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CYCLICITY IN DE BRANGES–ROVNYAK SPACES

EMMANUEL FRICAIN AND SOPHIE GRIVAUX

ABSTRACT. In this paper, we study the cyclicity problem with respect to the forward shift
operator Sb acting on the de Branges–Rovnyak space H pbq associated to a function b in
the closed unit ball of H8 and satisfying logp1 ´ |b|q P L1

pTq. We present a characteri-
sation of cyclic vectors for Sb when b is a rational function which is not a finite Blaschke
product. This characterisation can be derived from the description, given in [24], of in-
variant subspaces of Sb in this case, but we provide here an elementary proof. We also
study the situation where b has the form b “ p1 ` Iq{2, where I is a non-constant inner
function such that the associated model space KI “ H pIq has an orthonormal basis of
reproducing kernels.

To the memory of Mohamed Zarrabi (1964 – 2021)

1. INTRODUCTION

In this paper, we study the cyclicity problem with respect to the forward shift operator
Sb acting on the de Branges–Rovnyak space H pbq, associated to a function b belonging
to the closed unit ball of H8 and satisfying logp1´ |b|q P L1pTq. This problem of cyclicity
has a long and outstanding history and many efforts have been dedicated to solving it
in various reproducing kernel Hilbert spaces. It finds its roots in the pioneering work of
Beurling who showed that cyclicity of a function f in the Hardy spaceH2 is equivalent to
f being outer. Brown and Shields studied the cyclicity problem in the Dirichlet spaces Dα

for polynomials that do not have zeros inside the disc, but that may have some zeros on
its boundary. Such functions are cyclic in Dα if and only if α 6 1. They also proved that
the set of zeros on the unit circle (in the radial sense) of cyclic functions in the Dirichlet
space Dα has zero logarithmic capacity, and this led them to ask whether any outer func-
tion with this property is cyclic [4]. This problem is still open although there has been
relevant contributions to the topic by a number of authors; e.g. see [2, 3, 11, 12, 22, 26].
We also mention the paper [10] where the authors prove the Brown–Shields conjecture in
the context of some particular Dirichlet type spaces Dpµq, which happen to be related to
our context of de Branges–Rovnyak spaces [6].

The de Branges–Rovnyak spaces H pbq (see the precise definition in Section 2) have
been introduced by L. de Branges and J. Rovnyak in the context of model theory (see [7]).
A whole class of Hilbert space contractions is unitarily equivalent to S˚|H pbq, for an ap-
propriate function b belonging to the closed unit ball of H8. Here S is the forward shift
operator on H2 and S˚, its adjoint, is the backward shift operator onH2. The space H pbq
is invariant with respect to S˚ for every b in the closed unit ball of H8, and S˚ defines a
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2 FRICAIN AND GRIVAUX

bounded operator on H pbq, endowed with its own Hilbert space topology. On the con-
trary, H pbq is invariant with respect to S if and only if logp1´|b|q P L1pTq, i.e. if and only
if b is a non-extreme point of the closed unit ball of H8. See [18, Corollary 25.2]. In [19], it
is proved that if logp1´ |b|q P L1pTq, the cyclic vectors of S˚|H pbq are precisely the cyclic
vectors of S˚ which live in H pbq. Note that cyclic vectors of S˚ have been characterised
by Douglas–Shapiro–Shields [8]. The result of [19] is based on a nice description, due to
Sarason, of closed invariant subspaces of S˚|H pbq. See also [18, Corollary 24.32]. Unfor-
tunately an analogous description of closed invariant subspaces of Sb “ S|H pbq remains
an unsolved and difficult problem. In [24], Gu–Luo–Richter give an answer in the case
where b is a rational function which is not inner, generalising a result of Sarason [27].

The purpose of this paper is to study the cyclic vectors of Sb when the function b is
such that logp1 ´ |b|q P L1pTq. In Section 2, we present a quick overview of some useful
properties of de Branges–Rovnyak spaces. Then, in Section 3, we give some general facts
on cyclic vectors and completely characterise holomorphic functions in a neighborhood
of the closed unit disc which are cyclic for Sb. In Section 4, we give a characterisation of
cyclic vectors for Sb when b is rational (and not inner). Of course, this characterisation
can be derived from the description, given in [24], of invariant subspaces of Sb when
b is a non-inner rational function. Nevertheless, we will give a more direct and easier
proof of this characterisation. Finally, Section 5 will be devoted to the situation where
b “ p1 ` Iq{2, where I is a non-constant inner function such that the associated model
space KI “ H pIq has an orthonormal basis of reproducing kernels.

2. PRELIMINARIES ON H pbq SPACES

2.1. Definition of de Branges-Rovnyak spaces. Let

ballpH8q :“
!

b P H8 : }b}8 “ sup
zPD

|bpzq| 6 1
)

be the closed unit ball of H8, the space of bounded analytic functions on the open unit
disk D, endowed with the sup norm. For b P ballpH8q, the de Branges–Rovnyak space H pbq
is the reproducing kernel Hilbert space on D associated with the positive definite kernel
kbλ, λ P D, defined as

(2.1) kbλpzq “
1´ bpλqbpzq

1´ λz
, z P D.

It is known that H pbq is contractively contained in the well-studied Hardy space H2

of analytic functions f on D for which

}f}H2 :“
´

sup
0ără1

ż

T
|fprξq|2dmpξq

¯
1
2
ă 8,

where m is the normalised Lebesgue measure on the unit circle T “ tξ P C : |ξ| “ 1u
[9, 21]. For every f P H2, the radial limit limrÑ1´ fprξq “: fpξq (even the non-tangential
limit fpξq :“ limzÑξ

^
fpzq) exists for m-a.e. ξ P T, and

(2.2) }f}H2 “

´

ż

T
|fpξq|2dmpξq

¯
1
2
.

Though H pbq is contractively contained in H2, it is generally not closed in the H2 norm.
It is known that H pbq is closed in H2 if and only if b “ I is an inner function, meaning
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that |Ipζq| “ 1 for a.e. ζ P T. In this case, H pbq “ KI “ pIH2qK is the so-called model
space associated to I . Note thatKI “ H2XIzH2 (see [20, Proposition 5.4]), and thenKI “

KerTĪ , where TĪ is the Toeplitz operator with symbol Ī defined on H2 as TĪf “ P`pĪfq,
where P` denotes the orthogonal projection from L2 onto H2.

We refer the reader to the book [28] by Sarason and to the monograph [17], [18] by
Fricain and Mashreghi for an in-depth study of de Branges-Rovnyak spaces and their
connections to numerous other topics in operator theory and complex analysis.

In this paper, we will always assume that b is a non-extreme point of ballpH8q, which is
equivalent to requiring that logp1´|b|q P L1pTq. Under this assumption, there is a unique
outer function a, called the pythagorean mate for b, such that ap0q ą 0 and |a|2`|b|2 “ 1 a.e.
on T. There are two important subspaces of H pbqwhich can be defined via this function
a. The first one is the space M paq “ aH2, equipped with the range norm

}af}M paq “ }f}2, f P H2.

The second one is M pāq “ TāH
2, equipped also with the range norm

}Tāf}M pāq “ }f}2, f P H2.

Note that since a is outer, the Toeplitz operator Tā is one-to-one and so the above norm
is well defined. It is known that M paq is contractively contained into M pāq, which itself
is contractively contained into H pbq. See [18, Theorem 23.2]. Note that M paq is not
necessarily closed in H pbq. See [18, Theorem 28.35] for a characterisation of closeness of
M paq in H pbq-norm. There is also an important relation between H pbq and M pāqwhich
gives a recipe to compute the norm in H pbq. Indeed, if f P H2, then f P H pbq if and only
if there is a function f` P H2 satisfying Tb̄f “ Tāf

` (and then f` is necessarily unique).
Moreover, in this case, we have

}f}2b “ }f}
2
2 ` }f

`}22.

Also,

(2.3) xf, gyb “ xf, gy2 ` xf
`, g`y2 for every f, g P H pbq.

See [18, Theorem 23.8]. Finally, let us recall that H pbq “ M pāq if and only if pa, bq forms
a corona pair, that is

(HCR) inf
D
p|a| ` |b|q ą 0.

See [18, Theorem 28.7].
A crucial fact on de Branges-Rovnyak space is that the space H pbq is invariant with

respect to the shift operator S : f ÞÑ zf if and only if the function b is non-extreme.
Since we will consider in this paper only the case where b is non-extreme, H pbq is indeed
invariant by S, and S defines a bounded operator on H pbq, endowed with its own Hilbert
space topology, which we will denote by Sb. The functions zn belong to H pbq for every
n ě 0. Actually, we have

(2.4) Spanpzn : n ě 0q “H pbq,

where SpanpAq denotes the closed linear span generated by vectors from a certain family
A. In other words, the polynomials are dense in H pbq. See [18, Theorem 23.13]. Note
that (2.4) exactly means that the constant function 1 is cyclic for Sb.
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Another tool which will turn out to be useful when studying the cyclicity for the shift
operator is the notion of multiplier. Recall that the set MpH pbqq of multipliers of H pbq is
defined as

MpH pbqq “ tϕ P HolpDq : ϕf P H pbq,@f P H pbqu.

Using the closed graph theorem, it is easy to see that when ϕ P MpH pbqq, then Mϕ,
the multiplication operator by ϕ, is bounded on H pbq. The algebra of multipliers is a
Banach algebra when equipped with the norm }ϕ}MpH pbq “ }Mϕ}LpH pbqq. Using standard
arguments, we see that MpH pbqq Ď H8 XH pbq. In general, this inclusion is strict. See
[18, Example 28.24]. However, we will encounter below a situation (when b is a rational
function which is not a finite Blaschke product) where we have the equality MpH pbqq “
H8 XH pbq.

2.2. Some properties of the reproducing kernels of H2 in de Branges-Rovnyak spaces.
Recall that we are supposing that b is non-extreme. If we denote by kλpzq “ p1 ´ λzq´1

the reproducing kernel of H2 at the point λ P D, then kλ belongs to H pbq and

(2.5) Spanpkλ : λ P Dq “H pbq.

See [18, Corollary 23.26] or [23, Lemma 7]. We also know (see [18, Theorem 23.23]) that
bkλ P H pbq for every λ P D, and that for every f P H pbqwe have

(2.6) xf, kλyb “ fpλq `
bpλq

apλq
f`pλq and xf, bkλyb “

f`pλq

apλq
¨

Using these two equations, we can produce an interesting complete family in H pbqwhich
will be of use to us.

Lemma 2.1. Let b be a non-extreme point of the closed unit ball of H8, and let c be a complex
number with |c| ă 1. Then

Spanpkµ ´ cbkµ : µ P Dq “H pbq.

Proof. Let h P H pbq, and assume that for every µ P D, h is orthogonal in H pbq to kµ´cbkµ.
According to (2.6), we have

0 “ hpµq `
bpµq

apµq
h`pµq ´ c

h`pµq

apµq
¨

This can be rewritten as ah “ ´bh` ` ch`. Multiplying this equality by b̄ and using the
fact that |a|2 ` |b|2 “ 1 a.e. on T, we obtain

apb̄h´ āh`q “ ´p1´ cb̄qh`.

Note that |1´ cb̄| ě 1´ |c| ą 0, and so the last identity can be written as

b̄h´ āh`

1´ cb̄
“ ´

h`

a
¨

On the one hand, this equality says that h`

a belongs to L2 and since a is outer, we have
h`

a P H
2. See [25, page 43]. On the other hand, by definition of h`, the function b̄h´ āh`

belongs to H2
0 and since p1 ´ cb̄q´1 is in H8, we also have h`

a P H2
0 . Then h`

a belongs to
H2 XH2

0 “ t0u. Finally we get that h` “ 0 and thus that h “ 0. �
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2.3. Boundary evaluation points on H pbq. An important tool in the cyclicity problem
will be the boundary evaluation points for H pbq. It is known that the description of these
points depends on the inner-outer factorisation of b. Recall that any b in ballpH8q can be
decomposed as

(2.7) bpzq “ BpzqSσpzqOpzq, z P D,

where

Bpzq “ γ
ź

ně1

ˆ

|an|

an

an ´ z

1´ anz

˙

is a Blaschke product,

with |γ| “ 1, an P D for every n ě 1, and
ř

ně1p1´ |an|q ă `8,

Sσpzq “ exp

ˆ

´

ż

T

ξ ` z

ξ ´ z
dσpξq

˙

is a singular inner function,

with σ a positive finite Borel measure on T which is singular with respect to the Lebesgue
measure, and

Opzq “ exp

ˆ
ż

T

ξ ` z

ξ ´ z
log |bpξq| dmpξq

˙

is the outer part of b. Now, let E0pbq be the set of points ζ P T satisfying the following
condition:

(2.8)
ÿ

n

1´ |an|
2

|ζ ´ an|2
`

ż

T

dσpξq

|ζ ´ ξ|2
`

ż

T

ˇ

ˇ log |bpξq|
ˇ

ˇ

|ζ ´ ξ|2
dmpξq ă 8.

It is proved in [16] that for every point ζ P T, every function f P H pbq has a non-
tangential limit at ζ if and only if ζ P E0pbq. This is also equivalent to the property that b
has an angular derivative (in the sense of Carathéodory) at ζ, meaning that b and b1 both have
a non-tangential limit at ζ and |bpζq| “ 1. Moreover, in this case, the linear map

(2.9) f ÞÝÑ fpζq :“ lim
zÑζ
^

fpzq

is bounded on H pbq. The function kbζ defined by

kbζpzq “
1´ bpζqbpzq

1´ ζz
, z P D,

belongs to H pbq, and

xf, kbζyb “ fpζq for every f P H pbq.

We call the function kbζ the reproducing kernel of H pbq at the point ζ, and (2.9) means that the
reproducing kernels kbz tend weakly to kbζ as z P D tends non-tangentially to ζ. See [18,
Theorem 25.1]. There is also a nice connection between the boundary evaluation points
and the point spectrum of S˚b in the case where b is a non-extreme point in ballpH8q: for
ζ P T, we have that

(2.10) ζ̄ is an eigenvalue for S˚b if and only if b has an angular derivative at ζ.

The boundary evaluation points play a particular role in the description of certain
orthogonal basis of reproducing kernels in model spaces KI , the so-called Clark basis.
Given an inner function I and α P T, recall that by Herglotz theorem, there is a unique
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finite positive Borel measure σα on T, singular with respect to the Lebesgue measure,
such that

(2.11)
1´ |Ipzq|2

|α´ Ipzq|2
“

ż

T

1´ |z|2

|ξ ´ z|2
dσαpξq, z P D.

The collection pσαqαPT is the family of Clark measures of I .
Let Eα “ tζ P E0pIq : Ipζq “ αu. By [18, Theorem 21.5], the point ζ belongs to Eα if

and only if the measure σα has an atom at ζ. In this case,

(2.12) σαptζuq “
1

|I 1pζq|
“

1

}kIζ }
2
2

¨

See [18, Theorems 21.1 and 21.5]. When σα is a discrete measure, its support is exactly
the set Eα, which is necessarily countable, and we write it as

(2.13) Eα “ tζn : n ě 1u “ tζ P E0pIq : Ipζq “ αu.

Then, in this case, Clark proved in [5] that the family tkIζn : n ě 1u forms an orthogonal
basis of KI (and the family tkIζn{}k

I
ζn
}2 : n ě 1u forms an orthonormal basis of KI ). It is

called the Clark basis of KI associated to point α P T.

2.4. A description of H pbq when b is a rational function. Although the contents of the
space H pbq may seem mysterious for a general non-extreme b P ballpH8q, it turns out
that when b is a rational function (and not a finite Blaschke product – in which case b
is an inner function, and thus extreme), the description of H pbq is quite explicit. Since
our b is a non-extreme point of ballpH8q, it admits a pythagorean mate a, which is also a
rational function. In fact, the function a can be obtained from the Fejér–Riesz theorem (see
[13]). Let ζ1, . . . , ζn denote the distinct roots of a on T, with corresponding multiplicities
m1, . . . ,mn, and define the polynomial a1 by

(2.14) a1pzq :“
n
ź

k“1

pz ´ ζkq
mk .

Results from [6, 13] show that H pbq has an explicit description as

(2.15) H pbq “ a1H
2 ‘PN´1 “Mpa1q ‘PN´1,

where N “ m1 ` ¨ ¨ ¨ `mn, and PN´1 denotes the set of polynomials of degree at most
N ´1. Since a{a1 is invertible in H8 “MpH2q, note that Mpaq “Mpa1q. The notation‘
above denotes a topological direct sum in H pbq. But this sum may not be an orthogonal
one. See [13]. In particular, Mpa1q XPN´1 “ t0u. Moreover, if f P H pbq is decomposed
with respect to (2.15) as

(2.16) f “ a1
rf ` p, where rf P H2 and p P PN´1,

an equivalent norm on H pbq (to the natural one induced by the positive definite kernel
kbλ, λ P D, above) is

(2.17) ~a1
rf ` p~2

b :“ } rf}2H2 ` }p}
2
H2 .

Note that the functions rf P H2 and p P PN´1 appearing in the decomposition (2.16) are
unique. It is important to note that ~ ¨ ~b is only equivalent to the original norm } ¨ }b
associated to the kernel in (2.1), and its scalar product as well as the reproducing kernels
and the adjoints of operators defined on H pbq will be different. However, the cyclicity
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problem for Sb does not depend on the equivalent norm we consider. So, in the rational
case, there is no problem to work with the norm given by (2.17).

Note also that when the zeros ζ1, . . . , ζn of the polynomial a1 are simple (i.e. when
mk “ 1, 1 6 k 6 n), then the space H pbq coincides with a Dirichlet type space Dpµq,
where µ is a finite sum of Dirac masses at the points ζk, 1 6 k 6 n. See [6]. So our results
are also connected to the works [11] and [12] on the cyclicity problem for Dirichlet spaces.

Using (2.16) and the standard estimate that any g P H2 satisfies

(2.18) |gpzq| 6
}g}2

a

1´ |z|2
for all z P D,

we see that for fixed 1 6 k 6 n and for each f P H pbqwe have

(2.19) fpζkq “ lim
zÑζk
^

fpzq “ ppζkq,

where f “ a1
rf ` p with rf P H2 and p P PN´1. In particular,

(2.20) E0pbq “ tζk : 1 6 k 6 nu.

Finally, let us mention that when b P ballpH8q is a rational function and not a finite
Blaschke product, then MpH pbqq “ H8 XH pbq. See [15].

2.5. A description of H pbq when b “ p1 ` Iq{2, with I an inner function. There is an-
other situation where we have an explicit description of the space H pbq: this is when
b “ 1`I

2 and I is an inner function with I ı 1. In this case, b is a non-extreme point of
ballpH8q, and its Pythagorean mate (up to a unimodular constant) is a “ 1´I

2 . More-
over, pa, bq satisfies (HCR), since |a|2 ` |b|2 ě 1

2 on D. In particular H pbq “ Mpāq, with
equivalent norms.

Under the assumption that Ip0q ­“ 0, it is proved in [14] that

(2.21) H pbq “Mpaq
K

‘b KI ,

where the direct sum
K

‘b is orthogonal with respect to the H pbq norm. In particular, every
f P H pbq can be written in a unique way as

(2.22) f “ p1´ Iqg1 ` g2, with g1 P H
2 and g2 P KI .

It turns out that the same proof holds without any assumption on the value of Ip0q. For
completeness’s sake, we present it in Lemma 2.2 below. We also give an equivalent norm
on H pbq analogue to (2.17).

Lemma 2.2. Let I be an inner function with I ı 1, and let b “ p1 ` Iq{2. Then the following
assertions hold:

(i) H pbq “ p1´ IqH2
K

‘b KI , where
K

‘b denotes an orthogonal direct sum in H pbq;
(ii) if for f “ p1´ Iqg1 ` g2 P H pbq, g1 P H

2, g2 P KI , we define

|||f |||2b “ ||g1||
2
2 ` ||g2||

2
2,

then ||| . |||b is a norm on H pbq which is equivalent to || . ||b.
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Proof. (i) We have H pbq “ Mpāq with equivalent norms, where a “ 1´I
2 is the Pythago-

rean mate of b. Also, āa “
1´Ī
1´I “ ´Ī a.e. on T, and thus Tā{a “ ´TĪ . Hence KerTā{a “

KerTĪ “ KI . Moreover, Ta{ā “ ´TI has closed range, and thus

H2 “ RanpTIq
K

‘ KerpT ˚I q “ RanpTIq
K

‘ KerpTĪq “ Ta{āH
2
K

‘ KI(2.23)

(the sign
K

‘ denotes here an orthogonal direct sum in H2). Using now the fact that Tā is
an isometry from H2 onto Mpāq “ TāH

2 (equipped with the range norm), applying Tā
to the equation (2.23), and using the identity Tā Ta{ā “ Ta, we obtain

H pbq “Mpāq “Mpaq
K

‘ ā TāKI ,

where the notation
K

‘ ā represents an orthogonal direct sum with respect to the range
norm on Mpāq. Since TĪ KI “ t0u and ā “ p1´ Īq{2, we have TāKI “ pId´TĪqKI “ KI ,
and so

(2.24) H pbq “Mpāq “Mpaq
K

‘ ā KI “ p1´ IqH
2
K

‘ ā KI .

It now remains to prove that the direct sum in this decomposition of H pbq is in fact
orthogonal with respect to the H pbq norm.

Let f P H2 and g P KI . Our aim is to show that xp1´ Iqf, gyb “ 0. Note that

Tb̄ g “ Tp1`Īq{2 g “
1

2
g “ Tā g

from which it follows that

(2.25) g` “ g.

Moreover, since b̄ a “ ´ā b a.e. on T, we have

Tb̄
`

p1´ Iqf
˘

“ P` p2b̄ afq “ ´P`p2ā bfq “ Tā p´2bfq,

whence we get

(2.26)
`

p1´ Iqf
˘`
“ ´2bf “ ´p1` Iqf.

By (2.3), (2.25) and (2.26), it follows that

xp1´ Iqf, gyb “ xp1´ Iqf, gy2 ´ x2bf, gy2 “ xp1´ I ´ 2bqf, gy2 “ ´2 xIf, gyb “ 0

because g belongs to KI .

(ii) Since H pbq “ p1´ IqH2
K

‘ b KI , we have

||p1´ Iqg1 ` g2||
2
b “ ||p1´ Iqg1||

2
b ` ||g2||

2
b , g1 P H

2, g2 P KI .

But observe that by (2.3) and (2.26) we have

||p1´ Iqg1||
2
b “ ||p1´ Iqg1||

2
2 ` ||p1` Iqg1||

2
2 “ 4||g1||

2
2,

while we get from (2.3) and (2.25) that ||g2||
2
b “ 2||g2||

2
2. Thus

||p1´ Iqg1 ` g2||
2
b “ 4||g1||

2
2 ` 2||g2||

2
2,

and from this the norm ||| . |||b is easily seen to be equivalent to || . ||b. �

The next result is an analogue of (2.19) for the case where b “ p1` Iq{2 with respect to
decomposition (2.22).
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Lemma 2.3. Let I be an inner function, I ı 1, and let b “ p1 ` Iq{2. Let ζ P E0pIq be such
that Ipζq “ 1. Then ζ P E0pbq. Moreover, if f “ p1 ´ Iqg1 ` g2, g1 P H

2 and g2 P KI , then
fpζq “ g2pζq.

Proof. As mentioned above, since ζ P E0pIq the function g2 has a non-tangential limit at
the point ζ. Thus it remains to prove that p1 ´ Iqg1 has a zero non-tangential limit at ζ.
To this purpose, write for z P D

p1´ Ipzqqg1pzq “
1´ IpζqIpzq

1´ ζz
p1´ ζzqg1pzq

“kIζ pzq ζ pζ ´ zqg1pzq

“xkIζ , k
I
zy2 ζ pζ ´ zqg1pzq.

Now, since ζ P E0pIq, kIz tends weakly to kIζ as z tends to ζ non-tangentially. Hence

lim
zÑζ
^

xkIζ , k
I
zy2 “ }k

I
ζ }

2
2 ă 8.

Moreover, using the estimate (2.18), we obtain that

lim
zÑζ
^

pζ ´ zqg1pzq “ 0,

from which it follows that
lim
zÑζ
^

p1´ Ipzqqg1pzq “ 0.

�

In the case where b “ p1 ` Iq{2 and I is an inner function with I ı 1, there is no
complete characterisation of multipliers for H pbq. Nevertheless, we have at our disposal
a sufficient condition which will be useful for our study of cyclicity. Before stating this
result (Lemma 2.6) on multipliers, we recall a well-known property of model spaces, of
which we provide a proof for completeness’s sake.

Lemma 2.4. Let I be an inner function and let f P KI and g P KI XH
8. Then fg P KI2 .

Proof. Using that KI “ H2 X IzH2, write f “ Iz rf and g “ Izrg, with rf, rg P H2. Since
g P H8, we indeed have |rg| “ |g| P L8pTq, and thus rg P H8. Moreover, fg P H2, and

fg “ I2z2 rfrg,

whence fg P H2 X I2zH2 “ KI2 . �

In the case where b “ p1`Iq{2, the de Branges-Rovnyak space Hpbq contains a sequence
of model spaces.

Lemma 2.5. Let I be an inner function, I ı 1, and let b “ p1 ` Iq{2. Then the following
assertions hold:

(a) the function I is a multiplier of H pbq;
(b) for every n ě 1, KIn Ď H pbq.

Proof. (a): Let f P H pbq. According to (2.22), we can decompose f as f “ p1 ´ Iqg1 ` g2

with g1 P H
2 and g2 P KI . Then

If “ p1´ IqpIg1q ` Ig2 “ p1´ IqpIg1 ´ g2q ` g2
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and Ig1 ´ g2 P H
2 and g2 P KI . Thus, using one more time (2.22), it follows that If P

H pbq.
(b): We argue by induction. For n “ 1, the property follows from Lemma 2.2. Assume

that for some n ě 1, KIn Ď H pbq. It is known that KIn`1 “ KI ‘ IKIn . See [20, Lemma
5.10]. The conclusion now follows from the induction assumption and (a). �

Here is now our sufficient condition for f P H pbq to be a multiplier of H pbq.

Lemma 2.6. Let I be an inner function, I ı 1, and let b “ p1` Iq{2. Assume that f decomposes
as f “ p1´ Iqg1 ` g2, with g1 P H

8 and g2 P H
8 XKI . Then f PMpH pbqq.

Proof. We need to show that for every ϕ P H pbq, we have ϕf P H pbq. According to
(2.22), write ϕ “ p1´ Iqϕ1 ` ϕ2, with ϕ1 P H

2 and ϕ2 P KI . Then

ϕf “ p1´ Iqϕ1f ` ϕ2f.

Since f P H8, ϕ1f P H
2, and so the first term p1 ´ Iqϕ1f belongs to p1 ´ IqH2 which is

contained in H pbq. Thus it remains to prove that ϕ2f P H pbq. In order to deal with this
term, write

ϕ2f “ p1´ Iqϕ2g1 ` g2ϕ2,

and as before, since g1 P H
8, the term p1´ Iqϕ2g1 belongs to p1´ IqH2, and so to H pbq.

It remains to prove that g2ϕ2 P H pbq. Lemma 2.4 implies that g2ϕ2 P KI2 , and the
conclusion follows now directly from Lemma 2.5.

�

3. SOME BASIC FACTS ON CYCLIC VECTORS FOR THE SHIFT OPERATOR

Recall that if T is a bounded operator on a Hilbert space H , then a vector f P H is
said to be cyclic for T if the linear span of the orbit of f under the action of T is dense in
H , i.e. if

SpanpTnf : n ě 0q “ tppT qf : p P CrXsu “H .

When T “ Sb is the shift operator on H pbq, we have ppSbqf “ pf for every f P H pbq and
every polynomial p P CrXs. Thus a function f P H pbq is cyclic for Sb if and only if

tpf : p P CrXsu “H pbq.

In fact, it is sufficient to approximate the constant function 1 by elements of the form pf ,
p P CrXs, to get that f is cyclic for Sb.

Lemma 3.1. Let b a non-extreme point in ballpH8q and f P H pbq. Then the following assertions
are equivalent:

(a) f is cyclic for Sb.
(b) There exists a sequence of polynomials ppnqn such that

}pnf ´ 1}b Ñ 0, as nÑ8.

Proof. Follows immediately from the density of polynomials in H pbq and the bounded-
ness of Sb. �

The general meaning of our next result is that the set of zeros of a cyclic vector f P
H pbq for Sb cannot be too large.

Lemma 3.2. Let b a non-extreme point in ballpH8q and f P H pbq. Assume that f is cyclic for
Sb. Then we have the following properties:

(a) f is outer;
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(b) for every ζ P E0pbq, fpζq ‰ 0.

Proof. (a) Since f is cyclic for Sb, there exists a sequence of polynomials ppnqn such that

(3.1) }pnf ´ 1}b Ñ 0, as nÑ8.

Now, using the fact that H pbq is contractively contained into H2, we get that

}pnf ´ 1}2 Ñ 0, as nÑ8.

That proves that f is cyclic for S in H2, and so f is outer by Beurling’s theorem.
(b) Since the functional f ÞÝÑ fpζq is bounded on H pbq for every ζ P E0pbq, we deduce

from (3.1) that
|pnpζqfpζq ´ 1| Ñ 0, as nÑ8

for every ζ P E0pbq. This property implies directly that fpζq ‰ 0. �

We will encounter in the sequel of the paper some situations where the converse of
Lemma 3.2 is also true, i.e. where conditions (a) and (b) of Lemma 3.2 give a necessary
and sufficient condition for a function f P H pbq to be cyclic.

We now provide some elementary results concerning cyclic functions for Sb.

Lemma 3.3. Let b a non-extreme point in ballpH8q. Suppose that f P MpH pbqq and that
1{f P H pbq. Then f is cyclic for Sb.

Proof. Using (2.4), we see that there exists a sequence of polynomials ppnqn such that

}pn ´ f
´1}b Ñ 0, as nÑ8.

Now, since f PMpH pbqq, the multiplication operator by f is bounded on H pbq, and thus
we get that

}pnf ´ 1}b Ñ 0, as nÑ8,

which by Lemma 3.1 implies that f is cyclic for Sb. �

In the following result, the set HolpDq denotes the space of analytic functions in a
neighborhood of the closed unit disc D.

Corollary 3.4. Let b a non-extreme point in ballpH8q. Let f P HolpDq and assume that
infD |f | ą 0. Then f is cyclic for Sb.

Proof. When b is a non-extreme point in ballpH8q, we have HolpDq Ď MpH pbqq. See
[18, Theorem 24.6]. Hence f P MpH pbqq. Moreover, the conditions on f also imply that
1{f P HolpDq. In particular, 1{f P H pbq. It remains to apply Lemma 3.3 in order to get
that f is cyclic. �

Lemma 3.5. Let f1, f2 PMpH pbqq. Then the following assertions are equivalent:
(a) the product function f1f2 is cyclic for Sb;
(b) each of the functions f1 and f2 is cyclic for Sb.

Proof. paq ùñ pbq: Assume that f1f2 is cyclic. By symmetry, it suffices to prove that f1 is
cyclic. Let ε ą 0. There exists a polynomial q such that }qf1f2 ´ 1}b 6 ε. Now since the
polynomials are dense in H pbq, we can also find a polynomial p such that

}f2q ´ p}b 6
ε

}f1}MpH pbqq
¨

Thus
}pf1 ´ 1}b 6}pf1 ´ f1f2q}b ` }f1f2q ´ 1}b 6 }f1}MpH pbqq}p´ f2q}b ` ε 6 2ε,
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which proves that f1 is cyclic.
pbq ùñ paq: Assume that f1 and f2 are cyclic for H pbq. Let ε ą 0. There exists a

polynomial p such that }pf1 ´ 1}b 6 ε. On the other hand, there is also a polynomial q
such that

}qf2 ´ 1}b 6
ε

}pf1}MpH pbqq
¨

Now we have

}pqf1f2 ´ 1}b 6}pqf1f2 ´ pf1}b ` }pf1 ´ 1}b 6 }pf1}MpH pbqq}qf2 ´ 1}b ` ε 6 2ε.

Hence the function f1f2 is cyclic. �

Our next result is motivated by the Brown–Shields conjecture and the work [10] for
Dirichlet type spaces Dpµq. Indeed, let µ be a positive finite measure on T, and let Dpµq be
the associated Dirichlet space (i.e. the space of holomorphic functions on D whose deriva-
tives are square-integrable when weighted against the Poisson integral of the measure µ).
It is shown in [6], [23] that in some cases, Dirichlet spaces and de Branges-Rovnyak spaces
are connected. More precisely, let b P ballpH8q be a rational function (which is not a fi-
nite Blaschke product), and let a be its pythagorean mate. Let also µ be a positive finite
measure on T. Then Dpµq “ H pbq with equivalent norms if and only if the zeros of a on
T are all simple, and the support of µ is exactly the set of these zeros [6]. In the context of
Dirichlet spaces, the authors of [10] prove the Brown–Shields conjecture when the mea-
sure µ has countable support, using two notions of capacity (which they denote cµpF q
and caµpF q respectively) and showing that they are comparable: cµpF q 6 caµpF q 6 4 cµpF q
for every F Ď T ([10, Lemma 3.1]). In the same spirit, we introduce the following notions
of capacity in H pbq-spaces. For a set F Ď T, we define c1pF q and c2pF q as

c1pF q “ inft}f}b : f P H pbq, |f | ě 1 a.e. on a neighborhood of F u,

and
c2pF q “ inft}f}b : f P H pbq, |f | “ 1 a.e. on a neighborhood of F u.

Observe that c1pF q 6 c2pF q. We do not know if c1pF q and c2pF q are comparable in
general in our context of de Branges-Rovnyak spaces.

Our next result should be compared to [10, Lemma 3.2].

Theorem 3.6. Let b a non-extreme point in ballpH8q and ζ P T. Consider the following asser-
tions:

(a) z ´ ζ is not cyclic for Sb;
(b) ζ P E0pbq;
(c) c1ptζuq ą 0;
(d) c2ptζuq ą 0.

Then paq ðñ pbq, pbq ùñ pdq and pcq ùñ paq.

Proof. pbq ùñ paq: follows immediately from Lemma 3.2.
paq ùñ pbq: our assumption (a) exactly means that

rz ´ ζs :“ Spanppz ´ ζqzn : n ě 0q ( H pbq.

Denote by π the orthogonal projection from H pbq onto rz ´ ζsK. First note that πp1q ‰ 0,
otherwise we would have 1 P rz ´ ζs and then the function z ´ ζ would be cyclic for Sb,
which is a contradiction.
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Let us now prove that rz ´ ζsK “ Cπp1q. For every g P rz ´ ζsK and every n ě 0, we
have

0 “ xg, pz ´ ζqznyb “ xg, z
n`1yb ´ ζxg, z

nyb.

From this, we immediately get that

(3.2) xg, znyb “ ζ
n
xg, 1yb, n ě 0.

This implies that xπp1q, 1yb ‰ 0 (otherwise, by (3.2) we would have that πp1q is orthogonal
to zn for every n ě 0, which implies that πp1q “ 0). Secondly, if we define c :“ xg,1yb

xπp1q,1yb
,

then we have xg´cπp1q, znyb “ 0 for every n ě 0. By the density of polynomials in H pbq,
we deduce that g “ cπp1q, which proves that rz ´ ζsK is of dimension 1, generated by
πp1q.

Now consider the continuous linear functional ρ : Cπp1q ÝÑ C defined by ρpαπp1qq “
α for every α P C. Let us check that for every n ě 0,

(3.3) pρ ˝ πqpznq “ ζn.

For n “ 0, this is true by definition. Assume that (3.3) is satisfied for some integer n ě 0.
Then,

pρ ˝ πqpzn`1q “ pρ ˝ πqpznpz ´ ζqq ` ζpρ ˝ πqpznq “ ζn`1.

By induction, we deduce (3.3) and by linearity, for any polynomial p, we have pρ˝πqppq “
ppζq. Now, using the continuity of ρ and π, we obtain that there exists a constant C ą 0
such that

|ppζq| 6 C}p}b, for any polynomial p P CrXs.
Denote by Lζ the linear functional defined on CrXs by Lζppq “ ppζq, p P CrXs. Then
Lζ is continuous on CrXs endowed with the topology of H pbq. Hence it extends to
a continuous linear map on H pbq. By the Riesz representation theorem, there exists a
unique vector hζ P H pbq, hζ ‰ 0, such that

ppζq “ Lζppq “ xp, hζyb, for any polynomial p P CrXs.

Now, note that for any polynomial p, we have

xp, S˚b hζyb “ xzp, hζyb “ ζppζq “ xp, ζhζyb,

whence, using (2.4), S˚b hζ “ ζhζ . In particular, ζ belongs to the point spectrum of S˚b .
But by (2.10), this implies that b has an angular derivative at ζ, which is equivalent to the
property that ζ P E0pbq. Note that the function hζ is in fact the reproducing kernel kbζ of
H pbq at the point ζ.
pbq ùñ pdq: assume now that ζ P E0pbq. Let f P H pbq be such that |f | “ 1 a.e. on a

neighborhood O of ζ. Let us consider the inner-outer factorisation of f “ fifo, where fi
is the inner part and fo the outer part of f . Since by definition |fi| “ 1 a.e. on T, we have
|fo| “ 1 a.e. on O. Moreover, fo P H pbq and }fo}b 6 }f}b. Indeed, fo “ Tf̄if , where Tf̄i
is the Toeplitz operator with symbol f̄i and H pbq is invariant with respect to co-analytic
Toeplitz operators. Furthermore,

}fo}b “ }Tf̄if}b 6 }fi}8}f}b “ }f}b.

See [18, Theorem 18.13]. Since fo is outer and log |fo| “ 0 a.e. on O, we have

fopzq “ λ exp

˜

ż

TzO

ξ ` z

ξ ´ z
log |fopξq| dmpξq

¸

,
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for some constant λ P T. Hence fo is analytic in a neighborhood of ζ and in particular,
we deduce that |fopζq| “ 1. Using now the fact that ζ P E0pbq, we know that there exists
a constant C ą 0 such that |gpζq| 6 C}g}b for every g P H pbq. Hence

1 “ |fopζq| 6 C}fo}b 6 C}f}b

for every function f P H pbq such that |f | “ 1 a.e. on a neighborhood O of ζ. We deduce
that c2ptζuq ě C´1 ą 0.
pcq ùñ paq: by contradiction, assume that z ´ ζ is cyclic for Sb. Then, for every ε ą 0,

we can find a polynomial q such that }qpz ´ ζq ´ 1}b 6 ε. Note that the value of the
polynomial qpz´ζq´1 at ζ is´1. So by continuity, we can find a neighborhood O of ζ on
T such that |qpz ´ ζq ´ 1| ě 1{2 on O. Hence |2pqpz ´ ζq ´ 1q| ě 1 on O and by definition
of c1ptζuq, we obtain that

c1ptζuq 6 2}qpz ´ ζq ´ 1}b 6 2ε.

Since this is true for every ε ą 0, we deduce that c1ptζuq “ 0, which contradicts pcq. �

If we knew that c1pF q and c2pF q were comparable, assertions (a) to (d) in Theorem 3.6
would be equivalent. This motivates the following question:

Question 3.4. (i) Does there exist κ ą 0 such that c2pF q 6 κ c1pF q for every F Ď T?
(ii) Is it true that c1pF q ą 0 if and only if c2pF q ą 0?

Remark 3.7. It can be easily seen from Theorem 3.6 that the condition infD |f | ą 0 in
Corollary 3.4 is not necessary for f to be cyclic in H pbq. Indeed, let bpzq “ 1`z

2 Sδ1pzq,
where Sδ1 is the singular inner function associated to δ1, the Dirac measure at point 1.
See (2.7). It is clear that

ż

T

dδ1pξq

|ζ0 ´ ξ|2
“

1

|ζ0 ´ 1|2
“ 8

when ζ0 “ 1. Hence 1 R E0pbq. Therefore, by Theorem 3.6, the function z ´ 1 is cyclic for
Sb while infD |z ´ 1| “ 0.

Corollary 3.8. Let b a non-extreme point in ballpH8q. Let p be a polynomial. The following
assertions are equivalent:

(a) p is cyclic for Sb.
(b) ppzq ‰ 0 for every z P DY E0pbq.

Proof. paq ùñ pbq: follows immediately from Lemma 3.2.
pbq ùñ paq: factorise the polynomial p as ppzq “ c

śn
j“1pz ´ ζjq, where by definition

the roots ζj belong to CzpD Y E0pbqq. On the one hand, if |ζj | ą 1, then, according to
Corollary 3.4, the function z ´ ζj is cyclic for Sb. On the other hand, if |ζj | “ 1, then
ζj R E0pbq and Theorem 3.6 implies that the function z ´ ζj is also cyclic for Sb. Thus, for
every 1 6 j 6 n, the function z´ ζj is cyclic and it follows from Lemma 3.5 that p itself is
cyclic for Sb. �

This result can be slightly generalised:

Corollary 3.9. Let b a non-extreme point in ballpH8q. Let f P HolpDq. The following assertions
are equivalent:

(a) f is cyclic for Sb.
(b) f is outer and fpζq ‰ 0 for every ζ P E0pbq.
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Proof. paq ùñ pbq: follows from Lemma 3.2.
pbq ùñ paq: since f is outer and f P HolpDq, f does not vanish on the unit disc and

has at most a finite number of zeros on T (otherwise by compactness and the uniqueness
principle for holomorphic functions, f would vanish identically). Let ζ1, ζ2, . . . , ζn be the
(possible) zeros of f on T. Then there exists a function g P HolpDq with infD |g| ą 0 such
that

fpzq “
n
ź

j“1

pz ´ ζjqgpzq, z P D.

Our assumption implies that for every 1 6 j 6 n, ζj R E0pbq, and thus by Theorem 3.6,
the function z´ζj is cyclic for Sb. Moreover, by Corollary 3.4, the function g is also cyclic.
Now it follows from Lemma 3.5 that f itself is cyclic for Sb. �

Example 3.10. Let b a non-extreme point in ballpH8q. For every λ P D, kλ is a cyclic vector
for Sb. Indeed, it is clear that kλpzq “ p1´ λzq´1 satisfies the conditions of Corollary 3.9.
Hence kλ is cyclic.

In particular, by (2.5), the set of cyclic vectors for Sb spans a dense subspace in H pbq.

4. THE RATIONAL CASE

The main result of this section is a characterisation of cyclic functions for Sb when b is
a rational function which is not a finite Blaschke product. As mentioned already in the
Introduction, this result can be derived from the work [24] by Luo – Gu – Richter, but we
provide here an elementary proof, the ideas of which will turn out to be also relevant to
the case where b “ p1`Iq{2 (see Section 5 below). Note that Theorem 4.1 extends a result
proved in [19] in the particular case where bpzq “ p1` zq{2.

Theorem 4.1. Let b P ballpH8q and assume that b is rational (but not a finite Blaschke product).
Let a1 be the associated polynomial given by (2.14), and let f P H pbq. Then the following
assertions are equivalent:

(a) f is cyclic for Sb.
(b) f is an outer function and for every 1 6 k 6 n, fpζkq ‰ 0.

Proof. paq ùñ pbq: according to (2.20), we know that E0pbq “ tζk : 1 6 k 6 nu. Hence
this implication follows from Lemma 3.2.
pbq ùñ paq: according to (2.16), write f “ a1

rf ` p, where rf P H2 and p P PN´1. By
(2.19), ppζkq ‰ 0, 1 6 k 6 n. Let now r P PN´1 be the unique polynomial satisfying the
following interpolation properties: for every 1 6 k 6 n,

rpjqpζkq “

#

1
ppζkq

if j “ 0

´ 1
ppζkq

řj´1
`“0

`

j
`

˘

rp`qpζkqp
pj´`qpζkq if 1 6 j 6 mk ´ 1.

This polynomial r can be constructed using Hermite polynomial interpolation, see for
instance [1, Chapter 1, E. 7]. By Leibniz’s rule, we easily see that for every 1 6 k 6 n and
0 6 j 6 mk ´ 1, we have prp´ 1qpjqpζkq “ 0. Hence a1 divides the polynomial rp´ 1. In
other words, there exists a polynomial q such that rp´ 1 “ a1q. Using that f is outer, we
can find a sequence of polynomials pqnqn such that }qnf ` r rf ` q}2 Ñ 0 as nÑ8. Define
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now a sequence of polynomials ppnq by pn “ a1qn ` r, n ě 1. Observe that

pnf ´ 1 “pa1qn ` rqf ´ 1 “ a1qnf ` rpa1
rf ` pq ´ 1

“a1pqnf ` r rfq ` rp´ 1 “ a1pqnf ` r rf ` qq.

Then it follows from (2.17) that

~pnf ´ 1~b “ ~a1pqnf ` r rf ` qq~b “ }qnf ` r rf ` q}2 Ñ 0 as nÑ8.

Therefore f is cyclic for Sb. �

Example 4.2. Let bpzq “ 1
2p1´ z

2q. Then it is proved in [13] that apzq “ cpz´ iqpz` iq, for
some constant c. Thus, according to Theorem 4.1, a function f P H pbq is cyclic for Sb if
and only if f is outer, fpiq ‰ 0 and fp´iq ‰ 0.

5. THE CASE WHERE b “ p1` Iq{2

Our main result in this section is the following:

Theorem 5.1. Let I be an inner function, I ı 1, and assume that its Clark measure σ1 associated
to point 1 (defined in (2.11)) is a discrete measure. Let tζn : n ě 1u “ tζ P E0pIq : Ipζq “ 1u.
Let b “ p1` Iq{2, and f P H pbq which we decompose according to (2.22) as f “ p1´ Iqg1` g2,
with g1 P H

2, g2 P KI . Assume that:
(a) g1, g2 P H

8;
(b) f is outer;
(c) we have

ÿ

ně1

1

|fpζnq|2|I 1pζnq|
ă 8.

Then f is cyclic for Sb.

Proof. The proof proceeds along the same lines as in the rational case. According to
Lemma 2.6, f PMpH pbqq and by Lemma 2.3 we have fpζnq “ g2pζnq, n ě 1.
First step: We claim that there exists a sequence of functions pψnqn in H pbq such that
}ψnf ´ 1}b Ñ 0 as nÑ8.

In order to construct the sequence pψnqn, let us first consider the function r given by

r “
8
ÿ

n“1

1

fpζnq

kIζn
}kIζn}

2
2

¨

Recall that by (2.12), }kIζn}
2
2 “ |I

1pζnq|. Combining this with condition (c) and the fact that
the family pkIζn{}k

I
ζn
}2qn forms an orthonormal basis of KI (since σ1 is discrete, Clark’s

theorem holds true), we see that the series defining the function r is convergent in KI . In
others words, r P KI and rpζnq “ 1{fpζnq “ 1{g2pζnq for every n ě 1.

Let us now prove that rg2 ´ 1 P p1 ´ IqH2. Observe that Lemma 2.4 implies that
rg2 P KI2 “ KI ‘ IKI . Hence there exist ϕ1, ϕ2 P KI such that rg2 ´ 1 “ ϕ1 ` Iϕ2 ´ 1.
Since rpζnqg2pζnq ´ 1 “ 0, we have ϕ1pζnq ` ϕ2pζnq ´ 1 “ 0 for every n ě 1. Note that
p1´ Ip0qq´1p1´ Ip0qIq “ pp1´ Ip0qq´1kI0 P KI and

p1´ Ip0qq´1p1´ Ip0qIpζnqq “ 1 for every n ě 1.

Since the family
`

kIζn
˘

n
is complete in KI , and since ϕ1pζnq ` ϕ2pζnq “ 1 for every n ě 1,

we deduce that
ϕ1 ` ϕ2 “ p1´ Ip0qq

´1p1´ Ip0qIq.
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Hence

rg2 ´ 1 “ ϕ1 ` Iϕ2 ´ 1 “ ´ϕ2 ` p1´ Ip0qq
´1p1´ Ip0qIq ` Iϕ2 ´ 1

“ p1´ Iqp´ϕ2q ` p1´ Ip0qq
´1p1´ Ip0qIq ´ 1.

Observe that
p1´ Ip0qq´1p1´ Ip0qIq ´ 1 “ p1´ Ip0qq´1Ip0qp1´ Iq,

from which it follows that

rg2 ´ 1 “ p1´ Iqp´ϕ2 ` Ip0qp1´ Ip0qq
´1q.

This proves that rg2 ´ 1 belongs to p1 ´ IqH2. Write rg2 ´ 1 as rg2 ´ 1 “ p1 ´ Iqg3, with
g3 P H

2.
Using now that f is outer, and that rg1 P H

2 (as g1 P H
8) we can find a sequence of

polynomials pqnqn such that }qnf ` rg1 ` g3}2 Ñ 0, as n Ñ 8. We then define for each
n ě 1 a function ψn as

ψn :“ p1´ Iqqn ` r,

where qn and r are defined above. Note that ψn P p1´ IqH2 `KI “ H pbq and

ψnf ´ 1 “p1´ Iqqnf ` rf ´ 1

“p1´ Iqqnf ` p1´ Iqrg1 ` rg2 ´ 1

“p1´ Iqpqnf ` rg1 ` g3q.

It follows from Lemma 2.2 that there exists a positive constant C such that

}ψnf ´ 1}b “}p1´ Iqpqnf ` rg1 ` g3q}b

6C ~p1´ Iqpqnf ` rg1 ` g3q~b

“C }qnf ` rg1 ` g3}2,

from which it follows that }ψnf ´ 1}b Ñ 0 as nÑ8.
Second step: Let us now prove that there exists a sequence of polynomials ppnqn such

that }pnf ´ 1}b Ñ 0 as nÑ8.
By the density of polynomials in H pbq, we can find a sequence of polynomials ppnqn

such that }pn ´ ψn}b Ñ 0 as nÑ8. Now write

}pnf ´ 1}b 6}pnf ´ ψnf}b ` }ψnf ´ 1}b

6}f}MpH pbq}pn ´ ψn}b ` }ψnf ´ 1}b,

and by the choice of the sequence ppnqn and the first step, we get the conclusion of the
second step.

We finally conclude that f is cyclic for Sb. �

Remark 5.2. If I is an inner function such that, for some α P T, its Clark measure σα is
a discrete measure and I ı α, then we may apply Theorem 5.1 replacing I by ᾱI and
b “ p1` Iq{2 by b “ p1` ᾱIq{2.

Example 5.3. Let I “ Sδ1 be the inner function associated to the measure δ1:

Ipzq “ exp
´

´
1` z

1´ z

¯

.
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In this case we can compute explicitly the Clark basis of KI associated to point 1. We
have E1 “ tζ P E0pIq : Ipζq “ 1u “ tζn ; n P Zuwith

ζn “
2iπn´ 1

2iπn` 1
and I 1pζnq “ ´

1

2
p2iπn` 1q2, n P Z.

Therefore, if f P Hpbq is outer, with f “ p1´ Iqg1 ` g2, g1 P H
8, g2 P KI XH

8, and if
ÿ

nPZ

1

|fpζnq|2
¨

1

4n2π2 ` 1
ă `8,

then f is cyclic for Sb.

Remark 5.4. There exists a recipe to construct an inner function satisfying the hypothesis
of Theorem 5.1. Let σ be a positive discrete measure on T and let Hσ be its Herglotz
transform,

Hσpzq “

ż

T

ξ ` z

ξ ´ z
dσpξq, z P D.

We easily see that Hσ defines an analytic function on D and satisfies <epHσpzqq ě 0 for
every z P D. Now define a function I on D as

I “
Hσ ´ 1

Hσ ` 1
¨

Since <eHσ ě 0, it is easy to check that I P H8 and |I| 6 1. Moreover, for every 0 ă r ă 1
and ζ P T, we have

(5.1) |Iprζq| “
p<epHσprζqq ´ 1q2 ` p=mpHσprζqq2

p<epHσprζqq ` 1q2 ` p=mpHσprζqq2
¨

Since σ is a singular measure, it is well-known that for almost all ζ P T, we have

<epHσprζqq “
ż

T

1´ r2

|ξ ´ rζ|2
dσpξq Ñ 0 as r Ñ 1´.

See [17, Corollary 3.4]. Moreover, the radial limit of =mpHσq also exists and is finite for
almost all ζ P T. See [17, page 113]. Thus, it follows from (5.1) that |Ipζq| “ 1 for almost
all ζ P T, meaning that I is an inner function. Of course, we have I ı 1. Now, we easily
check that

1´ |Ipzq|2

|1´ Ipzq|2
“ <epHσpzqq “

ż

T

1´ |z|2

|ξ ´ z|2
dσpξq,

which implies by unicity of the Clark measure that σ1 “ σ. Therefore I satisfies the
assumptions of Theorem 5.1.

Corollary 5.5. Let I be an inner function, I ı 1, and assume that σ1 is a discrete measure. Let
b “ p1` Iq{2. Then kbλ is a cyclic vector for Sb for every λ P D.

Proof. Let us prove that kbλ satisfies the assumptions paq, pbq and pcq of Theorem 5.1. First,
using that b “ p1` Iq{2, straightforward computations show that

1´ bpλqbpzq

1´ λz
“ p1´ Ipzqq

1

4
¨
p1´ Ipλqq

1´ λz
`

1

2
¨

1´ IpλqIpzq

1´ λz
¨

In other words, kbλ can be written as kbλ “ p1 ´ Iqg1 ` g2, with g1 “
1
4p1 ´ Ipλqqkλ and

g2 “
1
2k

I
λ. In particular, g1, g2 P H

8 and kbλ satisfies the assumption paq.

Observe now that <ep1 ´ bpλqbpzqq ě 0 and <ep1 ´ λzq ě 0 for every z P D, which
implies that the functions 1´bpλqbpzq and 1´λz are outer. See [25, page 67]. So kbλ is outer
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as the quotient of two outer functions. It remains to check that kbλ satisfies assumption
pcq. But

|kbλpζnq| “

ˇ

ˇ

ˇ

ˇ

1´ bpλq

1´ λζn

ˇ

ˇ

ˇ

ˇ

ě
|1´ bpλq|

1` |λ|
,

and the property pcq follows from the fact that
ÿ

ně1

1

|I 1pζnq|
“

ÿ

ně1

σ1ptζnuq 6 σ1pTq ă `8.

Thus kbλ satisfies the assumptions paq, pbq, pcq of Theorem 5.1, and kbλ is cyclic for Sb.
�

It should be noted that in Corollary 5.5, the reproducing kernels f “ kbλ, λ P D, which
are cyclic for Sb, are such that 1{f P H8. As we already observed in Lemma 3.3, certain
invertibility conditions for f make cyclicity easier. Using Theorem 5.1, we now construct
a family of functions f which are cyclic for Sb but are such that 1{f R H2.

Example 5.6. Let I be a non-constant inner function, and assume that σ1 is a discrete
measure. Let b “ p1` Iq{2 and f “ p1` IqkIλ for some λ P D. Then f is cyclic for Sb and
1{f R L2.

Proof. First observe that
f “ p1´ Iqp´kIλq ` 2kIλ,

so that f “ pI ´ Iqg1 ` g2, with g2 “ ´2g1 “ 2kIλ P H
8 X KI . In particular, f satisfies

condition paq of Theorem 5.1. Moreover, the function f is outer as the product of two
outer functions (use the same arguments as in the proof of Corollary 5.5). Finally, since
|fpζnq| “ 2|kIλpζnq| ě |1´Ipλq|, f satisfies condition pcq. Hence by Theorem 5.1, f is cyclic
for Sb.

Let us now check that 1{f R L2. First observe that there exist two positive constants C1

and C2 such that

C1
1

|1` Ipζq|
6

1

|fpζq|
6 C2

1

|1` Ipζq|
for a.e. ζ P T,

because
1´ |Ipλq|

2
6 |kIλpζq| 6

2

1´ |λ|
¨

Now assume that 1{f belongs to L2. Then 1{p1` Iq P L2. But since 1` I is outer, we get
that 1{p1` Iq P H2. See [25, page 43]. As

1

1` I
“

I

1` I
for a.e. ζ P T,

we deduce that 1{p1 ` Iq also belongs to H2. Thus 1{p1 ` Iq is constant, which is a
contradiction. �

In the context of Corollary 5.5, it is easy to see that pa, bq forms a corona pair, and we
have seen that kbλ is cyclic for Sb. In fact, this cyclicity result holds true under the (HCR)
condition only.

Proposition 5.7. Let b be a non-extreme point in ballpH8q, and let a be its pythagorean mate.
Assume that pa, bq satisfies (HCR). Then the following. assertions hold:

(a) kbλ is cyclic for Sb for every λ P D;
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(b) If b is furthermore assumed to be outer, then bkλ is also cyclic for Sb for every λ P D. In
particular, b is a cyclic vector for Sb.

Proof. (a) We have ppSbqkbλ “ p1 ´ bpλqbqppSbqkλ for every polynomial p P CrXs. Since
pa, bq satisfies (HCR), we have H pbq “M pāq, and b is a multiplier of H pbq. See [18, The-
orems 28.7 and 28.3]. In particular, the multiplication operator T “ M

1´bpλqb
is bounded

on H pbq and we have

ppSbqk
b
λ “ TppSbqkλ for every polynomial p P CrXs.

Since kλ is cyclic for Sb (see Example 3.10), in order to check that kbλ is also cyclic for Sb
it is sufficient to check that T has dense range. Let h P H pbq be such that h K RangepT q.
Then h K Tkµ “ kµ´bpλqbkµ for every µ P D. Lemma 2.1 now implies that h “ 0, proving
that T has dense range. It follows that kbλ is cyclic for Sb.

(b) The proof of (b) proceeds along the same lines of (a). We have

ppSbqbkλ “ V ppSbqkλ for every polynomial p P CrXs,

where V “ Mb is the multiplication operator by b. As previously, in order to show that
bkλ is cyclic for Sb, it is sufficient to check that V has a dense range. Let h P H pbq be such
that h K RangepV q. Then h K V kµ “ bkµ for every µ P D. By (2.6), it then follows that
h`pµq “ 0 for every µ P D. Then h` “ 0 and Tb̄h “ Tāh

` “ 0. But, since b is outer, Tb̄ is
one-to-one, which implies that h “ 0. It then follows that bkλ is cyclic for Sb. �

We finish the paper with the following question:

Question 5.2. Does Proposition 5.7 hold true without the assumption that pa, bq satisfies
(HCR)?
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