
Chapter 1

Model reduction and realization
theory of linear switched systems

Mihály Petreczky and Ion Victor Gosea

Abstract The goal of this chapter is to present an overview of some recent
results on model reduction of linear switched systems and their interplay with
realization theory of these systems. The emphasis will be on those results on
model reduction which are directly related to realization theory, we do not
aim at being exhaustive. In particular, we will review some recent results
on balanced truncation and moment matching, focusing on the theoretical
aspects rather than on the computational ones.

1.1 Introduction

In this chapter we will present an overview of some recent results on model
reduction of hybrid systems which rely heavily on realization theory. Both
model reduction and realization theory have been central to Prof. Antoulas’s
work, so we feel that showing the interaction of these two topics for hybrid
systems is a fitting tribute to his scientific contribution.

Hybrid systems [13] are non-linear systems which combine continuous and
discrete behavior. More precisely, a hybrid system is a finite collection of
continuous-state dynamical systems, indexed by a set of so called discrete
modes (or states). The state of each dynamical system is governed by a set
of differential or difference equations. The discrete mode in any time instant
can be chosen arbitrarily or it may depend on the value of the continuous
state and possibly other constraints, which are referred to as guards. The
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transitions between the discrete states may result in a jump in the state of
the underlying continuous dynamical system. This jump is defined by the
application of the so called reset maps. Linear switched systems (LSSs) [19,
37] are the simplest and most widely studied subclass of hybrid systems where
the continuous subsystems are linear systems, and the change of the discrete
state is externally generated.

While there is a large literature on control of hybrid systems in general,
and of LSSs in particular, the computational complexity of the existing algo-
rithms for hybrid systems is high, and hence they cannot be applied to large
scale systems. In order to address this problem, model reduction methods
were proposed for hybrid systems. Model reduction methods for LSSs can be
grouped into the following categories.

LMI-based methods. These methods compute the matrices of the re-
duced order model by solving a set of linear matrix inequalities (LMIs). The
disadvantage is that the proposed conditions are only sufficient, and the trade-
off between the dimension of the reduced model and the error bound is not
clear. Moreover, the computational complexity of solving those LMIs might
be too high. Without claiming completeness, we mention [12, 38, 39, 40].

Methods based on local Gramians. These algorithms are based on
finding observability/controllability Gramians for each linear subsystem. For
these methods often there are no error bounds and the reduced order model
need not be well-posed. Examples of such papers include [20, 21, 7, 8, 9, 14,
16]. Note that to the best of our knowledge, the only algorithm which always
yields a well-posed LSS of the same type as the original one and for which
there exists an analytic error bound (which holds only for slow switching) is
the one of [14]. For the case of jump-linear systems with a stochastic switching
a similar approach was taken in [18] and an error bound was derived.

Methods based on common Gramians. These methods rely on finding
the same observability/controllability Gramians for each linear subsystem.
These Gramians are derived as solutions of a suitable LMI. Such algorithms
were described in [34, 35] and an analytic error bound was derived in [29].
These algorithms apply only to LSSs which have a global quadratic Lyapunov
function. Moreover, the computational complexity of solving the correspond-
ing LMIs is high. In order to address this problem [31] proposes to replace
LMIs by Lyapunov equations. The downside of the latter approach is that
the error bounds of [29] do not always apply. Another approach was proposed
in [33], where for a specific subclass of LSSs, the original LSS is replaced by
a linear time-invariant (LTI) system and classical balanced truncation is ap-
plied.

Moment matching. The idea behind these algorithms is to find a re-
duced order linear switched system such that certain coefficients of the series
expansions of the input-output maps of the original and the reduced order
system coincide. The series expansion can be the Taylor series with respect to
switching times, in which case a number of the so-called Markov parameters
coincide. Alternatively, the series expansion can be a Laurent-series expansion
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of a multivariate Laplace transform of the input-output map around a certain
frequency. The former approach was pursued in [5, 4, 1] , the latter in [15].
While those methods do not allow for analytical error bounds, under suitable
assumption it can be guaranteed that the reduced model will have the same
input-output behavior for certain switching signals [5, 4, 1]. A somewhat dif-
ferent approach is that of [32], which considers LSSs with state-dependent
switching and it proposes a model reduction procedure which guarantees that
the reduced model has the same steady-state output response to certain in-
puts as the original model.

In this chapter we discuss some recent results on balanced truncation and
moment matching for LSSs. For the sake of simplicity, we consider LSSs only
in continuous time, and we will assume that all the linear subsystems are
defined on the same state-space and the reset maps are identity. Most of the
presented results are true for the discrete-time case too, and some can be
extended to include LSSs with reset maps which are not identity. We will
cite the relevant literature on these extensions.

The model reduction methods to be discussed in this chapter rely heav-
ily on realization theory. The goal of realization theory is to understand the
relationship between input-output behaviors and internal (state-space) rep-
resentations. A fairly complete realization theory was developed for LSSs, see
the discussion and references in [24, 22, 23, 28, 25]. The results on realization
theory of LSSs rely on realization theory of bilinear systems and recognizable
formal power series [36, 6, 17].

Realization theory is relevant for model reduction in many ways. First,
minimization and realization algorithms can be viewed as simple model re-
duction algorithms. Moreover, the relationship between span-reachability, ob-
servability and minimality is closely related to the existence of Gramians
which are used in balanced truncation. Realization theory is even more crit-
ical for moment matching, as the latter can be viewed as partial realization
algorithm. We will elaborate on the precise relationship later on.

The chapter is structured as follows. In Section 1.2 we present the formal
definition of the class of LSSs and the corresponding terminology. In Section
1.3 we present a brief overview of the relevant results on realization theory
of switched systems. In Section 1.4 we discuss model reduction: In Subsec-
tion 1.4.1 we present balanced truncation and in Subsection 1.4.2 we discuss
moment matching for LSSs.

1.2 Linear switched systems: basic definitions

A linear switched system (LSS) is a control system of the form

Σ

{
ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t)

y(t) = Cσ(t)x(t),
(1.1)
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where x(t) ∈ Rn is the continuous-valued state at time t, σ(t) ∈ Q is the
discrete mode at time t, y(t) ∈ Rp is the output at time t, and u(t) ∈ Rm
is the continuous-valued input at time t. The set Q is a finite one, and it
is referred to as the set of discrete modes or states. Moreover, Aq ∈ Rn×n,
Bq ∈ Rn×m, Cq ∈ Rp×n are the matrices of the linear system in the discrete
state q ∈ Q. The number n is called the dimension (order) of Σ and will be
denoted by dim(Σ). The short-hand notation Σ = {Aq, Bq, Cq}q∈Q is used
for LSSs of the form (1.1).

Let R+ be the real time-axis, i.e. R+ = [0,+∞). Denote by AC(R+,Rk)
respectively PC(R+,Rk) the set of all absolutely continuous respectively
piecewise-continuous functions of the form h : R+ → Rk 1. Let X =
AC(R+,Rn), U = PC(R+,Rm), Y = PC(R+,Rp), and let Q be the set of all
piecewise-constants functions g : R+ → Q. A tuple (x, u, σ, y) ∈ X×U×Q×Y
is called a solution, if (x, u, σ, y) satisfy (1.1). For any switching signal σ ∈ Q,
input u ∈ U and initial state x0 ∈ Rn, there exists a unique solution (x, u, σ, y)
of Σ such that x(0) = x0. This prompts us to define the input-to-state map
XΣ : U × Q → X and the input-output map YΣ : U × Q → Y of an LSS Σ
as follows: XΣ(u, σ) = x, and YΣ(u, σ) = y if and only if (x, u, σ, y) is the
unique solution of Σ such that x(0) = 0 ∈ Rn. 2

Intuitively, an LSS is just a control system which switches among finitely
many linear time-invariant systems. The switching signal is part of the input.
Whenever a switch occurs, the continuous state remains the same, only the
differential equation governing the state and output evolution changes. That
is, whenever we switch to a new linear system, we start the new linear system
from the state which is the final state of the previous linear system.

We model potential input-output behaviors of an LSS as functions

f : U ×Q → Y, (1.2)

and call them input-output maps. They capture the behavior of a black-
box, which reacts to piecewise-continuous inputs and switching sequences by
generating outputs in Rp. Next, we define what it means that this black-box
can be modelled as an LSS, i.e. that an LSS is a realization of f . The LSS
Σ is a realization of an input-output map f of the form (1.2) , if YΣ = f ,
i.e. if the input-output map of Σ coincides with f . If Σ is a realization of
f , then Σ is a minimal realization of f , if for any LSS realization Σ̂ of f ,
dimΣ ≤ dim Σ̂. Two LSSs Σ1, Σ2 are said to be input-output equivalent, if
their input-output maps are equal, i.e. YΣ1

= YΣ2
. An LSS Σ is said to be

minimal, if it is a minimal realization of its own input-output map f = YΣ .

1 piecewise-continuous functions have a finite number of discontinuities on each finite
interval and at each point of discontinuity, the left- and right-hand side limits exist and

are finite.
2 The definition of the input-to-state and input-output map can be extended to include
non-zero initial states [23, 24]. We prefer to stick to zero initial state to avoid excessive

notation and terminology.
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1.3 Realization theory of linear switched systems

Below we present the main results on minimality, existence of a realization,
and a Ho-Kalman-like realization algorithm for LSSs. These results are iden-
tical for discrete-time LSSs [25], and can be extended to LSSs with linear
reset maps [27, 24]. In order to present these results, and later throughout
the chapter, we will use the following notation from automata theory [11].

Notation (Q∗, Q+, ε, qk) Denote by Q+ the set of all finite sequences of
elements of Q, i.e. each element w ∈ Q+ is of the form w = a1a2 · · · ak for
some a1, a2, . . . , ak ∈ Q, k ∈ N, k > 0. The integer k is called the length of w
and it is denoted by |w|. Let ε /∈ Q+ be a symbol, which we will call the empty
sequence or empty word. By convention, the length of ε is defined to be zero.
Denote by Q∗ the set Q+∪{ε}. For any two sequences w, v ∈ Q∗, we denote by
wv the concatenation of w and v. If w, v ∈ Q+ are of the form v = v1v2 · · · vk,
k > 0 and w = w1w2 · · ·wm, m > 0, v1, v2, . . . , vk, w1, w2, . . . , wm ∈ Q, then
define vw = v1v2 · · · vkw1w2 · · ·wm. If v = ε and w ∈ Q∗, then define vw = w,
and if w = ε and v ∈ Q∗, then define vw = v. For q ∈ Q and k ∈ N, k > 0,

we denote by qk the sequence

k−times︷ ︸︸ ︷
qq · · · q ; by convention q0 = ε. �

1.3.1 Minimality of linear switched systems

We start by presenting the main results on minimality of LSSs. To this end,
we introduce the notions of observability, span-reachability and isomorphism.
Let Σ be an LSS of the form (1.1). Then Σ is said to be observable, if for
any two distinct states x1,0 6= x2,0 ∈ Rn, there exists an input u and a
switching signal σ, such that if (xi, u, σ, yi), i = 1, 2 are two solutions of
Σ with xi(0) = xi,0, i = 1, 2, then y1 6= y2, i.e., the outputs induced by
the initial states {xi,0}i=1,2 under the input u and switching signal σ are
different. Let R0(Σ) ⊆ Rn denote the reachable set of the Σ from the zero
initial state, i.e., R0(Σ) is the set of all vectors xf such that for some t ∈ R+,
xf = XΣ(u, σ)(t) for some u ∈ U , σ ∈ Q. We say that Σ is span-reachable, if
Rn = Span R0(Σ), i.e., if Rn is the smallest vector space containing R0(Σ).
Note that span-reachability and reachability are the same in continuous-time
[37].

Two LSSs Σ1 = {Aq, Bq, Cq}q∈Q, and Σ2 = {Aaq , Baq , Caq }q∈Q are said
to be isomorphic, if there exists a non-singular square matrix S such that
Aaq = SAqS−1, Baq = SBq, and Caq = CqS−1 for all q ∈ Q.

Theorem (Minimality, [22, 23]) An LSS is minimal, if and only if it is
span-reachable and observable. If Σ1 and Σ2 are two minimal LSSs and they
are input-output equivalent, then they are isomorphic. �
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Note that minimality of an LSS does not imply minimality of any of its
linear subsystems, see [23] for a counter-example. Hence, realization theory
of LSSs cannot be reduced to realization theory of linear subsystems.

We present an algorithm for converting any LSS to a minimal one while
preserving its input-output map. To this end, we define the subspaces

V∗ = SpanR0(Σ), (1.3)

W∗ = Span{x0 ∈ Rn | ∀σ ∈ Q : ∃x ∈ X : (1.4)

(x, 0, σ, 0) is a solution of Σ with x(0) = x0 }.

It can be shown that Σ is span-reachable if and only if V∗ = Rn, and Σ is
observable, if and only if W∗ = {0}, see [24, 37].

Procedure (Minimization) Consider the factor space V∗/W∗; recall that
the elements of this linear space are equivalence classes generated by the
following equivalence relation ≈ on V∗: x1 ≈ x2 if and only if x1 − x2 ∈
W∗. Let [x] = {y | | x ≈ y} be the equivalence class represented by x.
The linear vector space V∗/W∗ is finite dimensional. Define the linear maps
Aq : V∗/W∗ 3 [x] 7→ [Aqx] ∈ V∗/W∗, Cq : V∗/W∗ 3 [x] 7→ Cqx ∈ Rp,
Bq : Rm 3 u 7→ [Bqu] ∈ V∗/W∗, q ∈ Q. It can be shown [22, 23] that
AqV∗ ⊆ V∗, AqW∗ ⊆ W∗, ImBq ⊆ V∗, W∗ ⊆ kerCq. From this it follows
that the linear maps Aq,Bq, Cq are well defined. Choose a finite basis in
V∗/W∗, and let mAq,

mBq,
mCq be the matrix representations of the linear

maps Aq,Bq, Cq, in that basis. Then Σm = {mAq,mBq,mCq}q∈Q is a minimal
LSS which is input-output equivalent to Σ. �

1.3.2 Existence of a realization, Ho-Kalman algorithm,
Markov parameters

We first define the notion of a generalized kernel representation, existence of
which is a necessary condition for existence of a realization by an LSS. An
input-output map f has a generalized kernel representation, if there exists a

family of functions {Gfv : R|v|+ → Rp×m}v∈Q+ , such that for all u ∈ U , σ ∈ Q,

f(u, σ)(t) =

k∑
i=1

∫ ti

0

Gfqi···qk(ti − s, ti+1, . . . , tk)u(s+ Ti−1)ds

where qi ∈ Q, 0 < ti ∈ R+, i = 1, . . . , k are such that σ(s) = qi for s ∈
[Ti−1, Ti) for some Tj ∈ R+, Tj < Tj+1, j ∈ N, T0 = 0, and t ∈ [Tk−1, Tk)
for some k > 0, and ti = Ti − Ti−1, for i = 1, . . . , k − 1 and tk = t − Tk−1.
Moreover, {Gfv}v∈Q+ have to satisfy a number of technical conditions [22, 23].
From [22, 23] it follows that Σ of the form (1.1) is a realization of f , if and
only if f has a generalized kernel representation and for all q1, . . . , qk ∈ Q,
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t1, . . . , tk ∈ R+, k > 0,

Gfq1···qk(t1, . . . , tk) = Cqke
Aqk tk · · · eAq2 t2eAq1 t1Bq1 . (1.5)

From the technical conditions in [23, 22] on generalized kernel representations
it follows that if f has a generalized kernel representation, then there exist
functions {Sfr,q : Q∗ → Rp×m}r,q∈Q such that

Gfq1···qk(t1, . . . , tk) =

∞∑
α1,...,αk=0

Sfq1,qk(qα1
1 · · · q

αk
k )Πk

i=1

tαii
αi!

.

That is, the functions {Sfr,q}r,q∈Q uniquely determine {Gfv}v∈Q+ and hence

f , and conversely, the functions {Sfr,q}r,q∈Q can be recovered from f . The

values of {Sfr,q}r,q∈Q are called the Markov parameters of f .

Notation For every v ∈ Q∗ and a collection of n × n matrices {Aq}q∈Q
define the matrix Av as follows: if v = q1 · · · qk with q1, . . . , qk ∈ Q, k > 0,
then Av = AqkAqk−1

· · ·Aq1 , and if v = ε, then Aε = In, where In is the n×n
identity matrix. �

Lemma ([22, 23]) An LSS of the form (1.1) is a realization of f , if and
only if f has a generalized kernel representation, and for all v ∈ Q∗, q, q0 ∈ Q,
Sfq,q0(v) = CqAvBq0 . �

In order to present a Ho-Kalman-like realization algorithm and a Hankel-
rank condition for existence of an LSS realization, we consider only the SISO
case, i.e., p = m = 1, see [4, 26] for the general case, and we adapt the notion
of selection from [4, 26]. We call any subset α ⊂ Q∗×Q a selection. Consider
selections α and β, such that α is of finite cardinality nα and β is of finite
cardinality nβ respectively. Fix an enumeration

α = {(ui, qi)}nαi=1, β = {(vj , σj)}
nβ
j=1. (1.6)

Let us now define the matrix Hfα,β ∈ Rnα×nβ as follows:[
Hfα,β

]
i,j

=Sfqi,σj (vjui) i = 1, . . . , nα, j = 1, . . . , nβ . (1.7)

Intuitively, the rows of Hfα,β are indexed by the elements of α, and the
columns by the elements of β.

Theorem (Existence, [23]) The input-output map f has a realization by
an LSS, if and only if f has a generalized kernel representation, and

sup
α,β⊆Q∗×Q,α,β are finite

rank Hfα,β = nm < +∞. (1.8)

If (1.8) holds, then nm is the dimension of a minimal LSS realization of f .�
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The proof of Theorem 2 leads to the following Ho-Kalman-like algorithm.
For the selections α, β from (1.6), define the matrices Hfq,α,β ∈ Rnα×nβ ,

Hfα,q ∈ Rnα×1 and Hfq,β ∈ R1×nβ , q ∈ Q as follows:[
Hfq,α,β

]
i,j

= Sfqi,σj (vjqui),
[
Hfα,q

]
i,1

= Sfqi,q(ui),
[
Hfq,β

]
1,j

= Sfq,σj (vj).

for all i = 1, . . . , nα, j = 1, . . . , nβ .

Procedure (Ho-Kalman algorithm) Assume that rank Hfα,β = nm. Con-

sider the factorization Hf
α,β = Onm

Rnm
such that Onm

∈ Rnα×nm , Rnm
∈

Rnm×nβ , rank Onm
= rank Rnm

= nm. Define

Âq = O+
nm
Hfq,α,βR

+
nm
, B̂q = O+

nm
Hfα,q, Ĉq = Hfq,βR

+
nm

and O+
nm
, R+

nm
is the Moore-Penrose inverse of Onm

and Rnm
respectively.

Define the LSS Σ̂ = {Âq, B̂q, Ĉq}q∈Q. �

Lemma ([10, 26, 22]) If nm is the dimension of a minimal LSS realization
of f , then the LSS Σ̂ defined in Procedure 2 is a minimal realization of f .�

From [28] it follows that we can choose αN = βN = {(v, q) | v ∈ Q∗, |v| ≤
N, q ∈ Q}, where N is any integer not smaller than the dimension of a
minimal LSS realization of f . This choice of the nice selection is not very
practical, as the size of the Hankel-matrix Hf

αN ,βN
grows exponentially with

N . Note that the Ho-Kalman algorithm described above can be used to define
a smooth (analytic) manifold structure for the space of equivalence classes of
minimal LSSs related by isomorphism [26].

1.4 Model reduction

In model reduction, we would like to find LSSs of smaller dimension, input-
output maps of which are close (but not necessarily equal) to that of the
original LSS. This is in contrast to realization theory, where we were inter-
ested in finding a minimal LSS with exactly the same input-output map as
the original one. The latter is a special case of the former. Model reduction
algorithms follow the following general pattern.

Algorithm 1 Model reduction/minimization algorithm
Inputs: Σ = {Aq, Bq, Cq}q∈Q, matrices V ∈ Rn×r1 , W ∈ Rr2×n.
Output: Σ̄ = (Āq, B̄q, C̄q}q∈Q.

1: Let r = rank WV and let S ∈ Rr×r2 , T ∈ Rr1×r, SWV T = Ir.

2: Āq = SWAqV T , C̄q = CqV T , B̄q = SWBq , q ∈ Q.
3: return Σ̄ = {Āq , B̄q , C̄q}q∈Q.
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Intuitively, Algorithm 1 restricts the system to the set ImV and then
merges those of its states x1, x2 for which x1−x2 ∈ kerW . If kerW =W∗ and
ImV = V∗, with W∗, V∗ from (1.3), then the LSS Σ̄ returned by Algorithm
1 is a minimal LSS which is input-output equivalent to Σ, i.e., Algorithm
1 is just an implementation of Procedure 1. Algorithms for computing such
matrices W,V such that kerW =W∗ and ImV = V∗ are described in [22, 24].

In case of model reduction, Algorithm 1 can again be used. However, in-
stead of applying it with matrices W and V such that kerW = W∗ and
ImV = V∗, we use matrices W,V such that W∗ ⊆ kerW and ImV ⊆ V∗, i.e.,
we restrict the system to a subset of the set of reachable states, or we merge
states which do not produce the same input-output behavior. The resulting
LSS model will no longer be a realization of f , but its input-output map will
approximate f in a suitable sense. Depending on the method we use, we will
either be able to provide a global error bound on the difference between the
input-output maps of the original model and the reduced one, or state that
for certain switching sequences the two input-output maps coincide. We will
elaborate on various methods below.

1.4.1 Model reduction by balanced truncation

Let Σ be an LSS of the form (1.1), and assume that Σ is quadratically stable,
i.e., there exists a matrix P > 0 such that ∀q ∈ Q : ATq P + PAq < 0. In
this case Σ is globally uniformly asymptotically (exponentially) stable [19]
with the Lyapunov function V (x) = xTPx. A matrix Q will be called an
observability Gramian, if

∀q ∈ Q : ATq Q + QAq + CTq Cq ≤ 0, Q > 0. (1.9)

Likewise, a matrix P will be called a controllability Gramian, if

∀q ∈ Q : AqP + PATq +BqB
T
q ≤ 0, P > 0. (1.10)

Note that in contrast to the linear case, controllability/observability Grami-
ans for LSSs are not unique, since they are solutions of LMIs and not of
Lyapunov equations.

The procedure for balanced truncation is as follows. We apply Algorithm 1
with the following choice of W and V . Find U such that P = UUT and find
an orthogonal L such that UTQU = LΛ2LT , where Λ = diag(σ1, . . . , σn)
and σ1 ≥ . . . ≥ σn ≥ 0. Pick r ≤ n. Define

W =
[
Ir 0

]
Λ1/2LTU−1, V = ULΛ−1/2

[
Ir
0

]
.

Then rank W = rank V = r, rank WV = r, S = T = Ir.
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The intuition behind the procedure above is similar to that of bal-
anced truncation for linear systems: By applying the transformation S =
Λ1/2LTTU−1 to Σ, we obtain an LSS Σbal = {SAqS−1,SBq, CqS−1}q∈Q,
such that Λ = S−TQS−1 = SPST is both an observability and a controlla-
bility Gramian. We obtain Σ̄ from Σbal by taking the upper-left r× r, r×m,
p × r, blocks of Aq, Bq, Cq, q ∈ Q respectively. That is, we discard those
states which correspond to small values of the diagonals of Λ. The intuition
behind this approach is that the discarded states are either difficult to reach
(it requires high energy input to reach them) or difficult to observe (their
contribution to the energy of the output is small). More precisely, let us fix
an integer r > 0 which represents the desired state dimension of the reduced
order model. Let (x̃, u, σ, ỹ) be a solution of Σbal such that x̃(0) = 0, assume
that for all t > τ0, u(t) = 0. It then can be shown [29] that

r∑
i=1

x̃2
i (τ0)

1

σi
+

n∑
i=r+1

1

σi
x̃2
i (τ0) ≤

∫ τ0

0

‖u(s)‖22ds,

r∑
i=1

x̃2
i (τ0)σi +

n∑
i=r+1

σix̃
2
i (τ0) ≥

∫ ∞
τ0

‖ỹ(s)‖22ds,
(1.11)

and x̃i(τ0) denotes the ith component of x̃(τ0). That is, if σr+1, . . . σn are
small, and the energy of u is small, i.e.,

∫ τ0
0
‖u(s)‖22ds is small, then the

values x̃r+1(τ0), . . . , x̃n(τ0) have to be small due to the first inequality, and
they contribute little to the output starting from the time instance τ0 due to
the second inequality.

The numbers σ1, . . . , σn are called singular values of the pair (P,Q) and
they are the square roots of the eigenvalues of the product PQ.

Theorem ([29]) For any σ ∈ Q, u ∈ U such that
∫∞

0
‖u(s)‖22ds < +∞,∫ ∞

0

‖YΣ(u, σ)(s)− YΣ̄(u, σ)(s)‖22ds ≤ (2

n∑
k=r+1

σk)2

∫ ∞
0

‖u(s)‖22ds.

Further extensions The results discussed above also hold for discrete-
time LSSs [29]. The assumption that P,Q do not depend on q ∈ Q implies
quadratic stability, which is a quite restrictive assumption. In [14] this as-
sumption was replaced by local stability of the linear subsystems. Moreover,
an error bound similar to Theorem 3 was derived in [14], but it holds only
for switching signals with a sufficiently large dwell time. Note that [14] allows
for LSSs with non-trivial linear reset maps. In [31] an alternative definition
of Gramians was presented which has the advantage of having a tighter rela-
tionship with minimality.

Relationship with realization theory First, the existence of positive
definite Gramians P,Q is a necessary (but not sufficient) condition for min-
imality of quadratically stable LSSs [29]: the kernels of positive semi-definite
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observability (resp. controllability) Gramians are contained in the set of un-
observable states (resp. states which are not in the span of reachable states).
Intuitively, when the Gramians are positive definite, we can bring them to a
balanced form and then identify the states corresponding to small singular
values with unobservable/unreachable states. Then balanced truncation can
be thought of as a numerical implementation of the minimization procedure
Procedure 1. Theorem 3 provides means to evaluate the effect of the discarded
”small” singular values on the approximation error.

Realization theory is also necessary to show that balanced truncation is
well posed. More precisely, the application of balanced truncation relies on the
availability of a quadratically stable LSS and by Theorem 3, the quality of the
reduced model relies on the singular values of the observability/controllability
Gramians. If the original model is not quadratically stable, then one may won-
der if there exist input-output equivalent quadratically stable models. Using
realization theory it is shown in [29] that in order to decide if balanced trun-
cation can be applied, it is sufficient to transform the original model to a
minimal one, and then to check if the minimal model is quadratically stable.
Moreover, any minimal model can be used for balanced truncation without
introducing more conservativity. Indeed, in [29] it is shown that the singular
values of any pair of controllability/observability Gramians for any LSS are
not smaller than the singular values of some pair of Gramians of a minimal
input-output equivalent LSS. Moreover, due to isomorphism, all controlla-
bility/observability Gramians of minimal input-output equivalent LSSs are
related by a similarity transform and have the same singular values.

Finally, realization theory and the notion of Hankel-matrix can be used to
relate singular values of Gramians to norms of a Hankel-operator [29].

1.4.2 Moment matching

Consider an LSS Σ of the form (1.1), and let us denote its input-output map
by f . For the sake of simplicity, we assume that p = m = 1, i.e., we deal only
with the SISO case. Recall that since f is realizable by an LSS then f has
to have a generalized kernel representation {Gfv}v∈Q+ . The idea of moment
matching is to find a reduced order LSS Σ̄ such that for certain sequences
v ∈ Q+, Gfv is close to G

YΣ̄
v . Intuitively, this means that the input-output

map of Σ̄ will be close to that f .
In Subsection 1.4.2.1 we present the approach [1, 4, 5], where we look for

a reduced order model Σ̄ such that certain Taylor-series coefficients of G
YΣ̄
v

(Markov parameters of YΣ̄) and of Gfv (Markov parameters of f) coincide.
In Subsection 1.4.2.2 we present the approach [15], where we consider multi-
variate Laplace transforms Hf

v of Gfv and we look for reduced order models

Σ̄ such that the Laplace transform H
YΣ̄
v of the function G

YΣ̄
v coincides with

Hf
v for some complex values.
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1.4.2.1 Matching Markov parameters

Consider an LSS Σ̄. Let α and β be two selections. Then Σ̄ is called a (α, β)-
partial realization of f , if for every (v, q0) ∈ β, (u, q) ∈ α,

SYΣ̄q,q0(vu) = Sfq,q0(vu). (1.12)

That is, Σ̄ is a (α, β)-partial realization of f , if those Markov parameters of
f and of the input-output map YΣ̄ of Σ̄ which are indexed by (α, β) coincide.
This means that certain high-order derivatives of f and of YΣ̄ are the same.
That is, a (α, β)-partial realization of f can be viewed as an LSS, input-
output map of which approximates f . If α = Q∗ × Q or β = Q∗ × Q, then
any (α, β)-partial realization of f is a realization of f .

The idea behind moment matching is then to replace an LSS Σ by a
reduced order LSS Σ̄ such that Σ̄ is a (α, β)-partial realization of the input-
output map f = YΣ of Σ. The various algorithms differ in the way the
selections α, β are chosen. The moment matching algorithms which produce
(α, β)-partial realizations arise from Algorithm 1 by a suitable choice of the
matrices W and V . In order to explain these choices in more detail, we
introduce the following definitions. Define the subspaces

Oα(Σ) =
⋂

(v,q)∈α

kerCqAv, Rβ(Σ) = Span{AwBq0 | (w, q0) ∈ β}.

There are 3 choices of matrices W and V .

(A) kerW = Oα(Σ) and V = In. Then Algorithm 1 returns a (α, {ε}×Q)-
partial realization of f [4, Theorem 3].

(B) ImV = Rβ(Σ) and W = In. Then Algorithm 1 returns a ({ε} ×Q, β)-
partial realization of f , [4, Theorem 2].

(C) kerW = Oα(Σ), ImV = Rβ(Σ), rank W = rank V = rank WV . Then
Algorithm 1 returns (α, β)-partial realization of f , [4, Theorem 4].

There are two strategies for choosing α, β.
The first one is to choose α (resp. β) to be of finite cardinality r such

that dim Oα(Σ) = n− r (resp. dim Rβ(Σ) = r), and in this case the reduced
order model will have dimension r. In this case, Oα(Σ) = kerOα (resp.
Rβ(Σ) = ImRβ), and

Oα =
[
ATv1

CTs1 , . . . , A
T
vrC

T
sr

]T
, Rβ =

[
Aw1Bq1 , . . . , AwrBqr

]
,

where α = {(vi, si)}ri=1, and β = {(wi, qi)}ri=1. Using these matrix represen-
tations the matrices W and V described above can easily be computed.

The second option for choosing nice selections is to choose (α, β) to be
consistent with a certain set of switching signals. In this case, the dimension
of the reduced order model cannot be fixed in advance, but it is known that
the reduced order model will have the same input-output behavior along
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those switching sequences which belong to this designated set. More precisely,
assume that the switching signal σ ∈ Q has the property that σ(s) = qi,

s ∈ [Ti−1, Ti), T0 = 0, Ti =
∑i
r=1 tr for some qi ∈ Q, 0 < ti ∈ R+, 0 < i ∈ N.

We will say that a selection (α, β) is consistent with σ, if for every i > 0, for
every ωi, . . . , ωk ∈ N,

((qi)
ωi(qi+1)ωi+1 · · · (qk)ωk , qi) ∈ β, ((q1)ω1(q2)ω2 · · · (qi)ωi , qi) ∈ α.

Theorem ([4]) Assume that (α, β) is consistent with σ and Σ̄ is an (α, β)-
partial realization of f . Then YΣ̄(u, σ) = f(u, σ), for all u ∈ U . �

Note that for a pair of selections to be consistent with a switching signal (or
a set of switching signals), the selections involved have to be infinite sets. If
the prefixes of the sequences of discrete modes of the desired switching sig-
nals form a regular language, then there exist algorithms to compute matrix
representations of Oα(Σ), Rβ(Σ), see [4, 5].

Further extensions. The model reduction method described above was
extended to linear parameter-varying (LPV) models [3] and bilinear systems
[30]. In addition, the method above was applied to LSSs arising from asyn-
chronous sampling of linear time-invariant systems [2].

Relationship with realization theory. To begin with, the whole idea
of matching Markov parameters relies on the notion of Markov parameters
and partial realization, which are integral parts of realization theory. In fact,
the result of the Ho-Kalman realization algorithm from Procedure 2 is iso-
morphic to the LSS returned by Algorithm 1 with the choice of the matrices
W and V as described in option (C) above. That is, moment matching is
just a reformulation of Ho-Kalman algorithm when the latter is applied to
finite Hankel-matrices, rank of which is not maximal. The partial realization
algorithm of [28] is a particular instance of this model reduction method, if
α = β = {v ∈ Q∗ | |v| ≤ N} × Q is chosen. Furthermore, Theorem 4 and
its counterpart for the discrete-time case [5] can be viewed as extensions of
realization theory of LSSs with constrained switching [22, 23].

1.4.2.2 Moment matching in frequency domain

By applying multivariate Laplace transform of the functions {Gfv}v∈Q+ we
can define a sequence of functions {Hf

v }v∈Q+ of complex variables as follows:

Hf
v (s1, . . . , sk) =

∫ ∞
0

· · ·
∫ ∞

0

Gv(t1, . . . , tk)es1t1+···+sktkdt1 · · · dtk (1.13)

for all Re(si) > s0 for a suitable s0 ∈ R, where k = |v|. If f has a realization

by a LSS Σ of the form (1.1) then Gfq1···qk(t1, . . . , tk) satisfies (1.5), and hence

Hf
q1,q2,...,qk

(s1, s2, . . . , sk) = CqkΦqk(sk)Φqk−1
(sk−1) · · ·Φq1(s1)Bq1 , (1.14)
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where Φq(s) = (sIn − Aq)
−1, qj ∈ Q, 1 6 j 6 k. We call the functions

{Hf
v }v∈Q+ the generalized transfer functions of the input-output map f [15].
Let Γ and Θ be finite sets of tuples so that Γ,Θ ⊆ {(v, µ) | v ∈ Q+, µ ∈

Ck, k = |v|}. We will say that an LSS Σ̄ is a (Γ,Θ)-partial realization of f ,

if for every (w, µ) ∈ Γ , (v, λ) ∈ Θ, Hf
wv(µ, λ) = H

YΣ̄
wv (µ, λ).

Our goal is to find an LSS Σ̄ such that Σ̄ is a (Γ,Θ)-partial realization
of f , and the dimension of Σ̄ is smaller than that of Σ. To this end, for any
v = q1 · · · qk ∈ Q+, q1, . . . , qk ∈ Q, define

r((v, µ)) = Φqk(µk) · · ·Φq1(µ1)Bq1 , o((v, µ)) = CqkΦqk(µk) · · ·Φq1(µ1),

for any µ = (µ1, . . . , µk) ∈ Ck. Assume that the cardinality of Γ and Θ are
both r and consider an enumeration Γ = {(wi, µi)}

r
i=1 Θ = {(vi, λi)}ri=1 of

these sets. Define the matrices

R =
[
r((w1, µ1

)) . . . r((wr, µr))
]
, O =

[
o((v1, λ1))T . . . o((vr, λr))

T
]T
.

Assume that rank OR = r. We can apply Algorithm 1 with W = O, V = R
resulting in an LSS Σ̄ which will have the following property.

Theorem ([15]) With the notation and assumptions above, the LSS Σ̄ is a
(Γ,Θ)-partial realization of f . �

This method has an alternative formulation in terms of generalized Loewner
matrices [15], thus extending the well-known Loewner matrix based model
reduction method for linear systems.

Relationship with realization theory The reformulation of this method
in terms of generalized Loewner matrices yields a partial realization algo-
rithm, as it depends on data which can directly be obtained from Laplace
transforms of the input-output map. In a way, this method is the first step
towards a reformulation of realization theory of LSSs in frequency domain.

1.5 Conclusions

In this chapter we presented a brief overview of some recent results on re-
alization theory and model reduction of linear switched systems. It is well
known that for linear systems there is a deep connection between these two
disciplines. We hope that this chapter convinces the reader that this remains
true for hybrid systems and that it is worthwhile to do further research on
this topic. There are many possible directions for future research. A partic-
ularly natural one is to extend the results of this chapter to hybrid systems
with state-dependent switching, for example to piecewise linear systems. The
latter can be viewed as a feedback interconnection of a linear switched system
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with a discrete event generator, hence we are hopeful that the results of this
chapter will be useful for such an extension.
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