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Abstract

A finite volume and two Lattice-Boltzmann unsteady, flow solvers using LES (Large Eddy Simulation)

were compared in a swirling flow configuration, typical of aeronautical combustion chambers.

Numerical results were validated against experimental data collected at EM2C laboratory by

comparing pressure losses, mean and RMS velocity profiles on multiple planes and axial velocity

spectra. Meshes and the overall numerical setups were individually adjusted for each code to obtain

the targeted accuracy before comparing CPU efficiencies.

Results confirm that the three LES codes provide high fidelity results, much better than usual RANS

especially in terms of RMS data. The analysis of CPU performances shows that LBM (Lattice-

Boltzmann Method) solvers are faster than the finite volume solver, even if CPU efficiencies remains

of the same order of magnitude. In addition, strong scaling tests from 36 to 900 cores show that

the finite volume solver scales more efficiently than the LBM codes (specially when the number of

grid points per core is not sufficient).

Keywords: CPU efficiency, Large Eddy Simulation, LBM and FVM comparison, Swirling Flow

1. Introduction

The question of the efficiency of CFD solvers is an issue which has virtually disappeared for classical

RANS (Reynolds Averaged Navier-Stokes) methods but remains essential when it comes to Large
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Eddy Simulation approaches [1, 2] as pointed out recently by Löhner [3]. Arguing that a certain

class of CFD methods is the fastest to solve LES critical problems is a game played by multiple5

teams worldwide: in most cases, these discussions focus on the theoretical reasons which should

make such or such approach faster than others for LES. However, the actual speed of CFD solvers

for LES does not depend only on the theoretical efficiency of the method: in most cases, the mesh

management, the boundary conditions, the sub models, the parallel implementation of the method

also play critical roles so that the determination of an exact CPU efficiency is difficult before10

running real simulations. Furthermore, when simulations are run, the comparison itself between

methods becomes difficult: in many cases, each author runs his own code and does not try to

compare fully with competing methods. Workshops are commonly organized to compare methods

but their conclusions are rarely clear because the collaboration to ensure a proper comparison

remains difficult to set up (see for example [4] for such a workshop on compressible methods for15

LES of turbomachinery).

This paper follows a different path as it compares three LES solvers (Table 1) which were all run

by the same group of people at IMFT and CERFACS: an incompressible finite volume solver:

AVBPpgs and two Lattice Boltzmann (LB) codes: ProLB and waLBerla. All computations were

performed on the same machines, with the same number of processors and a systematic comparison20

was organized to ensure a fair evaluation of methods. The target configuration was the internal

turbulent flow in a swirling burner but all cases correspond to a non reacting situation. Unlike many

previous studies, the present one focuses on an internal flow, at moderate Reynolds numbers, as

found in combustion chambers and not on external flows as found in aerodynamic and aeracoustic

studies. Experiments were performed by the EM2C laboratory and include enough detailed data25

to evaluate the precision of the solvers in terms of pressure losses and full mean and RMS velocity

fields.

Code Formulation Method

AVBPpgs Incompressible Finite volume (Galerkin)

ProLB Athermal Lattice Boltzmann

waLBerla Athermal Lattice Boltzmann

Table 1: Presentation of solvers used for LES simulations
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Of course, the first difficulty in such an exercise is the definition of the rules of the game. In the

present case they can be explained as follows: "for each code, build a numerical setup which provides

a minimal accuracy in terms of flow field resolution (pressure loss as well as mean and RMS velocity30

profiles within experimental accuracy levels) and compare the CPU efficiency". Since multiple

solvers are used, with different meshes, different algorithms and different submodels, the notion of

minimal accuracy remains arbitrary: here, long discussions between CFD and experimental teams

members have lead to a minimum quality which was expected from the match between experimental

and LES results in terms of average and RMS velocity fields for multiple locations. This was used35

for the three solvers to determine the minimum grid size required to reach this sufficient level of

agreement. Once all solvers were found to provide comparable agreement with the experimental

data (taking into account experimental uncertainties), CPU efficiencies were determined. This

procedure still contains a clear level of arbitrariness that authors do not want to deny. The error

bars expected on the results are certainly significant and of the order of tens of percents. However,40

the main issue here is not to determine if a method is 50 percent faster than another one: we are

interested in orders of magnitudes as required for example for industry to move from one class of

methods to another one.

The paper is organized as follows: the experimental configuration is described first in Section 2.

The three solvers and the corresponding numerical setups are described next (Section 3) before45

discussing results in Section 4 in terms of velocity profiles (mean, RMS and spectra). Finally the

computational efficiency of the three codes is discussed in Section 5.

2. Experimental setup

The configuration (Fig. 1) was designed to analyze the response of swirled flames to flow rate

modulations in [5, 6].50

Dry air is injected from two diametrically opposed apertures at the bottom of a plenum. The

flow crosses a grid and a honeycomb to break the largest turbulent scales. A convergent section

produces a top-hat laminar velocity profile with a boundary layer of about 1 mm thickness that was

characterized by a hot wire probe (Dantec Dynamics - Probe 55P16 with a mini-CTA 54T30). The

diameter of this section is D = 22 mm and the bulk flow velocity is fixed to ub = 5.44± 0.05 m s−1
55

corresponding to a Reynolds number ReD = 7620 at room temperature T = 300 K. The pressure

drop with respect to ambient conditions is recorded in front of the hot wire probe with a differential
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Figure 1: Experimental setup with detailed representation of the injector region and swirler geometry. All dimensions

in mm.
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Figure 2: Presentation of cartesian system of reference (left). Identification of points P and Q used for modal analysis

(center) and representation of PIV transverse and axial planes of investigation (right)

pressure gauge and indicates ∆p = 335 ± 15 Pa. The setup was originally designed to analyze

effects of geometrical modifications of the injector on flame dynamics and the burner replaceable

components are represented in Fig. 1. In the configuration explored, the radial swirling vane consists60

of n = 6 cylindrical tangential inlets of diameter Ds = 6 mm with an offset H = 6 mm as indicated

in Fig. 1c. The flow leaves the swirler into a central injection tube. The diameter of this tube

is D = 22 mm, over a first section of length δ1 = 16 mm, followed by a central insert of length

δ2 = 34 mm and diameter D0 = 20 mm. A central rod of diameter d = 6 mm ending with a cone

of diameter at the top C = 10 mm is inserted in the injection tube. The distance between the65

swirler exit and the combustion chamber back plane is here fixed at δ = δ1 + δ2 = 50 mm. The

central rod protrudes inside the combustion chamber and the distance between the top of the cone

and the backplane is 1.5 mm. The combustion chamber, made of 4 transparent quartz windows,

has a 82 mm squared cross-section and length 150 mm. It is extended by a nozzle with a square

inlet section and a circular outlet section of diameter 70 mm. Transition between this square to70

circular sections is made over a 104 mm length. This device ensures that there is no reverse flow

at the setup outlet. The cartesian system of reference used through the paper is presented in

Fig. 2: z corresponds to the symmetry axis of the injector, while the plane defined by axes x and
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y corresponds to the backplane of the combustion chamber (z = 0 mm).

Particle Image Velocimetry (PIV) is used to measure the cold flow velocity fields. For these75

measurements, the flow is seeded with small oil droplets of diameter 1-3 µm. PIV data are gathered

on both axial and transverse planes within the combustion chamber. The first is identified by z

and x directions (y = 0 mm), while the second one is parallel to the burner backplane and located

at z = 3.5 mm. No PIV data is available at lower axial coordinates. The PIV system consists of

2×400 mJ Nd:YAG laser doubled at 532 nm operated at 10 Hz and a 2048×2048 pixels CCD camera80

(Dantec Dynamics, FlowSense EO 4M). Two different optical setups are used with a time interval

between the two laser pulses ∆t = 10 µs and a pixel pitch of 27.88 pixelsmm−1 for measurements

in the axial plane and ∆t = 25 µs and a pixel pitch of 40.14 pixelsmm−1 for measurements in a

transverse plane. Eight hundred images are taken to assure the convergence of the mean and RMS

values of the velocity field, which is computed from the cross-correlation of the PIV images by a85

three passes window deformation technique (from 64 × 64 pixels to 16 × 16 pixels interrogation

areas), with an uncertainty of 0.1 pixels on the calculated displacement.

The measurements are completed by Laser Doppler Velocimetry (LDV) to capture the time resolved

velocity profiles at z = 3 mm above the top central insert (see Fig. 2). The Power Spectral Density

(PSD) of the axial velocity is calculated to detect the presence of potential hydrodynamic or acoustic90

modes. To ease optical access the combustion chamber is removed for those latter measurements

and LDV data are collected in unconfined configurations. Two laser beams at λ = 514.5 nm (green)

allow to probe the axial velocity. Two other beams at λ = 488 nm (blue) are used to measure the

velocity component along x direction. The data collection rate is always greater than 10000 s−1

and for each measurement point at least 250000 particles are considered, in order to obtain fully95

converged mean and RMS values for all components of velocity. The statistical bias is corrected

by the transit time of each particle. The analysis of time traces and PSD of these signals does not

reveal any specific coherent structures associated to helical flow instabilities.

3. Presentation of solvers

3.1. High-order finite volume solver100

AVBP is a multi-species LES explicit solver for Navier-Stokes compressible equations developed

at CERFACS (www.cerfacs.fr/avbp7x). This Cell-Vertex (CV) high-order Finite Volume (FV)

6



code [7, 8] is able to handle structured, unstructured and hybrid grids in both two and three space

dimensions. It is a world standard code to compute turbulent reacting flows in combustion chambers

[9] or explosions in confined domains [10]. A critical aspect of compressible codes is the treatment105

of numerical boundary conditions where acoustic reflections must be controlled to avoid spurious

phenomena. In order to fulfill those requirements, AVBP exploits Navier-Stokes Characteristic

Boundary Conditions (NSCBC) [11, 12, 13, 14].

Like any explicit compressible code, AVBP tends to be less efficient for low Mach number simulations.

The problem arises from the large disparity between time scales associated to sound waves propagation110

and convection: the CFL stability condition imposed by the sound speed is uselessly severe with

respect to the limit established by convection alone, resulting in an unnecessarily small time step.

In order to overcome this limitation and to be representative of another class of FV solvers, which

use incompressible or low-Mach number formulations, a modified version of AVBP, called here

AVBPpgs is used to remove the acoustic time step limitation: the governing equations solved are115

manipulated according to the Pressure Gradient Scaling (PGS) technique [15]. PGS rescales the

pressure gradient in the momentum equations to reduce the computational sound speed, so that the

time step is not limited by the true sound speed which is irrelevant. The PGS methodology is limited

to low-speed incompressible flows like the present configuration. Overall, the procedure is equivalent

to the α-transformation developed in [16], but with the advantage of both easier implementation120

and wider applicability. Since the Lattice Boltzmann solvers are used here in their athermal weakly

compressible form, it seems reasonable to utilise AVBPpgs which uses similar assumptions.

3.2. Lattice-Boltzmann solvers

3.2.1. General description of the method

The LBM considers the dynamic evolution of a mass distribution function of particles f(t,x, ξ) that125

collide and propagate at time t, position x on a discrete velocity stencil called Lattice, commonly

noted DdQq (d for spatial dimension and q for velocities). In this study, two solvers were compared,

ProLB and waLBerla. Both employ a D3Q19 lattice given by:

ξi =


(0, 0, 0), i = 0

(±1, 0, 0), (0,±1, 0), (0, 0,±1), i = 1− 6

(±1,±1, 0), (±1, 0,±1), (0,±1,±1), i = 7− 18.

(1)
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At a mesoscopic scale, each function fi = f(t,x, ξi) is governed by the Lattice-Boltzmann scheme

with the time step ∆t and space step ∆x = ξi∆t:130

fi(x+ ξi∆t, t+∆t)− fi(x, t) = ∆tΩi(x, t), (2)

where Ωi is the collision operator. Modeling the collision component circumvents considering

its non-linear behavior and therefore, makes this approach particularly well suited for parallel

simulations of athermal weakly-compressible flows. The purpose is to preserve the main characteristics

of the collision operator Ωi such as the convergence through a local thermodynamic equilibrium

during a relaxation time τ and the conservation of mass and momentum.135

While the macroscopic quantities (density ρ and momentum ρu) are retrieved from the velocity

moments of the distribution function given by:

ρ =

q∑
i=0

fi, ρu =

q∑
i=0

fiξi, (3)

the pressure p is computed from the barotropic equation of state, p = ρRT0 where R is the gas

constant and T0 is a characteristic temperature, instead of the Poisson equation involved in most

Navier-Stokes solvers allowing to considerably reduce the computational costs.140

Finally, the Lattice-Boltzmann equation is discretized on cartesian cubic grids automatically generated

in most solvers which alleviates cumbersome and time-demanding meshing. Both solvers are based

on this description but use different numerical implementations.

Code ProLB waLBerla

Number of nodes [M] 26.3 39.3

Number of fluid nodes [M] 26.3 30.2

Octree level distribution fluid nodes [%] [67, 25, 5, 3, 0, 0] [59, 24, 13, 1.9, 1.5]

Equivalent Fine Nodes [M] 21.4 29.8

Equivalent Fluid Fine Nodes [M] 21.4 22.6

Table 2: Level distribution of fluid nodes in LBM solvers

A key difference between FV and LBM algorithms is that the FV solver uses the same time step in

the whole computational domain, whereas in LBM the time step depends on the level of refinement.145

A cell on the coarser grid level has twice the size but also the time step is two times bigger compared
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to the finer level. To take this effect into account we generally use the term Equivalent Fine Nodes

(EFN) which counts cells on coarser levels L as a fraction of the finest level (Eq.4). This quantity

reflects the workload equivalent of a mesh using only the minimal mesh size min(∆x) and is therefore

more suitable for comparison between the codes.150

EFN =
∑
L

Nnodes on L

(
1

2

)L−1

(4)

Another consequence is that the main part of the workload is generated by the finest level in the

domain. In order to do a fast computation it is essential to minimize the regions with minimal

cell size. The differences between the two LBM meshes are summarized in table 2. The ProLB

algorithm typically needs fewer EFN to accurately resolve a given problem, whereas the approach of

waLBerla generates a non negligible amount of excess cells, that are not part of the fluid domain155

but have to be computed anyway.

3.2.2. ProLB

ProLB is a commercial suite of tools which emerged from LaBS and CLIMB [17] French research

projects carried out by a consortium of industrial companies, universities, research laboratories and

institutes. Its inherent massively-parallel solver includes an octree mesher which efficiently handles160

both complex geometries [18] and multi-resolution refinement layers [19].

For the present study, a modified version of the commercially available ProLB software is used. The

numerical resolution of the Lattice-Boltzmann equation is performed through the D3Q19 lattice with

a hybrid version [20] of the recursive regularized collision operator [21] (H-RR). It shows superior

stability properties than the classical Bhatnager-Gross-Krook (BGK) [22] for high-turbulent flows165

[23] by filtering out the spurious and non-hydrodynamic modes that could be amplified at grid

transitions [24].

To handle mesh refinement, a Direct-Coupling (DC) algorithm is employed [25]. By ensuring mass

and momentum conservation at the transition nodes, a singular equilibrium distribution function

is computed to recover the missing distributions at both coarse and fine sides. This combination170

of the H-RR collision model and the DC algorithm offers better accuracy and locality in complex

configurations than the classical overlapping method [26].

The boundary nodes need a specific treatment in LBM approaches: since the mesh is completely

cartesian, an immersed boundary condition is implemented to handle the solid walls [27] [28]
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allowing first the automatic generation of the mesh and second to flag the interface nodes. It175

is then supplemented by a Grad’s moment approximation of the missing populations to recover

macroscopic quantities at the interface. This yields a more stable and accurate approach than the

well-known interpolated bounce-back [29].

Thanks to the octree multi-resolution mesher, the ultimate grid is built upon a static adaptive

refinement strategy [30] where the considered sensor is the dissipation of kinetic energy [31]. From an180

initial coarse simulation, the time-averaged field of this sensor is computed. Therefore, a smoothed

iso-volume based on a lower case-dependent threshold of the sensor yields a finer resolution domain

which is directly reintroduced in the octree mesher. Thereby, this process is repeated twice in order

to predict pressure losses and optimize the number of fluid nodes by refining only the relevant areas

and minimizing computational costs.185

3.2.3. waLBerla

waLBerla [32] is an extreme scale, open-source, C++ multiphysics software framework. It can

be used as a tool box for designing various types of applications such as the LBM computation

performed here [33].

waLBerla was designed from the ground up for high-performance computing (HPC) on massively190

parallel clusters [34, 35] and GPU-based systems [36], so that it is used as a reference implementation

for LBM performance studies [37].

waLBerla uses automatic code generation [38] to ensure excellent execution performance on a wide

range of different architectures. This meta-programming paradigm allows to start the application

development from a high-level description of the LBM method. All steps to derive the LBM kernel195

codes can be performed automatically: the code is not only optimized for specific architectures, but

also becomes easier to change to test variants of the LBM methods.

The framework is based on a block-structured domain partitioning in order to achieve extreme

scalability and node level performance [39, 40]. The full domain is divided into equally sized

cuboids that can only be refined as a whole at desired zones and at a size ratio of 2:1 with direct200

neighbors. These subdomains are called blocks and all hold the same number of grid cells. The

computational domain partitioning is partitioned in such blocks that can be assigned to processes.

Load balancing is achieved on the level of blocks, not individual cells.

Every process can hold several blocks, but a block can only be assigned to one single process. Data
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from blocks is only available to the block that it has been assigned to. This structure allows code205

parallelization by the Message Passing Interface (MPI) or using hybrid MPI/OpenMPI to guarantee

optimal scalability on a wide range of different supercomputer architectures. In complex geometries,

the meshing algorithm will loop over all blocks and all cells to determine if they are inside or outside

the surface mesh and accordingly set them as fluid or empty cells. Blocks that hold no fluid cells can

be discarded, but blocks that hold one or more fluid cells will be kept and stocked with the same set210

of data. This is necessary because the LBM kernels iterate over over all cells equally, independent if

they are fluid or not. Code generation is handled by the pystencils package [41, 38]. It uses symbolic

manipulation with the SymPy algebra system to derive symbolically a stencil formulation from the

continuous LBM collision operator. During this procedure several optimization techniques, such

as common subexpression elimination and vectorization can be applied to generate highly efficient215

C/C++ code. Additionally, optimized code for GPUs can be generated. Thus waLBerla with

pystencils can achieve performance portabiliy to a wide range of different architectures, including

CPUs and GPUs.

3.3. Numerical setups

The three solvers were applied to the same swirler geometry of EM2C but they employ different220

meshes (Table 3): AVBPpgs uses body-fitted unstructured tetrahedral mesh with 18.1 M cells in

total, while ProLB relies on cartesian unstructured mesh, offering a local refinement possibility but

requiring up to 26.3 M grid elements, which amounts 21.4 M EFN to represent the same geometry.

This tendency is exacerbated in waLBerla, where the structured cartesian mesh is only able to

refine whole blocks of the mesh, which leads to 39.3 M, or 22.6 M EFN cells overall.225

Code Topology Cell type min(∆x) [µm] Total elements [M]

AVBPpgs Unstructured Tetrahedral 80 18.1

ProLB Unstructured Cubic 110 26.3 (21.4* )

waLBerla Structured Cubic 110 39.3 (22.6* )

Table 3: Overall description of mesh parameters for the three solvers (* marks the number of EFN)

A detailed representation of each grid, including swirler, injector and near-backplane region, is

displayed in Fig. 3. It exhibits an axial cut for each code to show the local mesh structure: the

swirler region has the highest resolution to predict the correct velocity field and pressure losses.
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Figure 3: Mesh comparisons via ∆x contour maps for the three solvers: AVBPpgs, ProLB, waLBerla. Differences

among structured and unstructured grids, as well as between cubic and tetrahedral elements are highlighted

In this region AVBPpgs adopts a minimum cell parameter (∆x) of 80 µm that increases along z

up to the burner backplane with an average ∆x ≈ 180 µm. While ProLB mesh is refined through230

adaptive unstructured blocks of minimal mesh size ∆x = 110 µm, waLBerla uses a block of

constant ∆x = 110 µm in both swirler and injector. With these meshes, the time steps are adjusted

to obtain CFL numbers based on the maximum convective velocity of the order of 0.1 for all codes.

AVBPpgs adopts Lax-Wendroff scheme [42], second-order in both space and time. The CFL number

(based on the modified sound speed) is set to 0.9. Temperature and volumetric flow rate are fixed235

at the inlet, while ambient pressure (101325 Pa) with a proper relaxation coefficient is imposed at

the outlet. The SIGMA model is used for subgrid Reynolds stresses [43]. Both turbulent Prandtl

number Pr and Schmidt number Sc are fixed to 0.6 and only one inert species representative of air

is computed. The PGS parameters are set to obtain a maximum computational Mach number of

0.3.240

While ProLB employs a H-RR collision operator combined with a DC mesh transition algorithm,

waLBerla is using a classical BGK collision model. Both solvers impose a one-seventh power law
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velocity profile at the inlet to match the experimental flow rate and a constant pressure of 1 bar at

an extended outlet overlaid by a sponge layer to dump non-hydrodynamic reflection waves inside

the domain. Walls are treated differently: ProLB uses a Grad’s approximation and waLBerla a245

bounce-back scheme to treat the "missing populations".

Since acoustics do not contribute significantly to the flow behavior, the non-dimensionalized Newtonian

sound speed c∗s is artificially minimized by being cautious that the maximal Mach Number does not

exceed the critical value of 0.4 [44]:

Mamax =
umax

c∗s

∆t

∆x
< 0.4. (5)

This requirement is similar to the CFL condition for classical Navier-Stokes numerical schemes [45].250

This process intends to increase the time step to its maximal value and therefore allows to lower

the computational time while the accuracy is still conserved.

LES in ProLB are performed using a Shear-Improved Smagorinsky turbulence model (LES-SISM)

[46] which accounts for the dissipation of the unresolved turbulent scales through an eddy viscosity

νsgs. This subgrid-scale eddy viscosity is introduced by locally shifting the relaxation time τ∗ =255

τ + τsgs in the collision operator in order to model the additional convection of momentum and

energy through the subgrid turbulent eddies. To enclosure this model, νsgs is computed via the

strain-rate tensor.

waLBerla on the other hand employs a basic version of the Smagorinsky model τsgs = (CS∆)2|S|,

in which the turbulent viscosity depends on the local strain rate tensor S, the Smagorinsky constant260

CS and the filter length ∆ = 1 in lattice units.

4. Comparison with experimental data

This section presents a comparison of experimental and numerical results to validate the entire set

of simulations. All three codes are used on sufficiently long times to obtain fully converged averaged

solutions which are time-independent in terms of mean and RMS results: AVBPpgs run for 300 ms265

of physical time, while ProLB and waLBerla both run for 120 ms. A physical time of 120 ms

corresponds to approximately 10 flow-through times (τt), where τt = 10 ms is obtained by the time

taken for a flow element to travel through the chamber in the high velocity zone at 8 m s−1.

The first quality indicator for swirler flows is the pressure loss ∆p through the swirler (Table 4)

which controls its performances in a real engine. ∆p is calculated between the pressure tap location270
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(see Fig. 2) and the outside ambient pressure.

∆p (Pa)

Experiment 335±15

AVBPpgs 330

ProLB 368

waLBerla 313

Table 4: Injector head pressure losses due to swirler

The agreement of AVBPpgs with the experiment is slightly better than for LBM codes, as expected

for a code which uses body-fitting meshes. ProLB and waLBerla predict a ∆p of 368 Pa and 313

Pa, respectively above and below the experimental confidence interval. To qualify codes, measuring

the pressure loss is not sufficient, however, and the next sections focus on a detailed analysis of the275

velocity fields.

4.1. PIV

Velocity profiles are compared on two planes: the axial zx plane and the transverse plane z = 3.5 mm

(see Fig. 2). In the first case data are displayed over a 40×50 mm2 rectangular window symmetrically

located with respect to the z axis. For the second, results are presented over a 40×40 mm2 squared280

area centered in the middle of the combustion chamber with sides oriented along x and y directions.

Furthermore local one-dimensional, velocity profiles extracted at constant z are also retrieved from

both PIV data and simulations.

4.1.1. Axial plane

Fig. 4 exhibits two rows of images: the top row shows the mean axial velocity component ūz. The285

second one shows its RMS noted uz,RMS. From left to right experimental data and numerical results

are displayed, as specifically reported on top of each plot.

The experimental mean velocity contour map of Fig. 4 highlights a large Inner Recirculation Zone

(IRZ), typical of high swirling flows. This region of negative axial velocity is created by the vortex

breakdown and is delimited by iso-velocity lines at ūz = 0 ms−1. Moreover two high velocity290

branches develop in the wake of the injector annular channel, identified by isolines at 8 m s−1.

The comparison with numerical results show that the three solvers properly capture the flow

characteristics, for both width and intensity of the IRZ. Minor differences can be highlighted:
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Figure 4: Contour map comparison of experimental and numerical results of the axial (z) component of the velocity

on the axial plane. First row exhibits the mean velocity field ūz , while second row displays the RMS distributions

uz,RMS
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Figure 5: Contour map comparison of experimental and numerical results of the horizontal (x) component of the

velocity on the axial plane. First row exhibits the mean velocity field ūx, while second row displays the RMS

distributions ur,RMS
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the extension of the high mean velocity regions is slightly overestimated by LBM codes, where

8 ms−1 and 4 ms−1 isolines develop further downstream than in experimental data. In addition,295

RMS maps obtained with the three solvers highlight less regular contour plots, potentially linked

to averaging times which are much smaller in the LES than in the experiment. AVBPpgs shows

slightly higher RMS with respect to other codes and experiment, especially in the high velocity

region.

The horizontal component (x) results (Fig. 5) confirm the axial component conclusions of Fig. 4:300

the three solvers are able to match the experimental results and all solvers provide results which

are within the experimental range of precision for PIV results (typically 0.3 m/s here). However

Figures 4 and 5 are not sufficient to provide an appropriate evaluation of the precision: it is worth

considering one-dimensional profiles showing local ūz and ūx velocity profiles sectioning the axial

plane at specific z locations.305

Fig. 6 displays mean and RMS profiles of ūz and ūx, where in the first row profiles are extracted

at z = 5 mm and in the second one at z = 15 mm.

First, the ūz profile reveals that experimental data are not exactly symmetric with respect to the z

axis: the left-hand velocity peak is higher than the other, while simulations do not show the same

differences. Numerical predictions show that at both z coordinates, the slope and the minimum of310

the axial velocity profile, which define the IRZ structure, are correctly represented. On the other

hand the maximum axial velocity values at z = 15 mm are slightly overestimated by LBM codes

by roughly 0.5 m s−1, which corroborates the little discrepancy highlighted in Fig. 4. ūx profiles

are generally hard to match in swirled flows since the mean velocity intensity is comparable to its

RMS values. This emphasizes the fidelity of all simulations put in place. In fact the maximum315

difference between experimental data and simulations is only of the order of few tenths of meters

per second. Furthermore, the RMS profiles for both ūz and ūx at both z coordinates confirm the

AVBPpgs little overestimation at peak velocity locations, which in any case remains largely within

the experimental accuracy margin.

Another way to accurately compare the codes is to compute the L2-norm relative errors between320

the experimental and simulation values present in Fig. 4. These are given in the Tab. 5.

4.1.2. Transverse plane

Fig. 7 displays ūx and ūy mean velocity profiles on the transverse plane z = 3.5 mm.
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Figure 7: Contour map comparison among experimental and numerical results on transverse plane. The first row

exhibits mean velocity component ūx, while second row displays the mean velocity component ūy
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Code
z = 5mm z = 15mm

⟨η⟩
ūz ūz,RMS ūx ūx,RMS ūz ūz,RMS ūx ūx,RMS

AVBPpgs 0.13 0.16 0.16 0.17 0.08 0.14 0.39 0.17 0.17

ProLB 0.26 0.15 0.21 0.16 0.26 0.14 0.6 0.15 0.24

waLBerla 0.20 0.10 0.19 0.12 0.19 0.11 0.74 0.10 0.22

Table 5: L2-norm relative error for each solver and each plot of the Fig. 4 respectively. To give an overall comparison,

the global error ⟨η⟩ has been computed as the average of each plot error. Bold and emphasize errors shows the more

and less accurate result respectively.

The good agreement between computational and experimental velocity fields confirms the previous

findings. Only a slight overestimation of absolute maximum and minimum for both ūx and ūy can

be pointed out looking at iso-velocity lines of ±8 ms−1.

Furthermore the two high/low velocity symmetric patches result slightly counterclockwise-rotated

due to the square shape of the combustion chamber. Remarkably, the flow field is correctly captured325

by numerical computations.

4.2. Power Spectral Density (PSD) of axial velocity

In addition to the mean and RMS values, it is also interesting to look at axial velocity spectra and

compute Power Spectral Density (PSD) from local time signals: PSD are obtained experimentally

from LDV velocity signals acquired along the x axis: from x = −15 mm to x = 15 mm with330

0.5 mm step. It is worth mentioning that in contrast with simulations, measurements have been

performed without combustion chamber. However it has been verified that experimental mean

and RMS axial velocity are comparable with both PIV data the numerical predictions obtained in

confined configuration. This feature is attributed to the weak impact of the confinement on the

flow structure close to the injector outlet, at z = 3 mm.335

Simulations and experimental signals are extracted for axial velocity over a span of 120 ms in

order to share the same numerical frequency resolution of 8.3 Hz. Even though the upper-limiting

frequency of the spectra is mathematically fixed by the sampling frequency, this limit could be

misleading since oil particles used to seed the flow act like a low-pass filter, not responding to high

perturbation frequencies. In the present case, the cut-off frequency of the small oil particles is of340

the order of 4 kHz: above this value, experimental spectra can not be physically considered.
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Fig. 8 displays the PSD at two locations (values in mm): P = (3, 0, 3) is located in the wake of

the central bluff-body and Q = (7, 0, 3) lies in the shear layer of the swirling jet (Fig. 2). The

gray scale marks the fact that at high frequencies only numerical results can be interpreted.
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Figure 8: Axial velocity spectra of kinetic energy for the different solvers at P = (3, 0, 3) (top row) and Q = (7, 0, 3)

(bottom row)

For the present flow rate, experimental PSD results (left column in Fig. 8) do not exhibit peaks345

associated to coherent structures such as Precessing Vortex Cores (PVC) which are frequently

found in swirling flows [47, 48, 49, 50]. Similarly all three simulations do not reveal any peak

related to hydrodynamic modes. The PSD decay above 1 kHz shows that calculations exhibit a

higher dissipation with respect to experimental results, maybe due to the LES subgrid model used

in the three codes. Limited differences are observed among codes at point P . For point Q, a350

difference emerges in the high frequency range: the two LBM codes introduce less dissipation than

the finite volume solver but it is difficult to say if this is physically right or not.
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5. Comparison of computational costs

The code performances are given by Table 6. A first parameter, which is independent of mesh size

and time step is the reduced computational time, i.e. the time required to perform one cell update.355

The last line of Table 6 displays a second parameter which is the most important one for the user:

the total CPU time required by each code to compute 1 ms of physical time.

Code AVBPpgs ProLB waLBerla

Time step [s] 4.4× 10−7 8.5× 10−7 7.1× 10−7

Equivalent Fine Fluid Nodes [M] 18.1 21.4 22.6

CPU time per iteration [ms] 83 90 24

Reduced computational time

[µs iteration−1 cell−1 core]

1.67 1.50 0.38

Cost 1 ms physical time [CPUh] 19.1 10.6 3.4

Table 6: Comparison of computational efficiency of the three different solvers on a 360 cores run [51]

For Table 6, all outputs and post-processing routines are disabled: only the fluid solver itself is

considered. All codes run on 360 processes on a cluster [51] which uses a Intel Xeon Gold 6140

Skylake chipset.360

Table 6 shows that the LBM solvers are faster than the finite volume solver but the speed ratios

are not different by orders of magnitude: the fastest code waLBerla goes 5 times faster than the

AVBPpgs solver.

5.1. Scaling

In addition to the computational cost at a fixed number of cores, scalability is an important question365

in HPC: the strong scaling behaviour of the three codes was tested here from 36 to 900 cores. We

measure the parallel efficiency E by relating the the computational time per iteration TP on a given

number of cores NP to the time per iteration T36 on 36 cores, which is equivalent one full node on

the utilized architecture.

E =
36

NP

T36

TP
(6)

Fig. 9a shows that AVBP scales almost ideally over the whole range of cores, while the LBM370

solvers efficiencies drop by 30-40% when increasing the number of cores by a factor of 25. In this
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particular configuration, parallel scalability is controlled by the spatial distribution of grid cells to

achieve an even workload balance among all processes. In AVBP there are few constraints on the

decomposition of the computational domain as long as the surface area between subdomains is kept

at a minimum. Moreover, AVBP remains efficient even when only a few thousand mesh nodes are375

handled by each core.

ProLB preserves performance up to 72 cores but then loses efficiency beyond 144 cores because

of an increase in waiting time: the solver has an optimum scalability estimated between 105 and

106 fluid elements per core to efficiently manage industrial configurations that require much larger

grids. In other words, while weak scaling works well in ProLB, the present strong scaling exercise380

is more difficult since the order of magnitude of fluid elements per core is 104 at 900 cores.

In waLBerla whole blocks are assigned to each core. When using an excessive amount of cores,

there are not enough blocks per process to find an even workload distribution. On the other hand

waLBerla exhibits excellent weak scaling until almost half a million cores [39, 40]. Furthermore

in the LBM scheme the different levels of refinement have to be executed sequentially. This is an385

inherent obstacle to achieving even workload distribution and it limits strong scaling capabilities.

The strong scaling limit of the LBM codes may affect the overall conclusion: at 900 cores, ProLB

becomes less efficient than AVBP. waLBerla maintains the lowest computation time over the

whole range of cores (Fig. 9b).

6. Conclusions390

One finite volume and two Lattice-Boltzmann solvers suitable for Large Eddy Simulation have

been compared in terms of accuracy and CPU efficiency in a swirling flow, a typical aeronautical

application.

The fidelity of the three solvers was demonstrated by comparing numerical and experimental

PIV data in terms of: injector head pressure losses, mean and RMS velocity profiles and axial395

velocity spectra. Despite minor differences, the three solvers provide very similar and accurate

results: the discrepancies with respect to experimental results are limited to the tenth of ms−1

on velocity profiles. For pressure losses, the finite volume solver using body-fitted meshes captures

the experimental result very well (330 Pa for AVBPpgs versus 335 Pa for the experiment) but the

two LBM codes results, using structured meshes are also close to measurements (368 Pa for ProLB400

and 313 Pa for waLBerla). These results confirm that LES formulations provide high accuracy

23



36 72 144 360 900

Number of cores

(a)

0.5

0.6

0.7

0.8

0.9

1.0

1.1
P

a
ra

ll
el

effi
ci

en
cy

AVBPpgs ProLB waLBerla

36 72 144 360 900

Number of cores

(b)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
ed

u
ce

d
co

m
p

u
ta

ti
o
n

a
l

ti
m

e
[µ

s
it

er
a
ti

o
n
−

1
ce

ll
−

1
co

re
]

Figure 9: Parallel performance of the three codes up to 900 cores, normalized by the performance at 36 cores

results for swirled flows, much better than usual RANS codes especially in terms of RMS data for

all components. Furthermore LDV data at two specific locations are used to create PSD analysis

of axial velocity: the three solvers as well as the LDV data do not reveal any hydrodynamic mode.

Moreover, AVBPpgs shows higher numerical dissipation in the high frequency range with respect to405

LBM solvers.

Strong scaling tests from 36 to 900 cores reveal that the finite volume solver maintains its performance,

whereas the LBM codes exhibit some loss in efficiency as the workload per core decreases. On 360

cores the CPU times necessary to compute 1 ms of physical time are: 3.4 for waLBerla, 10.6 for

ProLB and 19 CPU hours for AVBPpgs. The three solvers offer similar orders of magnitude in terms410

of absolute performance, especially considering the fact that the finite volume solver carried more

equations (energy and chemical species) as well as much more complex thermochemical models.

Finally, a point which has been left for further studies is the importance of the mesh quality on

the results. The results shown in the paper were obtained with user-optimized meshes which play
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a crucial role in the final results, maybe as important as the solvers themselves. AMR (Automatic415

Mesh Refinement) is clearly a topic to address in future works.
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