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Numerical simulations of confined Brownian motion

Elodie Millan,1, ∗ Maxime Lavaud,1, ∗ Yacine Amarouchene,1, † and Thomas Salez1, ‡

1Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400, Talence, France.

Brownian motion is a central scientific paradigm. Recently, due to increasing efforts and interests
towards miniaturization and small-scale physics or biology, the effects of confinement on such a
motion have become a key topic of investigation. Essentially, when confined near a wall, a particle
moves much slower than in the bulk due to friction at the boundaries. The mobility is therefore
locally hindered and space-dependent, which in turn leads to the apparition of so-called multiplica-
tive noises. Here, we present efficient, broadrange and quantitative numerical simulations of a such
a problem. Specifically, we integrate the overdamped Langevin equation governing the thermal
dynamics of a negatively-buoyant spherical colloid within a viscous fluid confined by rigid walls,
including surface charges. From the produced large set of long random trajectories, we perform a
complete statistical analysis and extract all the key quantities, such as the probability distributions
in displacements and their first moments. In particular, we propose a convenient method to compute
high-order cumulants by reducing convergence problems, and employ it to characterize the inherent
non-Gaussianity of the process.

I. INTRODUCTION

Brownian motion is the random movement of a mi-
croparticle due to thermal agitation. This name was
given in reference to Robert Brown, a botanist, who ob-
served in 1828 for the first time the erratic trajectories of
pollen grains, using a microscope [1]. He concluded that
this motion was not from a living source since he observed
the same phenomenon with grains of inorganic matter,
like minute fragments of window glass or mineral sub-
stances. In 1905, Albert Einstein [2], William Sutherland
[3] and Marian Von Smoluchowski [4], physically mod-
elled Brownian motion, and independently calculated the
diffusion coefficient of a single particle, assuming that
matter is discontinuous. In 1909, Jean Perrin [5] vali-
dated Einstein’s theory by studying both the distribution
and the agitation of microparticules in suspension. More-
over, doing so, he experimentally measured the Avogadro
number, proving the atomic nature of matter, and was
thus awarded the Nobel Prize in 1926. Besides, from this
work, it then became clear that Brownian motion can be
a probe of conservative forces. In 1908, Paul Langevin
[6] developed the equation that governs Brownian trajec-
tories using the fundamental principle of dynamics, and
taking into account both the viscous Stokes force and a
new stochastic force representing the effect of momen-
tum transfer from collisions with solvent molecules. It
is worth stressing that many variations and applications
around Brownian motion in the bulk are continuously
explored nowadays, and some of the key underlying hy-
potheses and concepts remain at the heart of epistemo-
logical discussions [7, 8].

In the second half of the 20th century, the rise of
miniaturization triggered the need for further under-
standing interfacial and confinement effects on colloidal
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mobility [9–11]. Almost ninety years after the Einstein-
Sutherland-Smoluchowski theory, a seminal study of
Brownian motion near rigid walls was performed [12]. In
the latter, the space-dependent wall-friction-induced re-
duction in the average planar diffusion coefficient of con-
fined colloids was revealed. This result triggered a novel
research activity on Brownian motion in confinement
[13–19], with implications in single-molecule force spec-
troscopy [20, 21], surface-force measurements [22, 23],
and single-algae motility analysis [24]. A key associated
feature is the emergence of multiplicative noises and non-
Gaussianity [25–44], despite the mean-square displace-
ment (MSD) remains linear in time as expected for a
classical Brownian process. Moving beyond rigid con-
finement at equilibrium, the influence of fluctuating in-
terfaces on Brownian point-like tracers was investigated
theoretically [45], and experimentally [46], as well as the
effects of wall adhesion [47–49]. Besides, fluid and soft
boundaries were considered [50–53], and Taylor disper-
sion in confinement was investigated [54–56].

While bulk Brownian motion has been modelled nu-
merically (see e.g. Ref. [57] for a tutorial), efficient,
broadrange and quantitative numerical simulations of
confined Brownian motion allowing to characterize all
the statistical quantities and revealing the non-Gaussian
properties, are lacking to date. In this article, we aim
at filling this gap. We describe how one can model the
thermal dynamics of a negatively-buoyant spherical col-
loidal particle between two rigid walls, including surface
charges. After recalling the overdamped Langevin equa-
tion including spurious forces, we solve it using an op-
timized numerical scheme, and investigate the full dis-
placement statistics. We show in particular that special
care needs to be taken in order to avoid convergence is-
sues when computing high-order cumulants from Brow-
nian realizations.
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FIG. 1. Schematic of the system in the (x, y) plane. A surface-
charged particule of radius a diffuses in three dimensions in
a fluid of viscosity η0, between two rigid, flat and surface-
charged walls separated by a distance 2Hp = 2H + 2a.

II. MODEL

A. Bulk Langevin equation

We consider a colloidal particle of radius a, immersed
in a fluid of dynamic shear viscosity η0. In the bulk, the
particle motion is described by the Langevin equation [6]:

m~̈r(t) = −γ~̇r(t) + ~F(~r(t)) +
√

2kBTγ ~w(t) , (1)

where ~r(t) = [rx(t), ry(t), rz(t)] is the particle center of
mass position at time t, m = 4

3πa
3ρ is the particle mass,

ρ is the particle density, γ = 6πη0a is the bulk Stokes
drag coefficient, kB is the Boltzmann constant, T is the

temperature, ~F = −~∇V is the total conservative force
deriving from the potential V [~r(t)], and

√
2kBTγ ~w(t)

is the stochastic Langevin force accounting for the ran-
dom impacts of surrounding fluid molecules. In the fol-
lowing, the projected equations along x and y being
independent and similar, we only consider the x axis.
The two relevant spatial directions are thus indexed by
i = x, z, corresponding to the coordinates rx(t) = xt and
rz(t) = zt. We model ~w(t) = [wx(t), wy(t), wz(t)] as a
Gaussian white noise of zero mean 〈wi(t)〉 = 0, and delta-
correlated variance 〈wi(t)wj(t′)〉 = δijδ(t− t′), where 〈·〉
indicates the ensemble average, δij the Kronecker symbol
and δ the Dirac distribution.

The inertial term m~̈r can be further neglected in the
overdamped regime, which is reached when considering
times greater than the inertial time scale m/γ ≈ 50 ns,
for a = 1.5 µm, ρ = 1050 kg.m−3 and η0 = 1 mPa.s.

B. Overdamped Langevin equation in confinement

We now consider that the particle is confined between
two rigid and flat walls separated by a distance 2Hp, as
shown in Fig. 1. The gravitational acceleration ~g is ori-
ented along −z. We further suppose that the particle

and walls are negatively charged in water, inducing elec-
trostatic interactions. In addition, the latter are screened
by the ions present in water. Taking into account gravity
and assuming a linear superposition of the Debye-Hückel
screened electrostatic interactions from each wall, the to-
tal potential energy V (z) reads:

V (z)

kBT
= B

[
e−(H+z)/lD + e−(H−z)/lD

]
+
H + z

lB
, (2)

where B is a dimensionless electrostatic magnitude re-
lated to the particle and wall surface-charge densi-
ties [58], lD is the Debye length, lB = kBT/(g∆m) is
the Boltzmann length, and ∆m = m − 4

3πa
3ρf is the

particle buoyant mass with ρf the fluid density.
Moreover, the presence of the walls modifies the par-

ticle mobilities in both the x and z directions, in an
anisotropic fashion. Therefore, the Stokes drag coeffi-
cients now become space and direction dependent, and
we note them γi(z) = 6πaηi(z), with ηi(z) the local ef-
fective viscosities. Assuming a linear superposition of the
contributions of each wall, one has [12, 59]:

ηi(z) ' η(1)i (H + z) + η
(1)
i (H − z)− η0 , (3)

where we invoked the single-wall expressions η
(1)
i . The

latter are given by the functional forms [9]:

η(1)x (u) = η0
1

1− 9
16ξ + 1

8ξ
3 − 45

256ξ
4 − 1

16ξ
5
, (4)

with ξ = a/(u+ a), and:

η(1)z (u) = η0
6u2 + 9au+ 2a2

6u2 + 2au
, (5)

where the last expression is a Padé approximation [60]
of the complete formula [9, 61], valid with less than 1%
error. Invoking the Stokes-Einstein relation, we then con-
struct the local diffusion coefficients, as:

Di(z) =
kBT

γi(z)
. (6)

For illustration, typical diffusion-coefficient profiles are
show in Fig. 2(a) near the bottom rigid wall, and in
Fig. 2(b) for two rigid walls.

We can then rewrite Eq. (1) in the overdamped regime
for a particle between two rigid walls, as:

dxt
dt

=
√

2Dx(zt)wx(t) ,

dzt
dt

=
√

2Dz(zt)wz(t) +
Fz(zt)
γz(zt)

,
(7)

with Fz(zt) = −V ′(zt), where the prime indicates one
derivative with respect to the argument. Eventually, at
long time scales, the system must reach equilibrium, and
one should recover the canonical Gibbs-Boltzmann dis-
tribution in position:

Peq(z) =
e−βV (z)∫ +H

−H dz′ e−βV (z′)
, (8)

with β = 1/(kBT ).
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FIG. 2. Diffusion coefficients Di along x (blue) and z (green),
normalized by the bulk value D0 = kBT/(6πaη0)[2], as func-
tions of the rescaled discrete vertical coordinate zn/a, as ob-
tained from Eqs. (3,4,5,6), with zn = zt for t = nδt. Two
typical situations are considered: (a) near the bottom rigid
wall, with the particle-wall contact point shifted here to cor-
respond to zn = 0; (b) between two rigid walls.

C. Spurious drift

One can observe that the noise magnitude
√

2Di(zt) in
Eq. (7) depends on the random variable zt itself – a fea-
ture which is thus usually referred to as “multiplicative
noise”. It requires a specific treatment in stochastic cal-
culus, the basics of which being recalled hereafter. Let us
rewrite the vertical projection of Eq. (7) in a differential
form, as:

dzt = [U(zt) +A(zt)wz(t)]dt , (9)

with A(zt) =
√

2Dz(zt), and where U(zt) is an unknown
drift velocity at this stage. For integration, we consider a
small time interval between t and t+ τ . Since there is an
intrinsic ambiguity in the evaluation of A on this interval,
we introduce a parameter α ∈ [0, 1] that characterizes the
chosen evaluation instant t+ατ . Note that there are two
common conventions: i) α = 0, i.e. the Îto convention;
and ii) α = 1/2, i.e. the Stratonovich convention. Im-
posing the steady state of the associated Fokker-Planck
equation to be given by the Gibbs-Boltzmann distribu-
tion (see Eq. (8) for the marginal in position), one even-
tually gets for all conventions [62, 63]:

zt+τ = zt+

[Fz(zt)
γz(zt)

+ (1− α)A(zt)A′(zt) +A(zt)wz(t)

]
τ , (10)

where we have identified U(zt) = Fz(zt)/γz(zt) + (1 −
α)A(zt)A

′(zt). By comparison with Eq. (7), we see the
appearance of a convention-dependent spurious drift ve-
locity (1 − α)A(zt)A

′(zt) = (1 − α)D′z(zt). Without
this correction brought to the discretized overdamped
Langevin equation, the simulated zt realizations would
not satisfy the Gibbs-Boltzmann distribution at long
times. In the following, we choose the Îto convention
(α = 0).

D. Numerical simulations

We discretize the problem through an Euler scheme,
by considering a discrete time t = nδt, with n a positive
integer and δt the numerical time step. We write ri(t) as
ri,n, (xt, zt) as (xn, zn), and wi(t) as wi,n. The discrete
noises wi,n are chosen as independent Gaussian noises,
each with zero mean and 1/δt variance. Specifically,
to generate wi,n, we first generate a pair of uniformly-
distributed random numbers using the Mersenne-Twister
generator [64]. Then, we transform the latter pair into
a Gaussian-distributed random variable using the Box-
Muller algorithm [65, 66]. From the discretization of the
horizontal projection of Eq. (7), and from Eq. (10) for
the vertical projection, we get the discrete overdamped
Langevin equation in the Îto convention:

xn+1 = xn +
√

2Dx(zn)wx,nδt

zn+1 = zn + [D′z(zn)− βDz(zn)V ′(zn)

+
√

2Dz(zn)wz,n]δt .

(11)

To ensure thermalization in the vertical direction, we
enforce initial conditions (x0, z0) = (0, z0), with z0 ran-
domly sampled from the Gibbs-Boltzmann distribution
of Eq. (8), using an inverse transformation sampling [67].
In the following, each particle trajectory is simulated
with δt = 0.01 s, a = 1.5 µm, η0 = 1 mPa.s, B = 5.0,
lB = 526 nm, and lD = 88 nm, in order to reproduce a
realistic experimental situation [23]. A typical trajectory
is shown in Fig. 3(a), for the 1000 first seconds. To make
sure that the equilibrium along the vertical direction is
reached, we verify that the Gibbs-Boltzmann distribu-
tion of Eq. (8) is reached, without any free parameter, as
shown in Fig. 3(b).

We run Ns simulations. Each simulation produces a
trajectory of Nt points in time. The simulations are per-
formed using Python [68], and each of these can take
several seconds of real computation time for Nt = 105,
as shown in Fig. 4. For Ns = 2 · 106 trajectories with
Nt = 105, we would need several months of real compu-
tation time. To reduce the computational time, we use
Cython [69], which allows to keep the flexibility and ease
of use of Python. As shown in Fig. 4, for Nt > 104, simu-
lations using Cython are a hundred times faster than the
ones using Python.

III. RESULTS

A. Mean square displacements

After having verified above that the simulated system
reaches equilibrium properly, one can now turn to the in-
vestigation of the dynamical properties of interest. Let us
start with the canonical and well-documented quantities,
i.e. the Mean Squared Displacements (MSDs), which are
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FIG. 3. (a) Typical numerically-simulated trajectory of a
Brownian particle confined by two rigid walls, in presence
of gravity and surface charges. The blue and green lines re-
spectively represent xn and zn + H, for the first 105 points
over a total of Nt = 108 points, using a time step δt =
0.01 s. (b) Long-term distribution of the wall-particle dis-
tance zn +H. The solid line corresponds to Eqs. (2) and (8),
with a = 1.5 µm, B = 5.0, lB = 526 nm, lD = 88 nm, and
Hp = 40 µm.

defined as [70]:

〈∆r2i 〉(τ) = 〈[ri(t+ τ)− ri(t)]2〉 , (12)

where the ensemble average 〈·〉 is computed in practice
from an average 〈·〉t over time t. At all time lags τ for the
horizontal direction, and at small time lags for the ver-
tical one, the MSDs are linear in τ , as shown in Fig. 5.
Indeed, the absence of a preliminary ballistic regime is
expected for the governing overdamped Langevin equa-
tion for (see Eq. (11)). In the bulk, one would have
〈∆r2i 〉(τ) = 2D0τ . However, in the confinement situation
at stake here, the prefactor is modified, and one expects
instead:

〈∆r2i 〉(τ) = 2〈Di〉0τ , (13)

where 〈·〉0 =
∫ +H

−H dz (·)Peq(z) is the spatial average over

the Gibbs-Boltzmann distribution (see Eq. (8)). More-
over, in Fig. 5(b), one observes that the vertical MSD
eventually reaches a plateau at large time lags with a
value close to l2B. This saturation corresponds to the fact
that the vertical range is limited by gravity, which ef-
fectively traps the particle near the bottom wall. The

102 104 106

Nt

10−3

10−1

101

103

t c
(s

)

Python

Cython

FIG. 4. Real computational times tc as functions of the total
number Nt of points in a given simulated trajectory, using
both Python and Cython, as indicated. The solid lines cor-
respond to the best linear regressions, from which we find
tc(s) = 4 · 10−5Nt for Python, and tc(s) = 4 · 10−7Nt for
Cython.

plateau value can be computed from:

lim
τ→+∞

〈∆z2t 〉 =

∫ 2H

−2H
d(∆zt) ∆z2tP (∆zt, τ∞) , (14)

where P (∆zt, τ) is the Probability Density Function
(PDF) of the vertical displacement ∆zt at time lag τ ,
that tends to P (∆zt, τ∞) when τ → +∞ (see Eq. (20))
as discussed in the corresponding section. As shown in
Fig. 5, Eqs. (13) and (14) capture well the numerical
data, with no free parameter.

B. Fourth-order cumulants in displacements

Beyond the MSDs studied in the previous section, i.e.
the second-order cumulants of the displacements, one can
study higher-order cumulants. Such higher-order cumu-
lants are particularly interesting in order to characterize
the inherent non-Gaussianity of the confined Brownian
process. The third cumulants 〈∆r3i 〉c are zero, since there
is no external drift and 〈∆ri〉 = 0. Therefore, we focus
on the fourth cumulants of the displacements:

〈∆r4i 〉c = 〈∆r4i 〉 − 3〈∆r2i 〉2 . (15)

For our class of confined systems (see Fig. 1), in addition
to a formal general expression valid at all time lags in
the horizontal direction [44], one can derive the short-
term and long-term asymptotic behaviors of Eq. (15).
At small time lags, one has [44]:

〈∆r4i 〉c '
τ→0

12
[
〈D2

i 〉0 − 〈Di〉20
]
τ2 , (16)

where the demonstration for the vertical direction is
equivalent to the one for the horizontal direction. At
large time lags, in the horizontal direction, one has [44]:

〈∆x4t 〉c '
τ→+∞

24 (D4τ − C4) , (17)
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FIG. 5. Mean square horizontal (a) and vertical (b) displace-
ments 〈∆r2i,n〉 (see Eq. (12)) as functions of time lag τ , for

a simulated trajectory of Nt = 108 points, with a numer-
ical time step δt = 0.01 s. The physical parameters are
a = 1.5 µm, B = 5.0, lB = 526 nm, lD = 88 nm and
Hp = 40 µm. The solid lines correspond to Eq. (13), and
the dashed line to Eq. (14).

where D4 and C4 are two known constants depending on
V and {Di}. At large time lags, in the vertical direction,
one expects a plateau given by:

lim
τ→+∞

〈∆z4t 〉 =

∫ +2H

−2H
d(∆zt) ∆z4tP (∆zt, τ∞)

− 3

[∫ +2H

−2H
d(∆zt) ∆z2tP (∆zt, τ∞)

]2
,

(18)

where P (∆zt, τ∞) is defined in Eq. (20), as discussed in
the next section.

As shown in Fig. 6, the fourth cumulants in displace-
ments obtained from the numerical simulations are in
agreement with the asymptotic expressions of Eqs. (16)
to (18), with no adjustable parameter. Moreover, we
stress that the fourth cumulant in horizontal displace-
ment depends on both Dx(z) and Dz(z) at long times
[44]. As such, there is an information coupling between
the vertical and horizontal motions, despite the respec-
tive noises are not correlated. This is a potentially rel-
evant feature towards the practical extraction of verti-
cal quantities from simple horizontal statistics in actual
experimental systems. Note that this idea was already
exploited for the second cumulant in a different class of
confined systems [20].
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FIG. 6. Fourth cumulants 〈∆r4i,n〉c (see Eq. (15)) in hori-
zontal (a) and vertical (b) displacements as functions of time
lag τ , for a simulated trajectory of Nt = 108 points, with a
numerical time step δt = 0.01 s. The physical parameters
are a = 1.5 µm, B = 5.0, lB = 526 nm, lD = 88 nm and
Hp = 40 µm. The solid lines correspond to Eq. (16), the
dashed line to Eq. (17), and the dash-dotted line to Eq. (18).

C. Displacement distributions

Having discussed the second and fourth cumulants
of displacements in the two previous sections, we now
turn to the full PDFs P (∆ri, τ) of displacements ∆ri =
ri(t+τ)−ri(t), at time lag τ . Note that, in the discretized
version for numerical simulations, we denote these quan-
tities P (∆ri,n, τ), ∆ri,n, and τ = kδt, respectively, with
k a positive integer. In the bulk, such PDFs obey the
diffusion equation and are classically given by Gaussian
distributions, each of zero mean and 2D0τ variance.

In our confined case, the presence of the walls mod-
ifies the Brownian motion to a so-called Brownian-yet-
non-Gaussian motion [25–44]. As such, the PDFs of dis-
placements are expected to depart from Gaussian distri-
butions. At all time lags τ for the horizontal direction,
and at small time lags for the vertical one, the PDFs of
displacements can be obtained from spatial averages 〈·〉0
of the local diffusion Green’s functions over the Gibbs-
Boltzmann distribution [19, 23]:

P (∆ri, τ) =

∫ +2H

−2H
dz

Peq(z)√
4πDi(z)τ

e
− ∆r2i

4Di(z)τ . (19)

As shown in Fig. 7(a,b,c), the PDFs in displacements
obtained from the numerical simulations are in agreement
with Eq. (19) with no adjustable parameter, at all time
lags for the horizontal direction, and at small time lags
for the vertical one. Moreover, we observe a departure
from the classical bulk Gaussian distributions, that is
more pronounced in the vertical direction. Interestingly,
even though these three displacement distributions are
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FIG. 7. (a,c) Probability density functions P (∆xn, τ) in hor-
izontal displacement ∆xn, obtained from numerical simula-
tions (blue dots), at small time lag τ0 = 0.01 s and large
time time lag τ∞ = 95.4 s, respectively. The solid black
lines correspond to Eq. (19), and the dashed blue lines cor-
respond to Gaussian distributions of zero means and 2〈Dx〉τ
variances. (b,d) Probability density functions P (∆zn, τ) in
vertical displacement ∆zn, obtained from numerical simula-
tions (green diamonds), at small time lag τ0 = 0.01 s and
large time time lag τ∞ = 95.4 s, respectively. The solid black
lines correspond to Eq. (19), and the dashed green line to a
Gaussian distribution of zero mean and 2〈Dz〉τ variance. In
all panels, the PDFs are constructed from Ns = 2.1 × 106

trajectories of Nt = 105 points each, using a numerical time
step δt = 0.01 s, and the physical parameters: a = 1.5 µm,
B = 5.0, lB = 526 nm, lD = 88 nm, and Hp = 40 µm.

non-Gaussian, the corresponding MSDs are still linear in
time lag (see Fig. 5), as expected for a Brownian-yet-non-
Gaussian process.

Let us now turn to the long-term behaviour of the PDF
in vertical displacement. As already observed in Figs. 5
and 6, the second and first cumulants of the vertical dis-
placement reach plateau values at long times. This sat-
uration indicates that equilibrium is reached in the ver-
tical direction. Therefore, one can derive the long-term
distribution P (∆zt, τ∞) ≡ limτ→+∞ P (∆zt, τ) from the
Gibbs-Boltzmann distribution (see Eq. (8)), as [19, 23]:

P (∆zt, τ∞) =

∫ +2H

−2H
dz Peq(z)Peq(z + ∆zt) . (20)

Stated simply, at equilibrium, a certain displacement ∆zt
corresponds to having a certain starting point z and the
arrival one z+∆zt, both being independently distributed
according to the Gibbs-Boltzmann distribution, and with
a summation over all possible starting points. As shown
in Fig. 7(d), the long-term PDF in vertical displacement
obtained from the numerical simulations is in agreement

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

10−8

10−6

10−4

10−2

100

P
(∆
x
n
,τ

1
)

(µ
m
−

1
) (a) τ1 =0.01 s

−15 −10 −5 0 5 10 15

10−9

10−7

10−5

10−3

10−1

P
(∆
x
n
,τ

2
)

(µ
m
−

1
) (b) τ2 =23.29 s

−20 0 20

xn (µm)

10−8

10−6

10−4

10−2

P
(∆
x
n
,τ

3
)

(µ
m
−

1
) (c) τ3 =193.06 s

FIG. 8. Probability density functions P (∆xn, τ) in horizontal
displacement ∆xn, obtained from numerical simulations (blue
dots) by averaging the individual PDFs of the Ns = 2.1× 106

trajectories. Three lag times are considered here: (a) τ1 =
0.01 s, (b) τ2 = 1.09 s and (c) τ3 = 95.4 s. For comparison, are
shown the data restricted to within the 90th (yellow squares)
and 99th (brown triangles) quantiles. The solid black lines
correspond to Eq. (19), and the dashed blue lines correspond
to Gaussian distributions of zero means and 2〈Dx〉τ variances.
In all panels, the PDFs are constructed from trajectories of
Nt = 105 points each, using a numerical time step δt = 0.01 s,
and the physical parameters: a = 1.5 µm, B = 5.0, lB =
526 nm, lD = 88 nm, and Hp = 40 µm.

with Eq. (20), with no adjustable parameter. Moreover,
we observe a marked departure from the classical bulk
Gaussian distribution.

D. Rare events and convergence

As seen in Fig. 7(a,c), resolving the non-Gaussianities
in the distribution of the horizontal displacement implies
to measure large displacements, which are rare events,
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FIG. 9. (a) Fourth cumulant 〈∆x4n〉c in horizontal displace-
ment ∆xn as a function of time lag τ , as obtained from the dis-
tribution method of Eqs. (21) and (22) (blue circles). For com-
parison, we also show simple averages (pink triangles) of the
fourth cumulants in horizontal displacement obtained from
the individual trajectories. (b-d) Fourth cumulants 〈∆x4n〉c
as functions of the number Ns of simulations, for three differ-
ent time lags as indicated. In all panels, the solid lines cor-
respond to the short-term asymptotic expression of Eq. (16),
and the dashed lines to the long-term asymptotic expression
of Eq. (17). The trajectories have Nt = 105 points each, and
the numerical time step is δt = 0.01 s. The physical parame-
ters in the simulation are: a = 1.5 µm, B = 5.0, lB = 526 nm,
lD = 88 nm, and Hp = 40 µm.

and thus require a lot of numerical data. This is illus-
trated in Fig. 8, where we see that the non-Gaussian data

of interest lies outside the 99th quantiles. As a direct
consequence, a single short trajectory does not allow one
to resolve the horizontal non-Gaussianities, and thus the
fourth cumulant in horizontal displacement. One possi-
ble strategy to overcome this issue would be to gener-
ate a much longer trajectory, e.g. of Nt = 108 points,
but this would be at the expense of accumulating impor-
tant numerical errors on the rare events. In order to cir-
cumvent such an error accumulation, we instead simulate
Ns = 2.1 × 106 shorter trajectories of Nt = 105 points
each. Note that such an issue is however unimportant
for the MSD (see Fig. 5) which is dominated by frequent
Gaussian-like events. Therefore, the horizontal MSD can
be calculated with a single trajectory of Nt = 108 points,
as in Fig. 5.

Another important practical point to consider is the
difficulty in registeringNs×Nt points, in order to produce
the fourth cumulants at large time lags in Fig. 6. To
circumvent this issue, we invoke the equivalent expression
of the fourth cumulant:

〈∆x4t 〉c =

∫ +2H

−2H
d(∆xt) ∆x4tP (∆xt, τ)

− 3

[∫ +2H

−2H
d(∆xt) ∆x2tP (∆xt, τ)

]2
.

(21)

From this expression, we see that one just needs to con-
struct P (∆xn, τ) from all the numerical trajectories, in
order to evaluate 〈∆x4t 〉c. The construction of P (∆xn, τ)
is performed by averaging the PDFs P (k)(∆xn, τ) of hor-
izontal displacements for the individual trajectories (in-
dexed by the integer k), as:

P (∆xn, τ) =
1

Ns

Ns∑
k=1

P (k)(∆xn, τ) . (22)

In Fig. 9(a), we plot the fourth cumulant in horizon-
tal displacement as a function of time lag, as obtained
from this distribution method. For comparison, we also
plot the fourth cumulant in horizontal displacement es-
timated by a naive method, which consists in simply av-
eraging the fourth cumulants in horizontal displacement
obtained from the individual trajectories. At small time
lags, where single trajectories are sufficient, both meth-
ods work properly. At large time lags, the distribution
method is still robust, while the naive method underes-
timates the fourth cumulant. This is intimately rooted
in the fact that, as τ increases, single trajectories do not
register enough rare events, which are however essential
for measuring non-Gaussianities, as discussed above. As
shown in Fig. 9(b-d), increasing Ns does not solve the
problem with the naive method, which fails in converg-
ing to the good value at large time lags. In contrast, the
distribution method converges properly in the considered
Ns and τ ranges, and is thus more robust.



8

IV. CONCLUSION

We have numerically investigated the Brownian motion
of a negatively-buoyant colloidal particle confined be-
tween two flat rigid walls, in presence of surface charges.
Specifically, we have solved the discretized overdamped
Langevin equation, with an appropriate spurious drift.
From the generated trajectories, and with specific care
provided regarding the slow convergence of high-order cu-
mulants, we have constructed all the relevant statistical
observables. From these, we have in particular checked
the convergence to equilibrium, and have quantitatively
addressed the non-Gaussianity of the process. As such,
our method provides efficient, broadrange and quanti-
tative numerical simulations of Brownian motion in con-
finement, with potential interest for nanophysics and bio-
physics.
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[43] José M Miotto, Simone Pigolotti, Aleksei V Chechkin,
and Sándalo Roldán-Vargas. Length scales in brownian
yet non-gaussian dynamics. Phys. Rev. X, 11(3):031002,
2021.

[44] Arthur Alexandre, Maxime Lavaud, Nicolas Fares, Elodie
Millan, Yann Louyer, Thomas Salez, Yacine Amarouch-
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