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Abstract

Biomechanical modeling and simulation is expected to play a significant role in
the development of the next generation tools in many fields of medicine. However,
full-order finite element models of complex organs such as the heart can be compu-
tationally very expensive, thus limiting their practical usability. Therefore, reduced
models are much valuable to be used, e.g., for pre-calibration of full-order models,
fast predictions, real-time applications, etc.. In this work, focused on the left ventri-
cle, we develop a reduced model by defining reduced geometry & kinematics while
keeping general motion and behavior laws, allowing to derive a reduced model where
all variables & parameters have a strong physical meaning. More specifically, we
propose a reduced ventricular model based on cylindrical geometry & kinematics,
which allows to describe the myofiber orientation through the ventricular wall and
to represent contraction patterns such as ventricular twist, two important features of
ventricular mechanics. Our model is based on the original cylindrical model of [Guc-
cione, McCulloch, & Waldman 1991; Guccione, Waldman, & McCulloch 1993],
albeit with multiple differences: we propose a fully dynamical formulation, inte-
grated into an open-loop lumped circulation model, and based on a material behavior
that incorporates a fine description of contraction mechanisms; moreover, the issue
of the cylinder closure has been completely reformulated; our numerical approach is
novel as well, with consistent spatial (finite element) and time discretizations. Finally,
we analyse the sensitivity of the model response to various numerical and physical
parameters, and study its physiological response.
KEYWORDS:
Reduced-order modeling; Continuum mechanics on manifold; Cardiac modeling; Computational mechan-
ics

1 INTRODUCTION1

Biomechanical modeling and simulation is expected to play a significant role in the development of the next generation tools2

in many fields of medicine such as neurology [Vinje et al. 2019], pulmonology [Morton et al. 2018] and cardiology [Lee et al.3

2014]. Indeed, it allows to structure and improve our understanding of the function of tissues and organs in health and disease,4

and can help to design better treatments and devices for various conditions. Moreover, it is a necessary step toward precision5
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medicine, where models are combined with clinical data through model personalization – or data assimilation – procedures in1

order to generate objective and quantitative diagnosis and/or prognosis information [Chabiniok et al. 2016; Patte et al. 2022].2

However, such models can be computationally expensive, thus limiting their practical usability. For instance for the heart,3

cutting edge finite element models, even when restricted to the left ventricle, can require hours of computation for a single heart4

beat [Chapelle, Le Tallec, Moireau, & Sorine 2012; Quarteroni, Lassila, Rossi, & Ruiz-Baier 2017], and even more for parameter5

identification [Chabiniok et al. 2011; Genet et al. 2014]. Reduced models are much valuable to be used, e.g., for pre-calibration6

of full-order models, fast predictions, real-time applications such as critical care patient monitoring [Le Gall et al. 2020], etc..7

Many approaches to derive reduced models have been developed. Organ-scale “lumped parameters” models have been pro-8

posed [Keener & Sneyd 2009], especially for whole-system simulations and analysis; they are, however, limited in their ability9

to integrate knowledge for instance of the tissue complex behavior. Other approaches consist in deriving a reduced model from10

a full-order model through model order reduction techniques [Brenner et al. 2021]; this is an active field of research, notably to11

build methods with controlled and interpretable reduction error. An intermediate approach, employed in this paper, consists in12

defining reduced geometry and kinematics, while keeping general motion and behavior laws, allowing to derive reduced models13

where all variables and parameters have a strong physical meaning.14

This work is focused on the left ventricle, which is the most powerful of the heart’s four chambers, pumping blood toward15

the entire body. Spherical models have been proposed [Caruel, Chabiniok, Moireau, Lecarpentier, & Chapelle 2014; Hanna16

1973], allowing to lump all spatial dimensions and reduce the ventricular dynamics into a simple system of temporal ordinary17

differential equations. They are, however, intrinsically limited in their ability to describe (i) the myofiber orientation through the18

thickness of the ventricular wall, and (ii) fine contraction patterns such as ventricular twist.19

Twist is an important feature of the ventricular motion, which is induced by the distribution of myofiber orientation through the20

ventricular wall [Arts, Reneman, & Veenstra 1979; Taber, Yang, & Podszus 1996], and is strongly influenced by the ventricular21

shape [van Dalen et al. 2010]. It is key to ventricular function, notably in the intricate temporal coupling between, on the22

one hand, twisting and ejection, and, on the other hand between untwisting and filling [Rademakers et al. 1992; Sengupta,23

Tajik, Chandrasekaran, & Khandheria 2008]. It may also serve as an early indicator for various cardiac diseases and conditions24

[Castellanos et al. 2021; Wang, Khoury, Yue, Torre-Amione, & Nagueh 2008]. In practice, twist can be extracted from MRI25

or US imaging [Sengupta et al. 2008; Young & Cowan 2012], through motion tracking/image registration [Berberoğlu, Stoeck,26

Kozerke, & Genet 2022; Genet, Stoeck, von Deuster, Lee, & Kozerke 2018].27

Reduced models based on cylindrical geometry and kinematics have thus been proposed in the literature [Arts et al. 1979;28

Guccione et al. 1991 1993]. Compared to spherical models, cylindrical models notably have the ability to better represent the29

fiber orientation distribution within the ventricular wall, and the ventricular torsion. However, cylindrical models are usually30

governed by partial differential equations as at least one spatial dimension remains, so that special care needs to be taken in31

order to perform efficient simulations.32

In this paper, we propose a novel reduced ventricular model based on the cylindrical geometry and associated kinematics33

proposed by [Guccione et al. 1991 1993], while maintaining the constitutive ingredients of the full-order model of [Chapelle34

et al. 2012] and corresponding spherical reduction [Caruel et al. 2014; Manganotti, Caforio, Kimmig, Moireau, & Imperiale35

2021], thus completing a tightly connected hierarchy of ventricular models. There are multiple major differences with the original36

cylindrical model of [Guccione et al. 1991 1993]: we propose a fully dynamical formulation, integrated into an open-loop37

lumped circulation model, and based on a material behavior that incorporates a fine description of the contraction mechanisms;38

moreover, the issue of the cylinder closure has been reformulated completely; our numerical approach is novel as well, with39

consistent spatial (finite element) and time discretizations.40

The paper is organized as follows. In Section 2 we describe the model in details, as well as our proposed numerical solution41

approach. We start by recalling the kinematics proposed by [Guccione et al. 1991 1993] (Section 2.1), then present the formu-42

lation of the law of motion onto the manifold generated by the kinematics (Section 2.2), and recall the material model proposed43

by [Chapelle et al. 2012] (Section 2.3). Then, we specify the boundary conditions, including the internal ventricular pressure44

and coupling to general circulation, as well as the closure of the cylindrical ventricle (Section 2.4). We complete the continuous45

model description by establishing fundamental energy balance principles (Section 2.6), and recall the full variational formula-46

tion (Section 2.5). We then describe a consistent temporal (Section 2.7.1) and spatial (Section 2.7.2) discretization. In Section47

3 we illustrate, analyze and discuss the model response. We start by studying the impact of numerical parameters (Section 3.1)48

to find optimal values, and then analyze the model response associated with “normal” physical parameters (Section 3.2). Then,49

we study the impact of various physical parameters, including the ventricular geometry (Section 3.3.1) and fiber orientation50

distribution (Section 3.3.2). Finally, in Section 4 we draw some conclusions and provide some perspectives to this work.51
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2 METHODS: MODEL FORMULATION AND DISCRETIZATION1

2.1 Cylindrical geometry and kinematics2

Following [Guccione et al. 1991 1993], we aim at representing the left ventricle as a closed cylinder of length 𝐿, internal3

radius 𝑅𝑖 and external radius 𝑅𝑒, as shown in Figure 1. The reference configuration is defined as Ω ∶= Ω𝑅 × ΩΘ × Ω𝑍 with4

Ω𝑅 ∶=
[

𝑅𝑖, 𝑅𝑒
], ΩΘ ∶= [0, 2𝜋] and Ω𝑍 ∶= [0, 𝐿]. Its boundary is denoted by Γ ∶= 𝜕Ω = Γ𝑖 ∪ Γ𝑒 ∪ Γ+ ∪ Γ−, with Γ𝑖, Γ𝑒, Γ+5

and Γ− its internal, external, top and bottom boundaries, respectively.6

  

FIGURE 1 Geometry and kinematics of the cylindrical model. Note that the cylinder is actually closed (see Figure 2), but the
lids are not represented here. Note also that the mesh represented here is not a computational mesh (we will see that the model
leads to a 1D only mathematical problem in the thickness of the ventricle), it only serves to illustrate the considered geometry
and kinematics.

The admissible deformation is constrained by the following map [Guccione et al. 1991]7

𝝍 (𝑡) ∶=

|

|

|

|

|

|

|

|

|

|

|

Ω → 𝜔 (𝑡)

(𝑅,Θ, 𝑍) →
⎧

⎪

⎨

⎪

⎩

𝑟 = 𝑅 + 𝜌 (𝑅, 𝑡)
𝜃 = Θ + 𝛽 (𝑡)𝑍 + 𝜑 (𝑅, 𝑡)
𝑧 = (1 + 𝜀 (𝑡))𝑍 + 𝜂 (𝑅, 𝑡)

, (1)
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which is parametrized by three scalar fields 𝜌, 𝜑 and 𝜂 belonging to some functional space (Ω𝑅) assumed to be regular enough1

and two additional scalars 𝛽 and 𝜀. Basically, 𝜌 drives the circumferential deformation (e.g., the circumferential shortening2

during systole), while its derivative with respect to 𝑅 – which we denote by 𝜌′ – drives the radial deformation (e.g., the radial3

thickening during systole), and 𝜀 the longitudinal deformation (e.g., the longitudinal shortening during systole). 𝛽 describes4

the global twist of the ventricle, i.e., the global ventricular torsion. 𝜑 and 𝜂 describe more subtle deformation features, i.e., the5

in-plane and out-of-plane shear of cylindrical slices. Let us denote by6

𝜁 ∶= [𝜌, 𝛽, 𝜑, 𝜀, 𝜂] (2)
the set of quantities characterizing the kinematics, belonging to the tensor product space denoted by7

 ∶= (Ω𝑅) ×ℝ ×(Ω𝑅) ×ℝ ×(Ω𝑅), (3)
and henceforth denote the deformation map by 𝝍[𝜁 ] (𝑅,Θ, 𝑍, 𝑡) to explicitly indicate the dependency in 𝜁 , which we will do8

for other quantities as well. For instance, for the internal volume of the cavity, we write9

𝑉 [𝜁 ] (𝑡) = 𝜋𝑟𝑖 (𝑡)2 𝑙 (𝑡) = 𝜋
(

𝑅𝑖 + 𝜌
(

𝑅𝑖, 𝑡
))2 (1 + 𝜀(𝑡))𝐿. (4)

In the sequel, every spatial entity will be expressed within the cylindrical coordinate system. We denote by (

𝒆𝑹, 𝒆𝚯, 𝒆𝒁
) the10

cylindrical basis of reference, and (

𝒆𝒓, 𝒆𝜽, 𝒆𝒛
) the cylindrical basis associated with the map 𝝍 (see Figure 1). Thus, a material11

point of cylindrical coordinates (𝑅,Θ, 𝑍) in the reference configuration, whose reference position in the reference basis (i.e.,12

vector components in the (

𝒆𝑹, 𝒆𝚯, 𝒆𝒁
) basis) is then13

𝑿 =
⎛

⎜

⎜

⎝

𝑅
0
𝑍

⎞

⎟

⎟

⎠

, (5)

is transported by the map to the following deformed position, which can be expressed in both the deformed and reference basis14

(omitting the time dependency) as15

𝒙[𝜁 ] (𝑿) =
⎛

⎜

⎜

⎝

𝑟
0
𝑧

⎞

⎟

⎟

⎠(𝒆𝒓,𝒆𝜽,𝒆𝒛)

=
⎛

⎜

⎜

⎝

cos(𝜃 − Θ) −sin(𝜃 − Θ) 0
sin(𝜃 − Θ) cos(𝜃 − Θ) 0

0 0 1

⎞

⎟

⎟

⎠(𝒆𝑹 ,𝒆𝚯,𝒆𝒁)⊗(𝒆𝒓,𝒆𝜽,𝒆𝒛)

⋅
⎛

⎜

⎜

⎝

𝑟
0
𝑧

⎞

⎟

⎟

⎠(𝒆𝒓,𝒆𝜽,𝒆𝒛)

=
⎛

⎜

⎜

⎝

cos (𝛽𝑍 + 𝜑 (𝑅)) (𝑅 + 𝜌 (𝑅))
sin (𝛽𝑍 + 𝜑 (𝑅)) (𝑅 + 𝜌 (𝑅))

(1 + 𝜀)𝑍 + 𝜂 (𝑅)

⎞

⎟

⎟

⎠(𝒆𝑹 ,𝒆𝚯,𝒆𝒁)

.

(6)

Consequently, the expression of the displacement field in the reference basis is16

𝒖[𝜁 ] (𝑿) ∶= 𝒙[𝜁 ] (𝑿) −𝑿 =
⎛

⎜

⎜

⎝

cos (𝛽𝑍 + 𝜑 (𝑅)) (𝑅 + 𝜌 (𝑅)) − 𝑅
sin (𝛽𝑍 + 𝜑 (𝑅)) (𝑅 + 𝜌 (𝑅))

𝜀𝑍 + 𝜂 (𝑅)

⎞

⎟

⎟

⎠

. (7)

We introduce similar notations (omitting both spatial and temporal dependencies) for the velocity (which is the push forward of17

𝜁̇ by the kinematics) and acceleration fields such that18

{

𝒗[𝜁 ] ∶= 𝒖̇[𝜁 ] = D𝒖[𝜁 ](𝜁̇ )
𝒂[𝜁 ] ∶= 𝒗̇[𝜁 ] = D2𝒖[𝜁 ](𝜁̇ , 𝜁̇ ) + D𝒖[𝜁 ](𝜁 )

, (8)

involving the first19

D𝒖[𝜁 ](𝜁 ) =
⎛

⎜

⎜

⎝

cos (𝛽𝑍 + 𝜑) 𝜌̂ − sin (𝛽𝑍 + 𝜑)
(

𝛽𝑍 + 𝜑̂
)

(𝑅 + 𝜌)
sin (𝛽𝑍 + 𝜑) 𝜌̂ + cos (𝛽𝑍 + 𝜑)

(

𝛽𝑍 + 𝜑̂
)

(𝑅 + 𝜌)
𝑍𝜀̂ + 𝜂̂

⎞

⎟

⎟

⎠

∀𝜁 (9)

and second derivative20

D2𝒖[𝜁 ](𝜁, 𝜁 ) =
⎛

⎜

⎜

⎝

− sin (𝛽𝑍 + 𝜑)
[

𝜌̂
(

𝛽𝑍 + 𝜑̄
)

+ 𝜌̄
(

𝛽𝑍 + 𝜑̂
)]

− cos (𝛽𝑍 + 𝜑) (𝑅 + 𝜌)
(

𝛽𝑍 + 𝜑̂
) (

𝛽𝑍 + 𝜑̄
)

cos (𝛽𝑍 + 𝜑)
[

𝜌̂
(

𝛽𝑍 + 𝜑̄
)

+ 𝜌̄
(

𝛽𝑍 + 𝜑̂
)]

− sin (𝛽𝑍 + 𝜑) (𝑅 + 𝜌)
(

𝛽𝑍 + 𝜑̂
) (

𝛽𝑍 + 𝜑̄
)

0

⎞

⎟

⎟

⎠

∀𝜁, 𝜁 (10)

of the displacement 𝒖 constrained by the mapping 𝝍 .21
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It is convenient to express the deformation gradient associated with the chosen kinematics in mixed basis, i.e., as the matrix1
(

𝐹𝑖𝐽
)

𝑖∈{𝑟,𝜃,𝑧}
𝐽∈{𝑅,Θ,𝑍}

such as for any vector field 𝒖 ∈ ℝ3 we have 𝑭 ⋅ 𝒖 =
∑

𝑖∈{𝑟,𝜃,𝑧}

∑

𝐽∈{𝑅,Θ,𝑍}
𝐹𝑖𝐽

(

𝒆𝑱 ⋅ 𝒖
)

𝒆𝒊. The differential of the2

reference position is3

𝜹𝑿(𝑅,Θ, 𝑍; 𝛿𝑅, 𝛿Θ, 𝛿𝑍) ∶= lim
ℎ→0

( 𝜕
𝜕ℎ

(𝑿(𝑅 + ℎ𝛿𝑅, Θ + ℎ𝛿Θ, 𝑍 + ℎ𝛿𝑍))
)

=
⎛

⎜

⎜

⎝

𝛿𝑅
𝑅𝛿Θ
𝛿𝑍

⎞

⎟

⎟

⎠

, (11)

in the reference basis. For the deformed position 𝒙, its differential expressed in the deformed basis reads4

𝜹𝒙(𝑅,Θ, 𝑍; 𝛿𝑅, 𝛿Θ, 𝛿𝑍) =
⎛

⎜

⎜

⎝

𝛿𝑟
𝑟𝛿𝜃
𝛿𝑧

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝑟,𝑅𝛿𝑅 + 𝑟,Θ𝛿Θ + 𝑟,𝑍𝛿𝑍
𝑟
(

𝜃,𝑅𝛿𝑅 + 𝜃,Θ𝛿Θ + 𝜃,𝑍𝛿𝑍
)

𝑧,𝑅𝛿𝑅 + 𝑧,Θ𝛿Θ + 𝑧,𝑍𝛿𝑍

⎞

⎟

⎟

⎠

. (12)

Recalling that by definition 𝑭 ⋅ 𝜹𝑿 = 𝜹𝒙, we thus infer5

𝑭 [𝜁 ] =
⎛

⎜

⎜

⎜

⎝

𝑟,𝑅
𝑟,Θ
𝑅

𝑟,𝑍
𝑟𝜃,𝑅

𝑟𝜃,Θ
𝑅

𝑟𝜃,𝑍
𝑧,𝑅

𝑧,Θ
𝑅

𝑧,𝑍

⎞

⎟

⎟

⎟

⎠

=
⎛

⎜

⎜

⎜

⎝

1 + 𝜌′ 0 0
𝑅
(

1 + 𝜌
𝑅

)

𝜑′ 1 + 𝜌
𝑅

𝑅
(

1 + 𝜌
𝑅

)

𝛽
𝜂′ 0 1 + 𝜀

⎞

⎟

⎟

⎟

⎠

, (13)

in the above-specified mixed basis. Consequently, the volume ratio within the wall reads6

𝐽 [𝜁 ] ∶= det (𝑭 [𝜁 ]) =
(

1 + 𝜌′
)

(

1 + 𝜌
𝑅

)

(1 + 𝜀) . (14)
All the remaining tensor quantities will be expressed in the reference basis (𝒆𝑹, 𝒆𝚯, 𝒆𝒁

), including the right Cauchy–Green7

deformation tensor8

𝑪[𝜁 ] ∶= 𝑭 [𝜁 ]⊺ ⋅ 𝑭 [𝜁 ] =
⎛

⎜

⎜

⎜

⎝

(1+𝜌′)2+
(

𝑅
(

1+ 𝜌
𝑅

)

𝜑′
)2

+𝜂′2 𝑅
(

1+ 𝜌
𝑅

)2
𝜑′

(

𝑅
(

1+ 𝜌
𝑅

))2
𝜑′𝛽+𝜂′(1+𝜀)

(

1+ 𝜌
𝑅

)2
𝑅
(

1+ 𝜌
𝑅

)2
𝛽

sym
(

𝑅
(

1+ 𝜌
𝑅

)

𝛽
)2

+(1+𝜀)2

⎞

⎟

⎟

⎟

⎠

(15)

and the Green-Lagrange strain tensor9

𝑬[𝜁 ] ∶= 1
2
(𝑪[𝜁 ] − 𝟏) = 1

2

⎛

⎜

⎜

⎜

⎝

(1+𝜌′)2+
(

𝑅
(

1+ 𝜌
𝑅

)

𝜑′
)2

+𝜂′2−1 𝑅
(

1+ 𝜌
𝑅

)2
𝜑′

(

𝑅
(

1+ 𝜌
𝑅

))2
𝜑′𝛽+𝜂′(1+𝜀)

(

1+ 𝜌
𝑅

)2
−1 𝑅

(

1+ 𝜌
𝑅

)2
𝛽

sym
(

𝑅
(

1+ 𝜌
𝑅

)

𝛽
)2

+(1+𝜀)2−1

⎞

⎟

⎟

⎟

⎠

, (16)

illustrating the role of each parameter of the chosen kinematics in the cylinder deformation.10

2.2 Dynamics equation11

As the deformation of the cylindrical model is parametrized in  , we need to write the dynamics equation on the manifold12

of admissible deformations. For the sake of generality and conciseness, we propose to express the dynamical equilibrium in a13

global, variational way, by invoking the principle of virtual power (a.k.a. principle of virtual work). We refer to Appendix A14

for a complete presentation of our notation and of how we formally write the principle of virtual power onto the admissible15

deformation manifold, extending the work of [Mardare 2015] to dynamics.16

Thus, as detailed in Appendix A, in the context of the considered kinematically constrained reduced model the principle of17

virtual work reads18

Find 𝜁 such that 𝑎[𝜁 ](𝜁 ) + 𝑖[𝜁 ](𝜁 ) = 𝑒[𝜁 ](𝜁 ) ∀𝜁. (17)
The virtual power of acceleration forces is given by19

𝑎[𝜁 ](𝜁 ) ∶=∫
Ω

𝜚0 𝒂[𝜁 ] ⋅ 𝒗̂[𝜁 ; 𝜁 ] dΩ, (18)

where the acceleration has been given in (8), and the virtual velocity 𝒗̂ is the push forward of the virtual parameter set 𝜁 by the20

kinematics21

𝒗̂[𝜁 ; 𝜁 ] ∶= D𝒖[𝜁 ](𝜁 ). (19)
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The virtual power of internal forces is given by1

𝑖[𝜁 ](𝜁 ) ∶= ∫
Ω

𝚺[𝜁 ] ∶ D𝑬[𝜁 ](𝜁 ) dΩ, (20)

where the expression of the second Piola-Kirchhoff stress tensor 𝚺[𝜁 ] as a function of strain and strain rate will be detailed in2

Section 2.3, and the derivative of the Green-Lagrange strain tensor is given by3

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

D𝑬[𝜁 ](𝜁 )𝑅𝑅 =
(

1 + 𝜌′
)

𝜌̂′ + 𝑅
(

1 + 𝜌
𝑅

)

𝜑′2𝜌̂ + 𝑅2
(

1 + 𝜌
𝑅

)2
𝜑′𝜑̂′ + 𝜂′𝜂̂′

D𝑬[𝜁 ](𝜁 )ΘΘ = 1
𝑅

(

1 + 𝜌
𝑅

)

𝜌̂

D𝑬[𝜁 ](𝜁 )𝑍𝑍 = 𝑅
(

1 + 𝜌
𝑅

)

𝛽2𝜌̂ + 𝑅2
(

1 + 𝜌
𝑅

)2
𝛽𝛽 + (1 + 𝜀) 𝜀̂

D𝑬[𝜁 ](𝜁 )𝑅Θ = D𝑬[𝜁 ](𝜁 )Θ𝑅 =
(

1 + 𝜌
𝑅

)

𝜑′𝜌̂ + 𝑅
2

(

1 + 𝜌
𝑅

)2
𝜑̂′

D𝑬[𝜁 ](𝜁 )Θ𝑍 = D𝑬[𝜁 ](𝜁 )𝑍Θ =
(

1 + 𝜌
𝑅

)

𝛽𝜌̂ + 𝑅
2

(

1 + 𝜌
𝑅

)2
𝛽

D𝑬[𝜁 ](𝜁 )𝑍𝑅 = D𝑬[𝜁 ](𝜁 )𝑅𝑍 = 𝑅
(

1 + 𝜌
𝑅

)

𝛽𝜑′𝜌̂ + 𝑅2

2

(

1 + 𝜌
𝑅

)2
𝜑′𝛽 + 𝑅2

2

(

1 + 𝜌
𝑅

)2
𝛽𝜑̂′ + 𝜂′

2
𝜀̂ + 1+𝜀

2
𝜂̂′

. (21)

The virtual power of external forces will be detailed in Section 2.4.4

2.3 Constitutive law5

The myocardium is known to behave as a nonlinear, quasi-incompressible, viscous, active, anisotropic and heterogeneous solid6

[Humphrey 2002]. Many laws have been proposed in the literature [Holzapfel & Ogden 2009], focusing on various aspects of7

this complex behavior, and could be used in the context of the reduced model presented here. To illustrate the generality of our8

approach to reduced modeling, we propose to use the constitutive law proposed in [Chapelle et al. 2012], based on previous work9

from [Bestel, Clément, & Sorine 2001; Sainte-Marie, Chapelle, Cimrman, & Sorine 2006] and recently extended in [Kimmig,10

Chapelle, & Moireau 2019], which contains all the aforementioned behavioral specificities. We now briefly summarize its11

various ingredients.12

We start by the symmetry class and the distribution of material orientation. The myocardium is known to be orthotropic13

[Dokos, Smaill, Young, & LeGrice 2002; Humphrey 2002], but is often approximated as transversely isotropic [Holzapfel &14

Ogden 2009; Tueni, Allain, & Genet 2022]. In this case, its local orientation, which varies throughout the ventricle, is defined by15

a single direction, i.e., the local myofiber orientation, which we denote by 𝒆𝑭 , a unit vector. Following classical microstructural16

models [LeGrice, Hunter, & Smaill 1997], we assume that 𝒆𝑭 lies in the circumferential-longitudinal plane (

𝒆𝚯, 𝒆𝒁
), and that17

its orientation depends only on the radial position 𝑅 in the form18

𝒆𝑭 ∶=
⎛

⎜

⎜

⎝

0
cos (𝛼 (𝑅))
sin (𝛼 (𝑅))

⎞

⎟

⎟

⎠

, (22)

where 𝛼 (𝑅) ∶= 𝛼𝑖
𝑅𝑒−𝑅
𝑅𝑒−𝑅𝑖

+ 𝛼𝑒
𝑅−𝑅𝑖

𝑅𝑒−𝑅𝑖
is a linear function of 𝑅.19

The considered constitutive law is based on the rheology represented in Figure 3, which assumes that the passive and active20

components are in parallel, leading to the following decomposition of the stress (here, the second Piola-Kirchhoff stress tensor)21

𝚺 = 𝚺𝑝 + 𝚺𝑎. (23)
The passive stress is itself assumed to be decomposed into three parts, namely the deviatoric, bulk and viscous parts22

𝚺𝑝 = 𝚺𝑑 + 𝚺𝑏 + 𝚺𝑣. (24)
Based on the previously mentioned symmetry considerations, the deviatoric stress is assumed to derive from the following23

transversely isotropic strain energy potential24

𝚺𝑑 = 𝜕𝑊 𝑒

𝜕𝑬
with 𝑊 𝑒 (𝐼1, 𝐼2, 𝐼4

)

∶= 𝐶1
(

𝐼1 − 3
)

+ 𝐶2
(

𝐼2 − 3
)

+ 𝐶3𝑒
𝐶4(𝐼1−3)2 + 𝐶5𝑒

𝐶6(𝐼4−1)2 , (25)
where 𝐶1−6 are material parameters, and 𝐼1, 𝐼2 and 𝐼4 are reduced invariants of the transformation – namely 𝐼1 ∶= 𝑪̄ ∶ 𝟏,25

𝐼2 ∶= 1
2

(

𝐼2
1 − 𝑪̄

2 ∶ 𝟏
)

and 𝐼4 ∶= 𝑪̄ ∶
(

𝒆𝑭 ⊗ 𝒆𝑭
) with 𝑪̄ ∶= 𝑭̄ ⊺

⋅ 𝑭̄ , 𝑭̄ ∶= 𝐽−1∕3𝑭 , 𝐽 ∶= det (𝑭 ). Note that compared to26
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previous presentations of the model in [Caruel et al. 2014; Chapelle et al. 2012], simple neo-Hookean and Mooney-Rivlin terms1

were added to prevent ill-conditioning issues in the reference configuration, since the other terms have zero initial stiffness.2

The myocardium is known to be slightly compressible [Humphrey 2002], but can be approximated as fully incompressible3

[Holzapfel & Ogden 2009]. In this case, the stress is not fully determined by the deformation; specifically, the hydrostatic4

pressure remains undetermined. We classically define5

𝚺𝑏 = −𝑝𝐽𝑪−1, (26)
where 𝑝 is the Lagrange multiplier associated with the incompressibility constraint (𝐽 = 1), which is resolved through the6

following additional weak equation7

∫
Ω

(𝐽 − 1) 𝑝̂ dΩ = 0 ∀𝑝̂. (27)

Finally, the viscous behavior of the myocardium is less documented in the literature [Humphrey 2002]. As a consequence,8

we assume that the viscous part of the stress derives from the following simple isotropic dissipation pseudo-potential [Chapelle9

et al. 2012]10

𝚺𝑣 = 𝜕𝑊 𝑣

𝜕𝑬̇
with 𝑊 𝑣 ∶= 𝛾

2
|𝑬̇|2, (28)

where 𝛾 is a material damping parameter.11

Many models of the myocardial contraction have been proposed, from purely phenomenological [Guccione & McCulloch12

1993] to multiscale [Kimmig et al. 2019], resulting in very different computational complexity, from simple explicit expressions13

[Guccione & McCulloch 1993] to very large systems of differential equations [Kimmig et al. 2019]. Here we consider the model14

developed in [Chapelle et al. 2012], which has a strong physical basis and good predictive power while requiring the resolution15

of two local ordinary differential equations only. Following the hypothesis that active forces are generated only along the local16

direction of the myofibers (although other hypotheses have been considered [Genet, Lee, et al. 2015; Guccione & McCulloch17

1993; Guccione et al. 1993]), we have18

𝚺𝑎 = 𝜎1D 𝒆𝑭 ⊗ 𝒆𝑭 , (29)
where, according to the rheology presented in Figure 3, we have19

𝜎1D =
𝑘𝑠

(

𝑒fib − 𝑒𝑐
)

1 + 𝑒fib
, (30)

where 𝑘𝑠 is the stiffness of the active component of the rheology, 𝑒𝑐 the local sarcomere deformation due to the actin-myosin20

binding, and 𝑒fib the fiber strain satisfying21

1 + 𝑒fib =
(

1 + 2 𝒆𝑭 ⋅ 𝑬 ⋅ 𝒆𝑭
)

1
2 =

(

(1 + 𝜀)2 sin2 𝛼 +
(

𝛽 (𝑅 + 𝜌) sin 𝛼 + 𝑅 + 𝜌
𝑅

cos 𝛼
)2

)
1
2

. (31)

Moreover for the active contraction part,22

𝑇fib ∶= 𝑘𝑠
(

𝑒fib − 𝑒𝑐
)

= 𝜏𝑐 + 𝜇𝑒̇𝑐 , (32)
where 𝜏𝑐 is the active stress developed by the actin-myosin bonds, and 𝜇 the dissipation of the active component of the rheology.23

Then, a distribution moment approximation applied to Huxley’s formulation [Bestel et al. 2001; Chapelle et al. 2012; Kimmig24

et al. 2019; Zahalak 1981] allows to specify the dynamics of 𝜏𝑐 in terms of an ordinary differential equation linking 𝜏𝑐 to the25

active stiffness variable 𝑘𝑐 by26
{

𝜏̇𝑐 = −
(

|𝜈| + 𝛼|𝑒̇𝑐|
)

𝜏𝑐 + 𝑛0
(

𝑒𝑐
)

𝜎0|𝜈|+ + 𝑘𝑐 𝑒̇𝑐
𝑘̇𝑐 = −

(

|𝜈| + 𝛼|𝑒̇𝑐|
)

𝑘𝑐 + 𝑛0
(

𝑒𝑐
)

𝑘0|𝜈|+
, (33)

where | ⋅ |+ denotes the positive part. In (33), the parameter 𝑘0 denotes the maximum active stiffness parameter and 𝜎0 the27

corresponding maximum active stress, 𝛼 is a time constant, 𝑛0
(

𝑒𝑐
) a function accounting for the Frank-Starling mechanism,28

and 𝜈
(

[Ca2+]) a function triggering the contraction, typically when [Ca2+] > 𝑐th with 𝑐th a given threshold.29

This concludes the description of the material law chosen to illustrate the ventricular reduction principle using a cylindrical30

model. More details can be found in [Chapelle et al. 2012; Kimmig et al. 2019]. Even if our choice of constitutive law is31

motivated by the thermodynamical properties sustaining this macroscopic behavior model, any choice of passive, viscous and32

active law could be made in the context the proposed cylindrical ventricular model.33
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2.4 Boundary conditions and loadings1

The ventricular mechanics is tightly coupled to the blood flow and the vasculature mechanics. Since the focus of the current2

paper is on ventricular reduced modeling, we propose to couple it to a simple circulation model; note, however, that there is no3

theoretical limitation in that regard, and that reduced ventricular models can be coupled to highly complex circulation models.4

Thus, here blood is only taken into account through a pressure applied onto the ventricle internal surface, denoted by 𝑃v. This5

corresponds to the following virtual power term6

 𝑖
𝑒[𝜁 ](𝜁 ) ∶= ∫

Γ𝑖

𝑃v 𝒆𝑹 ⋅ 𝑭 −1 ⋅ D𝒖[𝜁 ](𝜁 )𝐽 dΓ. (34)

The ventricular pressure is regulated by reduced models of the valves and the general circulation. The valves are modeled7

through the following relationship between ventricular outgoing blood flow 𝑄 ∶= −𝑉̇ and ventricular (𝑃v), atrial (𝑃at) and aortic8

(𝑃ar) pressures9

⎧

⎪

⎨

⎪

⎩

Filling: 𝑃v ≤ 𝑃at ⇐⇒ 𝑄 = 𝐾at
(

𝑃v − 𝑃at
)

Isovol. contraction/relaxation: 𝑃at ≤ 𝑃v ≤ 𝑃ar ⇐⇒ 𝑄 = 𝐾iso
(

𝑃v − 𝑃at
)

Ejection: 𝑃ar ≤ 𝑃v ⇐⇒ 𝑄 = 𝐾iso
(

𝑃v − 𝑃at
)

+𝐾ar
(

𝑃v − 𝑃ar
)

, (35)

where 𝐾at, 𝐾iso and 𝐾ar are material parameters. Only the arterial circulation is taken into account, through a two-stage10

Windkessel model [Hunter, Pullan, & Smaill 2003]11

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐶valve𝑃̇v + 𝑉̇ +𝐾ar|𝑃v − 𝑃ar|+ +𝐾iso|𝑃v − 𝑃at|+ −𝐾at|𝑃at − 𝑃v|+ = 0

𝐶ar𝑃̇ar −𝐾ar|𝑃v − 𝑃ar|+ +
𝑃ar − 𝑃d

𝑅p
= 0

𝐶d𝑃̇d +
𝑃d − 𝑃ar

𝑅p
−

𝑃vs − 𝑃d
𝑅d

= 0

, (36)

where 𝐶valve, 𝐶ar, 𝑅p, 𝐶d and 𝑅d are material parameters. The venous circulation is not modeled explicitly, but considered12

through the prescribed venal (𝑃vs) and atrial (𝑃at) pressures. More details can be found in [Sainte-Marie et al. 2006].13

In order to be consistent with physiology, and represent phenomena such as longitudinal lengthening during diastole, ven-14

tricular pressure increase during systole, etc., the cylinder must be closed at both ends. Here we propose a formulation that is15

significantly different from that of [Guccione et al. 1991]. We consider that the bottom and top lids are infinitely thin, infinitely16

stiff in the longitudinal direction, and infinitely compliant in the radial direction, see Figure 2. Thus, the lids do not have any17

contribution to the virtual power of inertial or internal forces, and only contribute to the virtual power of external forces as18

follows19

±
𝑒 ∶= ∫

𝛾±

−𝑃v 𝒏± ⋅ 𝒗̂± d𝛾, (37)

with 𝒏± = ∓𝒆𝒁 . Because of symmetry conditions in the model, the lids remain flat and horizontal. Furthermore, because of the20

nature of the applied load, i.e., a normal pressure, we see that only the vertical component of the virtual displacement is present21

in the virtual power. Indeed, we have22

±
𝑒 = ±𝑃v 𝜋𝑟2𝑖 𝑣̂

±
𝑍 (38)

A choice must be made on how to connect the lids and the ventricle, i.e., how to express 𝑣̂±𝑍 in terms of 𝒗̂[𝜁 ; 𝜁 ]. One possibility23

is to connect the lids to the internal line of the faces, i.e.,24

𝑣̂±𝑍 = 𝑣̂𝑍[𝜁 ; 𝜁 ]
(

𝑅 = 𝑅𝑖
)

= 𝜀̂𝑍 + 𝜂̂
(

𝑅𝑖
)

, (39)
such that25

𝑣̂+𝑍 − 𝑣̂−𝑍 = 𝜀̂𝐿. (40)
Another possibility would be to connect the lids to the average position of the faces, i.e.,26

𝑣̂±𝑍 = 1
|𝛾±| ∫

𝛾±

𝑣̂𝑍[𝜁 ; 𝜁 ] d𝛾 =
∫
Γ±

(𝜀̂𝑍 + 𝜂̂) ‖
‖

𝑭 −⊺ ⋅𝑵±
‖

‖

𝐽 dΓ

∫
Γ±

‖

‖

𝑭 −⊺ ⋅𝑵±
‖

‖

𝐽 dΓ
. (41)
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However, because of the constrained kinematics, 𝑭 and thus 𝐽 do not depend on 𝑍, so we have again1

𝑣̂+𝑍 − 𝑣̂−𝑍 = 𝜀̂𝐿. (42)

Thus, the two considered options are actually equivalent. Finally, we obtain2

+
𝑒 + −

𝑒 = 𝑃v 𝜋𝐿
(

𝑅𝑖 + 𝜌
(

𝑅𝑖
))2 𝜀̂ (43)

and the complete virtual power of external forces reads3

𝑒 ∶=  𝑖
𝑒 + +

𝑒 + −
𝑒 (44)

Other types of boundary conditions could be considered, such as visco-elastic conditions on the external surface to model the4

presence of the pericardial fluid [Chabiniok et al. 2011; Pfaller et al. 2019], but will not be considered in this paper.5

  

FIGURE 2 Schematic of the cylindrical model closure. The lid is shown in purple (in reference and deformed configuration),
its normal in blue; the displacement field in green.

During the static simulations, the rigid body motions allowed by the kinematics, i.e., translation along 𝒆𝒁 and rotation around6

𝒆𝒁 , must be blocked. To do so, we impose 𝜂
(

𝑅 = 𝑅𝑖
)

= 0 and 𝜑
(

𝑅 = 𝑅𝑖
)

= 0. These constraints are not necessary in the7

dynamic setting.8
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2.5 Mathematical problem1

The complete cylindrical cardiac model finally reads2

Find (

𝜁, 𝑝, 𝑒𝑐 , 𝜏𝑐 , 𝑘𝑐 , 𝑃v, 𝑃ar, 𝑃d
) such that
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Kinematics: Section 2.1
Equilibrium: 𝑎[𝜁 ](𝜁 ) + 𝑖[𝜁, 𝑝](𝜁 ) = 𝑒[𝜁 ](𝜁) ∀𝜁

with

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑎[𝜁 ](𝜁 ) = ∫
Ω

𝜚0 𝒖̈[𝜁 ] ⋅ D𝒖[𝜁 ](𝜁) dΩ

𝑖[𝜁, 𝑝](𝜁 ) = ∫
Ω

𝚺[𝜁, 𝑝] ∶ D𝑬[𝜁 ](𝜁 ) dΩ

Behavior: Section 2.3
𝑒[𝜁 ](𝜁 ) = ∫

Γ𝑖

𝑃v 𝒆𝑹 ⋅ 𝑭 −1 ⋅ D𝒖[𝜁 ](𝜁 )𝐽 dΓ + 𝑃v 𝜋𝐿
(

𝑅𝑖 + 𝜌
(

𝑅𝑖
))2 𝜀̂

Incompressibility: ∫
Ω

(𝐽 [𝜁 ] − 1) 𝑝̂ dΩ = 0 ∀𝑝̂

Valves: (35)
Circulation: (36)

(45)
Note that we have kept the domain and boundary integrals only for the sake of conciseness. Indeed, thanks to the chosen3

parametrization the integrals can be simplified, and the problem (45) can be reduced to a problem in only one spatial dimension,4

i.e.the radial dimension, see Appendix B for details on this integration. To simulate a full cardiac cycle (or multiple ones), we5

consider an unloaded, stress-free consideration (thus neglecting any pre-stress [Genet, Rausch, et al. 2015; Guccione et al.6

1991]), load it statically to the internal pressure 𝑃at (corresponding to a end-diastole state), and then start the dynamic simulation.7

The active contraction is driven by the time function 𝜈, which is prescribed as detailed in [Chapelle et al. 2012; Kimmig et al.8

2019]. The different phases of the cardiac cycle are automatically handled by the model, notably through the switch function9

(35). Multiple cycles must be run in order to reach periodicity, although faster methods could be used [Khristenko & Le Tallec10

2018].11

2.6 Energy balance12

One of the fundamental properties of our formulation based on an Hellinger-Reissner Lagrangian is to be directly compatible13

with an energy balance similar to what was presented in the seminal work of Chapelle et al. [2012] but here with a constrained14

kinematics. For instance, by considering the actual velocity as a virtual velocity in the principle of virtual work (17), we obtain15

d
dt

⎛

⎜

⎜

⎝

[𝜁 ] + ∫
Ω0

[

𝐸𝑠

2
(𝑒fib − 𝑒𝑐)2 + 𝑈𝑐

]

dΩ + [𝜁 ]
⎞

⎟

⎟

⎠

= −∫
Ω0

(|𝜈| + 𝛼 |
|

𝑒̇𝑐||)𝑈𝑐 dΩ − ∫
Ω0

𝜇(𝑒̇𝑐)2 dΩ − ∫
Ω0

𝜕𝑊𝑣

𝜕𝒆̇
∶ 𝒆̇ dΩ

+ ∫
Ω0

𝑛0𝑈0 |𝜈|+ dΩ + 𝑒𝒖[𝜁 ], (46)

with the energy contributions given by the kinetic energy and hyperelastic energy16

 = 1
2 ∫
Ω0

𝜌 |𝒗|2 dΩ and  = ∫
Ω0

𝑊𝑒 dΩ,

while along the fiber direction, we have an additional passive elastic energy 1
2
∫Ω0

𝐸𝑠(𝑒fib − 𝑒𝑐)2 dΩ, but more fundamentally 𝑈𝑐17

the microscopic elastic energy created by the actin-myosin bridges, solution of18

𝑈̇𝑐 = −(|𝑢| + 𝛼 |
|

𝑒̇𝑐||)𝑈𝑐 + 𝑒̇𝑐𝜏𝑐 + 𝑛0𝑈0 |𝜈|+
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and controlling the active stiffness and stress with 𝑈𝑐 ≥ 𝜏2𝑐 ∕𝑘𝑐 as proven by Chapelle et al. [2012]. Moreover, the dissipative1

terms are2

∫
Ω0

𝜕𝑊𝑣

𝜕𝒆̇
∶ 𝒆̇ dΩ

while ∫Ω0
𝜇(𝑒̇𝑐)2 dΩ is an additional viscous dissipation along the fiber, and ∫Ω0

(|𝑢| + 𝛼 |
|

𝑒̇𝑐||)𝑈𝑐 dΩ the energy dissipated by3

actin-myosin bridges creation and destruction. Finally, the source terms are given by ∫Ω0
𝑛0𝑈0 |𝑢|+ dΩ, i.e.the positive power4

associated with by the actin-myosin engine, while e is the power of external forces associated with the coupling with the5

external circulation. The energy exchanges between the ventricle and the circulation are conservative as well, since we have6

𝑒[𝒖[𝜁 ], 𝒗[𝜁 ]] + 𝑃v𝑄[𝜁 ] = 0 (47)
with 𝑄[𝜁 ] ∶= −𝑉̇ [𝜁 ] the flux of blood leaving the ventricle, i.e., entering the circulation. Following Manganotti et al. [2021],7

we have the Valve + Windkessel energy balance8

d
d𝑡

[𝐶valve
2

𝑃 2
v +

𝐶ar
2

𝑃 2
ar
]

= −𝐾ar ||𝑃v − 𝑃ar||
2
+−𝐾iso ||𝑃v − 𝑃at||

2
+−𝐾at ||𝑃at − 𝑃v||

2
++

(

𝐾at ||𝑃at − 𝑃v||+−𝐾iso ||𝑃v − 𝑃at||+
)

𝑃at+𝑃v𝑄[𝜁 ]
(48)

where 𝑃v𝑄[𝜁 ] is, indeed, the exchange term with the cardiac cavity, 𝐶valve
2

𝑃 2
v and 𝐶ar

2
𝑃 2

ar are the energies stored in the capacitances,9

𝐾at ||𝑃at − 𝑃v||+ 𝑃at and 𝐾iso ||𝑃v − 𝑃at||+ 𝑃at are source terms associated with the preload (valve open or small regurgitation), and10

all the other terms are dissipation due to the resistances.11

These energy balances are critical, and special care will be taken to derive discretizations that preserve them at the discrete12

level, as detailed in Section 2.7.1.13

2.7 Numerical resolution14

We now present our discretization choices, in terms of both temporal and spatial discretizations. Simulations15

presented in the paper were performed using the MATLAB code CardiacLab (InterDeposit Digital Number:16

IDDN.FR.001.470012.000.S.P.2016.000.31235), which is available upon request for academic collaborations.17

2.7.1 Time discretization18

We first introduce time discretization. In terms of notation, we consider a sequence of time instants {𝑡𝑛}𝑛∈ℕ and define the19

associated time steps Δ𝑡𝑛 ∶= 𝑡𝑛+1 − 𝑡𝑛. For known quantities, .𝑛, .𝑛+1 and .𝑛+
1
2 denote their values at time 𝑡𝑛, 𝑡𝑛+1 and 𝑡𝑛+

1
2 ∶=20

𝑡𝑛+𝑡𝑛+1

2
. For the unknowns of the problem, .𝑛 denotes their value at time 𝑡𝑛 (which is considered known at a given time step), .𝑛+121

their value at time 𝑡𝑛+1 (which must be determined), and we often use the notation .𝑛+
1
2 ∶= .𝑛+.𝑛+1

2
.22

A major objective of the proposed discretization scheme is to satisfy, at the discrete level, beside standard consistency and23

convergence properties, the energy balance holding at the continuous level, in the spirit of previous works in model reduction24

[Caruel et al. 2014; Chapelle et al. 2012; Manganotti et al. 2021]. For the internal variables associated with the active stress,25

as well as for the circulation variables, we rely on the discretization of [Chapelle et al. 2012], which is not recalled here, as we26

focus on the difficulty associated with the constrained kinematics. To start with, we propose to introduce an auxiliary velocity27

field 𝒗 over Ω, and turn the second-order system (45) into the following first order system28

Find (𝜁, 𝒗, 𝑝) such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎[𝜁, 𝒗](𝜁 ) + 𝑖[𝜁, 𝑝](𝜁 ) = 𝑒[𝜁 ](𝜁 ) ∀𝜁
𝒗 = 𝒗[𝜁 ] ∀𝑿

∫
Ω

(𝐽 [𝜁 ] − 1) 𝑝̂ dΩ = 0 ∀𝑝̂
(49)

where29

𝑎[𝜁, 𝒗](𝜁 ) ∶= ∫
Ω

𝜚0 𝒗̇ ⋅ 𝒗̂[𝜁 ; 𝜁 ] dΩ (50)
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FIGURE 3 Schematic of the complete cylindrical model, including the active model rheology, the windkessel afterload model,
and the valve model.

We discretize this system using a mid-point scheme for the equilibrium equations and a backward scheme for the incompress-1

ibility equation, leading to the following discrete system2

Find (

𝜁𝑛+1, 𝒗𝑛+1, 𝑝𝑛+1
) such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩


𝑛+ 1

2 ♯
𝑎 [𝜁𝑛+1, 𝒗𝑛+1](𝜁 ) + 

𝑛+ 1
2 ♯

𝑖 [𝜁𝑛+1, 𝑝𝑛+1](𝜁 ) = 
𝑛+ 1

2 ♯
𝑒 [𝜁𝑛+1](𝜁 ) ∀𝜁

𝒗𝑛+
1
2 = D𝒖[𝜁𝑛+

1
2 ]( 𝜁

𝑛+1−𝜁𝑛

Δ𝑡𝑛
) ∀𝑿

∫
Ω

(

𝐽 [𝜁𝑛+1] − 1
)

𝑝̂ dΩ = 0 ∀𝑝̂
(51)

where 
𝑛+ 1

2 ♯
𝑎 [𝜁𝑛+1, 𝒗𝑛+1](𝜁 ), 𝑛+ 1

2 ♯
𝑖 [𝜁𝑛+1, 𝑝𝑛+1](𝜁 ) and 

𝑛+ 1
2 ♯

𝑒 [𝜁𝑛+1](𝜁 ) are now detailed.3

Regarding the virtual power of acceleration forces, we propose4


𝑛+ 1

2 ♯
𝑎 [𝜁𝑛+1, 𝒗𝑛+1](𝜁 ) ∶= ∫

Ω

𝜚0
𝒗𝑛+1 − 𝒗𝑛

Δ𝑡𝑛
⋅ D𝒖[𝜁𝑛+

1
2 ](𝜁 ) dΩ. (52)

This implies5

Δ
Δ𝑡𝑛

= 
𝑛+ 1

2 ♯
𝑎 [𝜁𝑛+1, 𝒗𝑛+1](𝜁

𝑛+1 − 𝜁𝑛

Δ𝑡𝑛
), (53)

where Δ ∶= 𝑛+1 − 𝑛 with 𝑛 ∶= ∫Ω 𝜚0 (𝒗𝑛)2 ∀𝑛. Thus, we have the first part of the discrete energy balance, i.e., the6

discrete counterpart to the continuous energy balance (46).7
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Regarding the virtual power of internal forces, we propose the following discretization1


𝑛+ 1

2 ♯
𝑖 [𝜁𝑛+1, 𝑝𝑛+1](𝜁 ) ∶= ∫

Ω

𝚺𝑛+ 1
2 ♯[𝜁𝑛+1, 𝑝𝑛+1] ∶ D𝑬[𝜁𝑛+

1
2 ](𝜁 ) dΩ, (54)

where2

𝚺𝑛+ 1
2 ♯ ∶= 𝚺

𝑛+ 1
2 ♯

𝑑 + 𝚺
𝑛+ 1

2 ♯
𝑏 + 𝛾𝑬̇𝑛+ 1

2 ♯ + 𝜎
𝑛+ 1

2 ♯
1D 𝒆𝑭 ⊗ 𝒆𝑭 (55)

with 𝚺
𝑛+ 1

2 ♯
𝑑 , 𝚺𝑛+ 1

2 ♯
𝑏 and 𝜎

𝑛+ 1
2 ♯

1D adequate discretization of the passive and active stress tensors given below, and3

𝑬̇𝑛+ 1
2 ♯ ∶= D𝑬[𝜁𝑛+

1
2 ](𝜁

𝑛+1 − 𝜁𝑛

Δ𝑡𝑛
). (56)

Concerning the passive stress, one could follow the conservative approach proposed by [Gonzalez 2000; Hauret & Le Tallec4

2006], leading to an exact discrete analog to the second part of the continuous energy balance (46). However, as the system is5

strongly dissipative, the conservative correction introduced in [Gonzalez 2000] can be omitted—see the discussion in [Hauret6

& Le Tallec 2006]. Thus, for the sake of simplicity, here we propose the following discretizations7

𝚺
𝑛+ 1

2 ♯
𝑑 ∶=

𝜕𝑊𝑒

𝜕𝑬
(𝑬𝑛+ 1

2 ♯) (57)
and8

𝚺
𝑛+ 1

2 ♯
𝑏 ∶= −𝑝𝑛+1𝐽 𝑛+ 1

2 ♯𝑪𝑛+ 1
2 ♯

−1
. (58)

Concerning the active stress, the discretization reproduces exactly what was proposed in [Kimmig et al. 2019], namely,9

𝜎
𝑛+ 1

2 ♯
1D ∶=

𝑇
𝑛+ 1

2 ♯
fib

1 + 2 𝒆𝑭 ⋅ 𝑬𝑛 ⋅ 𝒆𝑭

𝒆𝑭 ⋅ 𝑬𝑛+1 − 𝑬𝑛 ⋅ 𝒆𝑭

𝒆𝑭 ⋅ Δ𝑡𝑛𝑬̇𝑛+ 1
2 ♯ ⋅ 𝒆𝑭

(59)

with10

𝑇
𝑛+ 1

2 ♯
fib ∶=

√

𝑘𝑛+1𝑐

(

𝜏𝑐
√

𝑘𝑐

)𝑛+1

+ 𝜇
𝑒𝑛+1𝑐 − 𝑒𝑛𝑐

Δ𝑡𝑛
(60)

and √

𝑘𝑛𝑐 ,
(

𝜏𝑐
√

𝑘𝑐

)𝑛 and 𝑒𝑛𝑐 following the time-scheme proposed in [Chapelle et al. 2012]. As detailed in [Chapelle et al. 2012;11

Kimmig et al. 2019], this discretization leads to the following relation12

Δ
Δ𝑡𝑛

= 
𝑛+ 1

2 ♯
𝑖 [𝜁𝑛+1, 𝒗𝑛+1](𝜁

𝑛+1 − 𝜁𝑛

Δ𝑡𝑛
), (61)

where Δ ∶= 𝑛+1 − 𝑛 with 𝑛 the discrete elastic energy. Thus, combining (53) and (61), as well as the first equation in (51),13

we see that the proposed discretization conserves the energy balance (46) at the discrete level.14

Finally, concerning the external loading, we propose15


𝑛+ 1

2 ♯
𝑒 [𝜁𝑛+1](𝜁 ) ∶= ∫

Γ𝑖

𝑃
𝑛+ 1

2v 𝒆𝑹 ⋅ 𝑭 𝑛+ 1
2 ♯

−1
⋅ D𝒖[𝜁𝑛+

1
2 ](𝜁 ) dΓ + 𝑃

𝑛+ 1
2v 𝜋𝐿

(

𝑅𝑖 + 𝜌𝑛+
1
2
(

𝑅𝑖
)

)2
𝜀̂, (62)

which, considering the proposed kinematics, can be integrated as16


𝑛+ 1

2 ♯
𝑒 [𝜁𝑛+1](𝜁 ) = 𝑃

𝑛+ 1
2v 2𝜋𝐿

(

𝑅𝑖 + 𝜌𝑛+
1
2
(

𝑅𝑖
)

)(

1 + 𝜀𝑛+
1
2

)

𝜌̂ + 𝑃
𝑛+ 1

2v 𝜋𝐿
(

𝑅𝑖 + 𝜌𝑛+
1
2
(

𝑅𝑖
)

)2
𝜀̂. (63)

This leads to the following relation17


𝑛+ 1

2 ♯
𝑒 [𝜁𝑛+1](𝜁

𝑛+1 − 𝜁𝑛

Δ𝑡𝑛
) + 𝑃

𝑛+ 1
2v 𝑄𝑛+ 1

2 ♯[𝜁𝑛+1] = 0 (64)
with18

𝑄𝑛+ 1
2 ♯[𝜁𝑛+1] ∶= 2𝜋𝐿

(

𝑅𝑖 + 𝜌𝑛+
1
2
(

𝑅𝑖
)

)(

1 + 𝜀𝑛+
1
2

) 𝜌𝑛+1
(

𝑅𝑖
)

− 𝜌𝑛
(

𝑅𝑖
)

Δ𝑡𝑛
+ 𝜋𝐿

(

𝑅𝑖 + 𝜌𝑛+
1
2
(

𝑅𝑖
)

)2 𝜀𝑛+1 − 𝜀𝑛

Δ𝑡𝑛
. (65)

Thus, the proposed scheme verifies the discrete counterpart to the energy balance between the ventricle and the circulation (47).19
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2.7.2 Nonlinear iterations and spatial discretization1

At each time step, we propose to solve system (51) in two stages. The first stage is obtained by introducing the second equation2

into the first, such that the system becomes3

Find (

𝜁𝑛+1, 𝑝𝑛+1
) such that

⎧

⎪

⎨

⎪

⎩

̄
𝑛+ 1

2 ♯
𝑎 [𝜁𝑛+1](𝜁 ) + 

𝑛+ 1
2 ♯

𝑖 [𝜁𝑛+1, 𝑝𝑛+1](𝜁 ) = 
𝑛+ 1

2 ♯
𝑒 [𝜁𝑛+1](𝜁 ) ∀𝜁

∫
Ω

(

𝐽 [𝜁𝑛+1] − 1
)

𝑝̂ dΩ = 0 ∀𝑝̂ (66)

with4

̄
𝑛+ 1

2 ♯
𝑎 [𝜁𝑛+1](𝜁 ) ∶= 

𝑛+ 1
2 ♯

𝑎 [𝜁𝑛+1, 2D𝒖[𝜁𝑛+
1
2 ](𝜁

𝑛+1 − 𝜁𝑛

Δ𝑡𝑛
) − 𝒗𝑛](𝜁 )

= ∫
Ω

2𝜚0
(

D𝒖[𝜁𝑛+
1
2 ](𝜁

𝑛+1 − 𝜁𝑛

Δ𝑡𝑛2
) − 𝒗𝑛

Δ𝑡𝑛

)

⋅ D𝒖[𝜁𝑛+
1
2 ](𝜁 ) dΩ,

(67)

while the second stage is a simple local update of the velocity field, as follows5

𝒗𝑛+1 = 2D𝒖[𝜁𝑛+
1
2 ](𝜁

𝑛+1 − 𝜁𝑛

Δ𝑡𝑛
) − 𝒗𝑛 ∀𝑿. (68)

The system (66) being highly nonlinear, we solve it through Newton-Raphson iterations. Integrals are simplified by analytically6

integrating over the circumference and length of the cylinder. For a complete description of the integrated system with the7

chosen time scheme, see Appendix B. Thus, the only remaining spatial coordinate is the radial position. We then discretize this8

1D problem with finite elements. 𝜌, 𝜑 and 𝜂 are discretized with standard Lagrange ℙ𝑘 elements, and the pressure 𝑝 with ℙ𝑘−19

elements so as to prevent any numerical locking potentially induced by the incompressibility constraint. 𝛽 and 𝜀 are simple10

scalars and do not need to be discretized. The auxiliary field 𝒗 is discretized at the quadrature point level, similarly to internal11

variables. In practice, we consider a single finite element across the cylinder thickness, albeit of high order. Moreover, a high12

quadrature degree is used, so as to adequately integrate the fields, including the fiber distribution, across the thickness of the13

cylinder.14

3 RESULTS AND DISCUSSION: MODEL RESPONSE AND SENSITIVITY15

We now illustrate the response of the proposed reduced cylindrical model, and its sensitivity to various parameters. We start16

with the discretization parameters, in order to study the numerical convergence of the model response. We then focus on the17

impact of the various physical (i.e., geometrical, structural and mechanical) parameters on the model response.18

3.1 Sensitivity to numerical parameters19

The three main parameters of the numerical scheme are (i) the interpolation order, controlling the spatial discretization, (ii) the20

quadrature order, determined by the number of integration points through the thickness of the cylindrical ventricle, and (iii)21

the time step, controlling the time discretization. Moreover, multiple cycles are required to obtain a periodic solution, so the22

number of simulated cycles is another input parameter. In order to analyze their impact on the solution, we ran the model for23

various values of these parameters and, taking the finest value (i.e., largest interpolation/quadrature order, smallest time step,24

final cardiac cycle) as reference, we computed multiple convergence metrics. Since the main quantities of interest of the model25

are ventricular pressure and volume, we defined normalized errors of such quantities over a cardiac cycle (duration denoted by26

𝑇 , discretized with 𝑁 time steps) as27

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

error𝑃 ∶=

√

1
𝑇
∫ 𝑇
0
(

𝑃v − 𝑃v,ref
)2 d𝑡

√

1
𝑇
∫ 𝑇
0
(

𝑃v,ref
)2 d𝑡

≈

√

√

√

√

√

√

√

1
𝑁

∑𝑁
𝑖=1

(

𝑃 𝑛
v − 𝑃 𝑛

v,ref
)2

1
𝑁

∑𝑁
𝑖=1

(

𝑃 𝑛
v,ref

)2

error𝑉 ∶=

√

1
𝑇
∫ 𝑇
0
(

𝑉 − 𝑉ref
)2 d𝑡

√

1
𝑇
∫ 𝑇
0
(

𝑉ref
)2 d𝑡

≈

√

√

√

√

√

1
𝑁

∑𝑁
𝑖=1

(

𝑉 𝑛 − 𝑉 𝑛
ref
)2

1
𝑁

∑𝑁
𝑖=1

(

𝑉 𝑛
ref
)2

. (69)
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FIGURE 4 Numerical convergence plots for the sensitivity of the model response (PV: work performed during a cardiac cycle,
P: ventricular pressure evolution throughout a cardiac cycle, V: ventricular volume evolution throughout a cardiac cycle) to
numerical parameters (upper left: interpolation order (using a quadrature order of 11 and a time step of 1 ms), upper right:
quadrature order (using an interpolation order of 3 and a time step of 1 ms), lower left: time step (using an interpolation order
of 3 and a quadrature order of 5), lower right: cardiac cycle index (using an interpolation order of 3, a quadrature order of 5
and a time step of 1 ms)). For each parameter, the model response with the finest value (i.e., upper left: interpolation order of 5,
upper right: quadrature order of 11, lower left: time step of 0.125 ms, lower right: cardiac cycle index of 6) is taken as reference.
All remaining simulations will be performed with an interpolation order of 3, a quadrature order of 5, a time step of 1 ms, and
considering the solution of the fifth cardiac cycle, in order to maintain the discretization and periodicity errors on the main
quantities of interest below 1 %.

We also defined an error metric in the work produced by the ventricle onto the blood stream during a cardiac cycle, combining1

both blood pressure and blood flow data, as follows2

error𝑃𝑉 ∶=
|

|

|

|

𝑊 −𝑊ref
𝑊ref

|

|

|

|

with
⎧

⎪

⎨

⎪

⎩

𝑊 ∶= ∫ 𝑇
0 𝑃v𝑉̇ d𝑡 ≈

∑𝑁
𝑖=1 𝑃

𝑛+ 1
2v
(

𝑉 𝑛+1 − 𝑉 𝑛)

𝑊ref ∶= ∫ 𝑇
0 𝑃v,ref𝑉̇ref d𝑡 ≈

∑𝑁
𝑖=1 𝑃

𝑛+ 1
2

v,ref
(

𝑉 𝑛+1
ref − 𝑉 𝑛

ref
)

. (70)

Note that because of the different normalizations used for the pressure, volume and pressure-volume errors, there is no strict3

ordering of the curves. Convergence results are shown in Figure 4. In order to have limited (< 1 %) discretization and periodicity4

errors while maintaining a fast computation time, all remaining simulations will be performed with an interpolation order of 3,5

a quadrature order of 5, a time step of 1 ms, and we will consider the solution of the fifth simulated cardiac cycle.6
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3.2 Baseline response1

Considering normal values of material parameters, as identified in previous works [Caruel et al. 2014; Chapelle et al. 2012;2

Kimmig et al. 2019] and reported in Table 1, we computed the baseline response of the model, shown in Figure 5. Pressure and3

volume temporal evolutions, as well as the pressure-volume curve, are highly physiological, and resemble the one produced by4

an existing reduced model based on a spherical geometry [Caruel et al. 2014]. The ventricular twist temporal evolution is a key5

output of the proposed cylindrical model that does not exist in the spherical counterpart. Many twist curves have been reported6

in the literature, most often measured through magnetic resonance [Kowallick et al. 2015; Rademakers et al. 1992] or ultrasound7

[Burns, La Gerche, Prior, & MacIsaac 2009; Sengupta et al. 2008] imaging and feature tracking. Globally, it was found that the8

ventricle starts twisting at the beginning of systole, during isovolumic contraction phase, then reaches a peak torsion towards the9

end of systole, and untwisting occurs during the isovolumic relaxation and early diastolic filling phases, which is consistent with10

our model prediction. Moreover, peak twist predictions are consistent with measured values [Kowallick et al. 2015; Sengupta11

et al. 2008]. Note that the negative initial torsion is simply due to the fact that the initial state of the cardiac cycle simulation12

corresponds to the end of filling, a state that is computed from the reference configuration (where there is no torsion at all)13

through an internal pressure loading.14

However, most experimental curves are more peaked than our predicted twist, which shows a twist plateau, although the exper-15

imental peak is more or less pronounced from one paper to another, see for instance [Sengupta et al. 2008] (very pronounced)16

and [Kowallick et al. 2015] (less pronounced). This can be explained by the cylindrical assumption and associated boundary17

conditions simplifications, as well as the chosen kinematics in which the global ventricular rotation is arbitrary and only the18

rotation differential plays a role. Indeed, apical and basal rotations are actually quite different, which cannot be described by the19

current model. It is nevertheless interesting to see that apical rotation curves reported for instance in [Burns et al. 2009] show a20

plateau very similar to our model predictions. A subsequent analysis will be performed to characterize the influence of various21

model parameters on the twist response.22

Geometry
Reference ventricular chamber volume (𝑉 ) 65 mL Reference ventricular external radius (𝑅𝑒) 33.0 mm
Reference ventricular wall volume 130 mL Reference ventricular thickness 13.9 mm
Reference ventricular aspect ratio 1.5 Reference ventricular length (𝐿) 57.1 mm
Reference ventricular internal radius (𝑅𝑖) 19.0 mm
Microstructure
Myofiber helix angle at endocardium (𝛼𝑖) +60º Myofiber helix angle at epicardium (𝛼𝑒) –60º
Passive behavior
Reference mass density (𝜚0) 1 kg/L 𝐶4 2
𝐶1 7 Pa 𝐶5 50 Pa
𝐶2 0 Pa 𝐶6 4
𝐶3 700 Pa Material viscosity (𝛾) 70 Pa
Active behavior
Spring stiffness (𝑘𝑠) 108 Pa Maximum active stress (𝜎0) 65 103 Pa
𝜇 70 Pa.s Time constant (𝛼) 12.0
Maximum active stiffness (𝑘0) 260 103 Pa 𝑛0

(

𝑒𝑐
) [Chapelle et al. 2012]

Valve model
Atrial pressure (𝑃at) [Chapelle et al. 2012] 𝐾−1

ar 7.6923 104 Pa.s.m−3

𝐾−1
at 1.1111 105 Pa.s.m−3 𝐾−1

iso 2.0000 109 Pa.s.m−3

𝐶valve 9.0000 10−9 m3.Pa−1

Circulation model
𝑅p 1.3500 107 Pa.s.m−3 𝐶ar 2.1150 10−10 m3.Pa−1
𝑅d 1.0949 108 Pa.s.m−3 𝐶d 2.0158 10−8 m3.Pa−1

TABLE 1 Summary of physical model parameters, and values used for the baseline simulation.
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FIGURE 5 Baseline response of the model, in terms of pressure (upper left) and volume (upper right) temporal evolutions,
pressure-volume curve (lower left), as well as ventricular twist temporal evolution (lower right).

3.3 Sensitivity to physical parameters1

We now analyze the influence of various physical parameters on the model response, including geometrical, microstructural and2

material parameters.3

3.3.1 Geometry4

Starting with geometrical parameters, Figures 6, 7 and 8 show the model response, in terms of ventricular pressure, volume and5

twist evolutions as well as pressure-volume curves, for various values of the ventricular aspect ratio (keeping internal and wall6

volumes at their baseline values), ventricular internal volume (keeping aspect ratio and wall volume at their baseline values)7

and ventricular wall volume (keeping aspect ratio and internal volume at their baseline values), respectively.8

Regarding ventricular aspect ratio (i.e., length divided by internal diameter), it can be seen in Figure 6 that it has almost no9

influence on the model pressure and volume response. Ventricular torsion is proportional to ventricular aspect ratio, i.e., to the10

length of the ventricle, showing that the torsion per unit length is mostly driven by the material law and not affected by the11

ventricular shape. Such a direct impact of the ventricular length on ventricular torsion has been observed for instance in [van12

Dalen et al. 2010], although in vivo studies do not allow a strict uncoupling between ventricular aspect ratio and other structural13

parameters such as length or diameter. Modeling studies found that ventricular output was mostly influenced by wall curvature14

[Taber et al. 1996], which is not present in our straight cylindrical model.15

Regarding ventricular volume, Figure 7 shows that it induces an expected shift in the volume and pressure-volume curves. The16

model also shows a slight impact on the peak systolic pressure and torsion, due to the fact that ventricles with smaller internal17

volume have smaller internal radius and length (to preserve aspect ratio) but larger wall thickness (to preserve wall volume).18
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FIGURE 6 Influence of the ventricular aspect ratio on the model response.

Finally, regarding ventricular wall volume, Figure 8 shows an expected increase in peak systolic pressure as well as a decrease1

in end-systolic volume (hence ejection fraction) when increasing wall volume (i.e., ventricular mass). Ventricular twist, however,2

is not significantly affected, since only the wall thickness changes, not the internal radius or the ventricular length.3

As a summary, these results show that the volume curve is mostly affected by internal radius, the pressure curve by ventricular4

thickness, and the twist curve by ventricular length.5

3.3.2 Fiber orientation6

One key strength of the proposed cylindrical model compared to previous models based on the spherical symmetry assumption,7

is its ability to describe the myofiber orientation distribution throughout the ventricular wall. Figure 9 shows the drastic impact8

of the fiber orientation on the model response. Interestingly, the physiological distribution (+60º at endocardium, -60º at epi-9

cardium) allows to optimize peak systolic pressure as well as work produced by the ventricle, and leads to the second largest10

torsion.11

4 CONCLUSIONS AND PERSPECTIVES12

In this paper we introduced a new level in our cardiac models hierarchy, with a reduced cylindrical model based on the geometry13

and kinematics proposed by [Guccione et al. 1991]. The series of models already contains a full-order 3D model [Chapelle et14

al. 2012] and a reduced “0D” spherical model [Caruel et al. 2014], and all models are based on a unique myocardial tissue15

constitutive framework [Chapelle et al. 2012]. For a still much reduced computational cost compared to the 3D model, the16

cylindrical model offers some interesting additional physiological features compared to the OD model, namely the myofiber17

orientation distribution and the ventricular torsion. Thus, the key strengths of the reduced-order model compared to the full-18

order model are its simplicity (all model parameters and variables have a clear, interpretable, meaning) and its efficiency (the19

model boils down to a 1D only mathematical problem). We proposed a fully consistent formulation of the model, including20

boundary conditions and the cylinder closure lid, in a variational framework based on the principle of virtual work written in the21
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FIGURE 7 Influence of the ventricular internal volume on the model response.

manifold generated by the chosen kinematics. We also proposed an energy-preserving (except for the passive stress part, which1

is a common approximation for dissipative laws [Hauret & Le Tallec 2006]) discretization approach based on finite elements2

and a mid-point integration scheme. The model was shown to have a physiological response, including its sensitivity to various3

model parameters.4

There are multiple perspectives to this work. In terms of modeling, we plan to investigate the cylindrical kinematics itself.5

Making 𝛽 and 𝜀 functions of 𝑅 (like 𝜌, 𝜑 and 𝜂) should enrich the cylinder motion, potentially making its response more6

physiological. Similarly, we plan to encode better longitudinal dependency, for instance to be able to distinguish apical from basal7

rotations, and to make the model ventricular torsion response closer to measured ones. Additionally, more complex pericardial8

boundary conditions will be considered, and there impact characterized. We also plan to perform a systematic comparison9

between the responses of the 3D full-order model, the 1D cylindrical model and the OD spherical model. This will allow to10

characterize the intrinsic scaling between the various models, induced by the underlying structural hypothesis. In fine, this11

will pave the way for a hierarchical model parameter identification pipeline, where cheap reduced models are used in a first,12

exploratory step, and full-order models are only used in a finalization step.13

14

APPENDIX15

A FROM VARIATIONAL PRINCIPLE TO THE PRINCIPLE OF VIRTUAL WORK16

Inspired by the work of [Mardare 2015] about static elasticity in a Riemannian manifold, we want to propose a principle of virtual17

work adapted to our constrained kinematics formulation derived from a variational principle, albeit valid for elastodynamics. We18

restrict our formal justification to a passive hyperelastic material without any damping subjected to a uniform external pressure19

on its internal cavity. Then, a formal extension will be proposed for active and damped materials such as the cardiac tissue.20
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FIGURE 8 Influence of the ventricular wall volume on the model response.
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FIGURE 9 Influence of the fiber orientation distribution (fiber helix angle varies linearly from endocardium to epicardium,
symmetrically with respect to mid-wall) on the model response.
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We consider in this Appendix that the map 𝝍 defines a transformation from the kinematics parametrization space to the1

Euclidian space ℝ3, namely obliterating for now the cylindrical coordinates. To avoid any confusion, we denote this mapping2

𝝍 . We introduce the Hellinger-Reissner Lagrangian [Gravouil, Combescure, & Brun 2014; Washizu 1975] as3

(𝜁, 𝒗) =
𝑡

∫
0

⎡

⎢

⎢

⎣

∫
Ω

𝜚0
(

𝒗 ⋅ (D𝒖 ⋅ 𝜁 ) − 1
2
|𝒗|2

)

dΩ −𝒲 (𝑬) + 𝑃v𝒱𝑣

⎤

⎥

⎥

⎦

d𝑠. (A1)

where 𝒲 (𝑬) = ∫Ω 𝑊 (𝑬) dΩ is the hyperelastic potential, 𝑃v is the homogeneous pressure in the cavity and 𝒱𝑣 the volume of4

the cavity delimited by Γ𝑖. Considering the stationarity of  with respect to 𝜁 ∈  and 𝒗 ∈  , we find that5

d𝒗
dt

= D𝒖 ⋅ 𝜁̇ (A2)
and for all 𝜁 ∈  ,6

∫
Ω

[

𝜚0
d𝒗
dt

⋅
(

D𝒖 ⋅ 𝜁
)

+ 𝜕𝑊 (𝑬)
𝜕𝑬

∶ D𝑬 ⋅ 𝜁
]

dΩ = − ∫
Γ𝑖(𝑡)

𝑃v𝒏 ⋅ (D𝒖 ⋅ 𝜁) dΓ (A3)

where D𝒖 ⋅ 𝜁 is the derivative of the displacement field 𝒖 with respect to 𝜁 and applied to a parametrization 𝜁 ∈  , constrained7

by the mapping 𝝍 .8

In the same manner, D𝑬 ⋅ 𝜁 is the derivative of the Green-Lagrange strain tensor with respect to the parametrization applied9

to 𝜁 .10

When, the constitutive law contains an active part and a damping part, we therefore extend (A3) into a general principle of11

virtual work, namely,12

∀𝜁 ∈  , ∫
Ω

[

𝜚0
d𝒗
dt

⋅
(

D𝒖 ⋅ 𝜁
)

+ 𝚺 ∶ D𝑬 ⋅ 𝜁
]

dΩ = − ∫
Γ𝑖(𝑡)

𝑃v𝒏 ⋅ (D𝒖 ⋅ 𝜁 ) dΓ (A4)

where 𝚺 is the second Piola-Kirchhoff stress tensor, namely the energy conjugate of the Green-Lagrange deformation tensor 𝑬.13

B ONE DIMENSIONAL REDUCTION OF THE MATHEMATICAL PROBLEM14

The analytical integration along the Θ and 𝑍 directions of the system described in (66) will be detailed hereafter.15

Noting that the derivative of the mapping of the current position can be factorised as16

D𝒖[𝜁 ](𝜁 ) =
( +cos(𝛽𝑍+𝜑) − sin(𝛽𝑍+𝜑)𝑍(𝑅+𝜌) − sin(𝛽𝑍+𝜑)(𝑅+𝜌) 0 0

+ sin(𝛽𝑍+𝜑) + cos(𝛽𝑍+𝜑)𝑍(𝑅+𝜌) + cos(𝛽𝑍+𝜑)(𝑅+𝜌) 0 0
0 0 0 𝑍 1

)

⋅ 𝜁, (B5)
the inertia forces can be rewritten as17

̄
𝑛+ 1

2 ♯
𝑎 [𝜁𝑛+1](𝜁 ) = 2∫

Ω

𝜚0𝜁
⊺ ⋅

(

D𝒖[𝜁𝑛+
1
2 ]
)⊺

⋅
(

D𝒖[𝜁𝑛+
1
2 ] ⋅

(

𝜁𝑛+1 − 𝜁𝑛

Δ𝑡𝑛2

)

− 𝒗𝑛
Δ𝑡𝑛

)

dΩ

= 2∫
Ω

𝜚0𝜁
⊺ ⋅

(

D𝒖[𝜁𝑛+
1
2 ]
)⊺

⋅ D𝒖[𝜁𝑛+
1
2 ] ⋅

(

𝜁𝑛+1 − 𝜁𝑛

Δ𝑡𝑛2

)

− 𝜚0𝜁
⊺ ⋅

(

D𝒖[𝜁𝑛+
1
2 ]
)⊺ 𝒗𝑛

Δ𝑡𝑛
dΩ.

(B6)

Integrating over Θ and 𝑍 gives18

̄
𝑛+ 1

2 ♯
𝑎 [𝜁𝑛+1](𝜁 ) = 4𝜋

𝑅𝑒

∫
𝑅𝑖

𝜚0𝜁
⊺ ⋅

(

 ⋅
(

𝜁𝑛+1 − 𝜁𝑛

Δ𝑡𝑛2

)

− ⊺ ⋅ 𝒗
𝑛

Δ𝑡𝑛

)

d𝑅, (B7)

where19

 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐿 0 0 0 0
0 𝐿3

3 (𝑅+𝜌𝑛+
1
2 )2 𝐿2

2 (𝑅+𝜌𝑛+
1
2 )2 0 0

0 𝐿2
2 (𝑅+𝜌𝑛+

1
2 )2 𝐿(𝑅+𝜌𝑛+

1
2 )2 0 0

0 0 0 𝐿3
3

𝐿2
2

0 0 0 𝐿2
2 𝐿

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (B8)
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and1

 =

⎛

⎜

⎜

⎜

⎜

⎝

1

𝛽
𝑛+ 1

2

(

sin(𝛽𝑛+
1
2 𝐿+𝜑𝑛+ 1

2 )−sin𝜑𝑛+ 1
2

)

𝑅+𝜌𝑛+
1
2

(𝛽𝑛+
1
2 )2

(

sin𝜑𝑛+ 1
2 −sin(𝛽𝑛+

1
2 𝐿+𝜑𝑛+ 1

2 )+𝛽𝑛+
1
2 𝐿 cos(𝛽𝑛+

1
2 𝐿+𝜑𝑛+ 1

2 )
)

𝑅+𝜌𝑛+
1
2

𝛽
𝑛+ 1

2

(

cos(𝛽𝑛+
1
2 𝐿+𝜑𝑛+ 1

2 )−cos𝜑𝑛+ 1
2

)

0 0

1

𝛽
𝑛+ 1

2

(

cos𝜑𝑛+ 1
2 −cos(𝛽𝑛+

1
2 𝐿+𝜑𝑛+ 1

2 )
)

𝑅+𝜌𝑛+
1
2

(𝛽𝑛+
1
2 )2

(

cos(𝛽𝑛+
1
2 𝐿+𝜑𝑛+ 1

2 )−cos𝜑𝑛+ 1
2 +𝛽𝑛+

1
2 𝐿 sin(𝛽𝑛+

1
2 𝐿+𝜑𝑛+ 1

2

)

𝑅+𝜌𝑛+
1
2

𝛽
𝑛+ 1

2

(

sin(𝛽𝑛+
1
2 𝐿+𝜑𝑛+ 1

2 )−sin𝜑𝑛+ 1
2

)

0 0

0 0 0 𝐿2
2 𝐿

⎞

⎟

⎟

⎟

⎟

⎠

.

(B9)
For the internal forces, the spatial dependency is only along the radial direction as both the derivative of the Green-Lagrange2

strain tensor given in (21) and the second Piola-Kirchhoff stress tensor, defined through the chain rule involving the invariants3

of the Cauchy-Green dilation tensor (15), do not have a Θ or 𝑍 dependency. Thus the integration simply reduces to4


𝑛+ 1

2 ♯
𝑖 [𝜁𝑛+1, 𝑝𝑛+1](𝜁 ) ∶= 2𝜋𝐿

𝑅𝑒

∫
𝑅𝑖

𝚺𝑛+ 1
2 ♯[𝜁𝑛+1, 𝑝𝑛+1] ∶ D𝑬[𝜁𝑛+

1
2 ](𝜁 ) d𝑅. (B10)

For the external forces, its integrated expression has already been given in (63).5

The incompressibility constraint does not depend on Θ or 𝑍 and simply reads6

∫
Ω

(

𝐽 [𝜁𝑛+1] − 1
)

𝑝̂ dΩ = 2𝜋𝐿

𝑅𝑒

∫
𝑅𝑖

(

(

1 + 𝜌′𝑛+1
)

(

1 + 𝜌𝑛+1

𝑅

)

(

1 + 𝜀𝑛+1
)

− 1
)

𝑝̂ d𝑅. (B11)

Finally, the integrated system (66) reduces to7

Find (

𝜁𝑛+1, 𝑝𝑛+1
) such that
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

4𝜋

𝑅𝑒

∫
𝑅𝑖

𝜚0𝜁
⊺ ⋅

(

 ⋅
(

𝜁𝑛+1 − 𝜁𝑛

Δ𝑡𝑛2

)

− ⊺ ⋅ 𝒗
𝑛

Δ𝑡𝑛

)

d𝑅 + 2𝜋𝐿

𝑅𝑒

∫
𝑅𝑖

𝚺𝑛+ 1
2 ♯[𝜁𝑛+1, 𝑝𝑛+1] ∶ D𝑬[𝜁𝑛+

1
2 ](𝜁 ) d𝑅

= 𝑃
𝑛+ 1

2v 2𝜋𝐿
(

𝑅𝑖 + 𝜌𝑛+
1
2
(

𝑅𝑖
)

)(

1 + 𝜀𝑛+
1
2

)

𝜌̂ + 𝑃
𝑛+ 1

2v 𝜋𝐿
(

𝑅𝑖 + 𝜌𝑛+
1
2
(

𝑅𝑖
)

)2
𝜀̂,

2𝜋𝐿

𝑅𝑒

∫
𝑅𝑖

(

(

1 + 𝜌′𝑛+1
)

(

1 + 𝜌𝑛+1

𝑅

)

(

1 + 𝜀𝑛+1
)

− 1
)

𝑝̂ d𝑅 = 0.
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