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A finite volume and two Lattice-Boltzmann unsteady, flow solvers using LES (Large Eddy Simulation) were compared in a swirling flow configuration, typical of aeronautical combustion chambers.

Numerical results were validated against experimental data collected at EM2C laboratory by comparing pressure losses, mean and RMS velocity profiles on multiple planes and axial velocity spectra. Meshes and the overall numerical setups were individually adjusted for each code to obtain the targeted accuracy before comparing CPU efficiencies.

Results confirm that the three LES codes provide high fidelity results, much better than usual RANS especially in terms of RMS data. The analysis of CPU performances shows that LBM (Lattice-Boltzmann Method) solvers are faster than the finite volume solver, even if CPU efficiencies remains of the same order of magnitude. In addition, strong scaling tests from 36 to 900 cores show that the finite volume solver scales more efficiently than the LBM codes (specially when the number of grid points per core is not sufficient).

Introduction

The question of the efficiency of CFD solvers is an issue which has virtually disappeared for classical RANS (Reynolds Averaged Navier-Stokes) methods but remains essential when it comes to Large Of course, the first difficulty in such an exercise is the definition of the rules of the game. In the present case they can be explained as follows: "for each code, build a numerical setup which provides a minimal accuracy in terms of flow field resolution (pressure loss as well as mean and RMS velocity profiles within experimental accuracy levels) and compare the CPU efficiency". Since multiple solvers are used, with different meshes, different algorithms and different submodels, the notion of minimal accuracy remains arbitrary: here, long discussions between CFD and experimental teams members have lead to a minimum quality which was expected from the match between experimental and LES results in terms of average and RMS velocity fields for multiple locations. This was used for the three solvers to determine the minimum grid size required to reach this sufficient level of agreement. Once all solvers were found to provide comparable agreement with the experimental data (taking into account experimental uncertainties), CPU efficiencies were determined. This procedure still contains a clear level of arbitrariness that authors do not want to deny. The error bars expected on the results are certainly significant and of the order of tens of percents. However, the main issue here is not to determine if a method is 50 percent faster than another one: we are interested in orders of magnitudes as required for example for industry to move from one class of methods to another one.

The paper is organized as follows: the experimental configuration is described first in Section 2.

The three solvers and the corresponding numerical setups are described next (Section 3) before discussing results in Section 4 in terms of velocity profiles (mean, RMS and spectra). Finally the computational efficiency of the three codes is discussed in Section 5.

Experimental setup

The configuration (Fig. 1) was designed to analyze the response of swirled flames to flow rate modulations in [START_REF] Gatti | Impact of swirl and bluff-body on the transfer function of premixed flames[END_REF][START_REF] Dupuy | Combining analytical models and les data to determine the transfer function from swirled premixed flames[END_REF].

Dry air is injected from two diametrically opposed apertures at the bottom of a plenum. The flow crosses a grid and a honeycomb to break the largest turbulent scales. A convergent section produces a top-hat laminar velocity profile with a boundary layer of about 1 mm thickness that was characterized by a hot wire probe (Dantec Dynamics -Probe 55P16 with a mini-CTA 54T30). The diameter of this section is D = 22 mm and the bulk flow velocity is fixed to u b = 5.44 ± 0.05 m s -1 corresponding to a Reynolds number Re D = 7 620 at room temperature T = 300 K. The pressure drop with respect to ambient conditions is recorded in front of the hot wire probe with a differential

All dimensions in mm

Air inlet The measurements are completed by Laser Doppler Velocimetry (LDV) to capture the time resolved velocity profiles at z = 3 mm above the top central insert (see Fig. 2). The Power Spectral Density (PSD) of the axial velocity is calculated to detect the presence of potential hydrodynamic or acoustic modes. To ease optical access the combustion chamber is removed for those latter measurements and LDV data are collected in unconfined configurations. Two laser beams at λ = 514.5 nm (green) allow to probe the axial velocity. Two other beams at λ = 488 nm (blue) are used to measure the velocity component along x direction. The data collection rate is always greater than 10000 s -1

and for each measurement point at least 250000 particles are considered, in order to obtain fully converged mean and RMS values for all components of velocity. The statistical bias is corrected by the transit time of each particle. The analysis of time traces and PSD of these signals does not reveal any specific coherent structures associated to helical flow instabilities.

Presentation of solvers

High-order finite volume solver

AVBP is a multi-species LES explicit solver for Navier-Stokes compressible equations developed at CERFACS (www.cerfacs.fr/avbp7x). This Cell-Vertex (CV) high-order Finite Volume (FV) code [START_REF] Schonfeld | Steady and unsteady flow simulations using the hybrid flow solver avbp[END_REF][START_REF] Colin | Development of high-order taylor-galerkin schemes for unsteady calculations[END_REF] is able to handle structured, unstructured and hybrid grids in both two and three space dimensions. It is a world standard code to compute turbulent reacting flows in combustion chambers [START_REF] Poinsot | Prediction and control of combustion instabilities in real engines[END_REF] or explosions in confined domains [START_REF] Vermorel | LES of explosions in venting chamber: a test case for premixed turbulent combustion models[END_REF]. A critical aspect of compressible codes is the treatment of numerical boundary conditions where acoustic reflections must be controlled to avoid spurious phenomena. In order to fulfill those requirements, AVBP exploits Navier-Stokes Characteristic Boundary Conditions (NSCBC) [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF][START_REF] Selle | Actual impedance of nonreflecting boundary conditions: Implications for computation of resonators[END_REF][START_REF] Granet | Comparison of non reflecting outlet boundary conditions for compressible solvers on unstructured grids[END_REF][START_REF] Daviller | A generalized non-reflecting inlet boundary condition for steady and forced compressible flows with injection of vortical and acoustic waves[END_REF].

Like any explicit compressible code, AVBP tends to be less efficient for low Mach number simulations.

The problem arises from the large disparity between time scales associated to sound waves propagation and convection: the CFL stability condition imposed by the sound speed is uselessly severe with respect to the limit established by convection alone, resulting in an unnecessarily small time step.

In order to overcome this limitation and to be representative of another class of FV solvers, which use incompressible or low-Mach number formulations, a modified version of AVBP, called here AVBP pgs is used to remove the acoustic time step limitation: the governing equations solved are manipulated according to the Pressure Gradient Scaling (PGS) technique [START_REF] Ramshaw | Pressure gradient scaling method for fluid flow with nearly uniform pressure[END_REF]. PGS rescales the pressure gradient in the momentum equations to reduce the computational sound speed, so that the time step is not limited by the true sound speed which is irrelevant. The PGS methodology is limited to low-speed incompressible flows like the present configuration. Overall, the procedure is equivalent to the α-transformation developed in [START_REF] O'rourke | Two scaling transformations for the numerical computation of multidimensional unsteady laminar flames[END_REF], but with the advantage of both easier implementation and wider applicability. Since the Lattice Boltzmann solvers are used here in their athermal weakly compressible form, it seems reasonable to utilise AVBP pgs which uses similar assumptions.

Lattice-Boltzmann solvers

General description of the method

The LBM considers the dynamic evolution of a mass distribution function of particles f (t, x, ξ) that collide and propagate at time t, position x on a discrete velocity stencil called Lattice, commonly noted DdQq (d for spatial dimension and q for velocities). In this study, two solvers were compared, ProLB and waLBerla. Both employ a D3Q19 lattice given by:

ξ i =         
(0, 0, 0), i = 0 (±1, 0, 0), (0, ±1, 0), (0, 0, ±1), i = 1 -6 (±1, ±1, 0), (±1, 0, ±1), (0, ±1, ±1), i = 7 -18.

(1)

At a mesoscopic scale, each function f i = f (t, x, ξ i ) is governed by the Lattice-Boltzmann scheme with the time step ∆t and space step ∆x = ξ i ∆t:

f i (x + ξ i ∆t, t + ∆t) -f i (x, t) = ∆tΩ i (x, t), (2) 
where Ω i is the collision operator. Modeling the collision component circumvents considering its non-linear behavior and therefore, makes this approach particularly well suited for parallel simulations of athermal weakly-compressible flows. The purpose is to preserve the main characteristics of the collision operator Ω i such as the convergence through a local thermodynamic equilibrium during a relaxation time τ and the conservation of mass and momentum.

While the macroscopic quantities (density ρ and momentum ρu) are retrieved from the velocity moments of the distribution function given by:

ρ = q i=0 f i , ρu = q i=0 f i ξ i , (3) 
the pressure p is computed from the barotropic equation of state, p = ρRT 0 where R is the gas constant and T 0 is a characteristic temperature, instead of the Poisson equation involved in most Navier-Stokes solvers allowing to considerably reduce the computational costs.

Finally, the Lattice-Boltzmann equation is discretized on cartesian cubic grids automatically generated in most solvers which alleviates cumbersome and time-demanding meshing. Both solvers are based on this description but use different numerical implementations. A key difference between FV and LBM algorithms is that the FV solver uses the same time step in the whole computational domain, whereas in LBM the time step depends on the level of refinement.

A cell on the coarser grid level has twice the size but also the time step is two times bigger compared to the finer level. To take this effect into account we generally use the term Equivalent Fine Nodes (EFN) which counts cells on coarser levels L as a fraction of the finest level (Eq.4). This quantity reflects the workload equivalent of a mesh using only the minimal mesh size min(∆x) and is therefore more suitable for comparison between the codes.

EFN = L N nodes on L 1 2 L-1 (4) 
Another consequence is that the main part of the workload is generated by the finest level in the domain. In order to do a fast computation it is essential to minimize the regions with minimal cell size. The differences between the two LBM meshes are summarized in table 2. The ProLB algorithm typically needs fewer EFN to accurately resolve a given problem, whereas the approach of waLBerla generates a non negligible amount of excess cells, that are not part of the fluid domain but have to be computed anyway.

ProLB

ProLB is a commercial suite of tools which emerged from LaBS and CLIMB [START_REF]ComputationaL methods with Intensive Multiphysics Boltzmann solver BPIFrance Project[END_REF] French research projects carried out by a consortium of industrial companies, universities, research laboratories and institutes. Its inherent massively-parallel solver includes an octree mesher which efficiently handles both complex geometries [START_REF] Hou | Lattice-Boltzmann and Navier-Stokes Simulations of the Partially Dressed, Cavity-Closed Nose Landing Gear Benchmark Case[END_REF] and multi-resolution refinement layers [START_REF] Touil | Direct and large-eddy simulation of turbulent flows on composite multi-resolution grids by the lattice Boltzmann method[END_REF].

For the present study, a modified version of the commercially available ProLB software is used. The numerical resolution of the Lattice-Boltzmann equation is performed through the D3Q19 lattice with a hybrid version [START_REF] Jacob | A new hybrid recursive regularised Bhatnagar-Gross-Krook collision model for Lattice Boltzmann method-based large eddy simulation[END_REF] of the recursive regularized collision operator [START_REF] Latt | Lattice Boltzmann method with regularized pre-collision distribution functions[END_REF] (H-RR). It shows superior stability properties than the classical Bhatnager-Gross-Krook (BGK) [START_REF] Bhatnagar | A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems[END_REF] for high-turbulent flows [START_REF] Feng | Hybrid recursive regularized thermal lattice Boltzmann model for high subsonic compressible flows[END_REF] by filtering out the spurious and non-hydrodynamic modes that could be amplified at grid transitions [START_REF] Astoul | Analysis and reduction of spurious noise generated at grid refinement interfaces with the lattice Boltzmann method[END_REF].

To handle mesh refinement, a Direct-Coupling (DC) algorithm is employed [START_REF] Astoul | Lattice Boltzmann method for computational aeroacoustics on non-uniform meshes: A direct grid coupling approach[END_REF]. By ensuring mass and momentum conservation at the transition nodes, a singular equilibrium distribution function is computed to recover the missing distributions at both coarse and fine sides. This combination of the H-RR collision model and the DC algorithm offers better accuracy and locality in complex configurations than the classical overlapping method [START_REF] Lagrava | Advances in multi-domain lattice Boltzmann grid refinement[END_REF].

The boundary nodes need a specific treatment in LBM approaches: since the mesh is completely cartesian, an immersed boundary condition is implemented to handle the solid walls [27] [28] allowing first the automatic generation of the mesh and second to flag the interface nodes. It is then supplemented by a Grad's moment approximation of the missing populations to recover macroscopic quantities at the interface. This yields a more stable and accurate approach than the well-known interpolated bounce-back [START_REF] Dorschner | Grad's approximation for moving and stationary walls in entropic lattice Boltzmann simulations[END_REF].

Thanks to the octree multi-resolution mesher, the ultimate grid is built upon a static adaptive refinement strategy [START_REF] Falese | A study of the effects of bifurcations in swirling flows using Large Eddy Simulation and mesh adaptation[END_REF] where the considered sensor is the dissipation of kinetic energy [START_REF] Daviller | A Mesh Adaptation Strategy to Predict Pressure Losses in LES of Swirled Flows[END_REF]. From an initial coarse simulation, the time-averaged field of this sensor is computed. Therefore, a smoothed iso-volume based on a lower case-dependent threshold of the sensor yields a finer resolution domain which is directly reintroduced in the octree mesher. Thereby, this process is repeated twice in order to predict pressure losses and optimize the number of fluid nodes by refining only the relevant areas and minimizing computational costs.

waLBerla

waLBerla [32] is an extreme scale, open-source, C++ multiphysics software framework. It can be used as a tool box for designing various types of applications such as the LBM computation performed here [START_REF] Bauer | WALBERLA: A block-structured high-performance framework for multiphysics simulations[END_REF].

waLBerla was designed from the ground up for high-performance computing (HPC) on massively parallel clusters [START_REF] Pohl | Optimization and profiling of the cache performance of parallel lattice boltzmann codes[END_REF][START_REF] Feichtinger | Walberla: Hpc software design for computational engineering simulations[END_REF] and GPU-based systems [START_REF] Feichtinger | Performance modeling and analysis of heterogeneous lattice boltzmann simulations on cpu-gpu clusters[END_REF], so that it is used as a reference implementation for LBM performance studies [START_REF] Liu | Sunwaylb: Enabling extreme-scale lattice boltzmann method based computing fluid dynamics simulations on sunway taihulight[END_REF].

waLBerla uses automatic code generation [START_REF] Bauer | lbmpy: Automatic code generation for efficient parallel lattice boltzmann methods[END_REF] to ensure excellent execution performance on a wide range of different architectures. This meta-programming paradigm allows to start the application development from a high-level description of the LBM method. All steps to derive the LBM kernel codes can be performed automatically: the code is not only optimized for specific architectures, but also becomes easier to change to test variants of the LBM methods.

The framework is based on a block-structured domain partitioning in order to achieve extreme scalability and node level performance [START_REF] Pohl | Performance evaluation of parallel large-scale lattice boltzmann applications on three supercomputing architectures[END_REF][START_REF] Godenschwager | A framework for hybrid parallel flow simulations with a trillion cells in complex geometries[END_REF]. The full domain is divided into equally sized cuboids that can only be refined as a whole at desired zones and at a size ratio of 2:1 with direct neighbors. These subdomains are called blocks and all hold the same number of grid cells. The computational domain partitioning is partitioned in such blocks that can be assigned to processes.

Load balancing is achieved on the level of blocks, not individual cells.

Every process can hold several blocks, but a block can only be assigned to one single process. Data from blocks is only available to the block that it has been assigned to. This structure allows code parallelization by the Message Passing Interface (MPI) or using hybrid MPI/OpenMPI to guarantee optimal scalability on a wide range of different supercomputer architectures. In complex geometries, the meshing algorithm will loop over all blocks and all cells to determine if they are inside or outside the surface mesh and accordingly set them as fluid or empty cells. Blocks that hold no fluid cells can be discarded, but blocks that hold one or more fluid cells will be kept and stocked with the same set of data. This is necessary because the LBM kernels iterate over over all cells equally, independent if CPUs and GPUs.

they

Numerical setups

The three solvers were applied to the same swirler geometry of EM2C but they employ different meshes ( A detailed representation of each grid, including swirler, injector and near-backplane region, is displayed in Fig. 3. It exhibits an axial cut for each code to show the local mesh structure: the swirler region has the highest resolution to predict the correct velocity field and pressure losses. AVBP pgs adopts Lax-Wendroff scheme [START_REF] Hall | Cell vertex multigrid solution of the euler equations for transonic flow past aerofoils, Rapport technique[END_REF], second-order in both space and time. The CFL number (based on the modified sound speed) is set to 0.9. Temperature and volumetric flow rate are fixed at the inlet, while ambient pressure (101325 Pa) with a proper relaxation coefficient is imposed at the outlet. The SIGMA model is used for subgrid Reynolds stresses [START_REF] Nicoud | Using singular values to build a subgridscale model for large eddy simulations[END_REF]. Both turbulent Prandtl number Pr and Schmidt number Sc are fixed to 0.6 and only one inert species representative of air is computed. The PGS parameters are set to obtain a maximum computational Mach number of 0.3.

While ProLB employs a H-RR collision operator combined with a DC mesh transition algorithm, waLBerla is using a classical BGK collision model. Both solvers impose a one-seventh power law velocity profile at the inlet to match the experimental flow rate and a constant pressure of 1 bar at an extended outlet overlaid by a sponge layer to dump non-hydrodynamic reflection waves inside the domain. Walls are treated differently: ProLB uses a Grad's approximation and waLBerla a bounce-back scheme to treat the "missing populations".

Since acoustics do not contribute significantly to the flow behavior, the non-dimensionalized Newtonian sound speed c * s is artificially minimized by being cautious that the maximal Mach Number does not exceed the critical value of 0.4 [START_REF] Krüger | The Lattice Boltzmann Method: Principles and Practice[END_REF]:

Ma max = u max c * s ∆t ∆x < 0.4. ( 5 
)
This requirement is similar to the CFL condition for classical Navier-Stokes numerical schemes [START_REF] Courant | On the Partial Difference Equations of Mathematical Physics[END_REF].

This process intends to increase the time step to its maximal value and therefore allows to lower the computational time while the accuracy is still conserved.

LES in ProLB are performed using a Shear-Improved Smagorinsky turbulence model (LES-SISM) [START_REF] Lévêque | Shear-improved Smagorinsky model for largeeddy simulation of wall-bounded turbulent flows[END_REF] which accounts for the dissipation of the unresolved turbulent scales through an eddy viscosity ν sgs . This subgrid-scale eddy viscosity is introduced by locally shifting the relaxation time τ * = τ + τ sgs in the collision operator in order to model the additional convection of momentum and energy through the subgrid turbulent eddies. To enclosure this model, ν sgs is computed via the strain-rate tensor.

waLBerla on the other hand employs a basic version of the Smagorinsky model τ sgs = (C S ∆) 2 |S|, in which the turbulent viscosity depends on the local strain rate tensor S, the Smagorinsky constant C S and the filter length ∆ = 1 in lattice units.

Comparison with experimental data

This section presents a comparison of experimental and numerical results to validate the entire set of simulations. All three codes are used on sufficiently long times to obtain fully converged averaged solutions which are time-independent in terms of mean and RMS results: AVBP pgs run for 300 ms of physical time, while ProLB and waLBerla both run for 120 ms. A physical time of 120 ms corresponds to approximately 10 flow-through times (τ t ), where τ t = 10 ms is obtained by the time taken for a flow element to travel through the chamber in the high velocity zone at 8 m s -1 .

The first quality indicator for swirler flows is the pressure loss ∆p through the swirler (Table 4) which controls its performances in a real engine. ∆p is calculated between the pressure tap location (see Fig. 2) and the outside ambient pressure. The agreement of AVBP pgs with the experiment is slightly better than for LBM codes, as expected for a code which uses body-fitting meshes. ProLB and waLBerla predict a ∆p of 368 Pa and 313 Pa, respectively above and below the experimental confidence interval. To qualify codes, measuring the pressure loss is not sufficient, however, and the next sections focus on a detailed analysis of the velocity fields.

PIV

Velocity profiles are compared on two planes: the axial zx plane and the transverse plane z = 3.5 mm (see Fig. 2). In the first case data are displayed over a 40×50 mm 2 rectangular window symmetrically located with respect to the z axis. For the second, results are presented over a 40 × 40 mm 2 squared area centered in the middle of the combustion chamber with sides oriented along x and y directions.

Furthermore local one-dimensional, velocity profiles extracted at constant z are also retrieved from both PIV data and simulations. The experimental mean velocity contour map of Fig. 4 highlights a large Inner Recirculation Zone (IRZ), typical of high swirling flows. This region of negative axial velocity is created by the vortex breakdown and is delimited by iso-velocity lines at ūz = 0 m s -1 . Moreover two high velocity branches develop in the wake of the injector annular channel, identified by isolines at 8 m s -1 .

Axial plane

The comparison with numerical results show that the three solvers properly capture the flow characteristics, for both width and intensity of the IRZ. Minor differences can be highlighted: First, the ūz profile reveals that experimental data are not exactly symmetric with respect to the z axis: the left-hand velocity peak is higher than the other, while simulations do not show the same differences. Numerical predictions show that at both z coordinates, the slope and the minimum of the axial velocity profile, which define the IRZ structure, are correctly represented. On the other hand the maximum axial velocity values at z = 15 mm are slightly overestimated by LBM codes by roughly 0.5 m s -1 , which corroborates the little discrepancy highlighted in Fig. 4. ūx profiles are generally hard to match in swirled flows since the mean velocity intensity is comparable to its RMS values. This emphasizes the fidelity of all simulations put in place. In fact the maximum difference between experimental data and simulations is only of the order of few tenths of meters per second. Furthermore, the RMS profiles for both ūz and ūx at both z coordinates confirm the AVBP pgs little overestimation at peak velocity locations, which in any case remains largely within the experimental accuracy margin.

Another way to accurately compare the codes is to compute the L 2 -norm relative errors between the experimental and simulation values present in Fig. 4. These are given in the Tab. 5. The good agreement between computational and experimental velocity fields confirms the previous findings. Only a slight overestimation of absolute maximum and minimum for both ūx and ūy can be pointed out looking at iso-velocity lines of ±8 m s -1 .

Transverse plane

Furthermore the two high/low velocity symmetric patches result slightly counterclockwise-rotated due to the square shape of the combustion chamber. Remarkably, the flow field is correctly captured by numerical computations.

Power Spectral Density (PSD) of axial velocity

In addition to the mean and RMS values, it is also interesting to look at axial velocity spectra and frequency of the spectra is mathematically fixed by the sampling frequency, this limit could be misleading since oil particles used to seed the flow act like a low-pass filter, not responding to high perturbation frequencies. In the present case, the cut-off frequency of the small oil particles is of the order of 4 kHz: above this value, experimental spectra can not be physically considered.

Fig. 8 displays the PSD at two locations (values in mm): P = (3, 0, 3) is located in the wake of the central bluff-body and Q = (7, 0, 3) lies in the shear layer of the swirling jet (Fig. 2). The gray scale marks the fact that at high frequencies only numerical results can be interpreted. For the present flow rate, experimental PSD results (left column in Fig. 8) do not exhibit peaks 345 associated to coherent structures such as Precessing Vortex Cores (PVC) which are frequently found in swirling flows [START_REF] Oberleithner | Formation and flameinduced suppression of the precessing vortex core in a swirl combustor: Experiments and linear stability analysis[END_REF][START_REF] Terhaar | Key parameters governing the precessing vortex core in reacting flows: An experimental and analytical study[END_REF][START_REF] Moeck | Nonlinear interaction between a precessing vortex core and acoustic oscillations in a turbulent swirling flame[END_REF][START_REF] Syred | A review of oscillation mechanims and the role of the precessing vortex core in swirl combustion systems[END_REF]. Similarly all three simulations do not reveal any peak related to hydrodynamic modes. The PSD decay above 1 kHz shows that calculations exhibit a higher dissipation with respect to experimental results, maybe due to the LES subgrid model used in the three codes. Limited differences are observed among codes at point P . For point Q, a

Comparison of computational costs

The code performances are given by Table 6. A first parameter, which is independent of mesh size and time step is the reduced computational time, i.e. the time required to perform one cell update.

The last line of For Table 6, all outputs and post-processing routines are disabled: only the fluid solver itself is considered. All codes run on 360 processes on a cluster [51] which uses a Intel Xeon Gold 6140 Skylake chipset.

Table 6 shows that the LBM solvers are faster than the finite volume solver but the speed ratios are not different by orders of magnitude: the fastest code waLBerla goes 5 times faster than the AVBP pgs solver.

Scaling

In addition to the computational cost at a fixed number of cores, scalability is an important question in HPC: the strong scaling behaviour of the three codes was tested here from 36 to 900 cores. We measure the parallel efficiency E by relating the the computational time per iteration T P on a given number of cores N P to the time per iteration T 36 on 36 cores, which is equivalent one full node on the utilized architecture.

E = 36 N P T 36 T P (6) 
Fig. 9a shows that AVBP scales almost ideally over the whole range of cores, while the LBM solvers efficiencies drop by 30-40% when increasing the number of cores by a factor of 25. In this particular configuration, parallel scalability is controlled by the spatial distribution of grid cells to achieve an even workload balance among all processes. In AVBP there are few constraints on the decomposition of the computational domain as long as the surface area between subdomains is kept at a minimum. Moreover, AVBP remains efficient even when only a few thousand mesh nodes are handled by each core.

ProLB preserves performance up to 72 cores but then loses efficiency beyond 144 cores because of an increase in waiting time: the solver has an optimum scalability estimated between 10 5 and 10 6 fluid elements per core to efficiently manage industrial configurations that require much larger grids. In other words, while weak scaling works well in ProLB, the present strong scaling exercise is more difficult since the order of magnitude of fluid elements per core is 10 4 at 900 cores.

In waLBerla whole blocks are assigned to each core. When using an excessive amount of cores, there are not enough blocks per process to find an even workload distribution. On the other hand waLBerla exhibits excellent weak scaling until almost half a million cores [START_REF] Pohl | Performance evaluation of parallel large-scale lattice boltzmann applications on three supercomputing architectures[END_REF][START_REF] Godenschwager | A framework for hybrid parallel flow simulations with a trillion cells in complex geometries[END_REF]. Furthermore in the LBM scheme the different levels of refinement have to be executed sequentially. This is an inherent obstacle to achieving even workload distribution and it limits strong scaling capabilities.

The strong scaling limit of the LBM codes may affect the overall conclusion: at 900 cores, ProLB becomes less efficient than AVBP. waLBerla maintains the lowest computation time over the whole range of cores (Fig. 9b).

Conclusions

One finite volume and two Lattice-Boltzmann solvers suitable for Large Eddy Simulation have been compared in terms of accuracy and CPU efficiency in a swirling flow, a typical aeronautical application.

The fidelity of the three solvers was demonstrated by comparing numerical and experimental PIV data in terms of: injector head pressure losses, mean and RMS velocity profiles and axial velocity spectra. Despite minor differences, the three solvers provide very similar and accurate results: the discrepancies with respect to experimental results are limited to the tenth of m s -1 on velocity profiles. For pressure losses, the finite volume solver using body-fitted meshes captures the experimental result very well (330 Pa for AVBP pgs versus 335 Pa for the experiment) but the two LBM codes results, using structured meshes are also close to measurements (368 Pa for ProLB and 313 Pa for waLBerla). These results confirm that LES formulations provide high accuracy Strong scaling tests from 36 to 900 cores reveal that the finite volume solver maintains its performance, whereas the LBM codes exhibit some loss in efficiency as the workload per core decreases. On 360 cores the CPU times necessary to compute 1 ms of physical time are: 3.4 for waLBerla, 10.6 for ProLB and 19 CPU hours for AVBP pgs . The three solvers offer similar orders of magnitude in terms 410 of absolute performance, especially considering the fact that the finite volume solver carried more equations (energy and chemical species) as well as much more complex thermochemical models.

Finally, a point which has been left for further studies is the importance of the mesh quality on the results. The results shown in the paper were obtained with user-optimized meshes which play a crucial role in the final results, maybe as important as the solvers themselves. AMR (Automatic Mesh Refinement) is clearly a topic to address in future works.
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 1 Figure 1: Experimental setup with detailed representation of the injector region and swirler geometry. All dimensions in mm.
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 22 Figure 2: Presentation of cartesian system of reference (left). Identification of points P and Q used for modal analysis (center) and representation of PIV transverse and axial planes of investigation (right)

Figure 3 :

 3 Figure 3: Mesh comparisons via ∆x contour maps for the three solvers: AVBPpgs, ProLB, waLBerla. Differences among structured and unstructured grids, as well as between cubic and tetrahedral elements are highlighted

Fig. 4

 4 Fig. 4 exhibits two rows of images: the top row shows the mean axial velocity component ūz . The second one shows its RMS noted u z,RMS . From left to right experimental data and numerical results are displayed, as specifically reported on top of each plot.
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 4 Figure 4: Contour map comparison of experimental and numerical results of the axial (z) component of the velocity on the axial plane. First row exhibits the mean velocity field ūz, while second row displays the RMS distributions u z,RMS
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 5 Figure 5: Contour map comparison of experimental and numerical results of the horizontal (x) component of the velocity on the axial plane. First row exhibits the mean velocity field ūx, while second row displays the RMS distributions u r,RMS

Fig. 6

 6 Fig. 6 displays mean and RMS profiles of ūz and ūx , where in the first row profiles are extracted at z = 5 mm and in the second one at z = 15 mm.

Fig. 7 displays

 7 Fig. 7 displays ūx and ūy mean velocity profiles on the transverse plane z = 3.5 mm.
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 6 Figure 6: Mean velocity profiles of ūz and ūx with related RMS at constant axial coordinate on the axial plane.

First

  and second rows correspond to z = 5 mm and z = 15 mm, respectively

Figure 7 :

 7 Figure 7: Contour map comparison among experimental and numerical results on transverse plane. The first row exhibits mean velocity component ūx, while second row displays the mean velocity component ūy
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  Power Spectral Density (PSD) from local time signals: PSD are obtained experimentally from LDV velocity signals acquired along the x axis: from x = -15 mm to x = 15 mm with 0.5 mm step. It is worth mentioning that in contrast with simulations, measurements have been performed without combustion chamber. However it has been verified that experimental mean and RMS axial velocity are comparable with both PIV data the numerical predictions obtained in confined configuration. This feature is attributed to the weak impact of the confinement on the flow structure close to the injector outlet, at z = 3 mm. Simulations and experimental signals are extracted for axial velocity over a span of 120 ms in order to share the same numerical frequency resolution of 8.3 Hz. Even though the upper-limiting

Figure 8 :

 8 Figure 8: Axial velocity spectra of kinetic energy for the different solvers at P = (3, 0, 3) (top row) and Q = (7, 0, 3) (bottom row)

Figure 9 :

 9 Figure 9: Parallel performance of the three codes up to 900 cores, normalized by the performance at 36 cores

Table 2 :

 2 Level distribution of fluid nodes in LBM solvers

  are fluid or not. Code generation is handled by the pystencils package[41,[START_REF] Bauer | lbmpy: Automatic code generation for efficient parallel lattice boltzmann methods[END_REF]. It uses symbolic manipulation with the SymPy algebra system to derive symbolically a stencil formulation from the continuous LBM collision operator. During this procedure several optimization techniques, such as common subexpression elimination and vectorization can be applied to generate highly efficient C/C++ code. Additionally, optimized code for GPUs can be generated. Thus waLBerla with pystencils can achieve performance portabiliy to a wide range of different architectures, including

Table 3

 3 

	Code	Topology	Cell type	min(∆x) [µm] Total elements [M]
	AVBPpgs	Unstructured	Tetrahedral	80	18.1
	ProLB	Unstructured	Cubic	110	26.3 (21.4* )
	waLBerla	Structured	Cubic	110	39.3 (22.6* )

): AVBP pgs uses body-fitted unstructured tetrahedral mesh with 18.1 M cells in total, while ProLB relies on cartesian unstructured mesh, offering a local refinement possibility but requiring up to 26.3 M grid elements, which amounts 21.4 M EFN to represent the same geometry.

This tendency is exacerbated in waLBerla, where the structured cartesian mesh is only able to refine whole blocks of the mesh, which leads to 39.3 M, or 22.6 M EFN cells overall.

Table 3 :

 3 Overall description of mesh parameters for the three solvers (* marks the number of EFN)

Table 4 :

 4 Injector head pressure losses due to swirler

		∆p (Pa)
	Experiment	335±15
	AVBPpgs	330
	ProLB	368
	waLBerla	313

Table 5 :

 5 L 2 -norm relative error for each solver and each plot of the Fig.4respectively. To give an overall comparison, the global error ⟨η⟩ has been computed as the average of each plot error. Bold and emphasize errors shows the more and less accurate result respectively.

  Table 6 displays a second parameter which is the most important one for the user: the total CPU time required by each code to compute 1 ms of physical time.

	Code	AVBPpgs	ProLB	waLBerla
	Time step [s]	4.4 × 10 -7	8.5 × 10 -7	7.1 × 10 -7
	Equivalent Fine Fluid Nodes [M] 18.1	21.4	22.6
	CPU time per iteration [ms]	83	90	24
	Reduced computational time	1.67	1.50	0.38
	[µs iteration -1 cell -1 core]			
	Cost 1 ms physical time [CPUh]	19.1	10.6	3.4

Table 6 :

 6 Comparison of computational efficiency of the three different solvers on a 360 cores run[51] 
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the extension of the high mean velocity regions is slightly overestimated by LBM codes, where 8 m s -1 and 4 m s -1 isolines develop further downstream than in experimental data. In addition, RMS maps obtained with the three solvers highlight less regular contour plots, potentially linked to averaging times which are much smaller in the LES than in the experiment. AVBP pgs shows slightly higher RMS with respect to other codes and experiment, especially in the high velocity region.

The horizontal component (x) results (Fig. 5) confirm the axial component conclusions of Fig. 4: the three solvers are able to match the experimental results and all solvers provide results which are within the experimental range of precision for PIV results (typically 0.3 m/s here). However difference emerges in the high frequency range: the two LBM codes introduce less dissipation than the finite volume solver but it is difficult to say if this is physically right or not.