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Tight Bounds on the Size of 2-Monopolies

(Extended abstract)
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Abstract. This paper deals with the question of the influence of a
monopoly of vertices, seeking to gain the majority in local neighbor-
hoods in a graph. Say that a vertex v is r-controlled by a set of vertices
M if the majority of its neighbors at distance r are from M. We ask how
large must M be in order to r-monopolize the graph, namely, r-control
every vertezx. Tight upper and lower bounds are provided for this prob-
lem. For any even r > 2, an r-monopoly M in an n-vertex graph must
be of size £2(n°/®), and there exist n-vertex graphs with r-monopolies
of size O(n®/®). As for odd r values, we show that for every odd k > 1,
a 3k-monopoly M in an n-vertex graph must be of size 0(116/”) and
that for any odd r there exist n-vertex graphs with r-monopolies of size
O(n*/"). This settles a problem left open in [L*93, BP95).

1 Introduction

1.1 The problem

Majority voting, in one form or another, is used as a component of fault-tolerant
algorithms in a wide variety of contexts, including agreement and consensus
problems (cf. [LSP82, Br87, D*88]), quorum system applications (cf. [G79,
GMBS85, SB94, JRT91]), self-stabilization and local mending [KP95a, KP95b],
and more.

In the context of distributed network algorithms, the majority ruling method
must be used in a restricted and local fashion, by replicating the data of a
processor v only among processors in v’s local vicinity. The chief reason for this
focus on locality is that in the distributed network model, computations are local
in nature, namely, the accessibility of data to a processor is greatly affected by
its distance from it.

On the other hand, the potential risk in limiting ourselves to local neighbor-
hoods is that it makes it possible for a sufficiently large set of faults to corrupt



the magority in some of these neighborhoods. Generally speaking, the ability
of failed vertices to influence the voting process is not only a function of their
number but also a function of their location in the network, namely, strategically
positioned vertices may have greater influence.

This observation naturally leads to the fundamental problem of characteriz-
ing the potential power of a set of failures in a network of processors. In par-
ticular, previous work has focused on the notion of monopolies in graphs. This
notion is defined as follows.

Definition1. A vertex v in a network G(V, E) is said to be controlled by the
vertex set M if at least half of its neighbors are in M.
The set M is called a monopoly if it controls every vertex in the graph.

The question of bounds for the size of monopolies in the graph was addressed in
[L*93], and the following tight answers were provided.

Proposition2. [L193]

1. In every n-vertex graph, a monopoly must be of size 2(y/n).
2. There exist (infinitely many) n-vertez graphs with monopolies of size O(y/n).

A graph G with a monopoly of size O(y/n) as in Prop. 2(2) is depicted in Fig.
1. The graph consists of a coalition M of v/n+ 1 vertices, connected by a clique,
plus a set of \/n leaves attached to each vertex of M.

Fig. 1. A graph G with a monopoly M of size O(y/n).

The above results may be interpreted as the result of the limited scope of our
majority voting. Indeed, one may hope to strengthen the quality of the voting
by querying vertices to larger distances. Let [.(v) denote the r-neighborhood of
v in G, l.e., the set of vertices at distance r or less from v. A variant of the above
question, in which neighborhoods are replaced by r-neighborhoods for some fixed
7, was also discussed in [L*93].

Definition3. A vertex v in a network G(V, E) is said to be r-controlled by the
vertex set M if at least half of the vertices in I'.(v) are in M.
The set M is called an r-monopoly if it r-controls every vertex in the graph.



[t is shown in [L*93] that for any fixed » > 1 there exist (infinitely many) n-
vertex graphs with r-monopolies of size O(n2/3). However, the question of tight
bounds for r-monopolies was left open.

In this paper we improve this bound on the size of r-monopolies, and show
a bound that is tight for even »r.

Proposition4.

l. In every n-vertex graph, an r-monopoly for even r > 2 must be of size
2(n3/%).

2. For any fized v > 2 there exist (infinilely many) n-verter graphs with v-
monopolies of size O(n3/%).

3. In every n-verter graph, a 3k-monopoly for odd k > 1 must be of size
_Q(nG/ll)

4. For any fized odd v there exist (infinitely many) n-vertex graphs with r-
monopolies of size 0(114/7).

In what follows we prove the above claims | and 2, and illustrate claim 4.
The proof of claim 3 is deferred to the full paper.

1.2 Related work

The variant of a self-ignoring r-monopoly, namely, a set M that r-controls every
vertex in V \ M was studied in [BP95). That paper also studied the influence of
an arbitrary coalition M (that is not a monopoly) as a function of its size.

Certain dynamic variants of majority voting problems were studied in the
literature, in the context of discrete time dynamical systems. These variants
dealt with a setting in which the nodes of the system operate in discrete time
steps, and at each step, each node computes the majority in its neighborhood,
and adapts the resulting value as its own. Typical problems studied in this setting
concern the behavior of the resulting sequence of global states (represented as a
vector z! = (2}, ..., 2}), where z! represents the value at node v; after time step
t). For instance, the fact that the period of such sequences is either one or two is
proved (in various contexts) in [GO80, PS83, PT86]. The problem was studied
further in [M94c, M94b, M94a]. Also, the applicability of majority voting as a
tool for fault-local mending was investigated in [KP95a, KP95b].

For a review of recent results in the area, see [P96).

2 Lower Bounds

Givenagraph G = (V,E)and aset S C V, let I.(S, G) denote the r-neighborhood
of S in G, i.e., the set of vertices at distance » or less from some node of S in
G. (We omit the parameter GG when it is clear from the context.) Given a graph
G = (V,E), avertex 2 € V, and a set S C V, we denote by degg(z,S5) the
number of neighbors of z in G belonging to S, namely, |I'1(z, G)N S|. (We omit
the parameter S when it is the entire vertex set of G; we omit the subscript



G when it is clear from the context.) Dg(z,y) denotes the distance in G be-
tween z and y. Given a subset S of V, define the distance from z to S in G as
D¢ (x,S) = minges(Deg(x, y)).

2.1 The case of 2-monopoly

In this section we concentrate on the case of 2-monopolies. For notational con-
venience, we will refer to the pair (G, M) as a “2-monopoly” whenever G is a
graph (V, E) and M C V is 2-monopoly for G.

For i = 1,2, let S; denote the set of vertices at distance ¢ from M, that is,
Si={ve V| Dg(v,M) =i}, and let s; = |S;|. Also let m = |M|. Note that if
(G, M) is a 2-monopoly then V.= MU S, US; and |V] = m + 51 + s2.

The influence of a subset S C V on a vertex v in the graph G is defined by

Ig(S,v) = {we S| Dg(v,w) <2}

(We omit the subscript G whenever clear from the context.) More generally, the
influence of a set S on a set S’ is Zg(S,5') = 3_,¢s Za(S, x).

Using the Z notation, a vertex v is 2-controlled by M if Z(M,v) > I(5 U
Sa,v), and a subset S of V is 2-controlled if every vertex x € S is.

In what follows we make frequent use (sometimes without mention) of the
following three immediate properties of Z.

Proposition5.

1. T is a symmetric function, v.e., I(S,S') = L(S’,S) for every 5,5’ C V.

2. I(S5,5) < |S|? for every SC V, and

3. I is monotone nonincreasing in the size of E, namely, if G' = (V, E') for
E' CE, then I/(S,5") <Zg(S,S") for every S,S' C V.

Lemma6. If (G, M) is a 2-monopoly, then Z(S; U Sa, M) < m? and Z(S; U
S, 51 USs) < m?2.

Proof As all the nodes are 2-controlled, we have for every v € V,
I(S1US2,v) < I(M,v). 8]
By summing (1) on all v € M we get
I(S1USy, M) < Z(M,M) < m?, (2)

proving the first claim. On the other hand, by summing (1) on all v € S U S,
we get

I(51U 82, 51U8:) < I(M,5,US2) = I(51US2, M), (3)
and combining (2) and (3), the lemma follows. |

Our main two lemmas bound the size of S) and S; with respect to M.

Lemma 7. If (G, M) is a 2-monopoly, then s; < m®/2.



Proof For every vertex y € S), we assign a unique neighbor p(y) in M as
its parent. For every 2 € M, let a(z) denote the number of children assigned
to it. Note that s; = erM a(z). Also note that for every vertex y € S,
a(p(y) <I(y,S)) <ZI(y, M). Therefore

2 %@ = 3 al) < YOIy M) = I(S),M) < m’.

reM yES) yES
By convexity, this sum is minimal when all the values of a(z) are equal; that
happens when a(z) = s;/m as sy = 3 4 a(2). Hence m(s;/m)? < m?,

yielding the claim. |

Consider a graph G and a set of vertices M with S; and S, defined as above.
Let E; denote the set of edges connecting M and S;. The following lemma holds
even if M is not a 2-monopoly.

Lemma8. If S3 is 2-controlled by M, then |E| > s2.

Proof Construct a bipartite graph B = (S, £, E’) by defining the edge set £’
as follows. For z € S5, y € S; and 2 € M such that (2,y) € E;, we connect z to
(z,y) in B if z is adjacent to y in G. (See Fig. 2(a) and 2(b)).

(a) The graph G (b) The graph B (c)

R R 2]

o[ o)

Fig.2. Proof of Lemma 8.

We prove the lemma by showing that B admits a matching saturating Sy.
This is proved by relying on Hall’s Lemma (cf. [Be76]). By Hall’s Lemma, B
admits a matching touching every vertex of S, if and only if |I(U, B)| > |U|
for every subset U C Ss.

This property is proved by contradiction. Suppose that this property does not
hold, namely, there exists a “deficit” set U, such that |I(U, B)] < |U|. Let Uy
be a minimal size deficit set. Note that Uy is not a singleton (since no singletons
in Sy are in deficit). Let F' = I')(Uy, B). Pick an arbitrary node 29 € Up, and
let Z = Up\ {20}. The bipartite graph B’ induced by Z and I';(Z, B) obeys the



condition of Hall’'s Lemma, hence it admits a matching saturating the vertices
of Z. Moreover, note that

1Z]+ 1 = |Uo| > |I(Uo, B)| > |IN(Z, B)| > |Z],

so |F| = |Z], and hence B’ admits a perfect matching M between Z and F. Now
let @ = I'i(20, B) C F, and let H be the set of nodes in Z matched by M with
the edges of @ (see Fig. 2(c)). Note that

II2(20, GYN M| < Q] = [H] < [[2(20,G) NSy - 1

(counting zg itself, and possibly more Sy vertices currently not in Up). This
implies that zp is not 2-controlled, leading to contradiction.
Consequently, B admits a matching saturating Sz, and hence s; < |Ey[. |

Lemma9. If (G, M) is a 2-monopoly, then s, < O(m®/3).

Proof Consider a 2-monopoly (G, M). Let é(y) = degg(y, M) for each node

y € Si. Let dy be an integer to be fixed later. Let A; (resp. B;) be the set of

vertices y € Sy with é(y) < do (resp. 6(y) > do). Let B, be the set of nodes in

S, adjacent to some node in By, and A; = S2\ Ba. Let as = |Ay| and by = | Bs|.
First, we note that m? > Z(By, M) > by - dy, leading to

2

m
<__
b < o

(4)

Secondly, let t be the number of edges between M and A;. Note that a vertex
z € A2 has all its Sy neighbors in A;, and consequently, Ay is 2-controlled by M
in the subgraph of G induced by M U A; U A,. Therefore t > ay by Lemma 8.
These edges form paths of length 2 from A; to A; via M. The number of such
paths is K = )7 ., deg(z, A;)?. By convexity, this number is minimal when
the degrees deg(z, A1) are equal, in which case deg(z,4;)) = £ > 92 for any
z € M. Hence

2

. as 2 a
K > (—) .m = -2,
m m

As we want to compute the influence Z(Ay, A;), we have to take into account the
fact that a vertex in A; may influence another vertex in A; via more than one
2-path. But as for any y € A; we have deg(y, M) < dop, the number of different
2-paths via M that can contribute the (same) influence of some y' € A; on y is
at most do. Consequently

m? > I(Si,S1) >

v
i
=
B
v
l
v

and we get
ay < V/dg-m3?. (5)



The bounds specified by inequalities (4) and (5) are optimized by fixing
do = O(m3) (more exactly do = (4m)3), where we get

as = O(mi), by = O(m%).
So s3 = ag + by = O(m%/3), |
Since |V| = s; + sz + m, by Lemmas 7 and 9 we have the following.

Proposition10. Every 2-monopoly (G, M) satisfies m = 2(|V[|3/5).

2.2 Lower Bound for z2k-Monopolies
The generalization to 2k-monopolies is straightforward.
Proposition11. If (G, M) is a 2k-monopoly then m = 2(|V|*/®).

Proof Define G*, as the graph on vertex set V with an edge between z and y if
and only if Dg(z,y) < k. Then clearly (G, M) is a 2k-monopoly only if (G*, M)
is a 2-monopoly. 1

The lower bound proof for the case of 3k-monopolies for odd & is deferred to
the full paper.

3 Upper Bounds

Proposition 12. There exist 7 monopolies (G, M) with m = O(|V|3/%).

Proof To prove this we construct a 2-monopoly associated to a parameter ¢
with m = O(t3), s; = O(t), and |V| = O(t%), that is, |V| = ©@(m*). The nodes
z € 51 also satisfy 6(z) = O(t) = O(m!/3). Clearly these parameters ensure the
lower bound. An outline of the construction is given in figure 3. The construction
technique can be extended to the case of r-monopolies for » > 2; this extension
is deferred to the full version of the paper.

- V=MUMUS US,.

— M, is a clique of size t3, composed of t sets of t2 vertices.

— M, is a independent set of size 3 composed of ¢ sets of t2 vertices. The ith
set in M) is connected to the ith set in My by a complete bipartite graph.
Each set of size t2 is decomposed into subsets of size {.

S1 is a independent set of size t*, composed of ¢2 sets of size t2. The ith
set in Sy (of size ?) is connected to the ith subset in M, (of size t) by a
complete bipartite graph.

Sy is a independent set of size t* — %, composed of t* sets of size t — 1. The
nodes of the ith set in Sy are connected to the ith node of S;.

In order to show that the construction gives a 2-monopoly achieving the lower
bound it is enough to count the influences for the four types of vertices (in M,
My, 51, S2). The following table summarizes the counts.



‘ Nodes

Fig. 3. A 2-monopoly achieving the upper bound.

- [REeEMzeM] z€S [zES,
I(z, M) 263 [34+7] 1241 t
I(z,S)] & B3 P+t -1] ¢

Proposition13. There exist 3-monopolies (G, M) with m = O(|V|*/7).

Proof To prove this we construct a 3-monopoly associated to a parameter t
with m = O(t1), s; = O(t%), and |V| = O(t"), that is, |V| = @(m7*). Clearly
these parameters ensure the lower bound. An outline of the construction is given
in figure 4), and the details are deferred to the full version of the paper. |
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2t

2t

2t

Fig.4. A 3-monopoly achieving the upper bound.
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