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Numerical simulations of confined Brownian-yet-non-Gaussian motion

Elodie Millan,!:[| Maxime Lavaud,[f] Yacine Amarouchene,![] and Thomas Salez"[f

L Univ.

Bordeaux, CNRS, LOMA, UMR 5798, F-33400, Talence, France.

Brownian motion is a central scientific paradigm. Recently, due to increasing efforts and interests
towards miniaturization and small-scale physics or biology, the effects of confinement on such a
motion have become a key topic of investigation. Essentially, when confined near a wall, a particle
moves much slower than in the bulk due to friction at the boundaries. The mobility is therefore
locally hindered and space-dependent, which in turn leads to the apparition of so-called multiplica-
tive noises, and associated non-Gaussianities which remain difficult to resolve at all times. Here, we
exploit simple, optimized and efficient numerical simulations to address Brownian motion in con-
finement in a broadrange and quantitative way. To do so, we integrate the overdamped Langevin
equation governing the thermal dynamics of a negatively-buoyant single spherical colloid within a
viscous fluid confined by two rigid walls, including surface charges. From the produced large set of
long random trajectories, we perform a complete statistical analysis and extract all the key quanti-
ties, such as the probability distributions in displacements and their main moments. In particular,
we propose a novel method to compute high-order cumulants by reducing convergence problems,
and employ it to efficiently characterize the inherent non-Gaussianity of the confined process.

I. INTRODUCTION

Brownian motion is the random movement of a mi-
croparticle due to thermal agitation. This name was
given in reference to Robert Brown, a botanist, who ob-
served in 1828 for the first time the erratic trajectories of
pollen grains, using a microscope [I]. He concluded that
this motion was not from a living source since he observed
the same phenomenon with grains of inorganic matter,
like minute fragments of window glass or mineral sub-
stances. In 1905, Albert Einstein [2], William Sutherland
[B] and Marian Von Smoluchowski [4], physically mod-
elled Brownian motion, and independently calculated the
diffusion coefficient of a single particle, assuming that
matter is discontinuous. In 1909, Jean Perrin [5] vali-
dated Einstein’s theory by studying both the distribution
and the agitation of microparticles in suspension. More-
over, doing so, he experimentally measured the Avogadro
number, proving the atomic nature of matter, and was
thus awarded the Nobel Prize in 1926. Besides, from this
work, it then became clear that Brownian motion can be
a probe of conservative forces. In 1908, Paul Langevin
[6] developed the equation that governs Brownian trajec-
tories using the fundamental principle of dynamics, and
taking into account both the viscous Stokes force and a
new stochastic force representing the effect of momen-
tum transfer from collisions with solvent molecules. It
is worth stressing that many variations and applications
around Brownian motion in the bulk are continuously
explored nowadays, and some of the key underlying hy-
potheses and concepts remain at the heart of epistemo-
logical discussions [7 [§].

In the second half of the 20th century, the rise of minia-
turization triggered the need for a further understanding
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of interfacial and confinement effects on colloidal mo-
bility [OHIT]. Almost ninety years after the Einstein-
Sutherland-Smoluchowski theory, a seminal study of
Brownian motion near rigid walls was performed [12].
In the latter, the space-dependent wall-friction-induced
reduction in the average planar diffusion coefficient of
confined colloids was revealed. This result triggered
a novel research activity on Brownian motion in con-
finement [I3H20], with implications in single-molecule
force spectroscopy [21] 22], and surface-force measure-
ments [23], 24]. Random and active motion of microalgae
near boundaries may also be impacted by the existence
of an altered mobility in confinement [25]. A key fea-
ture of confined Brownian motion is the emergence of
multiplicative noises due to the space-dependent diffu-
sion constants near walls. A direct implication of such
noises is the non-Gaussianity of the particle’s displace-
ment distributions [26H45], despite the mean-square dis-
placements (MSDs) remain linear in time (as expected
for a classical Brownian process). Moving beyond rigid
confinement at equilibrium, the influence of fluctuating
interfaces on Brownian point-like tracers was investigated
theoretically [46], and experimentally [47], as well as the
effects of wall adhesion [48H50]. Besides, fluid and soft
boundaries were considered [51H54], and Taylor disper-
sion in confinement was investigated [55H57].

While simple Brownian motion has been numerically
modelled in the bulk (see Ref. [58] for a tutorial), as
well as in more complicated cases involving confinement
and interactions [B9H63], an efficient and quantitative nu-
merical approach allowing for a broadrange characteri-
zation of non-Gaussianities, is lacking to date. In this
article, we aim at filling this gap. We describe how one
can model the thermal dynamics of a negatively-buoyant
spherical colloidal particle between two rigid walls, in-
cluding surface charges. After recalling the overdamped
Langevin equation including spurious forces, we solve it
using an optimized numerical scheme, and investigate the
full displacement statistics. As a central outcome of our
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FIG. 1. Schematic of the system in the (z,y) plane. A particle
of radius a diffuses in three dimensions in a fluid of viscos-
ity mo, between two rigid and flat walls separated by a dis-
tance 2H, = 2H + 2a. Besides, and in addition to gravity, we
consider specific repulsive screened electrostatic potentials in-
duced by surface charges on the particle and the walls, which
are common in experiments [24] but do not affect the gener-
ality of the numerical approach developed here.

work, we show in particular that special care needs to be
taken in order to avoid convergence issues when comput-
ing high-order cumulants from Brownian realizations.

II. MODEL
A. Bulk Langevin equation

We consider a colloidal particle of radius a, immersed
in a fluid of dynamic shear viscosity 7g. In the bulk, the
particle motion is described by the Langevin equation [6]:

mi(t) = —yr(t) + F(7(t)) +
where 7(t) = [rz(t), 7y (t),r (t4)] is the particle center of

mass position at time ¢, m = gwa p is the particle mass,
p is the particle density, v = 67npa is the bulk Stokes
drag coefﬁment kg is the Boltzmann constant, T is the
temperature, F = —VV is the total conservative force
deriving from the potential V[r(t)], and /2kgT~y w(t)
is the stochastic Langevin force accounting for the ran-
dom impacts of surrounding fluid molecules. In the fol-
lowing, the projected equations along x and y being
independent and similar, we only consider the z axis.
The two relevant spatial directions are thus indexed by
1 =z, z, corresponding to the coordinates r,(t) = z; and
r.(t) = 2. We model W(t) = [wy(t), wy(t), w.(t)] as a
Gaussian white noise of zero mean (w;(t)) = 0, and delta-
correlated variance (w;(t)w;(t")) = 0;;0(t — ) where (-)
indicates the ensemble average, d;; the Kronecker symbol
and ¢ the Dirac distribution.

The inertial term m# can be further neglected in the
overdamped regime, which is reached when considering
times greater than the inertial time scale m/y ~ 50 ns,

2kpTy w(t) , (1)

for a = 1.5 pym, p = 1050 kg.m ™ and 7y = 1 mPa.s.
We note that, for a colloidal particle in a solvent, the
underdamped Langevin equation is anyway not necessar-
ily appropriate since there is no clear separation of time
scales between hydrodynamic back flow and momentum
relaxation [64].

B. Overdamped Langevin equation in confinement

We now consider that the particle is confined between
two rigid and flat walls separated by a distance 2H,, as
shown in Fig. The gravitational acceleration g is ori-
ented along —z. We further suppose that the particle
and walls are negatively charged in water, inducing elec-
trostatic interactions. Due to the presence of a surface-
charged particle between two surface-charged planes in a
dielectric medium, field reflections on the walls are ex-
pected [65]. These reflections can be seen as electric
fields created by the image charges of the particle on
the top and bottom walls. Here, we simplify the prob-
lem by considering a large-enough gap, so that we can
ignore the contribution of such reflections. In addition,
the Coulombian electrostatic interactions are screened by
the ions present in water. Taking into account gravity
and assuming a linear superposition of the Debye-Hiickel
screened electrostatic interactions from each wall, the to-
tal potential energy V(z) reads:

V(z) _pleH+)/I> 4 e—(H—z)/lD} n H+z @)
ksT Is

where B is a dimensionless electrostatic magnitude re-
lated to the particle and wall surface-charge densi-
ties [66], Ip is the Debye length, lg = kgT/(gAm) is
the Boltzmann length, and Am = m — %Wa?’pf is the
particle buoyant mass with p¢ the fluid density.
Moreover, the presence of the walls modifies the par-
ticle mobilities in both the x and 2z directions, in an
anisotropic fashion. Therefore, the Stokes drag coeffi-
cients now become space and direction dependent, and
we note them ~;(z) = 6wan;(z), with n;(2) the local ef-
fective viscosities. Assuming a linear superposition of the
contributions of each wall, one has [12] [67]:

mi(z) = (H o+ 2) 4l (H=2) = (3)
where we invoked the single-wall expressions 771(1). When
neglecting slippage at the wall [68], the latter are given
by the functional forms [9]:

1
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with £ = a/(u+ a), and:

& (w) =m0 (4)

6u? + 9au + 2a?

1)) —
n(w) = o 6u? + 2au
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FIG. 2. Diffusion coefficients D; along x (blue) and z (green),
normalized by the bulk value Dy = kgT'/(67ano)[2], as func-
tions of the rescaled discrete vertical coordinate z,/a, as ob-
tained from Eqs. (3f4l5l6), with z, = z; for ¢ = ndt. Two
typical situations are considered: (a) near the bottom rigid
wall, with the particle-wall contact point shifted here to cor-
respond to z, = 0; (b) between two rigid walls.

where the last expression is a Padé approximation [69)]
of the complete formula [9] [70], valid with less than 1%
error. We note that, in the horizontal direction x, we
have omitted the supplementary logarithmic correction
for the mobility in the very near vicinity of the wall [71],
as this region is typically not accessed in practice due to
the electrostatic repulsion between the particle and the
walls [24].

Invoking the Stokes-Einstein relation, we then con-
struct the local diffusion coefficients, as:

= k_BiT ) (6)
7i(2)
For illustration, typical diffusion-coefficient profiles are
show in Fig. [Ja) near the bottom rigid wall, and in
Fig. [[(b) for two rigid walls.
We can then rewrite Eq. in the overdamped regime
for a particle between two rigid walls, as:

dx
d—tt = /2D, (2) we () ,
D) wa(t) + 22 "
dt ? Yo(zt)
with F,(z;) = —V’'(2;), where the prime indicates one

derivative with respect to the argument. We stress that,
since we consider the overdamped regime, we need to
specify further the interpretation of the noise. We adopt
the Ito convention, and there is thus an additional spu-
rious drift to consider, as explained in details in Sec-
tion[[TC| Eventually, at long time scales, the system must
reach equilibrium, and one should recover the canonical
Gibbs-Boltzmann distribution in position:

oAV (2)
+H _ o
.[;H dz’ e BV (2')

with 3 =1/(kgT), and using V (2) from Eq. (2).

Peq(2) =

; (8)

C. Spurious drift

One can observe that the noise magnitude y/2D;(z;) in
Eq. depends on the random variable z; itself — a fea-
ture which is thus usually referred to as “multiplicative
noise”. It requires a specific treatment in stochastic cal-
culus, the basics of which being recalled hereafter. Let us
rewrite the vertical projection of Eq. in a differential
form, as:

dzy = [U(2e) + A(zp)w,(¢¥)]dt (9)

with A(z;) = 4/2D.(z:), and where U(z;) is an unknown
drift velocity at this stage. For integration, we consider a
small time interval between ¢ and ¢+ 7. Since there is an
intrinsic ambiguity in the evaluation of A on this interval,
we introduce a parameter « € [0, 1] that characterizes the
chosen evaluation instant ¢+ a7. Note that there are two

common conventions: i) & = 0, 4.e. the Ito convention;
and ii) o = 1/2, i.e. the Stratonovich convention. Im-
posing the steady state of the associated Fokker-Planck
equation to be given by the Gibbs-Boltzmann distribu-
tion (see Eq. for the marginal in position), one even-

tually gets for all conventions [72], [73]:

F(zt)
'Yz(zt)

where we have identified U(z:) = F,(2t)/7.(2¢) + (1 —
@)A(z)A(z). By comparison with Eq. (7)), we see the
appearance of a convention-dependent spurious drift ve-
locity (1 — a)A(z1)A'(2¢) = (1 — a)D.(z). Without
this correction brought to the discretized overdamped
Langevin equation, the simulated z; realizations would
not satisfy the Gibbs-Boltzmann distribution at long
times, which is a necessary condition. In the following,
we choose the Ito convention (o = 0) for the practical
numerical integration.

Zigr = 2t + [ + (1 — a)A(z0) A (z¢) + A(zt)w» (t)] 7, (10)

D. Numerical simulations

We discretize the problem through an Euler scheme,
by considering a discrete time t = ndt, with n a positive
integer and dt the numerical time step. We write r;(¢) as
Tims (Tt,2t) as (Tn,2n), and w;(t) as w; . The discrete
noises w; , are chosen as independent Gaussian noises,
each with zero mean and 1/t variance. Specifically,
to generate w; ,, we first generate a pair of uniformly-
distributed random numbers using the Mersenne-Twister
generator [74]. Then, we transform the latter pair into
a Gaussian-distributed random variable using the Box-
Muller algorithm [75] [76]. From the discretization of the
horizontal projection of Eq. 7 and from Eq. for
the vertical projection, we get the discrete overdamped
Langevin equation in the Ito convention:

=z, + \/szmét
zn + D (2) — BD=(2)V" (2n) (11)
+ /2D, (zn)w, 50t .

xn+l

Zn+1
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FIG. 3. (a) Typical numerically-simulated trajectory of a

Brownian particle confined by two rigid walls, in presence
of gravity and surface charges. The blue and green lines re-
spectively represent x, and z, + H, for the first 10* points
over a total of N; = 10° points, using a time step 6t =
0.01 s. (b) Long-term distribution of the wall-particle dis-
tance z, + H. The solid line corresponds to Eqs. and ,
with @ = 1.5 ym, B = 5.0, [z = 526 nm, Ip = 88 nm, and
H, =40 pm.

To ensure thermalization in the vertical direction,
and avoid unnecessary equilibration delays, we enforce
the initial conditions (zg,29) = (0,2), with zg ran-
domly sampled from the Gibbs-Boltzmann distribution
of Eq. , using an inverse transformation sampling [77].
In the following, each particle trajectory is simulated
with 0t = 0.01 s, a = 1.5 um, 9 = 1 mPa.s, B = 5.0,
Il = 526 nm, and lp = 88 nm, in order to reproduce a
realistic experimental situation [24]. A typical trajectory
is shown in Fig. a), for the 1000 first seconds. To make
sure that the equilibrium along the vertical direction is
reached, we verify that the Gibbs-Boltzmann distribu-
tion of Eq. is reached, without any free parameter,
as shown in Fig. b). This distribution, together with
Eq. , provides a direct feeling of the electrostatic deple-
tion near the bottom wall. Without such an electrostatic
contribution, the probability of presence would just be
a single exponential function, that would be maximal at
the wall, as in the historical Perrin’s experiments [5].

We run N simulations. Each simulation produces a
trajectory of Ny points in time. The simulations are per-
formed using Python [(8], and each of these can take
several seconds of real computation time for Ny = 106,
as shown in Fig. For Ny = 2 - 106 trajectories with

TTTT, Ty T YTy T TRy T Ty T Ty T
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10t 102 10%  10* 10° 10 107
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FIG. 4. Real computational times t. as functions of the total
number Ny of points in a given simulated trajectory, using
both Python and Cython, as indicated. The solid lines cor-
respond to the best linear regressions, from which we find
te(s) = 6 - 107*N; for Python, and t.(s) = 4 - 107N, for
Cython.

N; = 10%, we would need several months of real compu-
tation time. To reduce the computational time, we use
Cython [79], which allows to keep the flexibility and ease
of use of Python. As shown in Fig. 4] for Ny > 10%, simu-
lations using Cython are a hundred times faster than the
ones using Python.

IITI. RESULTS
A. Mean square displacements

After having verified above that the simulated system
reaches equilibrium properly, one can now turn to the in-
vestigation of the dynamical properties of interest. Let us
start with the canonical and well-documented quantities,
i.e. the Mean Squared Displacements (MSDs), which are
defined as [80]:

(Ar)(r) = ([ri(t + 1) = r:(W)]) (12)

where the ensemble average (-) is computed in practice
from an average (-); over time t. At all time lags 7
for the horizontal direction, and at small time lags for
the vertical one, the MSDs are linear in 7, as shown
in Fig. Indeed, the absence of a preliminary bal-
listic regime is expected for the governing overdamped
Langevin equation (see Eq. ) In the bulk, one would
have (Ar?)(7) = 2Do7. However, in the confinement sit-
uation at stake here, the prefactor is modified. One may
expect instead:

(Arf)(r) = 2(Di)or , (13)

where (-)g = szf dz (+) Peq(#) is the spatial average over
the Gibbs-Boltzmann distribution (see Eq. (8)). More-
over, in Fig. b), one observes that the vertical MSD
eventually reaches a plateau at large time lags with a



value close to [3. This saturation corresponds to the fact
that the vertical range is limited by gravity, which ef-
fectively traps the particle near the bottom wall. The
plateau value can be computed from:

2H
lim (Az?) :/ d(Az) Az} P(Az,7s0) ,  (14)
T—+400 _9H

where P(Az;,7) is the Probability Density Function
(PDF) of the vertical displacement Az, at time lag 7,
that tends to P(Az;, 7o) when 7 — 400 (see Eq. (20))
as discussed in the corresponding section. As shown in

Fig. Eqgs. and capture well the numerical
data, with no free parameter.

B. Fourth-order cumulants in displacements

Beyond the MSDs studied in the previous section, i.e.
the second-order cumulants of the displacements, one can
study higher-order cumulants. Such higher-order cumu-
lants — and especially the horizontal one — are partic-
ularly interesting in order to characterize the inherent
non-Gaussianity of the confined Brownian process. The
third cumulants (Ar?). are zero, since there is no ex-
ternal drift and (Ar;) = 0. Therefore, we focus on the
fourth cumulants of the displacements:

(Arf)e = (Ar) = 3(Ar)? . (15)

For our class of confined systems (see Fig. [1]), in addition
to a formal general expression valid at all time lags in
the horizontal direction [45], one can derive the short-
term and long-term asymptotic behaviors of Eq. .
At small time lags, one has [45]:

(Arf)e =~ 12[(Df)o — (Di)g] 7* (16)
where the demonstration for the vertical direction is
equivalent to the one for the horizontal direction. We
however stress that the non-Gaussianity in the vertical
direction is a direct result of vertical confinement, and,
as such, is not as profound and interesting as its horizon-
tal counterpart for which the motion is unbounded. At
large time lags, in the horizontal direction, one has [45]:

(Azf)e =~

c X~
T+

24 (D4T — C4) 5 (17)

o0

where D4 and C4 are two known constants depending on
V and {D;}. At large time lags, in the vertical direction,
one expects a plateau given by:

+2H
lim (Az}) :/ d(Az) Az} P(Azs, Too)

T—+00 _oH

+2H
-3 [/ d(Az) AthP(Azt,TOO) ,
—2H

(18)
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FIG. 5. Mean square horizontal (a) and vertical (b) dis-

placements (Ar?,) (see Eq. (12)) as functions of time lag
7, for one simulated trajectory of N; = 10° points, with a
numerical time step 6t = 0.01 s. The physical parameters
are a = 1.5 pm, B = 5.0, Iz = 526 nm, Ip = 88 nm and
H, =40 pm. The solid lines correspond to Eq. , and the
dashed line to Eq. .

where P(Az, Too) is defined in Eq. , as discussed in
the next section.

As shown in Fig. [f] the fourth cumulants in displace-
ments obtained from the numerical simulations are in
agreement with the asymptotic expressions of Egs. (|16)
to , with no adjustable parameter. Moreover, we
stress that the fourth cumulant in horizontal displace-
ment depends on both D, (z) and D.(z) at long times
[45]. As such, there is a subtle information coupling be-
tween the vertical and horizontal motions, in spite of the
fact that the respective noises are not correlated. This
is a potentially relevant feature towards the practical
extraction of vertical quantities from simple horizontal
statistics in actual experimental systems. Note that this
idea was already exploited for the second cumulant in a
different class of confined systems [21].

C. Displacement distributions

Having discussed the second and fourth cumulants
of displacements in the two previous sections, we now
turn to the full PDFs P(Ar;, 7) of displacements Ar; =
r;(t+7)—r;(t), at time lag 7. Note that, in the discretized
version for numerical simulations, we denote these quan-
tities P(Ar; ., T), Ar; pn, and 7 = ndt, respectively, with
n a positive integer. In the bulk, such PDFs obey the
diffusion equation and are classically given by Gaussian
distributions, each of zero mean and 2D7 variance.

In our confined case, the presence of the walls modifies
the Brownian motion to a so-called Brownian-yet-non-
Gaussian motion [26H45]. We still have a Wiener pro-
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cess, because only the amplitude of the noise is modified
by the presence of the walls, but not the Gaussian white
noise w;(t) itself. The MSDs are linear in time like for
the bulk case (see Eq. (13)). However, the PDFs of dis-
placements are not Gaussian (i.e. with zero mean and
2(D;(z))o variance) anymore, in sharp contrast to the
bulk case. They depart from Gaussian distributions for
large displacements, in particular. At all time lags 7 for
the horizontal direction, and at small time lags for the
vertical one, the PDFs of displacements can be obtained
from spatial averages (-)o of the local diffusion Green’s
functions over the Gibbs-Boltzmann distribution [19] 24]:

+2H P Ari2
P(Ar;, 1) :/ dz _Feale) e i . (19)
—2H 4w D;(z)T

As shown in Fig. a,b,c), the PDFs in displacements
obtained from the numerical simulations are in agreement
with Eq. with no adjustable parameter, at all time
lags for the horizontal direction, and at small time lags
for the vertical one. Moreover, we observe a departure
from the classical bulk Gaussian distributions, that is
more pronounced in the vertical direction. Interestingly,
even though these three displacement distributions are
non-Gaussian, the corresponding MSDs are still linear in
time lag (see Fig.[d)), as expected for a Brownian-yet-non-
Gaussian process.

Let us now turn to the long-term behaviour of the PDF
in vertical displacement. As already observed in Figs.
and [6] the second and first cumulants of the vertical dis-
placement reach plateau values at long times. This sat-
uration indicates that equilibrium is reached in the ver-
tical direction. Therefore, one can derive the long-term

—0.25 0.00 0.25 —0.25 0.00 0.25

P(Arin, o) (hm™") P(Aripn,70) (pm™")

107! (c) 10—t (d)
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Az (pm) Azp (pm)

FIG. 7. (a,c) Probability density functions P(Ax,,7) in hor-
izontal displacement Ax,, obtained from numerical simula-
tions (blue dots), at small time lag 70 = 0.01 s and large
time time lag 7o« = 95.4 s, respectively. The solid black
lines correspond to Eq. , and the dashed blue lines cor-
respond to Gaussian distributions of zero means and 2(Dg)T
variances. (b,d) Probability density functions P(Azy,,T) in
vertical displacement Az,, obtained from numerical simula-
tions (green diamonds), at small time lag 70 = 0.01 s and
large time time lag 7oc = 95.4 s, respectively. The solid black
lines correspond to Eq. , and the dashed green line to a
Gaussian distribution of zero mean and 2(D.)7 variance. In
all panels, the PDFs are constructed from N, = 2.1 x 10°
trajectories of Ny = 10° points each, using a numerical time
step 6t = 0.01 s, and the physical parameters: a = 1.5 um,
B =5.0, g = 526 nm, Ip = 88 nm, and H, = 40 pym. In
all panels, the statistical error bars are smaller than the data
symbols.

distribution P(Az;, Too) = lim, 400 P(Az, 7) from the
Gibbs-Boltzmann distribution (see Eq. (8)), as [19} 24]:

+2H
P(Az, ) = / 2 Puy(2)Pa(z 4 Az) . (20)

—2H

Stated simply, at equilibrium, a certain displacement Az,
corresponds to having a certain starting point z and the
arrival one z+ Az, both being independently distributed
according to the Gibbs-Boltzmann distribution, and with
a summation over all possible starting points. As shown
in Fig. d), the long-term PDF in vertical displacement
obtained from the numerical simulations is in agreement
with Eq. (20), with no adjustable parameter. Moreover,
we observe a marked departure from the classical bulk
Gaussian distribution.
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FIG. 8. Probability density functions P(Az,,7) in horizontal
displacement Ax,,, obtained from numerical simulations (blue
dots) by averaging the individual PDFs of the Ny = 2.1 x
10° trajectories. Three lag times are considered here: (a)
71 = 0.0l s, (b) 2 = 1.09 s and (c) 73 = 193.06 s. For
comparison, are shown the data restricted to within the 90*®
(vellow squares) and 99*" (brown triangles) quantiles. The
solid black lines correspond to Eq. , and the dashed blue
lines correspond to Gaussian distributions of zero means and
2(Dg)T variances. In all panels, the PDFs are constructed
from trajectories of Ny = 10° points each, using a numerical
time step 0t = 0.01 s, and the physical parameters: a =
1.5 pm, B = 5.0, Ig = 526 nm, Ip = 88 nm, and H, = 40 pm.

D. Rare events and convergence

As seen in Fig. |f|(a,c)7 resolving the non-Gaussianities
in the distribution of the horizontal displacement implies
to measure large displacements, which are rare events,
and thus require a lot of numerical data. This is illus-
trated in Fig. [8 where we see that the non-Gaussian
data of interest lies outside the 99" quantiles. As a di-
rect consequence, a single short trajectory does not al-
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FIG. 9. (a) Fourth cumulant (Azp). in horizontal displace-
ment Az, as a function of time lag 7, as obtained from the dis-
tribution method of Egs. and (blue circles). For com-
parison, we also show simple averages (pink triangles) of the
fourth cumulants in horizontal displacement obtained from
the individual trajectories. (b-d) Fourth cumulants (Azp)e
as functions of the number Ns of simulations, for three differ-
ent time lags as indicated. In all panels, the solid lines cor-
respond to the short-term asymptotic expression of Eq. ,
and the dashed lines to the long-term asymptotic expression
of Eq. . The trajectories have Ny = 10° points each, and
the numerical time step is 6t = 0.01 s. The physical parame-
ters in the simulation are: a = 1.5 ym, B = 5.0, [z = 526 nm,
Ip = 88 nm, and H, = 40 pm.

low one to resolve the horizontal non-Gaussianities, and
thus the fourth cumulant in horizontal displacement (see



Supplementary Material of Ref. [81] for a similar conver-
gence problem). One possible strategy to overcome this
issue would be to generate a much longer trajectory, e.g.
of Ny = 10® points, but this would be at the expense
of accumulating important numerical errors on the rare
events. In order to circumvent such an error accumula-
tion, we instead simulate Ny = 2.1 x 10° shorter trajec-
tories of Ny = 10° points each. Note that such an issue
is however unimportant for the MSD (see Fig. |5) which
is dominated by frequent Gaussian-like events. There-
fore, the horizontal MSD can be calculated with a single
trajectory of Ny = 10° points, as in Fig.

Another important practical point to consider is the
difficulty in registering Ny x Ny points, in order to produce
the fourth cumulants at large time lags in Fig. [6] To
circumvent this issue, we invoke the equivalent expression
of the fourth cumulant:

+2H
(Az}), :/ d(Azy) Az} P(Axy, T)

—2H
+2H 2 (21)
-3 [/ d(Az;) Ax?P(Axy, T)

—2H

From this expression, we see that one just needs to con-
struct P(Az,,7) from all the numerical trajectories, in
order to evaluate (Ax}).. The construction of P(Ax,,T)
is performed by averaging the PDFs P*)(Az,,, 7) of hor-
izontal displacements for the individual trajectories (in-
dexed by the integer k), as:

Ns
P(Aw,,T) = Ni > P®(Az,7) . (22)
k=1

In Fig. @(a), we plot the fourth cumulant in horizon-
tal displacement as a function of time lag, as obtained
from this distribution method. For comparison, we also
plot the fourth cumulant in horizontal displacement es-
timated by a naive method, which consists in simply av-
eraging the fourth cumulants in horizontal displacement
obtained from the individual trajectories. At small time
lags, where single trajectories are sufficient, both meth-
ods work properly. At large time lags, the distribution
method is still robust, while the naive method underes-
timates the fourth cumulant. This is intimately rooted
in the fact that, as 7 increases, single trajectories do not
register enough rare events, which are however essential
for measuring non-Gaussianities, as discussed above. As
shown in Fig. |§|(b—d)7 increasing Ny does not solve the
problem with the naive method, which fails in converg-
ing to the good value at large time lags. In contrast, the
distribution method converges properly in the considered
Ng and 7 ranges, and is thus more robust.

IV. CONCLUSION

We have numerically investigated the Brownian motion
of a negatively-buoyant colloidal particle confined be-

tween two flat rigid walls, in presence of surface charges.
Specifically, we have solved the discretized overdamped
Langevin equation, with an appropriate spurious drift.
From the generated trajectories, and with specific care
provided regarding the slow convergence of high-order cu-
mulants, we have constructed all the relevant statistical
observables. From these, we have in particular checked
the convergence to equilibrium, and have quantitatively
addressed the non-Gaussianity of the process. As such,
our method provides efficient, broadrange and quanti-
tative numerical simulations of Brownian motion in con-
finement, with potential interest for nanophysics and bio-
physics.
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