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Abstract

We consider a slowly varying time dependent d—level atom interacting with a
photon field. Restricted to the single excitation atom-field sector, the model is a
time-dependent generalization of the Wigner-Weisskopf model describing sponta-
neous emission of an atomic excitation into the radiation field. We analyze the
dynamics of the atom and of the radiation field in the adiabatic and small coupling
approximations, in various regimes. In particular, starting with an excited atomic
state, we provide a description of both the radiative decay of the atom and of the
buildup of the photon excitation in the field.

1 Introduction

This paper is concerned with the dynamics of an open ‘system-bath’ model. The system
is a d-level ‘atom’, placed in a ‘bath’; or radiation field, which is modeled by a free Bose
field. The system Hamiltonian, H,(t), depends slowly (adiabatically) on time. Generally,
rigorously deriving the effective reduced dynamics of an open quantum system is a primary
task in qunatum theory. Even in the easier case when H, does not depend on time, a
treatment is not simple. In the literature, often the ‘bath’ (radiation field) is considered
in a state of thermal equilibrium and one asks whether the coupled system-bath complex
converges to the joint, interacting equilibrium in the limit of large times — a phenomenon
called ‘return to equilibrium’. This effect happens when atomic and field modes are
exchanging energy, generating transitions between the system levels leading to the thermal
distribution of the original system energies, to lowest order in the system-bath interaction.
A different line of inquiry, towards which we aim to contribute here, considers the process
of emission of an excitation. In this setting, the interaction between the atom and the
field enables transitions between the excited atomic states and its ground state only, not
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between excited states directly. As a result, the atom is driven, generically, towards its
ground state, losing the excitation to the field. It describes the spontaneous emission of
an excitation.

The Wigner-Weisskopf model introduced in [WW] provides a simple description of the
exponential in time de-excitation of an atom coupled to a field of photons. It considers a
single-excitation process between the levels of the atom and one photon only. The interac-
tion term in the Hamiltonian is a rank two coupling operator, a structure which allows for
a mathematically rigorous analysis of the dynamics. Our version of this model includes
a possible time dependence (an additional external influence) of the atomic Hamiltonian.
We study this generalized Wigner-Weisskopf atom in the adiabatic and small coupling
asymptotic regime. Our main results are a detailed expansion of the dynamics of the ini-
tially excited atom (the population of each level), as well as the buildup of the excitation
in the field in various asymptotic regimes.

From the point of view of adiabatic quantum control, the problem at hand addresses
the following situation. Given a smooth time dependent d-level Hamiltonian with simple
eigenvalues, an initial eigenstate evolves to a state close to the corresponding instanta-
neous eigenstate obtained by continuity, provided the time variation of the Hamiltonian
is slow enough. This simple version of the adiabatic theorem of quantum mechanics
[BEL K1, N1, [ASY] allows one to perform quantum engineering on the system provided
one has sufficient control on its time dependent Hamiltonian. When the d-level system
is further subject to interactions with an environment, the adiabatic picture is blurred
and a quantification of the effect of the environment becomes of practical interest. This
question was addressed in [JMS] for a two-level system coupled to a Bose field by means
of an instantaneous energy conserving interaction, in which the interaction operator com-
mutes with the system two-level Hamiltonian at any moment in time. By contrast, the
interaction between the d-level atom and the field we consider in this present work is much
more generic, as it is not assumed to be energy conserving. Accordingly, the dynamics of
the atom in the adiabatic and small coupling regime differs from that found in [JMS], and
it is closer to that expected for a generic energy-exchanging model. Indeed, our results
are in keeping with those established in [J2] for a similar physical situation addressed
within the framework of an effective dynamics generated by a Lindbladian with a time
dependent Hamiltonian and a generic dissipator, in the corresponding adiabatic and small
amplitude of the dissipator regimes. Correspondingly, the results of [JMS| are compara-
ble to those obtained for effective dynamics generated by dephasing Linbdbladians, in the
sames asymptotic regimes, see [AFGGI, [AFGG2].

2 Model and main results

We consider an idealized atom having d possibly time-dependent, simple excited energy
levels 0 < a4 (t) < ... < agy(t) with normalized eigenstates ¢,(t) and a ground state energy
ag = 0 with a corresponding time-independent, normalized eigenstate ¢y. The atom is
in contact with a radiation field, modeled by photons with momenta k € R? in a state of



thermal equilibrium at temperature 7' > 0. We assume that the atomic energy spectrum
has a gap,

%ggjgljlgk laj(t) — a(t)| = Ao > 0. (2.1)

The interaction allows for excitations to be exchanged between the atom and the field, such
that the total number of excitations is conserved. The total (possibly time-dependent)
Hamiltonian, acting on the Hilbert space C%*! ® F, where F is the Fock space over the
single-particle space L*(R?, dk) describing the field, is given by

H(t) = H,(t) + Hy + AV (1), (2.2)

where the free atom and field Hamiltonians are
d
IO WECTCE UL

To simplify the notation, we write H,(t) and Hy instead of H,(¢) ® 1 and 1® Hy, and we
recall

Ha(t)% = 0.
The quantity A in (2.2)) is a (real) interaction constant and

d
Z £)|;(t){do| ® alg) + h.c. (2.4)
Here, v;(t) are smooth complex valued functions of time and

a(g) = JRB 908) a(k)dh (2.5)

for a form factor g € L?*(R? d®k). The term |¢;(t))¢o| ® a(g) in the interaction (2.4)
describes the process of absorption of an excitation from the field accompanied by a
transition from the ground state to the jth excited state in the atom.

Remark: Positive temperatures. For concreteness, the field is presented to be described
by the Fock space F over the single-particle space L*(R3, d®k). The vacuum state in F
is the equilibrium state of the field at zero temperature. However, our analysis carries
through without modification to the positive temperature case. Indeed, it suffices to
replace the Fock space F by a new Fock space F3, constructed over a new single-particle
space L2(R x S?%). The detail of this procedure in our context are explained in [JMS].

We will work under the following regularity hypothesis:

Assumption (A). The atomic Hamiltonian R* 5 ¢ — H,(t) € My(C) and coupling
amplitudes R* 3 ¢ — v;(t) € C are C*(R™"), with finite derivatives at ¢ = 0. Here
R* = {z > 0}.



Note that assumption (A) together with the gap condition ({2.1)), ensures by perturbation
theory (see Lemma [3.3)), that under the condition
472

ag ool <1, (2.6)

the eigenvalues «;(t) of H,(t) are simple, smooth, and the normalized eigenvectors ¢;(t)
can be chosen to form a smooth orthonormal basis of C%. In (2.6,

v(t) =g, e gy = J e W g(k)*d®k,  teR, (2.7)
R3

is the field correlation function, and we view v(t) as a vector in C%, having components
v;(t). We use the notation, for any time-dependent vector z(t) € C¢,

[ = sup ()] ca-
t=0

=

Adiabatic scaling. We consider the time-dependence of the Hamiltonian to be
governed by a parameter € > 0, that is, we examine the Schrodinger equation

i0:=(s) = H(es)pe(s), 1=(0) =¥, seRT (2.8)
For € small, the Hamiltonian varies very slowly in time and undergoes a change of order
one on a time scale of order 1/e. Introducing the rescaled time t = s, the corresponding
transformed wave function ¢(t,e) = 1. (t/c) satisfies

l
€ €

0(1,2) = L(@0t/2) = THEA1/2) = THDO(t ) (2.9)

We thus consider the adiabatic Schrodinger equation (rename the wave function ¢(-, &) —
¥(-)
ied(t) = HO(), (0) =, teR* (2.10)
If 1(t) solves (2.10) then w(es) solves the original (2.8)). In the equation involving the
rescaled time ¢, (2.10)), the Hamiltonian undergoes a change of order one on a time scale
of order one. We will analyze the solutions of (2.10]).
Note that for a time-independent Hamiltonian H(t) = H for all ¢, the solutions of

23) and (2.10) read
be(s) = e B HYO (1) = e H PO, (2.11)

Therefore, in this autonomous setup, we can recover the long time behaviour of the system
described by by setting t = 1 and considering € — 0, or setting ¢ = 1 and allowing
t — 0.

In what follows, we will always consider 0 < e < 1.
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Single excitation manifold. The Schrédinger evolution (2.10) leaves invariant the
space of single excitation atom-field wave functions

P = {veCQF : y - szj )@ +00@a* (), 2 € C, f € LR, d*h)}, (2.12)

j=1

where ) is the vacuum state in F. Then the solution of (2.10)) within the subspace P;
has the form

Z 0) ® Qf + ¢ ® a™(f;) (2.13)

and since H(t) is self-adjoint, the norm of () is conserved,

[ = Z 25 (OF + | fel2@saony =1, t=0. (2.14)

7=1

We collect the components z;(t) into a vector, written in the eigenbasis {¢;(0)}%_, of
H,(0), as
z1(t) d
)= ¢ | =20 7(18500). (2.15)
z(t)) 7
At time t = 0, the probability of finding the system in its excited state ¢;(t) is simply
p;(0) = |2;(0)]?. The probability of finding the system in the jth instantaneous excited
state ¢;(t) at time ¢ is

pi(t) = (), (165(6)X@5(1)| @ T) () = ]2 1)¢0,(0), 00| = [(5(1), =0

(2.16)

The sum ;7| p;(t) is the probability to find the excitation in the atom (that is, in any of

d

the instantaneous excited states) at time ¢, and one gets from ({2.16)), and since {¢;(t)}5_,

is an orthonormal basis,

it 2 50 = |0, (217

We denote both inner products of C? and of L2(R3, d3k) by (-, ), the arguments making
it clear which space is meant.

2.1 Main results

We present our main results below in this section. We discuss them in detail and compare
them to previous results in Sections [2.2] and [2.3]
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The field correlation function, defined by (2.7) and its Fourier transform,

’\ a wzt
gl \/27‘(’ f

play an important role in the dynamics. We will assume the following decay and regularity
hypotheses on 7.

Assumption (B). The field correlation function y(¢) (2.7) belongs to L*(R), and
further satisfies

1) £ 23() € LARY), £ (1) € LHR),
ii) |y(t)] < C,/(1 +1¢)™ Vt e R*, for some m > 2 and some 0 < C, < 0.

Remark: Positive temperatures. In the positive temperature setting (see the remark
after (2.5))), v(t) is the thermal field correlation function, see for instance [JMS| M1l [M2]
M3].

Since (t) is a positive definite, continuous function of ¢ € R, Bochner’s theorem
asserts that the inverse Fourier transform ¥(a) = (2m)7"2§, e~ (t)dt > 0 is a positive
function. But ¥(—a) = 7(a), so we have

A(a) =0, aeR.

Fort >0, 5 =1,...,d, we define the quantities

= /7200 (0P (ay(1) = 0 and &;(t) = vV2r|u; () Tm(x:7) (05 (1)), (2.18)

where x4 (¢) is the indicator function of [0, ), as well as the Berry phase (Lemma

t) =i L (;(u)|0,6;(u)>du € R. (2.19)

Our first result gives an expansion of the vector z(t), (2.15]), when the excitation is
initially entirely concentrated in the atom, meaning that [2(0)| = 1 (c.f. [2.17)).

Theorem 2.1 (Dynamics of the atom) Assume (A) and (B), take z(0) € C? with
|2(0)|| = 1 and suppose that (2.6) holds. Then, for all0 < e <1,

4

sup Z —7S0 aj(u +/\ aj(u )]due—LSO,BJ(u )du z@ ( )¢]( )H <€ n )\2 A ),
9

0<t<1

||M&

(2.20)
for a constant C' independent of €, \.

The approximating dynamics of z(t) contains an oscillatory phase and a decaying part
So Bj(u)du > 0). It describes the decay of the excitation away from the atom into the
field. In particular, Theorem [2.1] implies the following estimate on the probabilities of the

instantaneous excited levels, p;(t) = [(¢;(t)|z(¢))* (see (2.16].
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Corollary 2.2 (Population of excited atomic levels) Under the conditions of The-
orem 2.1], the probability p;(t) of finding the atom in the instantaneous excited state ¢;(t)
at time t, for j = 1,...,d, satisfies

2 4 2\
p;(t) = e 25 o fitwdu gy (0) + O(e + N + =), (2.21)
€
Our derivation of the above results for time-dependent H,(t), can also be used to ana-
lyze the case when H, is constant in ¢. The expressions (2.18) become time-independent,
and we set
o

L=, — B = Vv PIm(x s y) (ag) — iv/m/20u A (ay). (2.22)

Let P; be the spectral projection of H, onto the eigenvalue o; of H,.

Corollary 2.3 (Atom evolution for time-independent H,) Assume (B)ii) and take
2(0) € C* with |z(0)| = 1. There is a A\g > 0 such that for X < Ao,

d
sup | z(t) — Z e‘it(aﬁ’\Qa;)sz(O)H < CN?,

=0 o

for a constant C' independent of \.

The last Corollary shows that z(t) is approximated by the semigroup e/~ on C%, gener-
ated by the operator L = —i Z;-Z:I(Oéj +A%aj) P, uniformly in time ¢ > 0. The generator is
dissipative, ReL < 0. Under the ‘Fermi Golden Rule condition’ min;<;<q |v;|*7(c;) > 0,
et converges to zero exponentially quickly in ¢, at a rate oc A2

In our next result, we analyze the properties of the excitation emitted from the atom
into the field. The probability density for the field excitation to have momentum k € R?
at time ¢ is given by |f;(k)|?, see Section This motivates the analysis of averages
of the form §, B(k)|f;(k)|*d*k for suitable test functions B(k). We consider the class
B : R3® — C such that

vp(t) = ng B(k)|g(k)?e Wk e LYR,dt) (2.23)

(compare with (2.7))). The following is a well-coupledness condition,
inf 3;(t) > 0, (2.24)

=0
where we recall that 3; is defined in (2.18). Here is our result on the emitted field
excitation momentum density distribution |f;(k)[*:

Theorem 2.4 (Momentum distribution of emitted excitation) Assume (A), (B),
and suppose that the initial excitation s localized entirely on the excited atomic level j
(1 < j <d), meaning that |z;(0)| = 1 and z,(0) = 0 for k # j. Suppose also that
holds and let B be any test function satisfying . Then

7



(A) In the limit €, X, ’\8—3 — 0, ’\?2 — 0,

fn | B(R)1 () 23k = ”3(( ](E))))) (2.25)

(B) In the limit e, A — 0 such that ’\5—2 =1 >0 is fired,

i [ B0k = Varr [ o), oy (6DPe 5% 3y oy 9) .
0
(2.26)

2.2 Discussion of main results

Generally, our results show the details of the emission of the excitation from the atom to
the field, meaning that |z(¢)] — 0 as t — c0. In the time-independent case (H(t) = H),
Corollary [2.3 shows that the population p;(t) = |z;(¢)|* of the excited level j satisfies

pi(t) = e 2itp,(0) + O(N?),

uniformly in ¢ > 0, and where §; is defined in (2.22)). When H,(t) depends on time and
varies slowly with adiabatic parameter 0 < ¢ < 1, the decay rates (5;(t) become time-
dependent (see (2.18])) and the population of the atomic excitations follow the estimate

2.21) of Corollary 2.9,
2 2\
p;(t) = e 25 % Fitwdu o (0) + O + A2 + ?)

In neither case will initially unpopulated atomic excited levels become populated at later
times, beyond an amount bounded by the error terms.

2.2.1 Discussion of Theorem [2.1]

For the error term in (2.20) to be small both the coupling constant A and the adiabatic
parameter € as well as the ratio \*/¢ have to be small. We identify three regimes:

1) Strong coupling relative to adiabatic speed: € « N> « y/e « 1. In this case, the
adiabatic time scale of the Hamiltonian is large with respect to the relaxation time
of the system induced by field (ocA™2) and the coupled system has time enough for
the field to absorb the initial excitation on the atom. Namely, for 0 <t < 1,

2 .
(1)) < e mmesmah B 4 O( o),

At the ‘end of the process’, when ¢ = 1 (which corresponds to the physical time
s = 1/e which is very large), the excitation survival amplitude is bounded above

2
by e~ =7 —|— O(\/e), Which is very small if the coupling is effective, meaning that

T = 4/7/2miny¢j<q So |v;(u (u))du > 0.
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2)

Comparable coupling strength and adiabatic speed: \?> = € « 1. The estimate (2.20))
gives

d
- Z o Yo B3 (w)du o —i §i[ 2oy (u)+; (u)]du i€ (1) 2(0) 6;(t) + O(e).

In this regime, in which the coupling constant multiplied by the time scale is fixed,
the effect of the field is to decrease the initial amplitude of the excited state of the
atom by an explicit finite correction along each level of the atom. This is the analog
of the weak coupling regime which Davies considered for the stationary case (H
independent of time), [D1].

Weak coupling relative to adiabatic speed: \?> « € « 1. We distinguish two sub-
regimes. For €2 « A2 « € « 1 an expansion of the exponentials in ([2.20) gives

R0 0), ()

HM&

X(l_z‘)‘;ﬂ&j(u u—_Jﬂj du>+0(€+/\4)

where the integral terms are significant relative to the remainder (as 2 « A?). In
this regime, we find an explicit decrease of the initial amplitude of the excitation of
the atom of the order A\*/e. When this ratio tends to zero the initial excitation is
not transferred to the field, the atom stays excited, |z(t)| ~ 1.

In the second regime, \? < €2 « £ « 1, the expansion of the exponentials in ([2.20))
gives

Zesgo%“)d“@ 2(0)6;(t) + O(e).

Again, ||z(t)]| ~ 1 and the atom does not get de-excited. In both regimes, the
interaction with the reservoir is too weak to significantly alter the dynamics of the
atom alone, which evolves adiabatically with its own Hamiltonian.

Recall that we consider initially excited atoms, meaning that |2(0)|? = 1. The prob-

ability for the atom to be in the ground state ¢g at time ¢ is given by 1 — [2(t)|?, see
(2.16)), (2.17). We thus define the de-excitation probability at time ¢ as
pu(t) = 1—|z(t)[* (2.27)

Our findings in the different regimes 1)-3) discussed above then imply the following.

1)
2’)

For ¢ « A? « /e « 1 we have virtually full de-excitation: p(t) > C’

For A\? = ¢ « 1 we have partial de-excitation: p;(t) = 1 — 25:1 =250 BiWdu| 2 (0)|2 +
O(e).



3’") For A\? « £ « 1 we have virtually no de—exc1tat10n
If e « \? « € « 1 then p|(t) = 2§Zj:1| 2 (0)? §, Bj(u)du + O(e + 2 )« 1.
If A2 <e? «e«1then p(t) = O(e) « 1.

In [JMS] the authors studied the adiabatic transition (scale ) probability of a time
dependent two-level system interacting with a Bose field by means of an instantaneous
energy conserving interaction, with coupling constant A. This kind of coupling induces
transitions between the two levels that are likely to be small, since in a time independent
situation it conserves the populations exactly. By contrast, the interaction we consider in
the present work allows for instantaneous energy exchange and is more likely to induce
transitions between excited and ground states.

The transition probability from the excited to the ground state for the energy con-
serving model, found in [JMS], is given by

JK s))ds + o(A\%¢) if e« N« exl
PE = IE J K(s ))ds + Q(t )) o(e?) if N =g« (2:28)
£2Q(t) + o(e?) if M2«e«l.

Here K and @ are explicit non negative functions constructed from the Hamiltonian,
A(s) > 0 is the energy gap of the two-level system, 7 is the Fourier transform of the
correlation function of the field. Comparing with p; (t) we observe the following:
(a) p{°(t) < py(t) in all regimes, and
(b) pi°(t) vanishes in all regimes (as e, A — 0), while p(¢) is of order one unless
AN «ex«l.

The behaviour of p; () detailed in 17) — 3”) above is similar to that of the adiabatic tran-
sition probabilities between the levels of a time dependent gapped Hamiltonian evolving
according to a Lindblad equation modeling a weak reservoir interaction, with a dissipator
of order g > 0, [J2]. In this setup, the adiabatic transition probability plL(t) between the
excited state of a two-level system at time zero to its ground state at time ¢ was shown
in [J2] to be

(Ri(t) + O(g?/e + ¢/9) if e«g«qexl
Ry(t) + O if g= 1
PE(t) = | 2(t) + O(e) if g=e«
t
gf J(s)ds + O(g + &> + ¢g°/e*) if g«e« 1.

0

Here, the non negative functions Ry, Ry and J depend on the Lindbladian considered,
and R;(t) < 1. With the identification g = A?, the leading order asymptotics for p,(t)

10



and pr(t) have the same behaviour as functions of the coupling constant g = A\? and the
adiabatic parameter ¢: they are of order one, unless g = A2 « € « 1 in which case they
are of order g/e = A*/e. The actual values of the time dependent coefficients depend on
the details of the models.

2.2.2 Discussion of Theorem [2.4l

(1)

(3)

The meaning of Yg(a) and energy conservation. We have

o) = f wftf BR)lg(k) e~k ] di
= m [ mootr] [

21 B> Jgs “R

- v@%ggJ%BuﬂmMFm“R”“”‘a”fh

w(k) —a

e—i(w(k)—a)tdt] d3]{5

Commonly one writes limpg_,o W = m6(w(k) — ), since L sin(Rz/xz) is a

representation of 0(0) in one dimension as R — oo, and so
(@) = V21 B(k)|g(k)[*6 (w(k) — a).

Example. Suppose w(k) = |k|. Then using spherical coordinates (w, o) € Ry x S?,
we have for oo > 0,

sin (R(w(k) — a)) » sin(R(w — «))
B(k)|g(k)|? Bk = 2 SIS — X)) dw — a2
| Bwlaw P [ty =D gy noya
in the limit R — oo, where J(w) = {, B(w,0)|g(w, 0)|*do, and provided that J(w)

is differentiable on R, and its derlvatlve satisfies J' € L*(R,,dw). This illustrates
the usefulness of the notation with the delta function.

The results , are a Fermi Golden Rule, describing a process of transition
into continuous spectrum. It shows in particular energy conservation (delta func-
tion). In the regime (A), the limit is independent of time as the emission process
happens right away: |z(t)| ~ e ¥ ~ 0 for all ¢ > 0 in the limit considered. The
emitted momentum density only depends on the energies of the atomic Hamiltonian
at time ¢ = 0. In contrast, in the regime (B), the emission happens gradually, its
amplitude grows in ¢ to its final value and the eigenvalue «;(s) and eigenvector ¢;(s)
contribute to the amplitude, for all 0 < s < t.

We have (see for B;(t))
¢
lig 2m f [Cw(s), ¢ (s)Pe > MG, (a;(s)) ds
r—00 0

V8(;(0))

— lim VET [ s/ D B 5 oy (s/r)) ds = L

11



so the result (2.26) is ‘continuous’ with respect to taking r — oo (see (2.25)),
morphing the regime (B) into (A).

(4) For the constant function B(k) = 1, we have 73 = ~, which is defined in ({2.7).
It follows from that in the parameter regime (A), lim | f;|3 = 1, which is
the probability of emission of the excitation into the field. In the regime (B), this
probability depends on time and is given, according to , by

lim | £, = V2o f (), 6;(3))Pe 8 B3 (ay(s)) ds.

2.3 Links to previous literature

The dynamics of the Wigner-Weisskopf model in the time independent setup (time inde-
pendent H,) was investigated in details by means of spectral methods in [DI1]; see also
[JKP] for a more recent account. In the time dependent framework (time dependent
H,(t)) we consider in the current work, we use a different approach, similar in spirit
to that used for deriving master equations, along the lines of [D2, [DS]. For detailed
information on master equations and the weak coupling limit, the reader may consult
[Tr, M1, M2, M3, [ALL [DF2] and their references. The authors of [DS] address the adi-
abatic dynamics of a time dependent d-level system weakly coupled to a Fermi field,
corresponding to the regime A2 = ¢ << 1. They derive the asymptotic system state,
for a somewhat different class of interactions than we consider here, and they do not
analyze the details of the state (such as the evolution of the populations — which is one
of our goals). Related models, in which the bath effect is incorporated into the system
Hamiltonian as an effective time dependent term (so-called ‘classical noise’) is commonly
used to describe noise assisted quantum excitation transfer processes, see for instance [Ne]
and references therein. Very recently, time dependent variants of the Wigner-Weisskopf
model have been used to investigate properties of non-autonomous Lindblad dynamics,
with particular focus on their markovian properties [CHLL [CL]. Variants of the Wigner-
Weisskopf model are used to describe, more abstractly, the coupling of a small quantum
system coupled to a large environment characterized by continuous spectrum, see e.g.
[Mal, DET) [AJPPL [DK] and references therein.

There are adiabatic approximation results for instantaneous generators with eigenval-
ues embedded in continuous spectrum [AEL [Te]. However, in our situation, the instanta-
neous Hamiltonian restricted to the single excitation sector, has purely absolutely
continuous spectrum over the whole time span considered, for small enough non zero cou-
pling strength [D1], [JKP]. The above mentioned results and tools are thus not amenable
for us. In particular, our model and results differ from those of [CJKN], where the authors
consider a Wigner-Weisskopf type model with a single (d = 1) uncoupled excited energy
level a(t), varying in such a way that the eigenvalue of the coupled model moves in and
out of the absolutely continuous spectrum. They analyze the adiabatic limit of p,(¢) in
the situations where the instantaneous eigenvalue remains embedded in the spectrum, or

12



where it becomes a resonance. Related results on adiabatic pair creation processes in the
Dirac equation are studied in [N2| [PDJ.

In our master equation approach, on the other hand, we have an effective time depen-
dent generator with simple eigenvalues. However, the generator is not self-adjoint and also
depends on the adiabatic parameter ¢ in a singular way. Non self-adjoint generators are
known to be amenable to adiabatic techniques, [NR] [J1, [AFGGI] [Sc], but in the present
situation, extra care and detail in the analysis is required to control the propagators, due
to the singular e-dependence.

3 Proofs of the main results

3.1 Dynamics of the atom and proof of Theorem

Let {¢;(0)}9_; be the fixed, time-independent basis of the excited atomic space C* con-
sisting of normalized excited eigenstates of H,(0). With respect to this basis, each in-
stantaneous eigenvector ¢;(t) is given by a d-dimensional time-dependent vector,

2<¢@ (1)) 61(0). (3.1)

The atomic Hamiltonian H,(t) and the interaction V() then take the form

£)|9;(0) )Xol ® alg) + h.c., w;,

H,(t) = Z [Ha(®)]imn|&m(0))X@n(0)|,  [Ha(t)Imn = {dm(0), Ha(t) #n(0)),  (3:2)
(P

Z £)(¢;(0), 4«(t))- (3.3)

Note that v(t) = (v1(t),- -+ ,va(t))T in (2.4) is obtained from w(¢) by the unitary map

X))
The parameters z;(t) € C and f; : k — fi(k) € L*(R® d®k) of (2.13) satisfy the

following closed system of coupled equations,

d
ic0z;(t) = Z e ze(t) + Aw;(t){g, fi) (3.4)
i0ufi(k) = w(k)filk) + Azmzw)g(k). (3.5)
=1
We write , in vector form,
iedez(t) = A(t)z(t) + Mw(t)g, fo), (3.6)
il fy = wfi+ Mw(t),z(t))g, (3.7

13



where A(t) is the hermitian d x d matrix representing the restriction of H,(t) to the
subspace spanned by {¢;(0)}7_, and

zt)=1 + |, wt)=|[ : | (3.8)
Zd(t) wd(t)

Let U.(t, s) be the free atomic propagator, solving the evolution equation
i Uc(t, s) = A(t)U:(t,s), U(s,s)=1. (3.9)

As A(t) is hermitian, U(t, s) is unitary, U.(¢, s)* = U.(t,s)"' = U.(s,t). We will also use
the notation U.(t) = U.(t,0).

For a time-dependent vector x(t) € C?, we set

ol = sup |o(t) v

=

Proposition 3.1 (Expansion of excited state amplitudes) Suppose the initial con-
dition i € Py is such that fi—o = 0, so the excitation is initially in the atom. Then

iedpz(t) = [A(t) — iNw(t){Q-(t)w(t)|]z(t) + Ro(t, \, e), (3.10)
where Lt
Q4ﬂ=gL7(;SﬁUt@@ (3.11)

with a remainder satisfying

[Ro(t, A &) < A ol vl [y (@) + X [wlle 0wl [ty(E)] 2 (3.12)

In the time-independent case A(t) = A we have U.(t,s) = e =94 and a simple
change of variables in (3.11)) gives Q.(t) = é/ ® 745 (x)dx, see Section . In the general,
time-dependent case A(t), we can expand the operator Q.(t), using usual methods
of adiabatic dynamics, involving Kato’s intertwining operator, at the cost of additional
e-dependent error terms. To do so, we define the operator

tle
L.(t) = J AW ~ (1) dx. (3.13)
0

Then we have the following result.

Proposition 3.2 We have

HQa(t) —T.(t)*] <eCy + €20, (3.14)
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where

d2

Ci = cxmax 0Pl ylze + d* max [ 0¢Fj | |ty]zr + dmax [0yl [£2] 22
0
2

d
Co = el (Ut d|Ale) max [P, + max |37 o

max; |0rvj| o

A a0, . (3.15)
0 J

for a numerical constant c.

By ‘numerical constant ¢’ we mean a constant ¢ > 0 which can be taken as an ‘absolute’
integer, not depending on any of the parameters of the problem, such as A,d, e, ¢, \.

Combining (3.14)) with (3.10) gives the following evolution equation for z,
ie0iz(t) = Gex(t)z(t) + Ry(t, A, €), (3.16)

where
Gea(t) = A(t) — iN|w(t) Xw(t)| To(t), (3.17)

where the remainder has the bound (use £? < ¢ in (3.14))
[R1(t, A &) < [Ro(t,e, M)l + eX*[wl%(Cr + Co). (3.18)

As we are interested in the possible decay of ||z(¢)| that would describe the de-excitation
of the atom, we want to study the contraction properties of G. (%), . For each
t fixed, the Lumer-Phillips theorem says that G. (f) generates a contraction semigroup
if and only if Re G () < 0 (Gea(t) is dissipative), see e.g [EN]. However, the latter
property fails to hold for any non-selfadjoint rank one perturbation of A(t) = A(t)* that
does not commute with A(t). Hence, in order to control the propagator generated by
G (t), we further simplify it by perturbation theory in A.

Lemma 3.3 (Analytic perturbation theory for G. ,(t)) Suppose that (2.6) holds. Then
we have the following, for any values of t =0, 1 > ¢ > 0:

(a) Gea(t) has simple eigenvalues aj(t, e, N), j = 1,...,d, each one lying close to an

eigenvalue a;(t) of A(t), satisfying

, d
it 2, A) = (s (8) + Nt €))| < 8 A ol [y 2 (1Al + A0/2),  (3.19)
0

where

t/e
o(t,e) = —i]vj(t)lzf e (7)dx. (3.20)
0
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(b) The rank-one spectral projections P;(t) and Pj(t,e,\) of A(t) and G.\(t), respec-
tively, for j =1,...,d, satisfy

4)?
|Pi(t, e, 0) = Pi(t)] < A—OI\U\@IMILL (3.21)

(c) We have |Pj(t,e,\)| < 2 and the time derivative of this projection has the bound
8
[P;(t, e, M < A—O[\atA|oo + X (2w eo [ wloo 20 + (0I5 [ty () 21 1 0eAlleo)

Hul, /)| (3.22)

Moreover, there is a constant C (for which one can give an expression similar to

the right side of (3.22), see (4.44))), independent of €, A\, such that
1
[00P;(t,2, ) = &P ()] = CX*(1 + Z[r(t/e)) (3.23)
and

2Byt 0 < O (1430 + RN+ 1)+ 1@ E/e)] + S5 h)). (3:21)

Using the spectral representation G »(t) = Z;lzl a;(t,e, \)P;(t,e, \) and (3.19) we get
from (B.16),

ie02(t) = Gea(t)2(t) + Ra(t, A, €), (3.25)
where .
Gen(t) = > (0i(t) + N0t €)) Pi(t, €, \) (3.26)
j=1
and the remainder satisfies the bound (use (3.19) and |P;(t,e, \)|| < 2),
d2
[Ra(t, &, M| < [Bat, 6, )] + 16 53 0] |17 ([A ] + Do/2). (3.27)
0

The right hand side of (3.26)) is the spectral representation of the operator G »(t).

We refrain from writing down the explicit dependence of all estimates in the various
norms of the functions that define the problem. Instead, in the following, all quantities
that are independent of t > 0, 0 < ¢ < 1, X\ are denoted by the generic symbols C, Cy,
C1 ..., which may vary from line to line.

Our next task is to integrate the equation (3.25)). Denote the evolution operator
associated to the linear part of (3.25) by U. (¢, ),

ia&tU&,\(t,s) = gg’)\(t)UE,)\@, 8), UE’)\(S, 8) = 1. (328)
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As the left side carries a factor € in front of the derivative, this equation is amenable
to the usual adiabatic treatment, even though here the non-self-adjoint generator G. ,(¢)
depends on ¢ in a singular way, see (3.17)), (3.20). Denote the associated Kato generator
by

L\/_]&

i (t, e, N)) Py(t, e, \) i (t, e, N) (0 Pi(t, e, \)) (3.29)

HM&

7=1

and denote the Kato intertwining operator by W (¢, s), which is the solution of
OWen(t,s) = Kea()Wen(t,s),  Weals,s) =1 (3.30)
The latter satisfies the intertwining relations, see e.g. [Krl [K2]
Woia(t,s)Pi(s,e,A) = Pi(t,e, \Wei(t,s), j=1,...,d. (3.31)
The adiabatic evolution operator V. ,(t, s) is the solution of the equation
€0 Ver(t, s) = [Gen(t) + ic Ko\ (1) Ven(t, s), Voa(s,s) = 1L (3.32)

Proposition 3.4 Under the condition (2.6), the adiabatic evolution has the following
properties.

1. Vo \(t, s) has the decomposition
VVE,A(@ 3) = W&)\(t, S)\I/&)\(t, S)a

d o, )
Voa(ts) = 3 Pise, N)e s Bloslraogtumadn (3.33)

j=1
2. There are constants Cy,Cy such that for any 0 <e <1, 0< s <,

[Vea(t, s)]| < 2det=XC T (2, )| < 2d eI+, (3.34)

3. Voa(t,s) approzimates the dynamics U \(t,s) (3.28) as follows. Further assuming

that o
v(2)| € —L—, for some m > 2, (3.35)
(1 + ||
we have for any 0 < s <t
Vor(t,s) — Ua(t, 3>H < CeCE9) (¢ 4 )2), (3.36)

for constants C,C' independent of £, \.
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Remark 3.5 The construction and the properties of the adiabatic evolution obviously
hold for A = 0 as well, in which case G.o(t) = A(t) = A(t)* is the atomic Hamiltonian
and U.o(t,s) = U-(t,s) is the evolution (3.9). The eigenprojectors P;(t) are orthogonal
and yield the e—independent anti-symmetric Kato generator K(t) = 2?21 (0:P; (1)) P (¢).
In turn, the corresponding Kato intertwining operator W (t, s) is unitary and independent
of €, while the unitary phase operator reads V_(t,s) = Z;l:l Pj(s)e’isZ ajWdu  The yni-
tary adiabatic operator given by V.(t,s) = W(t,s)V.(t,s) approzimates of the evolution
operator U.(t, s) in the sense

[U(t, 5) = Ve(t, s)|| < e[Cq + C5(t = 9)].
This is detailed in the Proof of Proposition Section [4.4

By the Duhamel principle, the solution of (3.25)) is

2(t) = U. (£,0)2(0) + % J U (t, 5) Rals, 2, \)ds. (3.37)

Then we obtain from ((3.36)), [|2(0)| < 1 and supgc,<i<; [Uea(t, )| < Co (see (3.34) or
(4.66))), so that, uniformly in 0 < t < 1,

I2(t) — Vea(£,0)2(0)] < O + 3 + = sup [Rols,2, M), (3.38)

€ 0<s<1

with the bound on Ry. Recall the product structure of V. A(t,s), in which
the phase term (complex phases) evolves quickly for small ¢ and where W () satisfies
3.30). As the projections P;(t,e,\) are not generally orthogonal, the operator K. ,(t)
3.29)) is not anti-selfadjoint, and thus W, () is not unitary. The size of V. () is thus
not dictated by the phase term U, ,(¢, s) alone. We now compare W, ,(t) with the unitary
operator W (t) which is defined as the solution of

oW (t,s) = K()W(t,s), W(s,s)=1 with K(t):i[atpj(t)]mt). (3.39)

For later purposes, we recall here that since the spectrum of A(¢) is simple, we can
make W (¢, s) explicit, following [BJ:

Lemma 3.6 (Berry phase) Given the smooth eigenbasis {¢x(t)}1<k<a of A(t) and 1 <
7 <d,0<s,twe have

©;(t,s) == W(t,s)p;(s) = eigﬂ'(t’s)qﬁj(t), where  &;(t,s) = zf (pj(u)|0rpj(u))du. (3.40)
&;(t, s) is real, it is called the Berry phase.
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The operator W (t,s) does not depend on € nor on A and is unitary, W(t,s)* =
W(t,s)™' = W(s,t). We have

0, (WE,A(t, )W (¢, s)*1> — Won(t, $)[K(s) — Kea(s)]W(t,5)7), (3.41)
which gives upon integration,
Wi(t,s) —Walt,s) = f Wt w)[ K (u) — Ko (w)|W (u, s)du. (3.42)

Next, we write

K(t) (at (1) — [0, (t&t)\)]Pj(t,g,A)> (3.43)

— Pi(t,e,N) — (G:Pj(t,e,\) — O P;(t)) P(t, €, A).

0-3
- Sen

Using the estimates |P;(t,e, \) — P;(t)|| < 4)‘2 Aol ]yl (see (3-21)) and (3.23), we obtain
from ([3.43]) the bound

1
| K (u) = Koa(uw)| < X (1 + g|7(u/5)|)‘ (3.44)
Now, since |[W (¢, s)|| < 1 we obtain from (3.42)
t
1
HWé—’,\(t, s) — Wi(t, s)H < C’)PJ HWa,\(t,u)H(l + g|7(u/5)|)du. (3.45)

The usual Dyson series expansion based on ([3.30]) gives the bound
IWo(t, 8)]| < e 1Kealdu o (COU+X(E=5)ON (3.46)

To show the second inequality in (3.46)), we note that (see (3.22)) and ([3.29))
)\2
[Keau)] < 2dmax 0Pt e, M) < C(1+ A" + ;\7(“/5)!),

so that § | Ko (u)|du < C[(t — s)(1+ A2) + A2 7] £1]. We combine (3.45) with (3.46) into
|Wealt,s) —W(t,s)| < CN2CNH9)  for any s < L. (3.47)
We now combine the bound (3.47) with (3.38)),

sup |2(t) — W ()W (t)z(0)]

o<i<1

1
< C(e+ N+ = sup |Ra(s,e,N)]) + X2C sup [P a(s)], (3.48)

€ 0<s<l1 0<s<1
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where we set for short W (t) = W (¢t,0), V. A(t) = Y. a(£,0). Moreover, we show below,

see (4.86]) and (4.93)), that

C.

[W.a(s)] < 2dmax ™I Gemeer] < o) (3.49)
J
Thus, from (3.27)), (3.18)), (3.12) we get
1 s M
= sup ||Ra(s,e,N)| < C(N*+ =). (3.50)
€ 0<s<1 €

Replacing in W, 5(¢), (3.33)), the projection P;(0,e,A) by P;(0) we incur an error of order
A? (see(3.21))) and thus finally have the following result from (3.48])-(3.50):

d t / !
sup [=(¢ Z 7go[a]-(u)+A2aj(u7e)]duz(o)H < C’(e + A7+ )\?), (3.51)

0<t<1

where W (t) = W(t,0) is the solution of (3.39). The leading term in (3.51) can be
simplified using Lemma [3.6},

W (£)P;(0)2(0) = 2 ()W (t)¢;(0) = 2;(0)eWg;(1), (3.52)
where we write for short &;(t) = ;(¢,0) for the Berry phase. Hence becomes

4

SO aj(u)+A % ’(u e)ldu ZE] ( )¢j( )H (E + )\2 + %) (353)

sup z
o<t<1

||M&

A2 oty
We finally simplify the expression et S (ue)du iy 3.53)). We have from ((3.20)

f: o (u,e)du = —i Lt |Uj(u)|2[£u/ (73 (0) (7 )dx]du (3.54)

We first simplify the integral over x by extending its upper bound to co. From (3.35]),

<C foo dx _ c,
= we (L+z)m S (m— 1)1+ ufe)m

(3.55)

ufe ©
f e”o‘j(“)v(x)dx—J ezmj(")y(x)dx

0 0

and in view of (3.54), §, (1‘03(“ u < esup, |v;(s)[? So B — Ce. Therefore,

+u/e)m— rd (I+y)™ 1T

¢ t 0
oi(u,e)du +i | |v;(u)? e Wy (z)dx |du| < Ce. 3.56
o ’ o’ 0
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Since |e* — €| = \Sj etd¢| < Clz — 2| (where C is the sup of |e¢| as ¢ varies on the
straight line joining z and 2’), we conclude that

2 2 iza; (u
‘e—"“)s‘ Sé o (we)du _ 6—%58 \Uj(u)\Q[Sgoe i >7(x)dar]du

< ON?, (3.57)

~—

uniformly in 0 < ¢ < 1. Next, as y(—z) =7(z

© 1 .
ReJ ey (x)dr = éf ey (x)dx = /)2 F(a) = 0,
R

0
o0
Im J e ()dr — V2r Tm(Y ) (@),
0
where x4 (z) =1 for z = 0 and x4 (z) = 0 else.
As (W) =1, [|[P;(0)] =1, |2(0)] <1 and a;(u) € R, we can use (3.57) in (3.53]) and

we obtain Theorem 211

3.2 State of the emitted excitation and proof of Theorem
The average of a field observable B (acting on L*(R3, dk)) in the state ¢(t), (2.13)), is

(BYe = ((t), M. @ B)Y(t)) = ||2(t)P(Q%, B + (Q, al fr) Ba* ()
= (O, [a(fr), Bla*(f)2) + {2, BSy), (3.58)

where we used that a(f;)a*(fi)Q = | f:|*Q% = (1—|2(t)|*)Q¢ (see (2.14))). Let us examine
the probability density of the field excitation to have a specific fixed momentum kq € R3.
For this we take B = af ax,. Then [a(f;), af ax,] = fi(ko)ax, and

{aj,ary e = | fe(ko) . (3.59)

In other words, |f;(ko)|? is the probability density of finding the field excitation in the
momentum kg at time ¢.

3.2.1 Proof of Theorem [2.4]
The equation (3.7)) with the initial condition fy = 0 yields

fi(k) = —igg(k‘)L<w(s)|z(s)>e‘i“es>w(k)ds. (3.60)

Then

s—s

o= [ lsorer=2 [ as [ a GEETE D) @
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where 7 is defined in Theorem From Theorem , setting ¢;(s) = € g;(s),

4

Cw(s), () w(s), () = [m S IOV LIy

£
4
x [Cw(s'), () e B loo ¥ 505J+O(5+)\2+)\—)]

4

= T, (s, () e RO E 60 1 O(e 4 42+ 2). (362)

The remainder term of ([3.62)), inserted into (3.61)), gives

)\2 )\4 t t S—S, )\4 )\6
SO+ XN+ =) | ds| ds O(N + = 3.63
=2 (e+ +€>L SL s"y5( 5 ) =0( + -+ =), (3.63)
because 0 <t < 1 and |Sé dxyp(z/e)| < €|vp||r:. It follows that
o
<B>t = f de dslh ezs aJ+)\2aj SO +SO 5]73(8 - S )
4 )\6

+O(N + — + —) (3.64)

h(s) = Cw(s), pi(s )>-

Morally, the oscillatory term in the integral has a phase ~ S’ESI while the decaying one

scales as ~ ’\?2(5 + §'). This is why we are going to switch to the coordinates
r=s—se[-tt], y=s+s€]0,2t],

and scale those separately. The square [0, t] x [0, ] to be integrated over in the variables
(s,s’) becomes, in the (z,y) plane, the square with one diagonal given by z = 0 and
0 <y < 2t. Given z € [—t,t], the variable y varies between |x| y < 2t — |x|. Moreover,

s =42 ¢ = 2 and the J acoblan of the transformation is 5. Upon making the changes

of variables x/¢ — x and then 2 2_53/ — y, the main term on the right side of (| - is

2t— \a:| N . " N . B}
222 f d‘”f (* () > ) s (£) e Sarshalos a5
9 €

||

2t—e|z|

2T N — i x ~ 2 —
dy h(y + 6x>h<y 5x>€% ngj;;g[ajﬂzaj]ef%[ (y=ea)/2 | (wren)/2yg.

dx’YB( )J 9 9

elz|

< Jt/e

t/e Mife=XPlel/2  —e—— ye/32 T2 A2y

a5l

= de(I)J dy h(—y + —a:)h( y— —:c) WAL
ft/a A2[z|/2 A7 2 AZT2

2

2 A2 ez A2 ez
% 6_)\?[ 1016/ e /2+Sg€/ +e /2]/33'

e}
EJ dmf dyF(z,y,t e, \), (3.65)
R Jo
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where (x is the characteristic function)

F(z,y,t.e, ) = x(|l2] < t/e) x(A2!x|/2 <y < Vt/s - A%\/z) v8(1)

G TG B
Due to (2.24),
inf 3,(t) = 5} > 0. (3.67)

In view of estimating the exponentially decaying term on the right side of (3.66|), we note

that \2
ye er  ye
e

JUANC Y =%
2 € 276(17 € ET
and thus e~ =087 7+ a /2]61' < e_zyﬁj . As h is bounded, we get
|F(z,y.t,e,\)| < Clyp(z)| e 2% (3.68)

e Consider first the regime (A). The right hand side of (3.68)) is integrable in (z,y) €
R x R, and so by the dominated convergence theorem (recall (3.65))),

0 0
lim f dxj dy F(x,y,t,e, \) = f d:vf dy lim  F(z,y,t,e,\). (3.69)
g,X\,e/A2 -0 Jp 0 R 0 g, A\, e/A2 >0

We now calculate the pointwise limit of F'. We have

lim h(%y + gx) — 1(0) = (w(0), $;(0)) (3.70)

g, A\ e/A2 >0
and, denoting by A(¢) the anti-derivative of a;(t) + A?a;(t),
7 ye/ N +ex/2 . ye ex - ; N
- La/ﬂ—az/Q [oj +A°0] = [A()\2+ > A(ﬁ_fﬂ = g€$[@j<T>+)\ a;(m)], (3.71)

where we have used the mean value theorem in the last step, and where 7, which depends
on x,y, €, A, satisfies |7 — 4| < Em . It follows that

)\2
E/)\ ex/2 ~ .
R h/r)g 0 st/AQi—sz/Q [oj +A%a;] _ eimaj(0) (3.72)
g, N /A2 —
Next,
2
lim e B8 s (3.73)
g,\e/A2 >0 ’
which follows from
A2 [ye/N 1/r
li —— = —yli = —yB:(0
)\Z/LIEOO I 0 ﬁ] yrl»n;)rJ;] BJ yﬁ]( )
)\2 ye/\2+ex/2 >\2$
lim —— ;= lim F—3; =0,
g, \e/A2 >0 € ye/\2 B] 5,)\,5/)\2H0+ 2 BJ(T)
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where we used the mean value theorem, as above in (3.71)), with |7 — ¥5| < % We
combine the limits (3.70), (3.72), (3.73) into

i Pyt ) = () K(0), ¢ 0 e e 0,

Note finally that O(A\? + )‘?4 + ;\—2) = O(j—?) in regime A. Combining this with (3.69) and
(3-65), (3-64) yields

i, (B =[5 w000 2250, (374

g, A\ /A2, X3 /e — ﬁ]

For the last equality, we use §;(0) = 0 (Berry phase) and due to (3.3)), (w(0),¢;(0)) =
w;(0) = v;(0) and the definition of the Fourier transform,

~

VB(a) = \/%771' J}ReitavB(t)dt.

o Next consider the regime (B). We can still use the dominated convergence theorem
to calculate

0¢] 0
lim f d:vf dy F(x,y,t,e, \) = f d:vj dy lim F(z,y,t,e,\). (3.75)
R 0 R 0

g,A—>0,\2/e=r g,A—> 0,2 /e=r

Now the pointwise limit of F' is

lim/ F(z,y,t,e,N) =x(0<y < rt)yB(x)|h(y/r)|26imj(y/r)e_2r g/rﬂf, (3.76)
g, A—> 0,2 /e=r

the error term is O(e), from which ([2.26)) follows at once. This concludes the proof of
Theorem [2.4] []

Remark 3.7 One can further prove the following estimate in the regime \*> < e:

4

A2 ! . A
By = vor | (o) Blay(s)ds + O(N+ 5. (3.77)
0
further assuming |yp(t)| < Cp(1+ [t|)™H, with pn > 2.

3.3 The time independent case, proof of Corollary

We consider here the special case where the total Hamiltonian is time independent,
H(t) = H. In keeping with the observation following (2.11)), we will set ¢ = 1 and consider
t = 0. The time independent quantities appearing in the Hamiltonian are then denoted
without the argument ¢: A, w, and so on.

In the time independent case, Propositions|3.1]and (3.2) reduce to the following result.
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Proposition 3.8 Suppose the Hamiltonian (2.2)) is time independent and the initial con-
dition i € Py is such that fi_o = 0, so the excitation is initially in the atom. Then

i0,2(t) = [A — iX*|lw)w|D(#)]2(t) + Ro(t, ), (3.78)
where .
I'(t) = J A vy (x)d, (3.79)
and the remainder satisfies

Sup [Bo(t, I < X [l [yl [tr(#)] 20

The generator (3.17]) of the linear approximation of z(t) is replaced in the time inde-
pendent case here by

Ga(t) = A —iX*|w)w|T(t), (3.80)
with associated propagator U), defined as the solution of
iatU)\<t,S> = Gk(t)U)\(t, S), U)\(S,S) = 1. (381)

As above, we will also write Uy(t) for Uy(t,0). Define

It = J Ay (z)da (3.82)
0

Assuming the decay condition of v, (3.35)), we have

0¢]

IT(t) — T < L |y (x)|dx < (= 1)(Cf+ P e L1(R). (3.83)

We adopt the well-coupledness assumption (2.24)) modified to the time-independent
setting,

Prmin = min f; = min \/T/Qle\%(ozj) > 0. (3.84)

1<j<d 1<j<d

Proposition 3.9 Assume (3.84)). For any 0 < * < Buin, there exists Ay > 0 and Cy > 0
such that if X < Ao then the solution of (3.81)) satisfies for allt >0,

t
| U (t) — e AN I@XwITT) | 3214y 202 CoN IwIPIT-T Tl 1 o= 5%1A° f IT(s)—T"| ds. (3.85)
0

Moreover, for allt > s >0,
o= AP | < Coe O [ (1, 5)] < e NN I s (3.56)
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It follows from (3.78]), the definition of U, (¢, s) given in (3.81)) and from the Duhamel
formula, that

t
2(t) = Ur(£)2(0) — i J Us(t, 5) Rols, \)ds. (3.87)
0
We estimate the remainder term employing (3.86)),
t
~ * 2 O k1) 2
J Ux(t,s)Ro(s, \)ds| < CRX‘J AN s < ﬂR)\ (1—e P, (3.88)
0 0

with Cr = w|*|y] 1 [[ty(2)] 21 CoeeA 1w PIT-TTIL - Next we use the estimate ([3.85) to
obtain

|UA()2(0) — e~ HA=N Xl ) < Oy %7 min(t, 1), (3.89)
where Oy = ||Jw|]2C2eCoN [wPIT=T"Io1 (T — T+ + |T — T*| 1) and we have taken into
account that

t |0 = T oo
IT(s) =T ds < + < (|0 =T*||z= + |0 = T*||21) min(¢, 1).
0 I =T

Combining (3.87)), (3.88)) and (3.89)) yields the following result.

Corollary 3.10 Under the assumptions of Proposition for X< Ao, and any t = 0,

| 2(t) — e~ AN L ()| < CyA2 (min(t, e 7™ 4 (1 - e_B*t’\Q)) . (3.90)

w 2
Jor Cy = [w|2C3eCoX o PIN=T* s (I o gy 11 + Co(IT = T* [ + T — T¥] o)}

Remarks. i) By the Lumer-Phillips criterion, e~ i(A=iNw)wTT) §g 5 contraction semi-

group if and only if —iA — A\?|w){w|'" is dissipative. However, the rank two operator
)\2
Re (—id = Nw)(w|T"™) = = (Jw){w|T" + ()" |w){w)

has positive and negative eigenvalues unless w is an eigenvector of (F*)*, i.€. an eigenvec-
tor of A, which is forbidden by the well-coupledness assumption (3 In other words,
there exists z(0) of norm one such that for ¢ > 0 small enough, ||e~*4 “\ [wXwl?) z(0)]| > 1,
before the exponential decay kicks in.

ii) The estimate holds in particular for ¢ = 0 or A = 0, in which cases the
approximation is trivially exact and the error term vanishes.

iii) The error term in ([3.90]) is O(A?) uniformly in ¢ > 0.

We may diagonalize A — i\2|w)(w|TT = Z?Zl a;(A)Pj(A) and carry out analytic per-
turbation theory in A, to obtain

sH

d
e—it(A—iA2|w><w\F+ Z et (A Z et (A Pj + O(/\Qe_AQt’Bmi“). (3.91)

Jj=1 j=1
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provided A is small enough (see also (3.84)). Here, P; is the eigenprojection of A (associ-
ated to the eigenvalue «;) and

a;(N) = a; + Aa) + O(NY), (3.92)
where o = a; — z’ﬁj is given in ([2.22))(see the proof of Proposition (3.9))).

Comblmng and (3.90),

sup ||z( e NPz (0)] < ON. (3.93)

t=0

|lM&

One further simplify the exponents by retaining only the the O(A\?) term in ax()), ac-
cording to (3.92)). Using that for any ¢ € C, |e¢ — 1] = |Sg e*dz| < [Cleldl,

—itaj(A) efit(aj+)\2a;) e—ﬂjtv —itO(\t) 1|

le

le
o Bit\? itO(\Y) ‘6ltO(A4)|
i\ 676mint)\2 ect)\4
ct\tem 2 PmintA?

2c
A2 3.94
eﬁmin ( )

In the third step, we used that lO()\4)| c)\4 for some ¢ = 0 and in the fourth step we
took A2 < Zmin We combine and ( into Corollary |2

The advantage of Corollary - over Corollary 3.10] is that the generator of the ap-
proximate evolution is simpler as it only contains energy corrections of O(\?) and it is
provided by a contraction semigroup. On the flip side, the remainder term in Corollary
is better for small times (it vanishes at ¢ = 0) while in Corollary the remainder
is only guaranteed to be O()\?).

NN N

VAN

Proof of Proposition . We consider ([3.81)) in the interaction picture with
GI = A—iN|wyw|l* (3.95)

so that for 0 < s <t

t
Uy(t,s) = e =965 _ )\ZJ e =G |\ w| (T (s) — TH U, (r, s)dr. (3.96)

S

The adaptation of the perturbation Lemma to the € and time independent operator
GY in (3.95)) yields for A small,

—ztG+ Z e —itaj (A (397)
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where aj(A) = a4+ A2, + O(X*) with o = —ijw;[? §; €y (z)dz and P;j(A) = P;+0(\?)
has norm bounded by 2. Here «; and P; are the eigenvalues and eigenprojectors of A.
The decomposition of o} in real and imaginary parts is (see also see (2.18))),

a = V2 ]w]\ Im (x+7) O‘J VAL ]w]\ ”yoz] = a; — 15

Thus, for any 0 < /* < min;<j<4 f;, there exists of Ay and Cj such that if |A| < A then

e~ ”G+ A < Coe ™ for all t = 0. Hence we deduce from (3.96) by iteration, or via
Gronwall Lemma, that under the same conditions, and for all ¢ > s > 0,

HUA(t, S)H < C’Oe—,B*(t—s))\2600>\2”wH2HF_F+HLl ‘

Consequently, plugging these estimates in (3.96) for s = 0 yields (3.85]). This completes
the proof of the proposition. OJ

4 Proofs of auxiliary results

4.1 Proof of Proposition (3.1
We eliminate the free dynamics by changing the variables,
y(t) = U(t)'2(t),  hy=e% (4.1)

where U.(t) is given in (3.9). The equations resulting from (3.6) and (3.5)) for the new
variables y(t), h; are,

izdy(t) = Mg.e "Thy Ua(t)  wl(t) (4.2)
iedh = Muw(t),U(t)y(t)) e g. (4.3)

True to the Wigner-Weisskopf procedure, we now integrate the equation for h; and in-
sert the result in the equation for y(¢). The initial condition, describing the setup of
spontaneous radiative decay of the atom, satisfies

huco(k) = fizo(k) = 0. (4.4)
Thus equation gives
f (w(s) y(s)e'=dsg, (4.5)

which together with (4.2]) leads to

alt) = =2 J<B = yas (46)



where we have introduced
B(t) = U.(t) w(t) (4.7)

and the field correlation function ~ is given in (2.7) Next we replace y(s) in the integral
on the right side of (4.6) by y(¢). More precisely, as

18(u) ez = [Ue(u) M w(u) e = [w(u)|ea = Z\w] 2 = er 212 = o (w) e

and [y(s)|| < 1, the relation (4.6)) implies

22 t t—s 22
o (@)l < S 1ol f (=) lds < =l . (4.8)
where .
1/2
[v]loo = sup Jo(t)]co = sup [ Y Jos(2)2] . (4.9)
=0 20 "5

Therefore, for t > s > 0,

16 = )] < [ 1wt < ol bl = (4.10)
Using this bound in yields
uy(t) = ——5 <J B(s (4.11)
where
01 < Sl [ 5 b0l < Sl lo@ls. @12)

The derivative of B(s) = U.(s)'w(s) is ~ 7! due to the rapidly oscillating phases,
i0sU.(s)7" is of order e7! (see (3.9), (4.7)). So we replace only the part w(s) by w(t)
within 5(s) in the integrand of (4.11)):

[ wts)aonn (2)a f<U 0,907 (“=)ds
+To(t (4.13)
Using |lw(t) — S [Cuw(u)|du < (t — s)||0w e, With
|0wlee = sup [ Gw(t)]ca (4.14)

t=

29



we obtain

t—s
(1) < ; lw(t) —w(s)| [y [y (——)|ds
¢ t—s 9
< ol | (t =)y (——)|ds < o] [t(8)] 11 (4.15)
0
Combining (4.13)), (4.15) with shows that
t—s
) = =250 [ U (Do) + 10, (410
with \
I < —lolalyle [ @) e+ X0l o [E7(8) - (4.17)
In terms of the original variable z(t) = U.(t)y(t) (see (4.1))), (4.16) reads
? A2
dealt) = ~ EAW=(1) ~ w(e)Qu(1)l0), 2(0) + Tu(), (4.18)
where |Ty(t)|| = |T3(t)|| and where Q.(t) is given in (3.11)). This finishes the proof of
Proposition [3.1} O]
4.2 Proof of Proposition
We introduce the atomic adiabatic evolution V.(¢, s)
iediVo(t,s) = (A(t) +ieK (1)) V(t, s), Vo(s,s) =1, (4.19)
where Kato’s generator is
d
= D [aP;()]P;(t) (4.20)
j=1

with

Py(t) = 1¢;(t) X5 (1)
the spectral projections of A(t). Since A( ) is self—adjoint and K (t)* = —K (t) the solution
V.(t,s) of is unitary, V.(¢,s)* = V.(t,s)"' = V.(s,t). Defining the e-independent
Kato intertwining operator W (t) as the solution of the e-independent equation

oW (t,s) = K(t)W(t,s), Wi(s,s)=1 (4.21)
one readily checks the relation (use the intertwining relation W (¢, s)P;(s) = P;(t)W(t, s))
d .
V(t,s) = W(t,8)Outs),  ®ultys) = O Pys)ethoman (129
j=1
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Both W(t,s) and ®.(t,s) are unitary. The point of this factorization of V; is to sepa-
rate out the quickly varying (e small) phase term ®.. The adiabatic evolution V(t,s)
approximates U.(t, s),

[Ve(t,s) — U.(t,s)|| < g[C] + (t — )], (4.23)

where

2
il O P
o5 max |0

i

2

d max; |Opcv;
Cy = CA—[(l + d]A]l0) max 10.P;2, + max 102P; o0 + max; |0:t|en
0

Ag

and where ¢ is a numerical constant. A proof (4.23)) is rather standard. We present the

details in Section (4.61)-(4.80]), in the more complicate setting where V., U. ((3.9),
(4.19)) are replaced by V., U.x ((3.32), (3.28)).
Approximating U, (¢, s) in (3.11]) by V.(¢,s) we obtain from (4.22)), (4.23))

ma |07 o |

0-(t) - éfﬁ(t — )Vt )ds|

0
1 (" t—s 1 (" t—s
<6C{EL v( . )‘deraCégL ¥( - )‘(t—s)ds

< eCille + € Coltyfor. (4.24)

Next we use (4.22)),

%(t, S) = Z W(t, S)_Pj(s)e_é.sz aj(u)du _ Z B(t)W(t, S)G_ési o (u)du
J

J
i (t t i (t
= > Pi(t)e = eatdn 4 N Pt ( J O W (u, 8)du)e= s @atmdu (4 25)
J J s
Now || Sz OuW (u, s)du| < (t — 9)|| K| < d(t — s) max; [0 Pj|. Then,

. B d ¢ B .
Lt s = Y p0 ] [ (e
=1

e Jo € 0 €

t—s

1 t
< & max P, f 5(
J E 0

Combining (4.24)) and (4.26)) yields

)I(t = s)ds < ed® max 6,5l ty]1r. (4.26)

Q-1 -

d
J:

1 t— t—sy i b o (u)du
P [ AT et b

1 0 €

<e(Cilyle + @ max [0ePillolty]2e) + *Colitylze. (4.27)
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Next, we have

1 (" _t—s i gt t/e it
—f 3( )e‘éss ag(Wdugg — f F(z)e™ @ dimea (W)U gy, (4.28)
€ Jo € 0

and since |e/ — | = | SZ edy| < |b— al,

i ] 1 t
‘efg Si_w aj(u)du e—z:cocj(t)‘ < = f |aj (u) —Qy (t)|du
t

€ —EX

1t 1
< |6’tozj||oogf (t —u)du = §5m2||8tozj\|oo. (4.29)
t—ex

Combining this with (4.28]) and (4.27) gives

1 t— t—s fist aj(u)du t/E— —izo(t) 1 2
‘— 7( )e < s ds — 5 (z)e™" " dx‘ < —¢|Gral|o [ty 0 (4.30)
€ Jo € 0 2

and finally

d t/e A
0.0 = X o) | e @s] < £(Cllnl + & max 8B o9110)

j=1 0

d
+e*Coflty| o + el [y (4.31)

This is the result (3.14), showing Proposition [3.2] O]

4.3 Proof of Lemma 3.3

(a) For z € C in the resolvent set of A(t), we have

1
dist(spec(A(t)), 2)

|(A(t) — 2)7!| < (4.32)
Take z € C which is separated from spec(A(t)) by at least some distance a > 0. Then
for A2[|[v]|%||v[z:/a < 1, the resolvent (G ,(t) — z)~" is a bounded operator, given by the
convergent Neumann series

(Geal®)) = )7 = (AW) = )71 Y] [N w®)wI T (A0 - )7 (433)

n=0

Hence the spectrum of G.,(t) lies in a neighbourhood of the size A?|v|%|v|z: of the
spectrum of A(t). This shows that the eigenvalues of G, ,(t) are simple, and ’aj (t,e,\) —
a;j(t)] < A?||v||2 |v]r:. We will prove the bound below, after analyzing the spectral
projections.
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(b) Let C;(t) be a circle around «;(¢), with radius Ag/2 (c.f. (2.1)). Since due to (2.6
we have A\2|[v]|%||v] 1 < Ag/4 the contour C;(¢) lies in the resolvent set of G. ,(t) and the

Riesz projection
-1
Pi(t,e,\) = — (Gen(t) — 2)Hdz (4.34)
2mi Je, )

is well defined. Next,

Pten - PO] < o] [ (G - 2 e@xwoIr o - )|
;i)

< A0S ]z max [[(Gea(t) - 2) 7 280 (4.35)

From (4.33]), we obtain the following bound for all z € C;(¢),

H(Gea(t) = 2)7H < 285" Y [NV°2A5 of5 7] )" < 4457 (4.36)

n=0

Combining this bound with gives |P;(t,e,\) — P;(t)| < 1. Thus the ranks of
P;(t,e,\) and P;(t) are equal, namely one. It follows that G.(t) has a single, simple
eigenvalue inside C;(t), with associated Riesz projection (4.34)). This shows (b).

We give a proof of (¢) now. From and we have |[P;(t,e,\)| < 824A5" = 2.
Next, from (4.34),

-1

0ePj(te, A) = 9 L()at(Ga,)\(t> —z) 'z
5 (t

_ Lf (Gon(t) — 2)  (AGon()) (Gon(t) — ) dz. (437)
Cj(t)

27

It is not necessary to consider the t-derivative of the curve C;(t) as this curve can be taken
constant in ¢ for ¢ in a neighbourhood of the point where the derivative is taken. From
(3-17)),

01Gelt) = A() — 20N Re(|w(t))w(B))Te(t) — i) wBIOT).  (438)

From (3.13)),
1 . e
OT.(t) = = =AW y(t/e) + J (ﬁte””A(t))'y(x)d:v (4.39)
€ 0
and using that
1
atei:rA(t) _ f 6ir:1:A(t) (im(’}tA(t))ei(lfr)zA(t) dr (44())
0
we obtain )
[0 < Zlyv(t/e)] + [tv(E)] 22 10eA o (4.41)
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We use the bound (4.41)) in (4.38)),

1
[0Gen(®] < [0l + 20|00 ]oo[ewlloV e + N[0l [ Iv(t/e)] + [ty ()1 [00Allo]-

(4.42)
Now we use this to bound |, P;(t, e, \)|| as per (4.37),
A N 8
[6:P;(t, e, M| < =2 8:Gen(t)] max [(Gen(t) — 2) 7 * < - @:G=n(t)], (4.43)
2 2€C; (1) Ag
where we have also employed (4.36). Combining the last bound with (4.42)) yields the
desired (3.22)).
Our next task is to show (3.23)). From (4.37)),
1
|0P;(t,e,\) — 0:P;(t)] = %H . [(Ga,x(t) — 2) (0 Gen (1)) (Gen(t) — 2) 7
j t

(A1) = )M (AWD) (A() - 2) |z

C
A [Pl s AL + 1Ga(®) = 3AW)]. - (444)

where ¢ is a numerical constant. To get this estimate we used the identity (dropping the
variables and subscripts)

(G=2)"(0G)(G—2)" = (A—2)(aA)(A—2)""
=(G-2)"aG-aA)(G—2)"+ (G—2)""=(A=2)"")(0A) (G- 2)""
+(A=2)"(aA)(G—2)"=(A-2)7"), (4.45)

[(A@)=2) 7| = 2/A0, [(Gen(t)—2) "] < 4/A (see (4.36) and (see ([4.33)) max.ec; ) [(Gen(t)—
2)7 = (A(t) = 2)7Y < 2 w|% |y] 1. Now from ([38) and (£41),

<

1
[0:Gen(8) = QAW®)] < 2V [w]onll O[] 2 + Xl (v (/)] + [#7] 2100 Ale).

Combining this with (4.44])) yields (3.23)), with a constant C' we can make explicit if need
be.

We now bound the second derivative, 07 P;. From (4.37)), and simply writing G for
Gs,)\(t>7

2Pyt e, ) = _712 C'(t)(G — ) 2(8G)(G — ) H(G) — 2G)(G — 2)"\dz. (4.46)

Now by (I36) and ({42)
128

[(G = 2)7"2(8,G)(G — 2) "1 (&G) (G — 2)7| < A—gH@tGHQ
< 0(1 + A%+ §|7(t/s)|(1 + §|7(t/5)|)> (4.47)
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for a (traceable) constant C' independent of £, A and ¢ > 0. Next, [(G — 2)"}(3?G)(G —
2)7Y < C|32G|. We apply ¢ to (4.38) and obtain

[GFGO < 107 Al + 4N (oo GFrw]l oo + O] ) [ 7] 20
+2X%wllon 0w o[0T (E) ] + N w5 65T (1)) (4.48)

The first derivative of I'(¢) is estimated in (4.41)). Next, from (4.39)), (4.40)),
1 ! 1
A0 = Toe) [ SO LaAm) T+ e @) 1)
0
1 ) t/e )
L 4/2) (0O sy + j (23e=40) @) . (1.49)
€ 0
To estimate 02¢’*4®) we take 0, on both sides of (4.40) and use the unitarity of eA®,

any y € R, to get '
|07 40| < 20%| 0, A7, + 67 Al

We then get the following upper bound on ,
1 1
[T < Zh(E/a)l(1Ale + tleiAl) + (@) (E/e)]
t
+5 (/e 0Aw + 210 A 2%y (@) s + 67 Ao 2y ()22 (4.50)

Combining this with (4.48]) yields

G0 < C(1+ X + 25 (W0 + )+ @) (e/5)) (451)

for a constant C independent of £, A and ¢ > 0. Finally, we combine the estimates (4.46)),

- ) to arrive at -
We now show (3.19). We have G.\(t)P;(t, e, ) = a;(t,e,\)P;(t, &, \). Since P;(t,e, \)

is a rank-one projection it has unit trace, and SO

a;j(t e, \) = tr Go\(t)Pj(t, e, N). (4.52)
We use Gep(8)(Gen(t) —2)7' = 1+ 2(G.x(t) — 2)7" and get from (4.34)),
—1
a;(t,e,\) = tr — $ 2 (GoA(t) — 2) dz. (4.53)
2m
G

Now we expand the resolvent,

(Gea(t) —2)71 = (A() = 2)7" +idA(A() — 2) " w(t) Xw(®) T (£ (A(t) — 2) 7
+(Gen(t) = 2) M [IN ()X w(BIT()(A() = 2) '] (4.54)
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and inserting this into the integral on the right side of (4.53)),

—1

a;j(t,e, ) = tr 5 2(A(t) — 2)"'dz
i)
N2 -1 -1 -1
+iA 9 § z2tr (A(t) — 2) " w(t) Xw(t)|T(8) (A(t) — 2) " dz
Cj(t)
+T;(t, e, N). (4.55)

The remainder term is estimated as follows. Use that for any d x d matrix X one has
[trX| < tr] X[ < d| X| and that [C;(t)] = 2mA0/2, |[(A(t) — 2)7' < 2/A, [Le()] < 7] 12

and the bound [(lw(t)Xw(t)])| < [v]%, as well as [@36), and [2| < [a;(t)| + Ag/2 <
| Al + Ag/2. Then

8
|T;(t,e, M| < dPX‘IIvHZ‘OHVHil(IlAIIw +A0/2). (4.56)

The first term on the right side of (4.55)) equals the trace of «;(t)P;(t) (eigendata of
A(t)), which is just «;(t). Next, using that the P(t) are a complete set of orthonormal
projections,

E(Hw(®)]*

[ Ptw ()
:1(t2

tr (A(t) — 2) " w(®) w(®) T (£ (A(t) — 2) 7 =

14

J ey (z)dx. (4.57)

In view of (4.55) we need to take the integral

—1 z
2mi (au(t) — 2)?
()
(Kronecker symbol). Using that |P(t)w(t)| = |ve(t)|* and combining (4.55)), (#.56]) and

[E58) gives the bound (3:19), (3:20).

This completes the proof of Lemma ]

dz = — 5,0 (458)

4.4 Proof of Proposition
To verify (3.33] - we take ied; of the right side, using and ( -
zs@t( Wor(t, s)U.(t, s)) = ie Ko A (E) W (t, )Pt s)

d
FWen(ts) Y o (t) + Nali(t, €)1y (s, e, N)e s kles@iiajwaldn -y 59)
7=1
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Next, using the disjointness and completeness of the spectral projections, one readily sees
i (t ’

that . (¢,s)"' = 2?21 P;(s,e, A)es leas+Xiaj(walde \yitiplying the last operator in

(4.59) on the right by 1 = W, ,(¢,s) W, (¢, s) and using that

d
2 + A2/ t 6)]Pj($, €, )\)e—éSz[aj(u)+>\2a9(u,a)]du \Ij&/\(t, S)fl

Jj=1

d
= D [ay () + Naj(t, €)]Pi(s. e, M),

7=1

together with the intertwining property W. (¢, s)Pj(s,e,A) = Pj(t,e, \)Wa(t, e, A) and
the fact that }; ¢ [a;(t) + Na Lt e)|Pi(t e, ) = Goa(t) (cf. - we see that the
second term on the right side of - satisfies

d .
Wea(t.s) > o(t) + N2al(t, )] Pi(s, e, \)e~ = hlestwratel (ualdu
7j=1

= ga)\( ) eA(t S)\Ife’)\(t, S). (460)

Combining ) with (4.59) shows that W. (¢, s)U. A(t, s) satisfies the same differential
equation and the same 1n1t1al condition as V. (£, s), (3-32), so the two are equal. This
shows (3.33]).

To prove we proceed in a standard fashion following [ASY], see also [J1,[AFGGI],
J2]. For the remainder of this proof, we omit from the notation the dependence of opera-
tors on €, \. That is, we simply write K (t), P;(t), G(t), V(t,s), U(t, s) instead of K. »(1),
P;(t,¢, /\) Gea(t), Vou(t, s), U a(t, s) (the latter quantities having been defined in (3.29),
Lemma [2.6(b), (3.26), (3-32), (3-28) respectively).

We have

14
=3 Z} (4.61)
and for any operator X,
[X, Pi()] = [G(2), R, (¢, X)], (4.62)
where
. _ Pi(t) X Py(t) + Po(H) X P;(t)
Ry(t, X) = Z=1,..Z,;z,uj FOEEI0 . (4.63)

In ([1.63), @;(t) = a;(t) + \?a/(t, €) are the eigenvalues of G(t), see (3.26]). Integrating the

relation

o[Vt U(r,s)| = =V (t,r)K(r)U(r,s)
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over the domain r ranging from s to ¢, and using (4.61))-(4.63|), we obtain

Vit,s) = Ul(t,s) = J V(t,r)K(r)U(r,s)dr

D) ZJ V(t,r)[G(r),R;(r,0,P;(r)) U (r,s)dr.  (4.64)

Now we use V(t,7)G(r) = —ico, V (t,r) —icV (t,r)K(r) and G(r)U(r,s) = i€d,U(r,s) to

write

f V(t,r) [Q(T), R, (r, ﬁtPj(r))] U(r,s)dr

s

_ —z’af @V (.0 + VDK W)R, (r. 0P U (r, )
+V(t, r)R;(r, 6tPj(7"))8TU(7“,s)]dr
= —i JP &[V(t,r)"Rj (7“, 8tPj(r))U(r,s)]dr
e JP V(t, ) [K ()R, (1 0Py (r)) — 0AR, (r, 0,2 (1))} U (. s)dr. (4.65)

We prove ([3.34]) below, which yields for all 0 < s < ¢
(Tt 9)] + [V (2, 8)]) < Coelt= (4.66)

for constants Cy, Cy independent of e and X. Next, we observe that the identity O Pj(t) =
(0cP;(t))P;(t) + Pj(t)0,P;(t) allows us to simplify (4.63)) with X = 0,P;(r)) to

O P (1) Py(t) + Py(t) 0. P;(t)
R(r,aPy(r)) = ), — N(t)_,(t)t S (4.67)
0=1,....d, 0] R Q;
so that we estimate
2d HatP(T>H maxi<i<d HPHOO 8d
R;(r, 0P < — i s < — [6,P;(r)]. 4.68
H J(T t ](T))H min, . ¢ Milg<i<t ’Oéj(t) —Oék(t)‘ AO ” t ](T)H ( )

To arrive at the second estimate in (4.68)), we use |Pj|» < 2 (see Lemma 2.6(c)) and we
estimate the denominator in terms of Ay, (2.1)), see also (3.20)):

() — ()] = Jay(t) — an(t) + N ()t €) — aj(t, )]

| (1) — aw(t)] = N*|(aj(t,€) — ae(t, €))]

Ao — 22 [[v[5 7] e

No/2, (4.69)

AR\
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where we have used the condition (2.6)) in the last step. We now estimate the first term
on the right side of (4.65) by

o [ v iRy B U] < AV 0RO
1600d

< e p max B () et

< Cfe+ A2)efolt=9), (4.70)

for a constant C' independent of ¢, A and 0 < s <t < 1. In the last step, we have made
use of the estimate (3.22)) on the derivative of the projection.
Next we estimate the second term on the right side of (4.65). We start with

ol | VD KR AP < eCe ) | IR E R a8 ) ldr

2,12 ¢
E—Sd G eCo(t=s) maxj H@Pj(r)Her(él.ﬂ)
J s

~

Ag
where we have taken into account (4.68)) and that |K(r)| < 2d max; |16, P; H see -
and use | P;| < 2). Next, according to (3:22)), |0, P;(r)|> < C(1+2 X |7(r/€)| +% v (r/e)?),
S0 v
[ <t -s+ Xl + ).

Combining this bound with (4.71)) yields
e| f V(t,r)K(r)R;(r,0,P;(r))U(r,s)dr| < CeColt=) (et —s)+eX>+ XY, (4.72)
Next we deal with the other term within the second integral on the right side of ,
o [ Ve R 2B )G, )i < <Gt [ 16,R . (473)

By using the quotient rule for derivatives in (4.67]),

0. Ry P < 3 (maxp )

+maX HPHOOmaX H@Q i (7 )||) II;&X|O(€ Qoo

—i—maXHPmeaXH(?t ()Hmax\&t(ag—aj)\ ] (4.74)

39



Using the bounds [|Pj[s < 2 (see before (3.22)) and |&y|o < |aulw + N20]2]17] 1, we
simplify the estimate (4.74]) to

10 AR (1, O P;(r))}]| < [(maX\%\oo+A2llv|\oo||’YHL1)(m?XHatPj(T)HZ+m]aXH5t2Pj(7“)H)
+max |2,Py(r)| max |0, . ] (4.75)
We have
/e
28,(1)] < |0y (8)] + N[au ()2 f 70 () ]|
0
1
< |0slw + N[ 2]0]w] 0]y + Hvllooglv(t/g)ﬂ- (4.76)

Combining (4.75) and (4.76|) gives the bound

2

|0{R; (r, Py (r))} | < Cmax (| 20F5 (r)] (1 + A;Iv(r/ef)!) + 0P () + 6, Pi(r)). (4.77)

The norms [0, P;(r)| and |07 P;(r)| are estimated in ([3.22)) and (3.24) and so ([£.77) be-

comes

4

o (R B, ] < O (142 + 25 (/2 (L) + 1) /) + (/). (478)

This bound inserted into ([{.73), and using §' |v(r/e)|rdr < &2|ry(r)| 1, yields

5 H J V(t,1)0{R; (7“, é’tPj(r))}U(r, s)dr” < Cebolt=9) (e(t —8)(L+ A% + eX2|ry(r)| 1

+ X (Ve + 10 lee) + ATy ze). (4.79)

Putting together the relations (4.64), (4.65)), (4.70), (4.72)) and (4.79) we are rewarded
with the bound

IV (t,s) = Ut s)| < CeCl=) (e + A2), (4.80)

where C' > Cp, which holds for ) satisfying , and all 0 <e < 1,0 < s <t as given in
(13.36)).

Finally we need to check the validity of , point 2) of Proposition which in
term implies (£.66). To bound V. (¢, s) we use the relation (3.33). First we see that

[Wen(t, s)] < el IFentlde (4.81)
which follows from the series expansion based on (3.30). Now by Lemma [3.3) point (c),

| Ko () Z |60Py (1,2, \)Py(t,2, N)| < 2dmax 6,71, 2. M) (4.82)
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Then by (3-22),
t ) )\2 t
f [ Kea(w)du < (£ = 5)C1 + w2 = f Iy (u/e)|du, (4.83)
with
8
) — Ko[mroo + 22 @N0wllwlc 7l + oI 17611 12A]) | (4.84)

As %Xz |v(u/e)|du < ||y|z1, we conclude from (4.81]) that for all 0 < s <t < oo,
||Wa /\(t7 S)H < e(t—s)C’1+)\2|\ngoH’yHL1‘ (485)

This upper bound is uniform in € > 0. The next step in our quest to control |V (¢, s)|
is an upper bound on the phase term W, ,(¢,s) in ([3.33). As |Pj(s,e,\)| < 2 (Lemma
3-3(¢)),

22

”\Ija,)\(ta S)H < 2d maxeégi Im [aj(u)+)\2a;.(u,5)]du - 92 maxe’s S; Ima}(u,s)du' (486)
J J

From ([3.20) and the property v(—z) = J(x) (see (2.7))), we obtain

tle 1 tle
Im oj(t, ) = —|v;(¢)]°Re J e Wy () dw = —§|vj(t)|2f ¢ On () dz.  (4.87)

0 —t/e
For any 0 < ug <t — s we have
t t—s
L Ima;(u,e)du = L Ima(u + s,€)du
uUQ t—s
= L Imaj(u + s,€)du + LO Imaj(u + s, €)du. (4.88)

As [a)(t,e)] < [vl%)vlzr (see (B.20)), the first integral on the right side of (4.88) is
bounded above by ug|v;|%||7|r:. The second integral is

1 t—s (uts)/e
—= J v (u + 5)[? <J e”o‘j(““)y(x)dx) du (4.89)
2 uo —(u+s)/e
1 t—s ‘
= ——J v (u + 5)[? (\/%'Ay(ozj(u +5)) — f ezmﬂ'(““)y(:v)d:v) du,
2 Juo |z|>(u+ts)/e
where .
(@) = —— | e**y(x)dx = 0. 4.90
Ae) = == | e (4.90)
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Using the bound ([3.35)) we estimate

1 t—s )
‘— J lvj(u + s)|? ( f e’mﬂ'(“”)fy(x)dx) du‘
2 ug |z|=(u+s)/e

12 t—s 12
< Calwil J de____ Giluil (a9
m—1 J,, (1+%=)m (m—1)(m —2) (1 + “2)m=-
Since J(x) = 0, we obtain from (4.88)), (4.89)) and (4.91])
t 2
Gl €
/ ynEJ
L )i < vyl + G e . (492)
Upon choosing ug = € we get for 0 < s <t < o0,
H'U o)
6)\672 SZ Im o (u,e)du < e>\2[””]’“2 H'7”L1+W] (493)
Combining this bound with (3.33]), (4.85]) and (4.86|) we arrive at
Oyl
IVor(t, 8)| < 2de® O Ml ) ot Gy S (4.94)

where C and C, are from (4.84]), (3.35). This shows the bound on V; , in (3.34)).

Next, we bound |U.\(t, s)|| = |U(t, s)||. We use the first equality in (4.64) and iterate
it,

Ult,s) = Vi(t,s)+ Z(—D"J dry J dm---r_l drnV (6,11 K (r)V (i, 72) K (1) -+

o V(Tnfb rn)K(Tn)V(Tm 5)- (495)
The bound on V 5(¢, s) in (3.34) implies
[Vt ) K () - K (r)V (r, )| < (2d)" el e 0 DNEC K () |- | K ()]
from which we obtain, by -

Ult, )| < 2d =90 X [2de ¢ f K(r)|d
|U@®, s)]| < 2de™e Zn |K(r)]dr]”

n=0

t
_ 2410 N2 o 24 J IK(r)|dr]. (4.96)

Now as in and following that bound, {' |K(r)|dr < (t — )C1 + N2|w|% ], so
that (upon possibly relabeling constants) indeed implies the bound on U. ,(t, s) in
(13.34]). This completes the proof of Proposition O
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