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Myotonic dystrophy type 1 (DM1) exhibits highly heterogeneous clinical manifestations caused by an
unstable CTG repeat expansion reaching up to 4000 CTG. The clinical variability depends on CTG repeat
number, CNG repeat interruptions, and somatic mosaicism. Currently, none of these factors are
simultaneously and accurately determined due to the limitations of gold standard methods used in
clinical and research laboratories. An amplicon method for targeting the DMPK locus using single-
molecule real-time sequencing was recently developed to accurately analyze expanded alleles. How-
ever, amplicon-based sequencing still depends on PCR, and the inherent bias toward preferential
amplification of smaller repeats can be problematic in DM1. Thus, an amplification-free long-read
sequencing method was developed by using CRISPR/Cas9 technology in DM1. This method was used to
sequence the DMPK locus in patients with CTG repeat expansion ranging from 130 to >1000 CTG. We
showed that elimination of PCR amplification improves the accuracy of measurement of inherited repeat
number and somatic repeat variations, two key factors in DM1 severity and age at onset. For the first
time, an expansion composed of >85% CCG repeats was identified by using this innovative method in a
DM1 family with an atypical clinical profile. No-amplification targeted sequencing represents a prom-
ising method that can overcome research and diagnosis shortcomings, with translational implications
for clinical and genetic counseling in DM1. (J Mol Diagn 2022, -: 1e12; https://doi.org/10.1016/
j.jmoldx.2022.08.003)
Supported Q3by the Institut National de la Santé et de la Recherche Méd-
icale, Sorbonne Université, Q3Institut Mérieux (Accelerator project) and the
2019 Targeted Sequencing SMRT Grant.
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Short tandem repeats are an important source of genetic
variation and phenotypic variability in disease and health
that are not always well characterized and understood due to
their complexities. Among these repeated elements, unsta-
ble repeat expansions are associated with >20 diseases,
including the complex and variable myotonic dystrophy
type 1 (DM1) disorder.1 DM1 is caused by an unstable CTG
repeat expansion in the 30 untranslated region of the DM1
protein kinase (DMPK ) gene, which usually increases
across generations and over time in somatic tissues.2,3 In
DM1, longer expanded alleles are usually associated with a
worsening of clinical severity and an earlier age of onset.4

This anticipation phenomenon is particularly obvious in
DM1.5 DM1 is mainly characterized by an unusually broad
Pathology and American Society for Investiga

Y-NC-ND license (http://creativecommons.org

O 5.6.0 DTD � JMDI1255_proof �
clinical spectrum of symptoms divided into five distinct
clinical forms ranging from late onset to the congenital
forms, which are often associated with the largest size of
inherited diseaseeassociated allele.4 Facial dysmorphisms,
muscle weakness, and cognitive impairment are more
frequent symptoms at an earlier onset, whereas cardiac de-
fects and cataracts are more common in DM1 patients with
later forms of the disease.
tive Pathology. Published by Elsevier Inc.

/licenses/by-nc-nd/4.0).
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In DM1, it is laborious, for several reasons, to diagnose
patients and classify them into distinct clinical categories
based exclusively on mutation status and size of CTG re-
peats when known. First, the long-expanded allele and the
precise number of CTG repeats are complicated to identify
and measure by using conventional methods, particularly for
the larger repeat expansions.6,7 Second, patients with DM1
exhibit high clinical and genetic variability that cannot be
exclusively explained by the size of the CTG repeats.4

Third, additional factors such as somatic mosaicism are
important disease modifiers contributing to the high geno-
type and phenotype variability observed in DM1. Somatic
mosaicism biased toward expansions contributes to the
progressive nature of the various DM1 symptoms and also
to the variation in the age of onset.8e11 Fourth, the majority
of patients with DM1 inherit pure CTG repeat expansion.
However, >8% of patients with known DM1 carry in-
terruptions that vary in type (CCG, CAG, CTC, and CGG)
and number between families and also among individuals of
the same family.12 Interruptions are frequently associated
with intergenerational contractions and stabilization of the
CTG repeat as well as milder DM1 symptoms and/or
additional symptoms.11,13e22 Fifth, single-nucleotide poly-
morphisms in the DNA mismatch repair gene MSH3,
required for maintenance of genomic integrity, have been
shown to reduce levels of somatic mosaicism and are
associated with delayed onset in patients with DM1.23,24

The contribution of CTG repeat length, somatic mosai-
cism, structural variants, and/or modifier genes on the DM1
genotype and phenotype remains poorly understood due to
technical difficulties in analyzing these factors.

Currently, the molecular diagnostic procedure used in
DM1 genetic testing is divided into two steps.6,7 The first is
to detect or rule out possible DM1 expansions using PCR
and fragment-length analysis (Table 1). This method cannot
differentiate between individuals homozygous for a normal
allele and individuals whose CTG repeat expansion could
not be amplified by PCR. A second step is therefore
necessary to identify large expanded alleles and estimate the
approximate size by using Southern blot. All these methods
are time-consuming procedures that do not simultaneously
provide information on somatic mosaicism and structural
variants of expansion, two important prognostic parameters.
Furthermore, triplet-repeat primed PCR (TP-PCR) is also
used to directly detect the presence of an expanded allele.25

However, no size repeat can be estimated by this method,
which leads to a loss of information necessary for per-
forming genetic counseling. To date, TP-PCR is the only
diagnostic method, which makes it possible to reveal variant
repeats in the first 100 bp within the 5ʹ and 30 end of the
CTG array. However, this method is unable to identify in-
terruptions at the middle of large repeat expansions of >200
to 300 CTG repeats and to provide the exact number and
type of interruptions, regardless of the size of the repeats.
Diagnostic laboratories generally use several methodologic
approaches to detect CTG repeat expansion and roughly
2
SCO 5.6.0 DTD � JMDI1255_proof �
estimate the size of the repeat, which leads to long diag-
nostic delays. Unfortunately, no diagnostic method can
accurately estimate somatic mosaicism, which is an impor-
tant parameter in predicting disease progression.8e11

Currently, the most accurate method to assess the
inherited CTG repeat expansion size and the level of so-
matic mosaicism is the small-pool PCR (SP-PCR).9,26 SP-
PCR (PCR on successive DNA dilutions) is a time-
consuming and fastidious method, used exclusively in
research laboratories. The PCR amplification bias toward
shorter repeats and the difficulties inherent in the amplifi-
cation of the GC-rich DMPK locus by this method remain a
concern, which must be addressed by a new, widely avail-
able method. In addition, neither SP-PCR nor Southern blot
can detect CNG interruptions within the repeats, which can
lead to inaccurate genetic analysis and genotypeephenotype
associations. Currently, molecular diagnostic tests used in
diagnostic laboratories to analyze the DMPK locus may
induce loss of information and bias in the interpretation of
genetic data, especially when patients carry large CTG re-
peats. It is therefore essential to accurately measure the
number of CTG repeats, structural variants, and somatic
mosaicism in patients with DM1 using a fast and accurate
method to provide better diagnosis and prognosis with
minimal delay.
Targeted single-molecule long-read real-time sequencing

from PCR products by Pacific Biosciences (Menlo Park,
CA) was recently described to analyze the DMPK locus in
patients.16,27 This method allows accurate counting of repeat
numbers in large expanded alleles, and it can simultaneously
evaluate the degree of somatic mosaicism and identify in-
terruptions.27 However, amplicon-based sequencing relies
on PCR and is still subjected to the inherent preferential
amplification of smaller repeats, which introduces a con-
founding and undesirable bias in repeat sizing. To overcome
this limitation, we performed a pilot study in 11 patients
with DM1 using a robust amplification-free targeted long-
read sequencing (Pacific Biosciences) to simultaneously
analyze the size and sequence of CTG repeat expansions
and somatic mosaicism. Using this method, measurement of
CTG repeat length and somatic mosaicism is improved in
DM1 patient samples. The second advantage of this method
is that CNG interruptions are easily detected regardless of
the size of the CTG repeat expansions. Strikingly, and for
the first time, triplet repeat expanded alleles composed of
>85% of CCG were identified in patients with DM1 for
whom amplification of the triplet repeat expansion failed
according to PCR and TP-PCR.

Materials and Methods

DM1 Patient Genomic DNA Samples

Participants with DM1 were recruited by the Genetics
Department of Nantes Hospital, the Genetics Department of
the NeckereEnfants Malades Hospital, the DM-Scope
jmdjournal.org - The Journal of Molecular Diagnostics
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Table 1 Genetic Testing Strategy for DM1

Information PCR Southern blot TP-PCR

Mutation status U U U

CTG repeat size <200-300 U U U
Large CTG repeat size x U x
Structural variants x x x
Somatic mosaicism x U x

DM1, myotonic dystrophy type 1; TP-PCR, triplet-repeat primed PCR.

---
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registry, and the Neuromuscular Disease Reference Center
of Pitié-Salpêtrière Hospital in France. Written informed
consent was obtained from all participants.

Genomic DNA samples were initially genotyped for
DM1 by using conventional PCR, TP-PCR, or Southern
blot.6,7 DNA was extracted in diagnostic laboratories. High-
molecular weight DNA was extracted from immortalized
lymphoblastoid cells by using the Monarch Genomic DNA
Purification Kit (catalog no. T3010S; New England Biolabs,
Evry-Courcouronnes, France).
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Design of Guide RNAs for Cas9 Digestion

Human Hg19 reference sequences surrounding the DM1
repeat region were used to design Cas9 CRISPR RNA
(crRNA) sequences. Candidate target sequences were
generated by using the Genetic Perturbation Platform
sgRNA Designer webtool on the Broad Institute website.
The latest design tool, which provides results the same as
the earlier version of the tool, is available through the link
(Broad Institute, https://portals.broadinstitute.org/gppx/
crispick/public, last accessed July 25, 2022). Two
upstream and three downstream top ranking candidate
sequences, which could generate approximately 2 kb
target fragments, were custom synthesized and tested in
targeted sequencing experiments with HEK293 genomic
DNA. The combination of upstream and downstream
crRNAs that produced the highest sequencing yield was
selected for the current study. The final crRNA
sequences are the DM1-L1-crRNA sequence (50-
Table 2 crRNA and Genomic Coordinate for DMPK and Control Loci

Locus crRNA1 crRNA2

DMPK 50-CCCCATCGGGACAACGCAGA-30 50-GGGCGTGTATAGAC

HTT 50-CTTATTAACAGCAGAGAACT-30 50-TAAACTTTGAAGAC

C9orf72 50-TTGGTATTTAGAAAGGTGGT-30 50-GGAAGAAAGAATTG

FMR1 50-CGCGCGTCTGTCTTTCGACC-30 50-CCTTTATGCAAAGT

*Fragment size after CRISPR/Cas9 digestion.
crRNA, CRISPR RNA; DM1, myotonic dystrophy type 1; GRCh38, Genome Refere

The Journal of Molecular Diagnostics - jmdjournal.org
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CCCCATCGGGACAACGCAGA-30) and the DM1-R1-
crRNA sequence (50-GGGCGTGTATAGACACCTGG-30),
which generate a target capture region of 2361 bp.
SMRTbell Library Preparation

Preparation of the SMRTbell library was performed ac-
cording to the “Procedure and Checklist-No-Amp Targeted
Sequencing utilizing the CRISPR-Cas9 system” (available
on the Pacific Biosciences website) per manufacturer in-
structions.28 Five patients were analyzed by using SMRT
Cell. Approximately 3 to 5 mg of native genomic DNA was
dephosphorylated with 0.05 U/mL of shrimp alkaline
phosphatase for each patient (catalog no. M0371S; New
England Biolabs) to reduce the amount of off-target mole-
cules in the final SMRTbell library. Guide RNAs (gRNAs)
were formed by annealing crRNAs (Integrated DNA
Technologies, Leuven, Belgium) to tracrRNAs (catalog no.
1072533; Integrated DNA Technologies) at a 1:1 ratio and a
5 mM concentration. The sequences of each crRNA target-
ing DM1 and various control loci used in the experiments
are shown in Table 2 ½. The gRNAeCas9 complex was
prepared by incubating 400 nmol/L gRNA with 400 nmol/L
Cas9 nuclease (catalog no. M0386M; New England Bio-
labs) for 10 minutes at 37�C. Dephosphorylated genomic
DNAs were digested with the gRNAeCas9 complex for 1
hour at 37�C. DM1 and control gRNA were multiplexed in
the same digestion reaction. Cas9 digestion products were
purified by using a 0.45X volume of AMPure PB Beads
(catalog no. 100-265-900; Pacific Biosciences). Barcoded
adapters recommended by Pacific Biosciences were ligated
to purified Cas9 digestion products using 0.4 mmol/L bar-
code adapters and 0.9U/mL T4 DNA ligase (catalog no.
EL0013; Thermo Fisher Scientific, Illkirch-Graffenstaden,
France) to form a library of symmetric SMRTbell tem-
plate molecules. The SMRTbell library was purified by
using a 0.45X volume of AMPure PB Beads (catalog no.
100-265-900; Pacific Biosciences). Failed ligation products
and gDNA fragments were removed by nuclease treatment
using 1.2 U/mL Exonuclease III (catalog no. M0206L; New
GRCh38

Size of the
fragment,* bp
(non-expanded allele)

ACCTGG-30 Chromosome 19 2328
(45,769,144-45,771,505)

GAGACA-30 Chromosome 4 3806
(3,072,601-3,076,440)

CAATTA-30 Chromosome 9 3639
(27,571,393-27,575,065)

TAGCTC-30 Chromosome X 3662
(147,911,739-147,915,434)

Q22nce Consortium Human Build 38.
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Table 3 HiFi Reads in Patients with DM1

Individuals #11 #18 #L1 #L3 #A3 #15969 #15841

Tissue Blood Blood Blood Blood Lymphoblastoid cells Lymphoblastoid cells Lymphoblastoid cells
DNA extraction ND ND ND ND Monarch Genomic DNA

Purification Kit Q23(NEB)
Monarch Genomic DNA
Purification Kit (NEB)

Monarch Genomic DNA
Purification Kit (NEB)

HiFi reads 841 1041 836 3731 7405 11,201 4429
DMPK locus 452 352 332 114 569 733 597
Control loci None None None None 4522 3073 3218
Expanded allele 206 205 65 21 303 398 361
Non-expanded allele 246 147 262 93 266 335 236
% Reads on-target 53.7 33.8 39.71 3.06 68.75* 33.98* 86.14*
% Reads off-target 46.3 66.2 60.29 96.94 31.25 66.02 13.86

*Includes DMPK and control loci reads.
DM1, myotonic dystrophy type 1; HiFi reads, highly accurate long-reads.
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England Biolabs) and an Enzyme Clean Up Kit (catalog no.
101-746-400; Pacific Biosciences) for 2 hours at 37�C.
After nuclease treatment, the SMRTbell library was incu-
bated with 41 mg/mL SOLu-Trypsin (catalog no. EMS0004;
Sigma-Aldrich; Saint-Quentin-Fallavier, France) for 20
minutes at 37�C. The nuclease-treated SMRTbell library
was purified by using a 0.45X volume of AMPure PB beads
for the first purification and a 0.42X volume of AMPure PB
Beads for the second purification. Finally, the purified
SMRTbell library was resuspended in 6.3 mL of elution
buffer (catalog no. 101-633-500; Pacific Biosciences) for
targeted SMRT sequencing.

Targeted SMRT Sequencing

Following the “Procedure and Checklist-No-Amp Targeted
Sequencing Utilizing the CRISPR-Cas9 System” per
manufacturer instructions,28 final SMRTbell libraries were
annealed with Sequencing Primer v4 from the No-Amp
Accessory Kit (catalog no. 101-788-900; Pacific Bio-
sciences) and bound with Sequel DNA Sequencing Poly-
merase 3.0 in the Sequel Binding Kit 3.0 (catalog no. 101-
626-600; Pacific Biosciences). Polymerase-bound
SMRTbell complexes were purified with 0.6X AMPure
PB Beads and sequenced on the Sequel System using
Sequel Sequencing Kit 3.0 (Pacific Biosciences) and a
customized setting with 4 hours of complex immobilization
and 20-hour movie collection.

Sequencing Data and Repeat Sequence Analysis

Sequencing data repeat sequence analysis was performed
following the “Analysis ProcedureeNo-Amp Data Prepa-
ration and Repeat Analysis” (available on the Pacific Bio-
sciences website) per manufacturer instructions.28 Barcode
demultiplexed highly accurate long-reads (ie, HiFi reads)
were first generated by using the Pacific Biosciences SMRT
Link software version 8.0 or later version. HiFi reads pro-
vide an accuracy of >99.9%. HiFi reads corresponding to
each sample were mapped to the Genome Reference
4
SCO 5.6.0 DTD � JMDI1255_proof �
Consortium Human Build 38 human reference sequence,
allowing on-target read identification and visual inspection
of sequencing reads using Integrative Genomics Viewer.29

Repeat sequence analysis was then performed by using
the RepeatAnalysisTools and instruction available through
GitHub (GitHub, https://github.com/PacificBiosciences/
apps-scripts/tree/master/RepeatAnalysisTools, last accessed
July 25, 2022) to generate various repeat sequence statistics.

Amplicon Long-Read Targeted Sequencing

DMPK locus was characterized in DM1 individuals #11 and
#18 according to the method described in Mangin et al.27

Briefly, normal and expanded CTG repeat alleles were
amplified by PCR using barcoded ST300-F (50-
GAACTGTCTTCGACTCCGGG-30) and ST300-R (50-
GCACTTTGCGAACCAACGAT-30) primers. To enrich
the SMRTbell library with the expanded allele, the PCR
products were purified by using a 0.45 to 0.5X volume of
AMPure PB Beads (catalog no. 100-265-900; Pacific Bio-
sciences) before SMRT sequencing. SMRTbell libraries
were prepared by using the SMRTbell Express Template
Prep Kit 2.0 (catalog no. 100-938-900; Pacific Biosciences)
and sequenced with the Sequel System.

Small-Pool PCR

SP-PCR amplifications and PCR product electrophoretic
analyses were performed according to the methods of
Gomes-Pereira et al.30 Briefly, blood DNA samples were
digested with HindIII enzyme, and SP-PCR was performed
by using DM-C (50-AACGGGGCTCGAAGGGTCCT-30)
and DM-BR (50-CGTGGAGGATGGAACACGGAC-30)
primers.26 The conditions of PCR were as follows: dena-
turation at 96�C for 5 minutes followed by 30 cycles at
96�C for 45 seconds, 68�C for 30 seconds, and at 70�C for 3
minutes with a chase of 1 minute at 68�C and 10 minutes at
72�C. SP-PCR products were loaded onto a 1% agarose gel
to compare instability between DM1 patients #11 and #18
and run at 300 V for 30 minutes followed by 16 hours at 160
jmdjournal.org - The Journal of Molecular Diagnostics
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Table 4 CTG Repeat Size and Interruptions in Patients with DM1

Individuals #11 #18 #L1 #L3 #A3 #15969 #15841

Tissue Blood Blood Blood Blood Lymphoblastoid cells Lymphoblastoid cells Lymphoblastoid cells
Age at sample (years) 20 42 29 26 40 36 58
Median expanded allele (No-Amp) 516 495 1378 1287 141 158 467
Median expanded allele (amplicon) 468 460 563 927 #NA #NA Failed
Interruptions (No-Amp) 2CCG 4CCG Pure Pure 1CAG Pure 78CCG
Interruptions (amplicon) 2CCG 4CCG Pure Pure Q24#NA #NA Failed
CNG repeat size (diagnosis) y700 y400 >1000 >1000 130 150 370

DM1, myotonic dystrophy type 1; Q25 Q25No-Amp, no-amplification targeted sequencing.

---
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V. The PCR products were then transferred to GeneScreen
Plus Hybridization Transfer Membrane (catalog no.
NEF988001PK; PerkinElmer SAS, Villebon-sur-Yvette,
France) and detected by hybridization using a non-
radioactive method as described in Tomé et al.31

Results

Amplification-free DMPK Locus Enrichment in Patients
with DM1

Amplicon-based long-read sequencing depends on PCR,
which has an inherent bias toward smaller repeats. To
overcome this limitation, an amplification-free long-read
sequencing method (No-Amp) was used to specifically
characterize the DMPK locus. This method uses the
CRISPR/Cas9 system to target and isolate the DNA frag-
ment of interest from genomic DNA, in combination with
Figure 1 Somatic mosaicism in individuals #11 and #18. A: The distributio
generated by the Pacific Biosciences algorithm. The x axis shows the CTG repeat n
bar represents the median. A total of 10,000 to 30,000 single-molecule HiFi reads
>200 single-molecule HiFi reads of expanded allele are analyzed in the no-amplifi
by small-pool PCR in blood samples of patients with myotonic dystrophy type 1. Th
labeled are indicated on the left of the figure. About 25 to 125 DNA molecules

The Journal of Molecular Diagnostics - jmdjournal.org
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long-read single-molecule real-time (SMRT) sequencing.
This method was performed in seven patients with DM1
using DNA isolated either from blood or lymphoblastoid
cell lines. These patients carried different CTG repeat
expansion lengths that were previously defined by using
Southern blot and/or PCR. The number of generated on-
target HiFi reads was sample dependent and ranged from
114 to 733 DMPK reads (Table 3 ½). The CTG repeat region
was successfully captured in all samples, with a better result
for samples #A3, #15969, and #15841. For those samples,
DNA was extracted with a high-molecular weight DNA
extraction kit (New England Biolabs). Off-target reads were
observed for all samples and represent an average number of
approximately 54%. No significant accumulation of off-
target sequencing reads mapping to a specific genome
location was observed in the samples digested exclusively
with DMPK locus gRNAs; all the off-target sequencing
reads appeared to be randomly distributed across the
Q21n of the size of the repeat of each highly accurate long-read (HiFi read)
umber. Each dot represents the CTG repeat size of one HiFi read. The black
of expanded allele are analyzed in the amplicon (Amp) experiment, whereas
cation (No-Amp) experiment. B: Trinucleotide repeat instability estimation
e sizes (converted in CTG repeats) of DNA Molecular Weight Marker III, DIG-
are amplified for each individual. e.g., equivalent genome.
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Figure 2 Distribution of the size of the repeat of each highly accurate long-read (HiFi read) generated by the Pacific Biosciences algorithm. A: Individuals
#L1 and #L3. B: Individuals #A3 and #15969. The x axis shows the CTG repeat number. Each dot represents the CTG repeat size of one HiFi read. The black line
represents the median. A total of 10,000 to 30,000 single-molecule HiFi reads of expanded allele are analyzed in the amplicon (Amp) experiment, whereas 21
to 398 single-molecule HiFi reads of expanded allele are analyzed in the no-amplification (No-Amp) experiment.
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Genome Reference Consortium Human Build 38 reference
(Supplemental Figure S1). However, some specific off-
target reads on chromosome 2 (chr2:116779778-
116785717) and chromosome 13 (chr13:89237016-
89240938) were captured in two of the three samples
digested by DM1 and control locus gRNAs (Table 2 and
Supplemental Figure S1). These specific off-target reads are
potentially produced by off-target gRNA sequence (DMPK-
crRNA2, C9orf72-crRNA1, and C9orf72-crRNA2) matches
with two to four mismatched bases (data not shown). Off-
target as well as control reads were filtered out during the
bioinformatics analysis and did not affect analysis of DM1-
specific reads. For samples #L1 and #L3 carrying the largest
CTG repeat sizes, the number of highly accurate long-reads
from the expanded allele was lower than for the other
samples in this study. The lower sequencing yields for these
large alleles are likely the result of reduced efficiency of
immobilization of the DNA polymerase complex into the
SMRT Cell via diffusion and lower raw reads to HiFi reads
conversion efficiency due to significantly longer template
lengths.
F1� Q12
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Targeted Amplification-free Long-Read Sequencing
Improves the Accuracy of CTG Repeat Size
Measurement

This is the first time that amplification-free targeted
sequencing has been described to generate long-read
sequencing data analysis for the DMPK locus using the
RepeatAnalysisTools developed by Pacific Biosciences (see
Materials and Methods for details). By amplification-free
sequencing, the number of CTG repeats was quantified in
seven patients with DM1 and ranged from 141 to 1378 re-
peats (median) (Table 4). The expanded alleles showed a
median CTG repeat of 516 and 495 in patients #11 and #18,
respectively, which was a similar range to that observed for
6
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amplicon target sequencing (Table 4). On the contrary, in-
dividuals #L1 and #L3, whose size was estimated to be
>1000 CTGs in diagnosis, displayed different CTG repeat
medians between amplicon sequencing and No-Amp tar-
geted sequencing. The median CTG repeat size was esti-
mated to be 563 and 927 CTG in individuals #L1 and #L3,
respectively, by the amplicon sequencing experiment, and
1378 CTG and 1287 CTG by the No-Amp experiment
(Table 4). These results strongly suggest that amplicon
sequencing is subjected to the inherent preferential ampli-
fication of the smallest repeats, particularly in individuals
#L1 and #L3 carrying the largest inherited expanded alleles.
Thus, PCR may introduce a confounding and undesirable
bias in repeat sizing in patients with DM1. The median CTG
repeat size for the expanded allele in samples #A3 and
#15969, based on No-Amp targeted sequencing, is consis-
tent with previous amplicon targeted sequencing data from
Mangin et al.27 Interestingly, the number of repeats in pa-
tient #15841 was estimated to be 467 CNG repeats by the
No-Amp method in lymphoblastoid cell lines. This size
estimate could not be performed before by using PCR as it
failed several times.
Targeted Amplification-free Long-Read Sequencing
Exhibits Somatic Mosaicism in Patients with DM1

The distribution of CNG repeats was analyzed in individuals
#11 and #18 carrying <500 interrupted CNG repeats by
targeted long-read sequencing as well as by SP-PCR, which
is usually used to estimate somatic mosaicism in patients
with DM1. All these methods, including SP-PCR, showed
that somatic mosaicism was lower in individual #18 than in
individual #11 (Figure 1 ½). Despite similar somatic mosai-
cism observed with the different methods, a PCR bias in
which the shortest alleles were overrepresented using long-
read sequencing of PCR products (amplicon) is clearly
jmdjournal.org - The Journal of Molecular Diagnostics
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observed. Interestingly, approximately 200 single-molecule
HiFi reads of the expanded allele appear sufficient to
accurately estimate somatic mosaicism in patients by no-
amplification targeted sequencing (Figure 1). Somatic
mosaicism was also observed in blood from patients #L1
and #L3 carrying >1000 pure CTG repeats at the DMPK
locus (Figure 2A). Despite a limited number of HiFi reads
obtained, no-amplification targeted sequencing provided a
better estimate of CTG repeat number distribution in pa-
tients with large expansions in which PCR bias is extremely
high using amplification targeted sequencing. To comple-
ment our data, we have also shown that lymphoblastoid cell
lines from individuals #A3 and #15969 exhibit somatic
mosaicism to varying degrees, with the highest being
observed in patient #A3 (Figure 2B).
Figure 3 Waterfall plots outline the repeat structure of the normal and expand
each individual molecule is represented by a series of colored dots on a horizo
resented in blue, whereas the CCG repeat is represented in orange. The highest pea
pair (bp).
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Targeted Amplification-free Long-Read Sequencing
Detects CNG Interruptions

In the literature, the interrupted expanded allele has recently
been shown to be a key factor in the severity of DM1
symptoms and the age of onset of these symptoms.1,13e22

The identification of interruptions in patients with DM1 at
diagnosis is therefore important to improve genetic coun-
seling in DM1. Using the No-Amp method, we analyzed
repeat expansion sequences to identify interrupted expanded
alleles in patients with DM1. Samples #11 and #18 showed
interruptions at the 30 end of the CTG repeat expansion,
which were also detected by TP-PCR (Figure 3 ½) (data not
shown). Two CCG interruptions and four CCG interruptions
were identified in samples #11 and #18, respectively, by
ed alleles. Triplet repeat sequences are sorted from shortest to longest, and
ntal line. Each dot represents a single repeat unit. The CTG repeat is rep-
ks represent the normal allele. The x axis shows the size of the repeat in base
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Figure 4 Waterfall plots outline the repeat structure of the normal and expanded alleles in myotonic dystrophy type 1 families 1 and 2 (PCR failed). Triplet
repeat sequences are sorted from shortest to longest, and each individual molecule is represented by a series of colored dots on a horizontal line. Each dot
represents a single repeat unit. The CTG repeat is represented in blue, whereas the CCG repeat is represented in orange. The highest peaks represent the normal
allele. The x axis shows the size of the repeat in base pair (bp). Part of the pedigrees of families 1 and 2 are shown on the left of the figure according to
standardized human pedigree nomenclature based on the methods of Bennet et al.32
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targeted sequencing of the DMPK locus, identification that
was impossible with other gold standard methods
(Figure 3). Interestingly, a single CAG repeat interruption at
the 50 end of the CTG repeat expansion was also identified
in the blood-derived lymphoblastoid cell line of sample #A3
(Figure 3). In sample #15841, amplification of the expanded
allele failed with PCR, making it impossible to analyze the
CNG repeat expansion sequence. By targeted No-Amp
sequencing, we overcame this limitation and identified
approximately 78 CCG interruptions in this patient’s
mutated allele located both at the 30 end of the CTG repeat
expansion and in the middle of the sequence (Figure 3).

Identification of DM1 Families Carrying CCG-Enriched
Expanded Allele

DM1 patients in families 1 and 2 were identified at the
neuro-myology department (Institute of Myology, Paris,
France) as patients with atypical DM1 in whom mild or no
muscle symptoms were reported. In addition, no cardiac or
8
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severe respiratory abnormalities were observed (Figure 4 ½

and Table 5 ½).32 In particular, individual #14 is completely
asymptomatic even after 12 years of follow-up. She has
neither motor weakness nor myotonia, even on electromy-
ography examination. Respiratory and cardiac in-
vestigations remain normal. These clinical aspects differ
from what is usually observed in patients with DM1 with
similar age and CTG repeat size (ranging from 360 to 1000
by Southern blot).4 To better characterize the DMPK mu-
tation in DM1 members of these two families, targeted
sequencing without amplification was performed in in-
dividuals #1, #14, #16, and #17 in whom conventional PCR
had failed. The amplification-free DMPK locus enrichment
is shown in Table 6 ½; only eight expanded allele HiFi reads
were obtained in sample #1, making it difficult to estimate
repeat size and somatic mosaicism in this patient (Table 6).
The estimated size of the repeats in samples #14, #16, and
#17 was 299, 224, and 360 CNG repeats, respectively,
which is lower than the estimates according to Southern blot
(360, 430, and 1000 CNG repeats) (Table 7 ½).
jmdjournal.org - The Journal of Molecular Diagnostics
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Table 5 Clinical Features in DM1 Families 1 and 2

Age sample
(years)

Age at onset
(years)

CTG repeat
number
(Southern blot) Weakness Myotonia Cardiac defect Respiratory defect

#1 45 36 NA Axial, proximal, distal,
and facial

Yes (36 years) No Vital capacity 91%
and hypercapnia

#14 35 Asymptomatic 360 No No No No
#16 48 38 430 Very mild facial No No No
#17 21 20 1000 Distal weakness of the

hand (Hirayama disease)
w15 years No No

DM1, myotonic dystrophy type 1.
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These results may be explained by an insufficient number
of HiFi reads obtained for each sample, particularly for
samples #16 and #17. Strikingly, large expanded alleles
enriched in CCG triplet repeats were identified, which ex-
plains the difficulties in amplifying the CNG repeat ex-
pansions in these patients (Figure 4). The mutated alleles of
individual #14 [(CTG)61-71(CTGCCG)115(CTG)1-5] are
composed of >35% CCG repeat interruptions. The
expanded allele structure observed in patient #14 differs
from the expanded allele structure observed in her sister
(individual #1). The presence of >35% hexamer
(CTGCCG) appears to stabilize the repeat in the blood of
patient #14 (aged 35 years) (Figure 5). In family 2, patients
#16 and #17 carry an expanded allele with >85% CCG
interruptions. The major allele structure observed in patient
#16 is (CTG)7(CCG) (CTG)3(CCG)197(CTG)16 and dif-
fers from that observed in her daughter (patient #17), in
whom the major allele structure is (CTG)7(CCG) (CTG)
3(CCG)330(CTG)19. No-Amp sequencing results revealed
a maternal CNG repeat expansion between individuals #16
and #17, suggesting that the DM1 expanded allele with
block CCG interruptions is unstable across generations in
this family. Furthermore, somatic mosaicism was observed
in these two patients with two different distributions of CTG
repeat number (Figure 5). The low number of HiFi reads did
not allow an accurate estimate of somatic mosaicism in
these patients (Table 6). However, for the first time, a new
variant at the DMPK locus composed of >85% CCG repeats
was identified by using the No-Amp targeted sequencing
method.
Table 6 HiFi Reads in DM1 Patients of Families 1 and 2

Individuals #1 #14 #16 #17

HiFi reads 926 652 510 1916
DMPK locus 158 192 127 471
Control loci 393 230 220 1275
Expanded allele 8 79 42 38
Non-expanded allele 150 113 85 433
% Reads on-target 59.61 64.88 64.12 91.13
% Reads off-target 40.39 35.12 35.88 8.87

DM1, myotonic dystrophy type 1; HiFi reads, highly accurate long-reads.
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Discussion

In DM1, current routine molecular diagnosis approaches do
not provide simultaneous characterization of the size and
sequence of the DM1 mutation with precision as well as the
dynamics of repeat instability in patients with DM1
(Table 1). These parameters are important DM1 disease
modifiers.3 In some cases, incomplete genetic analyses may
lead to an inaccurate prognosis in patients with DM1. New
genetic tests for DM1 are becoming essential to solidify the
diagnosis, aid prognosis, and improve care with shorter time
The Journal of Molecular Diagnostics - jmdjournal.org
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frames. Recently, we have shown that Pacific Biosciences
long-read sequencing from amplicons can sequence large
CTG repeat expansions in patients with DM1 and detect
CTG repeat interruptions.27 Nevertheless, this approach re-
mains limited by PCR amplification. Here, we showed that
the Pacific Biosciences No-Amp targeted sequencing
method is effective to sequence through previously inac-
cessible DMPK locus (large expanded alleles and GC-
enriched interrupted alleles). In the DM1 population,
>30% of patients carry large or interrupted expanded al-
leles.4,10 This number is certainly underestimated by the fact
that the size and sequence of the CTG repeat expansion are
not systematically determined during diagnosis.
Amplification-free targeted sequencing allowed highly ac-
curate sequence determination of hundreds of expanded
DNA molecules in several DM1 samples. We have
observed an up to 50% DM1 on-target rate in HiFi
sequencing reads when targeting only the DMPK locus with
the amplification-free targeted sequencing method. The on-
target rate is affected by the quality of genomic DNA in
which high-molecular weight DNAs provided the highest
No-Amp sequencing yield in this study (Table 3). Recently,
it has also been shown that high-molecular weight DNA,
yielding DNA ranging from 50 to 300þ Kb in length,
generates the highest quality long-read sequencing data of
complex metagenomes.33 The amplification-free targeted
sequencing method is also sensitive to the origin of DNA
samples. Variable results with DNA samples extracted from
different tissues or cell types have been observed (data not
shown). To continue improving the methodology in the
future, additional studies are needed to understand how
9
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Figure 5 Distribution of the size of the repeat in families 1 and 2. The x
axis shows the CTG repeat number. Each dot represents the CTG repeat size
of one highly accurate long-read. The black line represents the median.
Eight to 79 single-molecule highly accurate long-reads of expanded allele
were analyzed in the no-amplification experiment.

Table 7 CTG Repeat Size and Interruptions in DM1 Patients of
Families 1 and 2

Individuals #1 #14 #16 #17

Median expanded allele (CNG) NA 299 224 360
Interruptions 52 CCG 115 CCG 198 CCG 331 CCG
% CCG repeats NA 39% 88% 92%
CNG repeat size (diagnosis) NA 360 430 1000

DM1, myotonic dystrophy type 1.
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different DNA sources and extraction methods are affecting
this targeted sequencing application.

During library preparation without amplification, a dis-
tribution close to 50% to 50% of normal and mutated
sequencing reads was observed in most sequencing data.
However, an overrepresentation of the normal allele in pa-
tients with the largest expansion was observed. This phe-
nomenon can be explained by the lower HiFi read
conversion rate because of the sequencing read length lim-
itation and lower immobilization efficiency of the DNA
polymerase complex on the Sequel Sequencing Chip. Long
DNA molecules also have higher probability to carry
damages susceptible to exonuclease degradation during
sequencing library preparation. The combination of these
factors could lead to none 50% to 50% distribution of
sequencing reads on normal and expanded alleles. Although
including circular consensus reads with predicted read
quality below QV20 (accuracy <99%) in data analysis
could recover additional reads with long repeat expansion,
the option was not explored in this study to strengthen the
identification of CNG interruptions. Improved long template
immobilization efficiency and better sequencing read length
on the newer SMRT sequencing platform could help over-
come these limitations and provide more even coverages
between normal and expanded alleles.

Removal of the PCR amplification step improves the
accuracy of the measurement of the inherited CTG repeat
expansion as well as the measurement of somatic mosaicism
observed in blood or immortalized cells in most patients
with DM1. Using no-amplification targeted sequencing, we
were also able to accurately detect interruptions and deter-
mine their number in blood and/or immortalized cells of all
patients with DM1, regardless of the number of reads.

For the first time, DM1 patients with an expansion
composed of >85% CCG associated with mild or no muscle
symptoms and the absence of cardiac and severe respiratory
abnormalities were identified by using this method. This
finding is consistent with recent studies showing that
interrupted expanded alleles are associated with a decrease
in the severity of DM1 symptoms.10,11,17,19e21 It also raises
question about systematic analysis of interruptions in pa-
tients with DM1. Altogether, our results confirm the need to
revisit molecular diagnosis with No-Amp long-read
sequencing to improve genotypeephenotype correlations
and thus genetic counseling and prognosis in DM1. Inter-
estingly, heterogeneity in the sequence of the expansion,
10
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characterized by different expansion lengths and varying
number of repeat interruptions, was detected in families 1
and 2. The heterogeneity in the number and type of in-
terruptions observed in expanded interrupted alleles across
generations (family 2) and in the sibling blood of family 1
suggests instability of the interruptions despite the fact that
the same interruptions can stabilize the pure CTG repeat
expansion.13e18,22 The emergence of new interruptions in
the expansion may result from multiple processes, including
DNA polymerase errors during replication, error-prone
DNA repair, or recombination. This method opens new
avenues to understand the role of interruptions in DM1. The
different mechanisms involved in the formation of CNG
interruptions and instability of CTG repeats at the DMPK
locus remain unknown and need to be identified in patients
carrying the interrupted expanded allele using new models.
Several therapeutic strategies using gene editing techniques
or molecular approaches targeting the CTG repeat expan-
sion have been developed to induce a decrease in the repeat
and thus slow down or reverse DM1 disease.34,35 The fre-
quency of correction and adverse effects of gene editing at
the DM1 locus (DNA rearrangements, large indels, and
substitutions) are difficult to measure by current methods.
Long-read SMRT sequencing would allow a better estima-
tion of the frequency of correction but also a better under-
standing of the mechanisms induced by gene editing at the
DM1 locus.
In summary, this proof-of-principle study showed that no-

amplification targeted long-read sequencing developed by
Pacific Biosciences allows simultaneous attainment of high-
resolution information on the number of repeats, a complete
and accurate sequence, and a measure of somatic mosaicism
even for long repeats. These three parameters involved in
the DM1 clinic can be analyzed in the same assay in <1
month from DNA extraction to bioinformatics analysis.
Currently, no-amplification long-read sequencing remains
expensive with 2 days of library preparation (5 patients). A
jmdjournal.org - The Journal of Molecular Diagnostics
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single-molecule sequencing instrument should be readily
available in next-generation sequencing platforms. Howev-
er, the multiplexing of patients on a single SMRT Cell,
improving the technology by Pacific Biosciences, and
reducing its cost will allow SMRT sequencing to be
implemented as a routine molecular diagnostic method of-
fering the best diagnosis and prognosis for patients with
DM1. This approach is highly relevant in DM1, which is
one of the most complex trinucleotide disorders associated
with the largest expansion and with high genetic and clinical
variability. No-amplification targeted sequencing gives us
the opportunity to better understand the dynamics of CTG
repeat instability and genotypeephenotype association in
DM1. This method will be extremely useful for validating
innovative therapeutic strategies aimed at decreasing the
CTG.CAG repeat length and thus stopping disease pro-
gression in patients with DM1.
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Supplemental Figure S1 Genome-wide coverage plots for patients with myotonic dystrophy type 1 (DM1) are shown in the graphic. The y axis shows the
number of reads, and the x axis spans over all the chromosomes in the Hg38 genome.
SCO 5.6.0 DTD � JMDI1255_proof � 11 September 2022 � 10:01 am � EO: JMDI-D-22-


	Identification of a CCG-Enriched Expanded Allele in Patients with Myotonic Dystrophy Type 1 Using Amplification-Free Long-R ...
	Materials and Methods
	DM1 Patient Genomic DNA Samples
	Design of Guide RNAs for Cas9 Digestion
	SMRTbell Library Preparation
	Targeted SMRT Sequencing
	Sequencing Data and Repeat Sequence Analysis
	Amplicon Long-Read Targeted Sequencing
	Small-Pool PCR

	Results
	Amplification-free DMPK Locus Enrichment in Patients with DM1
	Targeted Amplification-free Long-Read Sequencing Improves the Accuracy of CTG Repeat Size Measurement
	Targeted Amplification-free Long-Read Sequencing Exhibits Somatic Mosaicism in Patients with DM1
	Targeted Amplification-free Long-Read Sequencing Detects CNG Interruptions
	Identification of DM1 Families Carrying CCG-Enriched Expanded Allele

	Discussion
	Acknowledgments
	Author Contribution
	Supplemental Data
	References


