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Model reduction and realization theory of linear switched systems

The goal of this chapter is to present an overview of some recent results on model reduction of linear switched systems and their interplay with realization theory of these systems. The emphasis will be on those results on model reduction which are directly related to realization theory, we do not aim at being exhaustive. In particular, we will review some recent results on balanced truncation and moment matching, focusing on the theoretical aspects rather than on the computational ones.

Introduction

In this chapter we will present an overview of some recent results on model reduction of hybrid systems which rely heavily on realization theory. Both model reduction and realization theory have been central to Prof. Antoulas's work, so we feel that showing the interaction of these two topics for hybrid systems is a fitting tribute to his scientific contribution.

Hybrid systems [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF] are non-linear systems which combine continuous and discrete behavior. More precisely, a hybrid system is a finite collection of continuous-state dynamical systems, indexed by a set of so called discrete modes (or states). The state of each dynamical system is governed by a set of differential or difference equations. The discrete mode in any time instant can be chosen arbitrarily or it may depend on the value of the continuous state and possibly other constraints, which are referred to as guards. The transitions between the discrete states may result in a jump in the state of the underlying continuous dynamical system. This jump is defined by the application of the so called reset maps. Linear switched systems (LSSs) [START_REF] Liberzon | Switching in Systems and Control[END_REF][START_REF] Sun | Switched linear systems : control and design[END_REF] are the simplest and most widely studied subclass of hybrid systems where the continuous subsystems are linear systems, and the change of the discrete state is externally generated.

While there is a large literature on control of hybrid systems in general, and of LSSs in particular, the computational complexity of the existing algorithms for hybrid systems is high, and hence they cannot be applied to large scale systems. In order to address this problem, model reduction methods were proposed for hybrid systems. Model reduction methods for LSSs can be grouped into the following categories.

LMI-based methods. These methods compute the matrices of the reduced order model by solving a set of linear matrix inequalities (LMIs). The disadvantage is that the proposed conditions are only sufficient, and the tradeoff between the dimension of the reduced model and the error bound is not clear. Moreover, the computational complexity of solving those LMIs might be too high. Without claiming completeness, we mention [START_REF] Gao | Model simplification for switched hybrid systems[END_REF][START_REF] Zhang | µ-Dependent model reduction for uncertain discretetime switched linear systems with average dwell time[END_REF][START_REF] Zhang | H-infinity model reduction for uncertain switched linear discrete-time systems[END_REF][START_REF] Zheng-Fan | Stability analysis and H∞ model reduction for switched discrete-time time-delay systems[END_REF].

Methods based on local Gramians. These algorithms are based on finding observability/controllability Gramians for each linear subsystem. For these methods often there are no error bounds and the reduced order model need not be well-posed. Examples of such papers include [START_REF] Monshizadeh | A simultaneous balanced truncation approach to model reduction of switched linear systems[END_REF][START_REF] Papadopoulos | Model reduction of switched affine systems[END_REF][START_REF] Birouche | Gramian based approach to model order-reduction for discrete-time switched linear systems[END_REF][START_REF] Birouche | Model reduction for discrete-time switched linear time-delay systems via the H∞ stability[END_REF][START_REF] Birouche | Model order-reduction for discrete-time switched linear systems[END_REF][START_REF] Gosea | Balanced truncation for linear switched systems[END_REF][START_REF] Gosea | Model Order Reduction of Switched Linear Systems with Constrained Switching[END_REF]. Note that to the best of our knowledge, the only algorithm which always yields a well-posed LSS of the same type as the original one and for which there exists an analytic error bound (which holds only for slow switching) is the one of [START_REF] Gosea | Balanced truncation for linear switched systems[END_REF]. For the case of jump-linear systems with a stochastic switching a similar approach was taken in [START_REF] Kotsalis | Balanced truncation for discrete-time Markov jump linear systems[END_REF] and an error bound was derived.

Methods based on common Gramians. These methods rely on finding the same observability/controllability Gramians for each linear subsystem. These Gramians are derived as solutions of a suitable LMI. Such algorithms were described in [START_REF] Shaker | Generalized gramian framework for model/controller order reduction of switched systems[END_REF][START_REF] Shaker | Model reduction of switched systems based on switching generalized gramians[END_REF] and an analytic error bound was derived in [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF]. These algorithms apply only to LSSs which have a global quadratic Lyapunov function. Moreover, the computational complexity of solving the corresponding LMIs is high. In order to address this problem [START_REF] Duff | New Gramians for switched linear systems: reachability, observability, and model reduction[END_REF] proposes to replace LMIs by Lyapunov equations. The downside of the latter approach is that the error bounds of [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF] do not always apply. Another approach was proposed in [START_REF] Schulze | Model reduction for linear systems with low-rank switching[END_REF], where for a specific subclass of LSSs, the original LSS is replaced by a linear time-invariant (LTI) system and classical balanced truncation is applied.

Moment matching. The idea behind these algorithms is to find a reduced order linear switched system such that certain coefficients of the series expansions of the input-output maps of the original and the reduced order system coincide. The series expansion can be the Taylor series with respect to switching times, in which case a number of the so-called Markov parameters coincide. Alternatively, the series expansion can be a Laurent-series expansion of a multivariate Laplace transform of the input-output map around a certain frequency. The former approach was pursued in [START_REF] Bastug | Reachability and observability reduction for linear switched systems with constrained switching[END_REF][START_REF] Bastug | Model reduction by nice selections for linear switched systems[END_REF][START_REF] Bastug | Model Reduction of Linear Switched Systems and LPV State-Space Models[END_REF] , the latter in [START_REF] Gosea | Data-driven model order reduction of linear switched systems in the Loewner framework[END_REF]. While those methods do not allow for analytical error bounds, under suitable assumption it can be guaranteed that the reduced model will have the same input-output behavior for certain switching signals [START_REF] Bastug | Reachability and observability reduction for linear switched systems with constrained switching[END_REF][START_REF] Bastug | Model reduction by nice selections for linear switched systems[END_REF][START_REF] Bastug | Model Reduction of Linear Switched Systems and LPV State-Space Models[END_REF]. A somewhat different approach is that of [START_REF] Scarciotti | Model reduction for hybrid systems with state-dependent jumps[END_REF], which considers LSSs with state-dependent switching and it proposes a model reduction procedure which guarantees that the reduced model has the same steady-state output response to certain inputs as the original model.

In this chapter we discuss some recent results on balanced truncation and moment matching for LSSs. For the sake of simplicity, we consider LSSs only in continuous time, and we will assume that all the linear subsystems are defined on the same state-space and the reset maps are identity. Most of the presented results are true for the discrete-time case too, and some can be extended to include LSSs with reset maps which are not identity. We will cite the relevant literature on these extensions.

The model reduction methods to be discussed in this chapter rely heavily on realization theory. The goal of realization theory is to understand the relationship between input-output behaviors and internal (state-space) representations. A fairly complete realization theory was developed for LSSs, see the discussion and references in [START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF][START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach-Part I: realization theory of linear switched systems[END_REF][START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF][START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF]. The results on realization theory of LSSs rely on realization theory of bilinear systems and recognizable formal power series [START_REF] Sontag | Realization theory of discrete-time nonlinear systems: Part I -the bounded case[END_REF][START_REF] Berstel | Rational series and Their Languages[END_REF][START_REF] Isidori | Direct construction of minimal bilinear realizations from nonlinear inputoutput maps[END_REF].

Realization theory is relevant for model reduction in many ways. First, minimization and realization algorithms can be viewed as simple model reduction algorithms. Moreover, the relationship between span-reachability, observability and minimality is closely related to the existence of Gramians which are used in balanced truncation. Realization theory is even more critical for moment matching, as the latter can be viewed as partial realization algorithm. We will elaborate on the precise relationship later on.

The chapter is structured as follows. In Section 1.2 we present the formal definition of the class of LSSs and the corresponding terminology. In Section 1.3 we present a brief overview of the relevant results on realization theory of switched systems. In Section 1.4 we discuss model reduction: In Subsection 1.4.1 we present balanced truncation and in Subsection 1.4.2 we discuss moment matching for LSSs.

Linear switched systems: basic definitions

A linear switched system (LSS) is a control system of the form

Σ ẋ(t) = A σ(t) x(t) + B σ(t) u(t) y(t) = C σ(t) x(t), (1.1) 
where x(t) ∈ R n is the continuous-valued state at time t, σ(t) ∈ Q is the discrete mode at time t, y(t) ∈ R p is the output at time t, and u(t) ∈ R m is the continuous-valued input at time t. The set Q is a finite one, and it is referred to as the set of discrete modes or states. Moreover, A q ∈ R n×n , B q ∈ R n×m , C q ∈ R p×n are the matrices of the linear system in the discrete state q ∈ Q. The number n is called the dimension (order) of Σ and will be denoted by dim(Σ). The short-hand notation Σ = {A q , B q , C q } q∈Q is used for LSSs of the form (1.1). Let R + be the real time-axis, i.e. R + = [0, +∞). Denote by AC(R + , R k ) respectively P C(R + , R k ) the set of all absolutely continuous respectively piecewise-continuous functions of the form h : R

+ → R k 1 . Let X = AC(R + , R n ), U = P C(R + , R m ), Y = P C(R + , R p )
, and let Q be the set of all piecewise-constants functions g : R + → Q. A tuple (x, u, σ, y) ∈ X ×U ×Q×Y is called a solution, if (x, u, σ, y) satisfy (1.1). For any switching signal σ ∈ Q, input u ∈ U and initial state x 0 ∈ R n , there exists a unique solution (x, u, σ, y) of Σ such that x(0) = x 0 . This prompts us to define the input-to-state map X Σ : U × Q → X and the input-output map Y Σ : U × Q → Y of an LSS Σ as follows: X Σ (u, σ) = x, and Y Σ (u, σ) = y if and only if (x, u, σ, y) is the unique solution of Σ such that x(0) = 0 ∈ R n . 2Intuitively, an LSS is just a control system which switches among finitely many linear time-invariant systems. The switching signal is part of the input. Whenever a switch occurs, the continuous state remains the same, only the differential equation governing the state and output evolution changes. That is, whenever we switch to a new linear system, we start the new linear system from the state which is the final state of the previous linear system.

We model potential input-output behaviors of an LSS as functions

f : U × Q → Y, (1.2) 
and call them input-output maps. They capture the behavior of a blackbox, which reacts to piecewise-continuous inputs and switching sequences by generating outputs in R p . Next, we define what it means that this black-box can be modelled as an LSS, i.e. that an LSS is a realization of f . The LSS Σ is a realization of an input-output map f of the form

(1.2) , if Y Σ = f , i.e. if the input-output map of Σ coincides with f . If Σ is a realization of f , then Σ is a minimal realization of f , if for any LSS realization Σ of f , dim Σ ≤ dim Σ. Two LSSs Σ 1 , Σ 2 are said to be input-output equivalent, if their input-output maps are equal, i.e. Y Σ1 = Y Σ2 . An LSS Σ is said to be minimal, if it is a minimal realization of its own input-output map f = Y Σ .

Realization theory of linear switched systems

Below we present the main results on minimality, existence of a realization, and a Ho-Kalman-like realization algorithm for LSSs. These results are identical for discrete-time LSSs [START_REF] Petreczky | Realization theory for discrete-time linear switched systems[END_REF], and can be extended to LSSs with linear reset maps [START_REF] Petreczky | Realization theory for linear hybrid systems[END_REF][START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF]. In order to present these results, and later throughout the chapter, we will use the following notation from automata theory [START_REF] Eilenberg | Automata, Languages and Machines[END_REF].

Notation (Q * , Q + , , q k ) Denote by Q + the set of all finite sequences of elements of Q, i.e. each element w ∈ Q + is of the form w = a 1 a 2 • • • a k for some a 1 , a 2 , . . . , a k ∈ Q, k ∈ N, k > 0.
The integer k is called the length of w and it is denoted by |w|. Let / ∈ Q + be a symbol, which we will call the empty sequence or empty word. By convention, the length of is defined to be zero. Denote by Q * the set Q + ∪{ }. For any two sequences w, v ∈ Q * , we denote by wv the concatenation of w and v.

If w, v ∈ Q + are of the form v = v 1 v 2 • • • v k , k > 0 and w = w 1 w 2 • • • w m , m > 0, v 1 , v 2 , . . . , v k , w 1 , w 2 , . . . , w m ∈ Q, then define vw = v 1 v 2 • • • v k w 1 w 2 • • • w m . If v = and w ∈ Q * , then define vw = w, and if w = and v ∈ Q * , then define vw = v. For q ∈ Q and k ∈ N, k > 0,
we denote by q k the sequence k-times qq • • • q ; by convention q 0 = .

Minimality of linear switched systems

We start by presenting the main results on minimality of LSSs. To this end, we introduce the notions of observability, span-reachability and isomorphism. Let Σ be an LSS of the form (1.1). Then Σ is said to be observable, if for any two distinct states x 1,0 = x 2,0 ∈ R n , there exists an input u and a switching signal σ, such that if (x i , u, σ, y i ), i = 1, 2 are two solutions of Σ with x i (0) = x i,0 , i = 1, 2, then y 1 = y 2 , i.e., the outputs induced by the initial states {x i,0 } i=1,2 under the input u and switching signal σ are different. Let R 0 (Σ) ⊆ R n denote the reachable set of the Σ from the zero initial state, i.e., R 0 (Σ) is the set of all vectors x f such that for some t ∈ R + ,

x f = X Σ (u, σ)(t) for some u ∈ U, σ ∈ Q. We say that Σ is span-reachable, if R n = Span R 0 (Σ), i.e.
, if R n is the smallest vector space containing R 0 (Σ). Note that span-reachability and reachability are the same in continuous-time [START_REF] Sun | Switched linear systems : control and design[END_REF].

Two LSSs Σ 1 = {A q , B q , C q } q∈Q , and Σ 2 = {A a q , B a q , C a q } q∈Q are said to be isomorphic, if there exists a non-singular square matrix S such that A a q = SA q S -1 , B a q = SB q , and C a q = C q S -1 for all q ∈ Q. Theorem (Minimality, [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach-Part I: realization theory of linear switched systems[END_REF]) An LSS is minimal, if and only if it is span-reachable and observable. If Σ 1 and Σ 2 are two minimal LSSs and they are input-output equivalent, then they are isomorphic.

Note that minimality of an LSS does not imply minimality of any of its linear subsystems, see [START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach-Part I: realization theory of linear switched systems[END_REF] for a counter-example. Hence, realization theory of LSSs cannot be reduced to realization theory of linear subsystems.

We present an algorithm for converting any LSS to a minimal one while preserving its input-output map. To this end, we define the subspaces

V * = SpanR 0 (Σ), (1.3) 
W * = Span{x 0 ∈ R n | ∀σ ∈ Q : ∃x ∈ X : (1.4) (x, 0, σ, 0) is a solution of Σ with x(0) = x 0 }.
It can be shown that Σ is span-reachable if and only if V * = R n , and Σ is observable, if and only if W * = {0}, see [START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF][START_REF] Sun | Switched linear systems : control and design[END_REF].

Procedure (Minimization) Consider the factor space V * /W * ; recall that the elements of this linear space are equivalence classes generated by the following equivalence relation ≈ on

V * : x 1 ≈ x 2 if and only if x 1 -x 2 ∈ W * . Let [x] = {y | | x ≈ y} be the equivalence class represented by x.
The linear vector space V * /W * is finite dimensional. Define the linear maps

A q : V * /W * [x] → [A q x] ∈ V * /W * , C q : V * /W * [x] → C q x ∈ R p , B q : R m u → [B q u] ∈ V * /W * , q ∈ Q.
It can be shown [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach-Part I: realization theory of linear switched systems[END_REF] that

A q V * ⊆ V * , A q W * ⊆ W * , ImB q ⊆ V * , W * ⊆ ker C q .
From this it follows that the linear maps A q , B q , C q are well defined. Choose a finite basis in V * /W * , and let m A q , m B q , m C q be the matrix representations of the linear maps A q , B q , C q , in that basis. Then Σ m = { m A q , m B q , m C q } q∈Q is a minimal LSS which is input-output equivalent to Σ.

Existence of a realization, Ho-Kalman algorithm, Markov parameters

We first define the notion of a generalized kernel representation, existence of which is a necessary condition for existence of a realization by an LSS. An input-output map f has a generalized kernel representation, if there exists a family of functions {G f v : R |v|

+ → R p×m } v∈Q + , such that for all u ∈ U, σ ∈ Q, f (u, σ)(t) = k i=1 ti 0 G f qi•••q k (t i -s, t i+1 , . . . , t k )u(s + T i-1 )ds
where

q i ∈ Q, 0 < t i ∈ R + , i = 1, . . . , k are such that σ(s) = q i for s ∈ [T i-1 , T i ) for some T j ∈ R + , T j < T j+1 , j ∈ N, T 0 = 0, and t ∈ [T k-1 , T k )
for some k > 0, and

t i = T i -T i-1 , for i = 1, . . . , k -1 and t k = t -T k-1 .
Moreover, {G f v } v∈Q + have to satisfy a number of technical conditions [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach-Part I: realization theory of linear switched systems[END_REF]. From [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach-Part I: realization theory of linear switched systems[END_REF] it follows that Σ of the form (1.1) is a realization of f , if and only if f has a generalized kernel representation and for all q 1 , . . . ,

q k ∈ Q, t 1 , . . . , t k ∈ R + , k > 0, G f q1•••q k (t 1 , . . . , t k ) = C q k e Aq k t k • • • e Aq 2 t2
e Aq1 t1 B q1 .

(1.5)

From the technical conditions in [START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach-Part I: realization theory of linear switched systems[END_REF][START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF] on generalized kernel representations it follows that if f has a generalized kernel representation, then there exist functions {S f r,q : Q * → R p×m } r,q∈Q such that

G f q1•••q k (t 1 , . . . , t k ) = ∞ α1,...,α k =0 S f q1,q k (q α1 1 • • • q α k k )Π k i=1 t αi i α i ! .
That is, the functions {S f r,q } r,q∈Q uniquely determine {G f v } v∈Q + and hence f , and conversely, the functions {S f r,q } r,q∈Q can be recovered from f . The values of {S f r,q } r,q∈Q are called the Markov parameters of f . Notation For every v ∈ Q * and a collection of n × n matrices {A q } q∈Q define the matrix A v as follows:

if v = q 1 • • • q with q 1 , . . . , q k ∈ Q, k > 0, then A v = A q k A q k-1 • • • A q1 , and if v = , then A = I n , where I n is the n × n identity matrix.
Lemma ( [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach-Part I: realization theory of linear switched systems[END_REF]) An LSS of the form (1.1) is a realization of f , if and only if f has a generalized kernel representation, and for all v

∈ Q * , q, q 0 ∈ Q, S f q,q0 (v) = C q A v B q0 .
In order to present a Ho-Kalman-like realization algorithm and a Hankelrank condition for existence of an LSS realization, we consider only the SISO case, i.e., p = m = 1, see [START_REF] Bastug | Model reduction by nice selections for linear switched systems[END_REF][START_REF] Petreczky | Spaces of nonlinear and hybrid systems representable by recognizable formal power series[END_REF] for the general case, and we adapt the notion of selection from [START_REF] Bastug | Model reduction by nice selections for linear switched systems[END_REF][START_REF] Petreczky | Spaces of nonlinear and hybrid systems representable by recognizable formal power series[END_REF]. We call any subset α ⊂ Q * × Q a selection. Consider selections α and β, such that α is of finite cardinality n α and β is of finite cardinality n β respectively. Fix an enumeration

α = {(u i , q i )} nα i=1 , β = {(v j , σ j )} n β j=1 . (1.6) 
Let us now define the matrix H f α,β ∈ R nα×n β as follows:

H f α,β i,j = S f qi,σj (v j u i ) i = 1, . . . , n α , j = 1, . . . , n β . (1.7)
Intuitively, the rows of H f α,β are indexed by the elements of α, and the columns by the elements of β.

Theorem (Existence, [START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach-Part I: realization theory of linear switched systems[END_REF]) The input-output map f has a realization by an LSS, if and only if f has a generalized kernel representation, and

sup α,β⊆Q * ×Q,α,β are finite rank H f α,β = n m < +∞. (1.8)
If (1.8) holds, then n m is the dimension of a minimal LSS realization of f .

The proof of Theorem 2 leads to the following Ho-Kalman-like algorithm.

For the selections α, β from (1.6), define the matrices H f q,α,β ∈ R nα×n β , H f α,q ∈ R nα×1 and H f q,β ∈ R 1×n β , q ∈ Q as follows:

H f q,α,β i,j = S f qi,σj (v j qu i ), H f α,q i,1 = S f qi,q (u i ), H f q,β 1,j = S f q,σj (v j ).
for all i = 1, . . . , n α , j = 1, . . . , n β .

Procedure (Ho-Kalman algorithm) Assume that rank

H f α,β = n m . Con- sider the factorization H f α,β = O nm R nm such that O nm ∈ R nα×nm , R nm ∈ R nm×n β , rank O nm = rank R nm = n m . Define Âq = O + nm H f q,α,β R + nm , Bq = O + nm H f α,q , Ĉq = H f q,β R + nm
and O + nm , R + nm is the Moore-Penrose inverse of O nm and R nm respectively. Define the LSS Σ = { Âq , Bq , Ĉq } q∈Q .

Lemma ( [START_REF] Cox | Towards efficient maximum likelihood estimation of lpv-ss models[END_REF][START_REF] Petreczky | Spaces of nonlinear and hybrid systems representable by recognizable formal power series[END_REF][START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF]) If n m is the dimension of a minimal LSS realization of f , then the LSS Σ defined in Procedure 2 is a minimal realization of f . From [START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF] it follows that we can choose

α N = β N = {(v, q) | v ∈ Q * , |v| ≤ N, q ∈ Q}
, where N is any integer not smaller than the dimension of a minimal LSS realization of f . This choice of the nice selection is not very practical, as the size of the Hankel-matrix H f α N ,β N grows exponentially with N . Note that the Ho-Kalman algorithm described above can be used to define a smooth (analytic) manifold structure for the space of equivalence classes of minimal LSSs related by isomorphism [START_REF] Petreczky | Spaces of nonlinear and hybrid systems representable by recognizable formal power series[END_REF].

Model reduction

In model reduction, we would like to find LSSs of smaller dimension, inputoutput maps of which are close (but not necessarily equal) to that of the original LSS. This is in contrast to realization theory, where we were interested in finding a minimal LSS with exactly the same input-output map as the original one. The latter is a special case of the former. Model reduction algorithms follow the following general pattern.

Algorithm 1 Model reduction/minimization algorithm

Inputs: Σ = {A q , B q , C q } q∈Q , matrices V ∈ R n×r1 , W ∈ R r2×n . Output: Σ = ( Āq , Bq , Cq } q∈Q . 1: Let r = rank W V and let S ∈ R r×r 2 , T ∈ R r 1 ×r , SW V T = Ir. 2: Āq = SW AqV T , Cq = CqV T , Bq = SW Bq, q ∈ Q. 3: return Σ = { Āq, Bq, Cq}q∈Q.
Intuitively, Algorithm 1 restricts the system to the set ImV and then merges those of its states x 1 , x 2 for which x 1 -x 2 ∈ ker W . If ker W = W * and ImV = V * , with W * , V * from (1.3), then the LSS Σ returned by Algorithm 1 is a minimal LSS which is input-output equivalent to Σ, i.e., Algorithm 1 is just an implementation of Procedure 1. Algorithms for computing such matrices W, V such that ker W = W * and ImV = V * are described in [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF].

In case of model reduction, Algorithm 1 can again be used. However, instead of applying it with matrices W and V such that ker W = W * and ImV = V * , we use matrices W, V such that W * ⊆ ker W and ImV ⊆ V * , i.e., we restrict the system to a subset of the set of reachable states, or we merge states which do not produce the same input-output behavior. The resulting LSS model will no longer be a realization of f , but its input-output map will approximate f in a suitable sense. Depending on the method we use, we will either be able to provide a global error bound on the difference between the input-output maps of the original model and the reduced one, or state that for certain switching sequences the two input-output maps coincide. We will elaborate on various methods below.

Model reduction by balanced truncation

Let Σ be an LSS of the form (1.1), and assume that Σ is quadratically stable, i.e., there exists a matrix P > 0 such that ∀q ∈ Q : A T q P + P A q < 0. In this case Σ is globally uniformly asymptotically (exponentially) stable [START_REF] Liberzon | Switching in Systems and Control[END_REF] with the Lyapunov function V (x) = x T P x. A matrix Q will be called an observability Gramian, if

∀q ∈ Q : A T q Q + QA q + C T q C q ≤ 0, Q > 0.
(1.9)

Likewise, a matrix P will be called a controllability Gramian, if ∀q ∈ Q : A q P + PA T q + B q B T q ≤ 0, P > 0.

(1.10)

Note that in contrast to the linear case, controllability/observability Gramians for LSSs are not unique, since they are solutions of LMIs and not of Lyapunov equations. The procedure for balanced truncation is as follows. We apply Algorithm 1 with the following choice of W and V . Find U such that P = U U T and find an orthogonal L such that U T QU = LΛ 2 L T , where

Λ = diag(σ 1 , . . . , σ n ) and σ 1 ≥ . . . ≥ σ n ≥ 0. Pick r ≤ n. Define W = I r 0 Λ 1/2 L T U -1 , V = U LΛ -1/2 I r 0 . Then rank W = rank V = r, rank W V = r, S = T = I r .
The intuition behind the procedure above is similar to that of balanced truncation for linear systems: By applying the transformation S = Λ 1/2 L T T U -1 to Σ, we obtain an LSS Σ bal = {SA q S -1 , SB q , C q S -1 } q∈Q , such that Λ = S -T QS -1 = SPS T is both an observability and a controllability Gramian. We obtain Σ from Σ bal by taking the upper-left r × r, r × m, p × r, blocks of A q , B q , C q , q ∈ Q respectively. That is, we discard those states which correspond to small values of the diagonals of Λ. The intuition behind this approach is that the discarded states are either difficult to reach (it requires high energy input to reach them) or difficult to observe (their contribution to the energy of the output is small). More precisely, let us fix an integer r > 0 which represents the desired state dimension of the reduced order model. Let (x, u, σ, ỹ) be a solution of Σ bal such that x(0) = 0, assume that for all t > τ 0 , u(t) = 0. It then can be shown [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF] that

r i=1 x2 i (τ 0 ) 1 σ i + n i=r+1 1 σ i x2 i (τ 0 ) ≤ τ0 0 u(s) 2 2 ds, r i=1 x2 i (τ 0 )σ i + n i=r+1 σ i x2 i (τ 0 ) ≥ ∞ τ0 ỹ(s) 2 2 ds, (1.11) 
and xi (τ 0 ) denotes the ith component of x(τ 0 ). That is, if σ r+1 , . . . σ n are small, and the energy of u is small, i.e., τ0 0 u(s) 2 2 ds is small, then the values xr+1 (τ 0 ), . . . , xn (τ 0 ) have to be small due to the first inequality, and they contribute little to the output starting from the time instance τ 0 due to the second inequality.

The numbers σ 1 , . . . , σ n are called singular values of the pair (P, Q) and they are the square roots of the eigenvalues of the product PQ.

Theorem ( [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF])

For any σ ∈ Q, u ∈ U such that ∞ 0 u(s) 2 2 ds < +∞, ∞ 0 Y Σ (u, σ)(s) -Y Σ (u, σ)(s) 2 2 ds ≤ (2 n k=r+1 σ k ) 2 ∞ 0 u(s) 2 2 ds .
Further extensions The results discussed above also hold for discretetime LSSs [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF]. The assumption that P, Q do not depend on q ∈ Q implies quadratic stability, which is a quite restrictive assumption. In [START_REF] Gosea | Balanced truncation for linear switched systems[END_REF] this assumption was replaced by local stability of the linear subsystems. Moreover, an error bound similar to Theorem 3 was derived in [START_REF] Gosea | Balanced truncation for linear switched systems[END_REF], but it holds only for switching signals with a sufficiently large dwell time. Note that [START_REF] Gosea | Balanced truncation for linear switched systems[END_REF] allows for LSSs with non-trivial linear reset maps. In [START_REF] Duff | New Gramians for switched linear systems: reachability, observability, and model reduction[END_REF] an alternative definition of Gramians was presented which has the advantage of having a tighter relationship with minimality.

Relationship with realization theory First, the existence of positive definite Gramians P, Q is a necessary (but not sufficient) condition for minimality of quadratically stable LSSs [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF]: the kernels of positive semi-definite observability (resp. controllability) Gramians are contained in the set of unobservable states (resp. states which are not in the span of reachable states). Intuitively, when the Gramians are positive definite, we can bring them to a balanced form and then identify the states corresponding to small singular values with unobservable/unreachable states. Then balanced truncation can be thought of as a numerical implementation of the minimization procedure Procedure 1. Theorem 3 provides means to evaluate the effect of the discarded "small" singular values on the approximation error.

Realization theory is also necessary to show that balanced truncation is well posed. More precisely, the application of balanced truncation relies on the availability of a quadratically stable LSS and by Theorem 3, the quality of the reduced model relies on the singular values of the observability/controllability Gramians. If the original model is not quadratically stable, then one may wonder if there exist input-output equivalent quadratically stable models. Using realization theory it is shown in [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF] that in order to decide if balanced truncation can be applied, it is sufficient to transform the original model to a minimal one, and then to check if the minimal model is quadratically stable. Moreover, any minimal model can be used for balanced truncation without introducing more conservativity. Indeed, in [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF] it is shown that the singular values of any pair of controllability/observability Gramians for any LSS are not smaller than the singular values of some pair of Gramians of a minimal input-output equivalent LSS. Moreover, due to isomorphism, all controllability/observability Gramians of minimal input-output equivalent LSSs are related by a similarity transform and have the same singular values.

Finally, realization theory and the notion of Hankel-matrix can be used to relate singular values of Gramians to norms of a Hankel-operator [START_REF] Petreczky | Balanced truncation for linear switched systems[END_REF].

Moment matching

Consider an LSS Σ of the form (1.1), and let us denote its input-output map by f . For the sake of simplicity, we assume that p = m = 1, i.e., we deal only with the SISO case. Recall that since f is realizable by an LSS then f has to have a generalized kernel representation {G f v } v∈Q + . The idea of moment matching is to find a reduced order LSS Σ such that for certain sequences

v ∈ Q + , G f v is close to G Y Σ v .
Intuitively, this means that the input-output map of Σ will be close to that f . In Subsection 1.4.2.1 we present the approach [START_REF] Bastug | Model Reduction of Linear Switched Systems and LPV State-Space Models[END_REF][START_REF] Bastug | Model reduction by nice selections for linear switched systems[END_REF][START_REF] Bastug | Reachability and observability reduction for linear switched systems with constrained switching[END_REF], where we look for a reduced order model Σ such that certain Taylor-series coefficients of G Y Σ v (Markov parameters of Y Σ ) and of G f v (Markov parameters of f ) coincide. In Subsection 1.4.2.2 we present the approach [START_REF] Gosea | Data-driven model order reduction of linear switched systems in the Loewner framework[END_REF], where we consider multivariate Laplace transforms H f v of G f v and we look for reduced order models Σ such that the Laplace transform H

Y Σ v of the function G Y Σ v
coincides with H f v for some complex values.

Matching Markov parameters

Consider an LSS Σ. Let α and β be two selections. Then Σ is called a (α, β)partial realization of f , if for every (v, q 0 ) ∈ β, (u, q) ∈ α, S Y Σ q,q0 (vu) = S f q,q0 (vu).

(1.12)

That is, Σ is a (α, β)-partial realization of f , if those Markov parameters of f and of the input-output map Y Σ of Σ which are indexed by (α, β) coincide. This means that certain high-order derivatives of f and of Y Σ are the same. That is, a (α, β)-partial realization of f can be viewed as an LSS, inputoutput map of which approximates f . If

α = Q * × Q or β = Q * × Q, then any (α, β)-partial realization of f is a realization of f .
The idea behind moment matching is then to replace an LSS Σ by a reduced order LSS Σ such that Σ is a (α, β)-partial realization of the inputoutput map f = Y Σ of Σ. The various algorithms differ in the way the selections α, β are chosen. The moment matching algorithms which produce (α, β)-partial realizations arise from Algorithm 1 by a suitable choice of the matrices W and V . In order to explain these choices in more detail, we introduce the following definitions. Define the subspaces

O α (Σ) = (v,q)∈α ker C q A v , R β (Σ) = Span{A w B q0 | (w, q 0 ) ∈ β}.
There are 3 choices of matrices W and V . There are two strategies for choosing α, β.

The first one is to choose α (resp. β) to be of finite cardinality r such that dim O α (Σ) = n -r (resp. dim R β (Σ) = r), and in this case the reduced order model will have dimension r. In this case, O α (Σ) = ker O α (resp. R β (Σ) = ImR β ), and

O α = A T v1 C T s1 , . . . , A T vr C T sr T , R β = A w1 B q1 , . . . , A wr B qr ,
where α = {(v i , s i )} r i=1 , and β = {(w i , q i )} r i=1 . Using these matrix representations the matrices W and V described above can easily be computed.

The second option for choosing nice selections is to choose (α, β) to be consistent with a certain set of switching signals. In this case, the dimension of the reduced order model cannot be fixed in advance, but it is known that the reduced order model will have the same input-output behavior along those switching sequences which belong to this designated set. More precisely, assume that the switching signal σ ∈ Q has the property that σ

(s) = q i , s ∈ [T i-1 , T i ), T 0 = 0, T i = i r=1 t r for some q i ∈ Q, 0 < t i ∈ R + , 0 < i ∈ N.
We will say that a selection (α, β) is consistent with σ, if for every i > 0, for every ω i , . . . , ω k ∈ N,

((q i ) ωi (q i+1 ) ωi+1 • • • (q k ) ω k , q i ) ∈ β, ((q 1 ) ω1 (q 2 ) ω2 • • • (q i ) ωi , q i ) ∈ α.
Theorem ( [START_REF] Bastug | Model reduction by nice selections for linear switched systems[END_REF]) Assume that (α, β) is consistent with σ and Σ is an (α, β)partial realization of f . Then Y Σ (u, σ) = f (u, σ), for all u ∈ U.

Note that for a pair of selections to be consistent with a switching signal (or a set of switching signals), the selections involved have to be infinite sets. If the prefixes of the sequences of discrete modes of the desired switching signals form a regular language, then there exist algorithms to compute matrix representations of O α (Σ), R β (Σ), see [START_REF] Bastug | Model reduction by nice selections for linear switched systems[END_REF][START_REF] Bastug | Reachability and observability reduction for linear switched systems with constrained switching[END_REF].

Further extensions. The model reduction method described above was extended to linear parameter-varying (LPV) models [START_REF] Bastug | Moment matching based model reduction for lpv state-space models[END_REF] and bilinear systems [START_REF] Petreczky | Moment matching for bilinear systems with nice selections[END_REF]. In addition, the method above was applied to LSSs arising from asynchronous sampling of linear time-invariant systems [START_REF] Bastug | Minimality of aperiodic sampled data systems[END_REF].

Relationship with realization theory. To begin with, the whole idea of matching Markov parameters relies on the notion of Markov parameters and partial realization, which are integral parts of realization theory. In fact, the result of the Ho-Kalman realization algorithm from Procedure 2 is isomorphic to the LSS returned by Algorithm 1 with the choice of the matrices W and V as described in option (C) above. That is, moment matching is just a reformulation of Ho-Kalman algorithm when the latter is applied to finite Hankel-matrices, rank of which is not maximal. The partial realization algorithm of [START_REF] Petreczky | Partial-realization of linear switched systems: A formal power series approach[END_REF] is a particular instance of this model reduction method, if α = β = {v ∈ Q * | |v| ≤ N } × Q is chosen. Furthermore, Theorem 4 and its counterpart for the discrete-time case [START_REF] Bastug | Reachability and observability reduction for linear switched systems with constrained switching[END_REF] can be viewed as extensions of realization theory of LSSs with constrained switching [START_REF] Petreczky | Realization Theory of Hybrid Systems[END_REF][START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach-Part I: realization theory of linear switched systems[END_REF].

Moment matching in frequency domain

By applying multivariate Laplace transform of the functions {G f v } v∈Q + we can define a sequence of functions {H f v } v∈Q + of complex variables as follows:

H f v (s 1 , . . . , s k ) = ∞ 0 • • • ∞ 0 G v (t 1 , . . . , t k )e s1t1+•••+s k t k dt 1 • • • dt k (1.13)
for all Re(s i ) > s 0 for a suitable s 0 ∈ R, where k = |v|. If f has a realization by a LSS Σ of the form (1.1) then G f q1•••q k (t 1 , . . . , t k ) satisfies (1.5), and hence H f q1,q2,...,q k (s 1 , s 2 , . . . , s k ) = C q k Φ q k (s k )Φ q k-1 (s k-1 ) • • • Φ q1 (s 1 )B q1 , (1.14) where Φ q (s) = (sI n -A q ) -1 , q j ∈ Q, 1 j k. We call the functions {H f v } v∈Q + the generalized transfer functions of the input-output map f [START_REF] Gosea | Data-driven model order reduction of linear switched systems in the Loewner framework[END_REF]. Let Γ and Θ be finite sets of tuples so that Γ, Θ ⊆ {(v, µ) | v ∈ Q + , µ ∈ C k , k = |v|}. We will say that an LSS Σ is a (Γ, Θ)-partial realization of f , if for every (w, µ) ∈ Γ , (v, λ) ∈ Θ, H f wv (µ, λ) = H Y Σ wv (µ, λ). Our goal is to find an LSS Σ such that Σ is a (Γ, Θ)-partial realization of f , and the dimension of Σ is smaller than that of Σ. To this end, for any v = q 1 • • • q k ∈ Q + , q 1 , . . . , q k ∈ Q, define

r((v, µ)) = Φ q k (µ k ) • • • Φ q1 (µ 1 )B q1 , o((v, µ)) = C q k Φ q k (µ k ) • • • Φ q1 (µ 1 ),
for any µ = (µ 1 , . . . , µ k ) ∈ C k . Assume that the cardinality of Γ and Θ are both r and consider an enumeration Γ = {(w i , µ i )} r i=1 Θ = {(v i , λ i )} r i=1 of these sets. Define the matrices R = r((w 1 , µ 1 )) . . . r((w r , µ r )) , O = o((v 1 , λ 1 )) T . . . o((v r , λ r )) T T .

Assume that rank OR = r. We can apply Algorithm 1 with W = O, V = R resulting in an LSS Σ which will have the following property.

Theorem ( [START_REF] Gosea | Data-driven model order reduction of linear switched systems in the Loewner framework[END_REF]) With the notation and assumptions above, the LSS Σ is a (Γ, Θ)-partial realization of f . This method has an alternative formulation in terms of generalized Loewner matrices [START_REF] Gosea | Data-driven model order reduction of linear switched systems in the Loewner framework[END_REF], thus extending the well-known Loewner matrix based model reduction method for linear systems.

Relationship with realization theory The reformulation of this method in terms of generalized Loewner matrices yields a partial realization algorithm, as it depends on data which can directly be obtained from Laplace transforms of the input-output map. In a way, this method is the first step towards a reformulation of realization theory of LSSs in frequency domain.

Conclusions

In this chapter we presented a brief overview of some recent results on realization theory and model reduction of linear switched systems. It is well known that for linear systems there is a deep connection between these two disciplines. We hope that this chapter convinces the reader that this remains true for hybrid systems and that it is worthwhile to do further research on this topic. There are many possible directions for future research. A particularly natural one is to extend the results of this chapter to hybrid systems with state-dependent switching, for example to piecewise linear systems. The latter can be viewed as a feedback interconnection of a linear switched system with a discrete event generator, hence we are hopeful that the results of this chapter will be useful for such an extension.

(

  A) ker W = O α (Σ) and V = I n . Then Algorithm 1 returns a (α, { } × Q)partial realization of f [4, Theorem 3]. (B) ImV = R β (Σ) and W = I n . Then Algorithm 1 returns a ({ } × Q, β)partial realization of f , [4, Theorem 2]. (C) ker W = O α (Σ), ImV = R β (Σ), rank W = rank V = rank W V . Then Algorithm 1 returns (α, β)-partial realization of f , [4, Theorem 4].

piecewise-continuous functions have a finite number of discontinuities on each finite interval and at each point of discontinuity, the left-and right-hand side limits exist and are finite.

The definition of the input-to-state and input-output map can be extended to include non-zero initial states[START_REF] Petreczky | Realization theory of linear and bilinear switched systems: A formal power series approach-Part I: realization theory of linear switched systems[END_REF][START_REF] Petreczky | Realization theory of linear hybrid systems[END_REF]. We prefer to stick to zero initial state to avoid excessive notation and terminology.

Model reduction and realization theory of linear switched systems