. |T j pt, ε, λq| ď d 8 ∆ 2 0 λ 4 }v} 4 8 }γ} 2 L 1 p}A} 8 `∆0 {2q. d ÿ "1 }P ptqwptq} 2 pα ptq ´zq 2 ż t{ε 0 e ixα ptq γpxqdx. (4.57) (4.55) (4.56) In view of (4.55) we need to take the integral V pt, sq ´U pt, sq " ż t s V pt, rqKprqU pr, sqdr " 1 2 d ÿ j"1 ż t s V pt, rq " Gprq, R j `r, B t P j prq ˘‰U pr, sqdr. (4.64) ż t s V pt, rq " Gprq, R j `r, B t P j prq ˘‰U pr, sqdr " ´iε ż t s " tB ı dr " ´iε ż t s B r on the right side of (4.65) by ε › › ż t s B r " V pr, ˇˇr"t r"s ď ε 16C 0 d ∆ 0 max r"s,t }B t P j prq}e C0 pt´sq ď Cpε `λ2 qe C0 pt´sq , (4.70) for a constant C ε › › ż t s ż t s }Kprq} }R j pr, B t P j prqq}dr ď ε 8d 2 C 2 0 ∆ 0 e C0 pt´sq max j ż t s 2 ε |γpr{εq|`λ 4 ε 2 |γpr{εq| 2 ˘, so ż t s `λ4 ε }γ 2 } L 1 ¯. ż t For any 0 ď u 0 ă t ´s we have Combining this bound with (4.71) yields 8d ∆ 2 0 " pmax j |α j | 8 `λ2 }v} 2 8 }γ} L 1 q `max j }B 2 t P j prq} max j }B t P j prq} max j |B t r α j | 8 ı ż t s 8 ż t ż t´s ˇˇ1 λ 2 ε |γpu{εq|du, (4.83) 2 u 0 s with 8 m ´1 ż t´s u 0 du p1 `u`s ε q m´1 ď C γ }v j } 2 8 pm ´1qpm ´2q ε p1 `u0 (4.91) ε q m´2 . . (4.75) We have 1 ε |γpt{εq| ‰ . (4.76) Combining (4.75) and (4.76) gives the bound This bound inserted into (4.73), and using ş t s |γpr{εq|rdr ď ε 2 }rγprq} L 1 , yields C 1 " 8 " Since p γpxq ě 0, we obtain from (4.88), (4.89) and (4.91) }B t (4.84) ∆ 0 As 1 ε ş t ż t s 8 pm ´1qpm ´2q ε p1 `u0 (4.92) ε q m´2 . e λ 2 ε ş t s Im α 1 j pu,εqdu ď e λ 2 r}v j } 2 8 }γ} L 1 `Cγ }v j } 2 8 pm´1qpm´2q2 m´2 s . (4.93) Combining this bound with (3.33), (4.85) and (4.86) we arrive at }V ε,λ pt, sq} ď 2de pt´sqC 1 `λ2 rp}w} 2 8 `}v} 2 8 q}γ} L 1 `Cγ }v} 2 8 pm´1qpm´2q2 m´2 s , (4.94) s λ 2 ε ş t s Im α 1 j pu,εqdu . (4.86) ż t{ε 0 e ixα j ptq γpxqdx " ´t{ε ´1 2 |v j ptq| 2 ż t{ε e ixα j ptq γpxqdx. (4.87) p´1q n ż t dr 1 ż r 1 dr 2 ¨¨¨ż r n´1 where C 1 `ÿ ně1 s s s
	ε	› › ε	› › s	ż t	s ż t	´1 2πi ż t´s ¿ 0 j pu, εqdu " Imα 1	z pα ptq ´zq 2 dz " ´δj, Imα 1 j pu `s, εqdu	(4.58)
	C j ptq (Kronecker symbol). Using that }P ptqwptq} " |v ptq| 2 and combining (4.55), (4.56) and (4.58) gives the bound (3.19), (3.20). This completes the proof of Lemma 3.3. l r s s so that we estimate ε › › ż t › › ď εC 2 0 e C0 pt´sq ż t 0 u 0 α ptq ´r α j ptq , (4.67) " ż u 0 Imα 1 j pu `s, εqdu `ż t´s Imα 1 j pu `s, εqdu. (4.88)
	.53) (4.54) (4.59) (4.68) To arrive at the second estimate in (4.68), we use }P j } 8 ď 2 (see Lemma 2.6(c)) and we Now we expand the resolvent, ´1" iλ 2 |wptqyxwptq|Γ ε ptqpAptq ´zq ´1‰ 2 4.4 Proof of Proposition 3.4 To verify (3.33) we take iεB t of the right side, using (3.30) and (3.33): ş t s rα j puq`λ 2 α 1 j pu,εqsdu . ď 8d }B t P j prq}. ∆ 0 estimate the denominator in terms of ∆ 0 , (2.1), see also (3.20): |r α j ptq ´r α k ptq| " ˇˇα j ptq ´αk ptq `λ2 pα 1 j pt, εq ´α1 ˇě 2d ∆ 2 0 " `max }B t P j prq} 2 ż t´s |v j pu `sq| 2 ´ż pu`sq{ε e ixα j pu`sq γpxqdx ¯du (4.89) ´1 2 u 0 ´pu`sq{ε j `max j }P j } 8 max j }B 2 t P j prq} ˘max ,j |r α ´r α j | 8 ş t s }K ε,λ puq}du , (4.81) " ż t´s |v j pu `sq| 2 ´?2πp γ `αj pu `sq ˘´ż e ixα j pu`sq γpxqdx ¯du, ´1 2 u 0 |x|ěpu`sq{ε k pt, εqq ˇˇα j ptq ´αk ptq ˇˇ´λ 2 |pα 1 j pt, εq ´α1 k pt, εqq| ě ∆ 0 ´2λ 2 }v} 2 8 }γ} L 1 ě ∆ 0 {2, (4.69) `max j }P j } 8 max ı . (4.74) which follows from the series expansion based on (3.30). Now by Lemma 3.3, point (c), }K ε,λ ptq} ď (4.82) where p γpαq " ż 1 ? R 2π e ixα γpxqdx ě 0. (4.90)

pG ε,λ ptq ´zq ´1 " pAptq ´zq ´1 `iλ 2 pAptq ´zq ´1|wptqyxwptq|Γ ε ptqpAptq ´zq ´1 `pG ε,λ ptq ´zq `Wε,λ pt, sq d ÿ j"1 rα j ptq `λ2 α 1 j pt, εqsP j ps, ε, λqe ´i ε r V pt, rq `V pt, rqKprquR j `r, B t P j prq ˘U pr, sq `V pt, rqR j `r, B t P j prq ˘Br U pr, sq

" V pt, rqR j `r, B t P j prq ˘U pr, sq ‰ dr ´iε ż t s V pt, rq " KprqR j `

r, B t P j prq ˘´B r tR j `r, B t P j prq ˘u‰ U pr, sqdr. (4.65) We prove (3.34) below, which yields for all 0 ď s ď t `}U pt, sq} `}V pt, sq} ˘ď C 0 e C0 pt´sq (4.66) for constants C 0 , C0 independent of ε and λ. Next, we observe that the identity B t P j ptq " pB t P j ptqqP j ptq `Pj ptqB t P j ptq allows us to simplify (4.63) with X " B t P j prqq to R j pr, B t P j prqq " ÿ "1,...,d, ‰j B t P j ptqP ptq `P ptqB t P j ptq s V pt, rqKprqR j `r, B t P j prq ˘U pr, sqdr › › ď j }B t P j prq} max ,j j }B t d ÿ j"1 }B t P j pt, ε, λqP j pt, ε, λq} ď 2d max j }B t P j pt, ε, λq}. j e 1 ε ş t s Im rα j puq`λ 2 α 1 j pu,εqsdu " 2d max j e

  2 C 2 }Kpr 1 q} ¨¨¨}Kpr n q}, from which we obtain, by (4.95), }U pt, sq} ď 2d e pt´sqC 1 e λ 2 C 2 " 2d e pt´sqC 1 e λ 2 C 2 exp }γ} L 1 , so that (4.96) (upon possibly relabeling constants) indeed implies the bound on U ε,λ pt, sq in (3.34). This completes the proof of Proposition 3.4. l

	ÿ ně0	1 n!	" 2de λ 2 C 2	s ż t	}Kprq}dr	‰ n
							"	2de λ 2 C 2	ż t	}Kprq}dr	‰	. (4.96)
							s
	Now as in (4.83) and following that bound,	ş t s }Kprq}dr ď pt ´sqC 1	`λ2 }w} 2 8
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Next, using the disjointness and completeness of the spectral projections, one readily sees that Ψ ε,λ pt, sq ´1 " ř d j"1 P j ps, ε, λqe i ε ş t s rα j puq`λ 2 α 1 j pu,εqsdu . Multiplying the last operator in (4.59) on the right by 1l " Ψ ε,λ pt, sq ´1Ψ ε,λ pt, sq and using that d ÿ j"1 rα j ptq `λ2 α 1 j pt, εqsP j ps, ε, λqe ´i ε ş t s rα j puq`λ 2 α 1 j pu,εqsdu Ψ ε,λ pt, sq

rα j ptq `λ2 α 1 j pt, εqsP j ps, ε, λq, together with the intertwining property W ε,λ pt, sqP j ps, ε, λq " P j pt, ε, λqW ε,λ pt, ε, λq and the fact that ř d j"1 rα j ptq `λ2 α 1 j pt, εqsP j pt, ε, λq " G ε,λ ptq (c.f. (3.26)), we see that the second term on the right side of (4.59) satisfies

Combining (4.60) with (4.59) shows that W ε,λ pt, sqΨ ε,λ pt, sq satisfies the same differential equation and the same initial condition as V ε,λ pt, sq, (3.32), so the two are equal. This shows (3.33).

To prove (3.36) we proceed in a standard fashion following [ASY], see also [START_REF] Joye | General Adiabatic Evolution with a Gap Condition[END_REF][START_REF] Avron | Adiabatic theorems for generators of contracting evolutions[END_REF][START_REF] Joye | Adiabatic Lindbladian Evolution with Small Dissipators[END_REF]. For the remainder of this proof, we omit from the notation the dependence of operators on ε, λ. That is, we simply write Kptq, P j ptq, Gptq, V pt, sq, U pt, sq instead of K ε,λ ptq, P j pt, ε, λq, G ε,λ ptq, V ε,λ pt, sq, U ε,λ pt, sq (the latter quantities having been defined in (3.29), Lemma 2.6(b), (3.26), (3.32), (3.28) respectively).

We have 

Kptq