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Abstract—The next step towards vehicular networks in smart
cities would be the deployment of autonomous shuttles with
multiple on-board applications. Their need to offload task to-
wards Road Side Units (RSUs) is inevitable, especially with a
certain proportion of urgent data needing to be processed in the
shortest possible delay. Therefore, QoS-provisioning appears as
imperative, along with the optimization of resource requesting
at RSUs. To this end, we propose CAVTOMEC, a multi-RAT
location-aware, context-aware task offloading solution with QoS
provisioning for MEC vehicular networks. Our solution consists
of three intertwined mechanisms: traffic classification, location-
awareness exploiting the contents of CAM beacons and V2N-
enhanced resource polling. Traffic classification identifies high,
low, and indifferent task priorities, while location and resource
awareness help to select the most appropriate RSU to offload
tasks to depending on these priorities. Performance evaluations
show that our proposal offers better load balancing at the RSUs
than traditional offloading schemes, thus satisfying high priority
task offloading at better rates and freeing up more resources in
case an unexpected event occurs.

Index Terms—MEC, Task offloading, C-V2X, Connected au-
tonomous vehicles, V2I, QoS-provisioning, OMNET++ and Veins
simulation.

I. INTRODUCTION

With the widespread deployment of 5G and the implemen-

tation of smart cities, connected autonomous vehicles (CAVs)

become increasingly attractive, yet their acceptance by the

general public seems to progress at slow speeds, generally

calling for reassuring, accessible and reliable use cases [1]. In

that regard, the objective of shuttles is to pick up and drop off

passengers at pre-defined stops on a given circuit. Bringing

connected services to this use case could allow a variety of

new services to be integrated within autonomous shuttles, such

as better road safety, onboard entertainment, optimized road

traffic and so on.

To this end, multiple tasks involving massive amounts

of data need to be computed within strict time constraints.

Consequently, the advent of multi-access edge computing

(MEC) allows a vehicular host to offload tasks to edge servers

located at Road-Side Units (RSUs) close to the road, using

Vehicle-to-Infrastructure (V2I) communications [2]. However,

with connected vehicles being highly mobile in nature and

often harboring urgent applications, the issues of connectivity

stability, communication efficiency, time, and resource man-

agement need to be addressed.

In this paper, we present CAVTOMEC, a context-aware

task offloading mechanism with QoS-provisioning for multi-

RAT (multiple Radio Access Technologies) vehicles, aimed at

balancing resource load at RSUs while ensuring satisfactory

execution delay for urgent tasks. Such behavior is encouraged

so as to guarantee a minimal amount of available CPU

resources at all times at each RSU, in case a very urgent task

would need to be treated as soon as possible. CAVTOMEC’s

features tackle multiple issues at once:

1) Categorizing traffic into three priority classes: high,

medium and low, serves as an entry point to determine

how much leeway there is in terms of execution time.

2) A more thorough exploitation of long-range, Vehicle-

to-Network (V2N) communications allow for the cen-

tralization of resource data. This way, vehicles receive

regular updates on RSU usage state, which helps them

to select the best offloading destination.

3) The retrieval of Cooperative Awareness Message (CAM)

beacons allows vehicles to position themselves with each

other and relative to the RSUs, which facilitates the

selection of a destination. With D2D communications,

urgent tasks greatly benefit from short, obstacle-free

distances in terms of delay and reliability.

This work falls within the autOCampus project, aiming at

transforming a university campus into an intelligent, innovative

and ecological site through the means of autonomous vehicles,

automatic barriers and intelligent lighting [3]. The reminder

of the paper is organized as follows: section II presents

the related works. Section III characterizes the problem of

task offloading in multi-RAT vehicular networks. Section IV

introduces the system design of our solution. In section V, we

provide performance evaluation, results and discussion, while

Section VI summarizes the major takeaways. Finally, section

VII concludes this paper.

II. RELATED WORKS

This section introduces recent related works and discusses

how our contribution represents novelty from them. Being a

prerequisite of delay reduction, the concepts of task and data

offloading in vehicular networks have been greatly studied in

recent years. Since a major portion of the research has been

conducted on for V2I and/or V2V (Vehicle-to-Vehicle) task



offloading, our focus is on a V2N-enhanced task offloading

mechanism.

Deng et al. [4] introduced vehicular multi-hop to propagate

data ahead of the emitting host, allowing tasks to be computed

at an RSU further up the road before the offloading vehicle

reaches it to gather the results. This solution solves the issue of

high mobility in the context of V2I task offloading and result

retrieval, however no route nor destination is clearly defined

when the vehicle asks for a task to be offloaded, our solution

strives for precise destination selection.

Tang et al. [5] tackle a similar problem to ours, but in

the context of a straight lane with a single-RAT 5G MEC

architecture. The RSUs are replaced with gNBs, connected

to one and only one MEC server which confines the study

to a single-hop task offloading scheme. Our study is closer

to a real-life situation, with our simulation taking place on a

university campus and considering not all urban blocks are

currently being serviced with 5G coverage. We share similar

differences with Saleem et al., whose scheme is exclusively

focused on V2I data offloading with 802.11p technology, in

the context of a 30-kilometer straight highway [6]. Our urban,

slower-moving context raises different questions on reliability

and connectivity.

On the topic of sharing data between MEC hosts, Guo et

al.’s architecture makes edge servers use a multi-layered deep

learning network to share intelligence located at RSUs and

aggregate data from onboard vehicular sensors as well as from

the network itself [7]. The diversity of this multi-level data,

gathered from the applications to the hosts, is fed through

a decision algorithm to select which task to execute, and at

which host. The wealth of equipments populating the network

are the backbone of this collaboration-based framework. How-

ever, few pieces of research integrate the possibility of having

very few equipments available within the architecture.

To the best of our knowledge, there does not exist any

heterogeneous vehicular task offloading scheme that considers

either shuttle-oriented architectures or V2N as a supporting

role for context awareness. We exploit both long and short

range communications in order to optimize data transmission

for most of the V2X (Vehicle-to-Everything) applications that

could be seen in smart cities. We also model a realistic

playground with an actual city block instead of a single straight

lane, and a small amount of connected vehicles as would be

expected for the first steps of real-world deployment.

III. TASK OFFLOADING IN MULTI-RAT VEHICULAR

NETWORKS

This section introduces the concept of task offloading in

vehicular networks with hosts being equipped with multiple

network interfaces. With the appeal of smart cities, multiple

use cases have been imagined and reported by groups such as

5GAA to deploy novel applications at vehicular hosts in order

to enhance performance for all users, including those around

and not inside vehicles. Among them are delay-sensitive use

cases like road safety and remote driving, intelligence-driven

use cases like traffic jam avoidance, occasional and latency-

agnostic applications like usage reports and software updates

and so on [8]. This variety calls for a flexible network

architecture, able to adapt services depending on which ap-

plication relies on it at a given time. However, although each

connected vehicle hosts on-board computing capacities, they

are limited by nature, and generally not conceived to handle

all applications at once. Consequently, the largest amounts of

data and the most complex tasks and operations need to be

offloaded away from the vehicle to larger computing units

called mobile or multi-access edge computing (MEC) servers

and located at RSUs. After the tasks are executed over there,

their results are sent back to the offloading vehicle. We can

define for a given task u its total offloading delay tu as:

tu = tulu + tcomp
u + tdlu (1)

where tulu is the communication delay for the transmission

of the task from the vehicle to the MEC server, tcomp
u is

the computation delay at the MEC server, and tdlu is the

communication delay for the transmission of results from the

MEC server back to the vehicle.

The RSUs’ MEC servers being equipped with potent CPUs

and even GPUs at times, as well as their being positioned in

physical proximity to the road, greatly reduce both computing

and communication delays, thus satisfying most applications’

QoS requirements. We can formulate the computation delay

of a given task u at the MEC server tcomp
u as:

tcomp
u = Δtqueueu + αu/FCPU (2)

where Δtqueueu is the duration the task spends on the server

waiting to be computed, αu is the task’s computation needs

estimated in number of operations, and FCPU is the clocking

frequency of the MEC server’s CPU.

To fully exploit the potential of task offloading, the first

challenge to overcome is the selection of the network to

send data through. In vehicular networks, most hosts are

equipped with multiple network interfaces, as most current

hardware is able to at least handle C-V2X and the 802.11p-

based DSRC/ITS-G5 communications [9]. The subsequent

heterogeneous vehicular networks allow for the management

of multiple cells with various coverage areas, thus adaptive

to a wide variety of applications. Indeed, V2X applications

generally rely on two major kinds of communications : V2V

and V2I, both benefiting from 802.11p and C-V2X thanks

to their dedication to short-range communications. However,

additional communication types are being explored, such as

vehicle-to-pedestrian (V2P) and V2N.

802.11p was introduced by the IETF as a mobility-friendly

amendment to the two-decade-old Wi-Fi protocol, where

vehicles can skip the traditional association and authentication

phases to save precious communication time. It was quickly

adopted as a standard for vehicular communications, however

the constraints of its foundation, the 802.11a protocol, do not

save it from fatal limitations, especially with the emergence



of strict and resource-hungry applications in the era of 5G.

Wi-Fi-based vehicular network protocols seem doomed to be

overcome by cellular technologies.

The main concerns with vehicular networks comprising both

coverage and capacity, it seems logical for cellular networks,

starting with LTE ( [10]), to be perceived as ideal candidates

to tackle these issues. With Cellular-V2X (C-V2X), vehicles

benefit from two interfaces, thus becoming able to transmit

data directly to nearby peers via device-to-device commu-

nications (D2D), while keeping the ability to communicate

through long ranges like any other cellular device. In this case,

the transmissions go through a central access point: eNodeB

or gNodeB, for LTE and 5G respectively. These Vehicle-to-

Network communications tend to be overlooked in most vehic-

ular applications due to their higher delay compared to D2D,

however we could imagine a solution where the centralization

of information at the Access Point (AP) contributes to resource

management.

Indeed, long range V2X transmissions were not particularly

explored as a solution, limited in the standard to sporadic road

traffic updates in the case of an unexpected event occurring

ahead ( [11]). The presence of this dedicated Uu interface

represents, in our opinion, untapped potential for optimized

task offloading, given its possibility to share useful data to

distances and numbers of hosts unimaginable for short-range

interfaces.

IV. SYSTEM DESIGN OF OUR SOLUTION

This section introduces the system design of our task

offloading solution, in response to the previously-mentioned

needs related to smart cities and the potential of multi-RAT.

In the latest models of vehicular networks, hosts rely on

task and/or data offloading to enhance performance while

reducing delay. However, if a situation calls for high-priority

tasks to be sent and computed in close-to-real-time, issues

can occur where the closest MEC server is overloaded, and

thus not able to compute any more tasks without freeing up

capacity first. In these cases, the new, urgent tasks either have

to wait or be offloaded to a farther RSU, giving prolonged

delays in both cases. Our task offloading mechanism strives

for a solution to this situation, by focusing on all parameters

involved: task priority, RSUs’ currently available computing

capacity, and distance between offloading host and candidates.

This is CAVTOMEC, a Context-Aware V2X Task Offloading

Multi-RAT mechanism for MEC networks.

A. Problem definition

In our architecture, we model a small vehicular network

comprised of a few multi-RAT hosts with C-LTE and 802.11p

interfaces. While both the 802.11p interface and the C-V2X

PC5 interface may seem redundant due to their short-range

design, they serve different purposes in our study. The first

one serves as a propagation tool for CAM beacons and other

position messages, while the second one is used to send and

receive offloading-related packets. This way, no time will be

lost with vertical handover and no data links will be disrupted.

The usual process of V2I task offloading is divided in three

parts: the vehicle prepares and offloads the task and its related

data to its computing candidate, then the task is processed at

the MEC server, and finally the RSU sends the task results

back to the offloading vehicle. However a major flaw with

this process is the lack of intelligence with the selection

of an offloading destination. Worried about delay, vehicles

usually offload their tasks to the nearest RSU, regardless

of the task’s urgency or the destination’s current load. The

subsequent risks of offloading a task to a fully loaded RSU

or MEC server include task execution failure, retransmissions

and generally speaking, increased delay. In the context of

vehicular applications, where each millisecond counts, such a

risk cannot be entertained. This situation calls for an offload-

ing mechanism aware of extensive context information. We

thereby design a decision-making assistance mechanism with

QoS-provisioning, so as to balance and increase reliability for

V2I task offloading.

The utility of such a mechanism in the context of a shuttle

roaming a smart city is basically enhanced resource availability

for a vehicle that is most likely going to need to offload more

tasks as well as larger amounts of data than the usual car. The

contribution of V2N paves the way to the efficient exploitation

of both C-V2X interfaces, resiliently even in the case of higher

loads, by making the vehicle able to send data farther than its

D2D range alone.

B. RSU usage updates

In V2I task offloading architectures, RSUs exploit their

short-range interface (in our case the C-V2X PC5 one) to

receive task offloading requests and to send task results back

to vehicles. In these architectures, a go-to offloading scheme

often consists in sending vehicular tasks to the RSU closest

to the offloading host. We call this scheme ”location-based”.

When receiving offloaded tasks, the RSUs allocate the neces-

sary computing resources to execute these tasks in the shortest

amount of time. Due to mostly economic reasons, the edge

servers’ integrated CPU has limited amounts of resources,

which puts them at risk of overloading.

In our solution, when the proportion of allocated computing

resources changes (due to either reception or completion of

tasks), the RSU updates the system with the information on

its current available resources. These updates are propagated

through the long-range Uu interface so as to reach the cellular

AP, making this update-based system available at all times.

We position an extra edge server at this AP, dedicated to

the management of RSU usage data. Upon reception of these

messages, a small recap message is constructed, containing the

latest data on every RSU’s available CPU resources. These

recaps are then propagated regularly to all vehicular hosts

using the long-range Uu interface again, giving them mutual

intelligence on offloading capacity with very low network

overhead. A visual representation of this architecture can be

seen in Fig 1.



Fig. 1. RSU sending usage updates.

C. Offloading destination selection

The backbone of the solution we propose is definitely the

selection mechanism for offloading destinations. We make

the choice of making the position of all RSUs known to all

vehicles at all times, within a list Listpos, allowing them

to integrate the distance to infrastructure elements within

their selection algorithm. The behavior also depends on QoS

preference at a given time, thus relying on priority of task.

When a task u needs to be offloaded, the emitting vehicle

notes the necessary CPU resources Cru, checks for priority

flags Pu, and compares its current position to the ones of the

playground’s RSUs. Having received usage recaps from the

eNB-located MEC server, they can exploit this data to select

the best MEC candidate for V2I task offloading.

The detail of such behavior is written in Algorithm 1, with

two distinct procedures to be executed concurrently. First, the

vehicle needs to retrieve RSU usage data from recap messages

received on the Uu interface, and store this data as an update

to their usage table Listusage. In this table, each RSU i.d.

is paired to a percentage corresponding to its proportion of

available CPU resources. With each update, the table is sorted

in two ways and from best to worst: closeness to the RSU

(named Listproxusage) and percentage of free resources (named

Listdescusage). Second, following these operations, whenever a

task needs to be offloaded, these tables will be the ones to

be consulted. Depending on the QoS requirements, deducted

from the priority Pu of task u, the selection criteria vary. High

priority focuses on offloading as quick as possible to a server

that is capable of executing it, which amounts to browsing the

Listproxusage table and seeking the corresponding usage entry.

Starting from the RSU closest to the vehicle, the first one to

have enough available resources is immediately sent the task.

Medium priority is insensitive to RSU proximity, thus only

selecting the RSU with maximum CPU availability. Finally,

low priority triggers an effort to deliberately find the RSU with

the lowest amount of available CPU. In all of these cases, if,

according to the vehicle’s usage table, no RSU currently has

enough resources to compute the task, it is queued waiting for

the next update. Consequently, the MEC servers are assumed

to compute tasks as they come, without queuing them in

case of overload, giving Δtqueueu = 0. This way, we benefit

from greater visibility over the offloading process. Reusing the

previous tcomp
u formula, we obtain:

tcomp
u = αu/FCPU (3)

V. PERFORMANCE ANALYSIS

This section presents the performance evaluation of our

mechanism (denominated ”CAVTOMEC” or ”CAV” from

now in our figures) compared to the previously introduced

location-based scheme (denominated ”Loc” from now our in

our figures), usually selected for its ease of implementation

and low computing overhead. Our simulation is done in the

OMNET++ simulator with its integrated iNET framework

version 4.2.5, coupled with the Veins framework version 5.1

[12] and SimuLTE version 1.2 [13]. Finally we use SUMO

1.9.2 [14] for generating mobility data and visuals for the

vehicles within our urban scenario. OMNET++ was chosen for

its modularity and for its integrated internet protocol model

library iNET, making it an accessible and flexible network

simulator with a strong basis to research over. Adding the

Veins framework allows us to simulate vehicular communica-

tions, especially 802.11p-based, along with road traffic using

cosimulation with the SUMO simulator. For the purposes of

multi-RAT, SimuLTE was integrated as an OMNET++/iNET

LTE network simulator, so as to provide hosts with the ability

to switch between 802.11p and LTE-V2X interfaces. The

software versions selected for the purposes of this work were

necessary to the better reliability of the interactions between

each part of the simulation.

A. Implementation preliminaries

Preliminary to the experiments, the first need to be ad-

dressed concerns the simulation scenario itself. We hereby



Algorithm 1 Offloading destination selection

Require: Listpos, Listusage
1: procedure UPDATE USAGE INTELLIGENCE

2: while Every T time do

3: if Usage Recap received then

4: Update List Listusage
5: New Listproxusage ← Listusage sorted by dis-

tance to vehicle

6: New Listdescusage ← Listusage sorted by avail-

able CPU

7: if Vehicle has a task u to send then

8: Select Destination(Pu,Cru)

9: end if

10: end if

11: end while

12: end procedure

13: procedure SELECT DESTINATION(Pu, Cru)

14: if Pu is HIGH then

15: for k = 0, . . . , len(Listproxusage) do

16: if Listproxusage(k) > Cru then

17: Send u to corresponding RSU

18: else

19: if k == len(Listproxusage) then

20: Wait for next update

21: end if

22: end if

23: end for

24: else if Pu is MEDIUM then

25: if Listdescusage(0) < Cru then

26: Wait for next update

27: else

28: Send u to corresponding RSU

29: end if

30: else if Pu is LOW then

31: for k = len(Listdescusage), . . . , 0 do

32: if Listdescusage(k) > Cru then

33: Send u to corresponding RSU

34: else

35: if k == 0 then

36: Wait for next update

37: end if

38: end if

39: end for

40: end if

41: end procedure

summarize the choices we made regarding the simulator, to

then determine the available hardware at each host, the kinds

of applications involved and the amount of expected traffic

through the duration of the simulation.

Previous versions of iNET allowed hosts to exploit multiple

network interfaces along with their dedicated network and

transport layers. However, the most recent versions like the

one we chose deleted this ability, making all packets leaving

a given network interface go through the same upper layers.

Considering that Veins-based frames and iNET-based frames

depend on different code modules, this behavior made us

implement harmonization methods in the SAP between layers,

so as to present all frames the same way regardless of the RAT

it comes from or goes to. We then tweaked the IP address

allocation mechanism so as to facilitate network interface

selection when applications send data to their sockets.

Usage packets contain very little information, comprised of

the RSU i.d. and the percentage of available CPU resources so

as to induce as little load on the cellular network as possible:

each beacon is of the order of the hundred bytes.

In order to simulate the transmission of usage beacons

after centralization at the eNodeB, we gave the eNodeB itself

the ability to host an application capable of creating packets

and sending them to vehicular hosts. In other words, the

eNodeB itself becomes part of MEC server. We made this

choice instead of creating an actual server because this would

have implied traffic in the core network, through the PGW

and so on, as is meant in the base product because a BS is

not supposed to host an MEC server in classic architectures.

However, in a V2X MEC-based architecture, such changes

remain reasonable so as to limit core network traffic to a

minimum, which we are aiming for. Indeed, our simulation

design choice yields an amount of edge traffic similar to the

one expected from our architecture, as we mention once more

that core network traffic is intended to be greatly reduced, and

cloud computing is zero. Consequently, on the vehicle side,

we developed three apps. The first one is the usage beacon

reception app as introduced earlier. It shares its results with the

second one: the task generation app, also integrating Algorithm

1 for the selection of an offloading destination. Lastly, the

result reception app gathers the completed offloaded tasks and

generates statistics. For RSUs, we developed the full usage

beaconing mechanism and task reception.

B. Context of experimentation

The vehicles generate new tasks at a frequency following

a Poisson distribution with parameter λ. Each task u is

offloaded along with some amount of data of size γ, selected

between constraints γmin and γmax. Task complexity α is

proportional to the task data size, with constraints αmin and

αmax, and expressed in percentages of CPU resources. Given

the population of the depicted vehicular network, we estimate

that a λ value of 1 Hz is most likely going to induce low

enough channel load to transmit data both ways and complete

a vehicle’s task before it tries to offload another one. On the

other hand, increasing this value ten-fold is likely to induce



Fig. 2. University environment map.

network and CPU load, bearing an impact on success rates

and transmission delays, thus on completion delays as well.

The simulation aims at comparing performances of the two

aforementioned solutions with evolving values of λ, γmin,

γmax, αmin and αmax. In other words, our objective with

these scenarios is to gather information on, firstly, the overall

usefulness of CAVTOMEC compared to a baseline offload-

ing mechanism. Secondly, by exploiting different offloading-

related variables like task emission frequency and task com-

plexity, our solution’s performance is tested in multiple con-

texts. The more frequent and complex the tasks are, the more

challenging the context becomes. Groups of metrics emerge

from these experiments, distinguished by the type of offloading

mechanism, the λ value, and the presence of an asterisk (*)

signaling that the studied scenario involves tasks with higher

CPU needs, thus more complex.

A map of the university we used as playground, considering

it to be the best place for a smart shuttle to be deployed along

with RSUs, can be seen on Figure 2. Table I summarizes our

simulation parameters, with a small amount of hosts relative

to the available surface, as was justified previously. At the

moment, the connected shuttle behaves like the other vehicles

network-wise, albeit with a capped speed and a predefined

circuit to drive around. A dedicated behavior for shuttles will

be tested in the future so as to ingrain the capabilities of our

solution in an urban scenario.

Each solution s was tested in multiple scenarios, basing

our evaluation on the several criteria mentioned above. The

resulting data was combined through 30 runs with varying

seeds for the upper-layer parts, providing us with metrics such

as:

• Available CPU Caλ,sk at each MEC server k: checking if

the load is well balanced between RSUs.

• Available CPU standard deviation σ kλ,s at each MEC

server k: checking that the computing resources are used

consistently between RSUs, thereby leaving room for

unexpected urgent tasks.

TABLE I
SIMULATION PARAMETERS

Name Value

Simulation runs 30
Simulation time (s) 1500
Number of shuttles - cars 1 - 5
Number of RSUs - eNodeBs 2 - 1
RSU CPU frequency (MHz) 800

Car - Shuttle max speed (m.s−1) 13.9 - 2.8
CAM beacon interval (ms) 100
λ values (Hz) {1 ; 5 ; 10}
λ∗ values (Hz) {1 ; 5 ; 10}
γmin - γmax (KB) [20 ; 200]
αmin - αmax (%) [1 ; 35]
γ∗

min - γ∗

max (KB) [100 ; 400]
α∗

min - α∗

max (%) [5 ; 50]

• Task computation success rate Rλ,s: measuring the im-

pact (if any) on transmission reliability.

• Task computation delay tλ,sT : measuring the total time,

including transmissions, to offload tasks and send back

the results.

C. CPU load balancing and stability

In Fig 3 is presented a comparison of CPU load mean

value 3(a) and standard deviation 3(b) between RSUs in

each scenario, with varying λ and α values. We can note

firsthand in Fig 3(a) that MEC servers solicit greater amounts

of CPU resources with higher λ values, especially with less

complex tasks. This behavior is explained by the fact that

low-complexity tasks are more inclined to be accepted by

the MEC server without reaching full CPU load. Also, the

higher task emission frequency allows for some amount of

parallel processing, while a λ value of 1 Hz represents a

low amount of tasks to compute at the same time, thus

needing fewer resources. The same reasoning can be applied

backwards to the λ∗ = 10 case: tasks with high CPU needs

are less likely to be accepted by the MEC server even though

some amount of computing resources is still available, so

as to prevent overload. However, it can be seen that our

mechanism reaches higher amounts of CPU usage compared

to the baseline mechanism, especially with more complex

tasks. Fig 3(b) depicts high σ values indifferent of scheme

and RSU for low λ values with high complexities. This is

due to the fact that MEC servers are not active at all times

when small amounts of tasks are generated, but the high

CPU requirements of these tasks call for massive amounts of

allocated resources when accepted, thus leading to fluctuations

in CPU usage. However, when λ = 10, a clear difference can

be noted, with our solution showing 25% lower σ values than

the location-based one. The CPU usage is thus more stable.



Fig. 3. CPU usage for each RSU and scenario.

Fig. 4. Task success rate.

Overall, it is shown in Fig 3(a) that our mechanism allows

edge servers to smoothen their load between each other, thus

being much less exposed to overload or even moments of very

low available computing power. Moreover, Figure 3(b) shows

lower values of CPU usage standard deviation, meaning that

RSUs are able to handle fluctuations in task computation needs

more smoothly. This way, at any moment, urgent tasks can be

offloaded immediately from almost anywhere and still expect

to be completed in time.

D. Task success rate

Fig 4 portrays the average task success rate Rλ,s in var-

ious offloading situations. Confidence intervals allow us to

deduct that for an intermediate frequency of task emission

(λ = 2.0, i.e. one new task is emitted per half a second on

average), CAVTOMEC achieves better task success rates by 6

percentage points for non-complex tasks, and by 12 points for

complex tasks. This highlights two contributions: firstly, that

with our mechanism, tasks tend to not wait or be rejected by

RSUs as often, thus allowing them to be completed and their

results to be sent back in time. Secondly, that transmissions

are more reliable overall, hence not requiring packets to be

sent again, wasting time in the process.

E. Task execution delay

Fig 5 shows the evolution of task execution delay for both

solutions s through the duration of the simulation tλ,sT , sepa-

rated by task priority: H for high and L for low. Respectively,

the evolutions of t1.0,sT and t1.0
∗,s

T are depicted in sub-figures

(a) and (b). Fig 6 shows the evolutions of t10,sT and t10
∗,s

T in

the same manner.

Firstly, a great difference in tT values can be noted de-

pending on the chosen value of λ. When a task is generated

each second on average, the network load is minimal to

communicate with the RSU, and the CPU load leaves a great

margin as was deducted from Fig. 3. Consequently, offloaded

tasks take very short times to reach the edge server and to

be computed over there, leading to multiple sub-second task

completion delays in the case of small γ values. With more

complex tasks (Fig 5(b)), t1.0
∗,s

T increases due to the bigger

size of task data to transmit beforehand, as well as the slightly

higher CPU load at RSUs as was seen on Fig 3(a). However

the values are still satisfactory, of the order of the second.

Secondly, especially on Fig. 6, it is clearly visible that

our solution produces a different treatment regarding delay

depending on task priority, favoring quick transmissions of

high priority tasks at the detriment of low-priority ones. On

the other hand, the location-based solution treats all tasks

equally, as can be seen with the similarity between the L and

H plots. It can also be seen that our mechanism guarantees

much lower computation delays for high priority tasks in the



Fig. 5. t
1.0,s

T
(a) and t

1.0∗,s

T
(b) over time, with task priority.

Fig. 6. t
10,s

T
(a) and t

10
∗,s

T
(b) over time, with task priority.

high frequency scenario, and still holds its ground with lower

frequencies, albeit with slightly higher but still acceptable

delay. In the situation shown on Fig 5, the presence of the algo-

rithm and the use of V2N induces a slight delay, visible when

small amounts of tasks are generated, but greatly compensated

with the better performance obtained when managing higher

amounts of tasks. Overall, it can be noted that the transient

state reaches its end quicker with our solution.

F. Confidence intervals

Considering the impact of randomness on our system re-

garding task generation, like creation time, data size selection

and complexity draw, we evaluate the system with repeated

simulation runs for each scenario. Using 30 runs per scenario,

we can guarantee satisfactory confidence intervals at 95%
for our Fig. 3 and Fig. 4 histograms, with a variability of

less than 10 percent of the plotted values. In the previous

subsections, we have also considered the presence of such

intervals in our interpretation of the given measurements.

Confidence intervals allow us to draw trustworthy conclusions

from the data extracted with our experiments.

VI. MAJOR TAKEAWAYS

This section summarizes our conclusive remarks with

regards to our simulation results. From a conceptual

standpoint, our V2N-enhanced task offloading mechanism

allows vehicles to access much longer ranges thanks to

their LTE-V2X Uu interface. Thanks to sporadic usage

updates sent from RSUs close and far, the best offloading

destination can be selected via our QoS-aware algorithm

depending on task priority, providing much better ranges than

the straightforward location-based offloading mechanism.

This has been demonstrated by the smoothing of CPU

usage between RSUs with our solution shown in Fig 3(a),

translating an efficient load-balancing behavior, as well as

by the small extra delay seen on Fig 5(a). Indeed, having to

reach for farther RSUs implies longer transmission delays,

visible in less populated network scenarios but compensated

when more tasks are generated every second.

Fig 3(a) has shown that CAVTOMEC systematically reaches

higher amounts of CPU usage compared to the location-based

mechanism, with this behavior being even more observable

with more complex tasks. A higher amount of CPU usage



signifies increased consumption, and thus more tasks being

treated at a given moment: CAVTOMEC renders task of-

floading more efficient. This is made possible thanks to the

updates on RSU CPU usage sent to each vehicle, optimizing

destination selection.

Moreover, Fig 3(b) lets us conclude that the CPU usage at

each MEC server fluctuates less with time in our architecture.

This translates to a more constant exploitation of computing

resources at the RSUs, giving more control over task treatment

and thus more robustness in the case of unexpected high

priority tasks being offloaded: a better delay guarantee can

be obtained for urgent tasks.

It was understood from Fig 4 that task success rates were

improved by our offloading solution. Consequently, fewer

tasks need to be offloaded again after the first try, giving

more efficiency to the system and allowing it to compute

greater amounts of tasks in a given time frame.

It has been deducted from Fig 5 and Fig 6 that our task

offloading solution is beneficial over a baseline mechanism

when confronted to a highly populated scenario with complex

tasks. The reason behind the fluctuating task execution delay

throughout the measurement lies behind the combination

of multiple factors. When the frequency of task emissions

grows, as well as the complexity of tasks, the subsequent load

on the LTE-V2X network becomes too much to guarantee

lower transmission delays. However, the contribution of our

solution allows for fewer task queuing and better offloading

destination selection, which counterbalances the load-induced

delay. This behavior explains the better performance of

CAVTOMEC for more frequent, more complex tasks.

Overall, we can deduct that our V2N-enhanced task offload-

ing mechanism with QoS-provisioning is more effective than

a baseline, location-based offloading scheme. Even though the

proximity-centered solution we used as a point of comparison

benefits from the shortest transmission times using D2D at

short distances, the benefits brought by our destination selec-

tion algorithm outweigh these gains by a margin large enough

to consider it successful. It would be interesting to experiment

on this solution with 5G-V2X architectures, to gather its full

delay-reduction potential.

VII. CONCLUSION

Smart cities are currently being massively tested and de-

ployed, calling for diverse, accessible and reliable applications.

Henceforth, the conception of autonomous vehicles and, more

particularly, shuttles, is meant to satisfy public appeal towards

new-generation mobility while staying reassuring about their

safety. In this paper, we proposed an optimized task-offloading

mechanism with QoS-provisioning, relying on existing net-

work protocols. Using a three-fold QoS classification, our

proposal accomplishes better reliability and CPU availability

at the edge servers when compared to the go-to V2I task

offloading solution, thus allowing for more demanding ap-

plications such as more thorough road safety protocols to be

implemented in smart shuttle / smart city contexts. Scaling our

architecture up appears to be feasible while keeping positive

results. In future works, we would plan to integrate RSU-to-

RSU task backhauling as well as V2V offloading strategies

to operate hand-in-hand with our current solution in order to

withstand mobility even better. As part of the autOCampus

project, we also plan to deploy a test-bed integrating CAV-

TOMEC in the near future.
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