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Abstract: Granular flows occur in various contexts including laboratory experiments, industrial processes and
natural geophysical flows. In order to investigate their dynamics, different kinds of physically-based models
have been developed. These models can be characterized by the length scale at which dynamic processes are
described. Discrete models use a microscopic scale to model individually each grain, Navier-Stokes models use
a mesoscopic scale to consider elementary volumes of grains, and thin-layer models use a macroscopic scale to
model the dynamics of elementary columns of fluids. In each case, the derivation of the associated equations is
well known. However, few studies focus on the extent to which these modeling solutions yield mutually coherent
results. In this work, we compare the simulations of a granular column collapse on a horizontal or inclined plane,
for the discrete model COCD, the Navier-Stokes model Basilisk, and the thin-layer model SHALTOP. We show
that, although all three models allow reproducing the temporal evolution of the free surface in the horizontal case
(except for SHALTOP at the initiation), the modeled flow dynamics are significantly different, and in particular
during the stopping phase. The pressures measured at the flow’s bottom are in relatively good agreement, but
significant variations are obtained with the COCD model due to complex and fast-varying granular lattices.
Similar conclusions are drawn using the same rheological parameters to model a column collapse on an inclined
plane. This comparison exercise is essential for assessing the limits and uncertainties of granular flow modeling.

Keywords: Granular Media, Discrete Element Methods, Navier–Stokes Equations, Thin-layer Models,
Granular Flow Dynamics, Basal Stress

INTRODUCTION

Dry granular flows have been widely studied over
the past decades, from industrial processes [1, 2] to
geophysical flows such as rockfalls [3–5], rock and debris
avalanches [6–8], pyroclastic flows [9, 10], or more
generally, dry landslides both on Earth and other planets
[11, 12].

Laboratory experiments allow investigating the
physical processes controlling granular flow dynamics,
such as self-channeling [13–15], particle size segregation
[2], and bed erosion [16–18]. Nevertheless, some key flow
characteristics are challenging to measure in experiments
but can be directly estimated in numerical simulations,
like the pressure inside the flow or the velocity field.
Numerical modeling also helps to validate physically-
based models used to describe the processes at stake
[4, 19–21], to investigate configurations difficult to set

∗ martin_hugo@ymail.com

up in a laboratory, and flows at a larger scale such as at
the field scale for geophysical flows.

Multiple modeling solutions exist depending on
the scale of the flow description, rheological laws,
and numerical methods. At the microscopic scale,
simulations with discrete models, generally referred
to as Discrete Element Methods (DEM), represent
the granular flow by many distinct particles, and all
grain-to-grain interactions are modeled [22–25]. This
approach is supposedly the most realistic but has a high
computational cost as the number of particles increases
[e.g., 26–28]. It limits their applicability to flows at larger
scales. Furthermore, the large range of particle sizes
that change in time due to fragmentation is still poorly
handled despite the strong effect of particle segregation in
granular flows [29]. A second modeling solution considers
the granular flow as a continuous medium and solves
the Navier-Stokes equations to model the dynamics of
each elementary volume [e.g., 30–33]. In this case, larger
events can be modeled but the main difficulty remains in
the definition of suitable rheological laws. Furthermore,
simulating natural flows over complex topography still
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requires huge computational cost, which complexifies
sensitivity analyses [34]. A third modeling option is
based on the thin-layer approximation where the flow’s
thickness is assumed to be small compared to its extent,
and velocity is assumed to be parallel to the slope.
Consequently, the model only solves for the thickness
of the flow and its depth-averaged velocity. These
models are often used empirically because the rheological
parameters are calibrated to reproduce experiments
or field observations [12]. However, thanks to their
relatively low computational cost, they can be used at
field scale to reproduce real geophysical events. Since the
pioneering work of [35–37], they have been widely used
for physics-based landslide hazard assessment [38–40].
Note that unlike the first option using discrete models,
the Navier-Stokes and thin-film models cannot represent
blocking effects between particles due to the continuous
formulation of these models.

All these models are classically tested by comparing
observed and simulated landslide travel distance (or
runout) and deposits extent and thickness. Indeed,
these characteristics are the easiest to observe on the
field for geophysical flows. However, over the past
decades, seismic waves generated by these flows have
been increasingly used to constrain their dynamics (both
at the laboratory and at the field scales e.g. [41–44]). In
turn, seismic waves can be used to calibrate both thin-
layer models [45–48] and discrete models [49, 50]. This is
done, in particular, by comparing the basal force inverted
from seismic signals and deduced from simulations (e.g.,
[48, 50]). Thus, to accurately interpret the comparison
between simulations and observations and be aware of
their limitations, it is essential to understand how the
dynamics (and in particular the basal force) of the
simulated flow depends on the type of simulation tool.
To the best of the authors’ knowledge, no systematic
comparison between discrete, Navier-Stokes, thin-layer
models, simultaneously with experimental data, has been
performed so far.

In this work, we investigate the discrepancies between
discrete, Navier-Stokes and thin-layer models, with
three numerical codes: the discrete model Convex
Optimization Contact Dynamics (COCD) [51], the
Navier-Stokes model Basilisk [52], and the thin-layer
model SHALTOP [20, 53–56]. In order to allow for
a more straightforward interpretation, we consider the
simple case of a column collapse, reproducing the
experiments of [17] for three slope angles θ = 0◦, 10◦ and
16◦. Rheological parameters are chosen to match the
profiles of one column collapse experiment. We compare
these methods on their profiles evolution, deposits,
dynamics, and normal stresses on the ground. In
Section I, we present the experimental data used to
calibrate the model. Then, in Section II, we describe
the three different numerical models. Simulations results
are presented in Section III, then simulations of flow
dynamics and basal normal stresses are discussed in
Section IV. An additional spectral analysis of COCD
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FIG. 1. Three different types of models to simulate granular
column collapse. Black arrows represent velocity vectors. In
the discrete model (COCD) every disc has its own velocity, in
the Navier-Stokes model (Basilisk) the velocity is defined in
each cell while in the thin-layer model (SHALTOP), a depth-
averaged velocity, parallel to the bed, is associated to each
column. The dashed gray line represents the contour of the
initial rectangular mass released from rest at t = 0 s.

normal stress is done in the same section, with a
discussion on rheological parameters, see Section IV.

I. EXPERIMENTAL SETUP

The experimental setup used in the simulations is
described in detail in [17]. It consists of a 3 m long
channel of width 20 cm and inclination θ between 0◦ and
30◦. Let us define a cartesian reference frame (x, y, z)
linked to the bed, such that the z-axis is perpendicular
to the bed and the x-axis is pointing in the downslope
direction. In this reference frame, the channel base is
given by z = 0 (see Fig. 1).

The granular material consists of spherical glass beads
released from rest as a rectangular mass of height H0 =
14 cm and length R0 = 20 cm. The corresponding aspect
ratio is a = H0/R0 = 0.7. The mean diameter of beads
is d = 0.7 ± 0.1 mm. A layer of glass beads is glued to
the plane. The initial mass is released by opening a gate
in the direction perpendicular to the channel bed.

The experimental setups reproduced in our simulations
correspond to slope angles θ = 0◦ and θ = 16◦. θ =
10◦ and θ = 22◦ are also considered for comparison.
The manner in which the initial state is constructed in
simulations is described in detail in Appendix A.

II. NUMERICAL MODELS

The general concepts and equations of the different
models used in this work are now briefly presented. More
details on the simulation setups and output processing
are given in Appendix A and B. The values of numerical
parameters are given in Table I, Appendix C. The flow
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dynamics is solved on a 2D domain only. Interactions
between the beads and lateral walls are thus not taken
into account explicitly. The initial granular column
is released from rest without accounting for the gate’s
initial lifting (see [31] for the effects of the gate).

A. The discrete model COCD

In discrete models, the granular mass is represented
by a collection of rigid particles (see Fig. 1) like glass
discs (or spheres in 3D). The motion equations are solved
at each time step for all of these particles, determining
their contact forces. Their interactions can be classically
modeled through the Hertz theory, using non-linear
damp springs, as done in the Molecular Dynamics (MD)
approach (see the seminal work of Cundall [22]). In this
work, we use another approach named Contact Dynamics
(CD), firstly introduced by Moreau and Jean in the 1990s
[23, 57–61]. Unlike MD, where the contact forces are
modeled by functions obtained from Hertz theory, in CD,
the forces are linear impulses, submitted to contact laws
describing normal repulsion and tangential friction that
are included into the Newton’s second law of motion.

Numerous numerical methods have been proposed
for CD models [24, 51, 62–67]. Classically, one shall
specify the normal and tangential contact laws, which
must be verified for every contact and time step. The
normal law is based on a non-overlapping constraint,
a complementary relation between the normal distance
and the intensity of the normal contact force. It means
that grains cannot overlap or interact if they are not
in contact, and the force between two grains is always
repulsive, i.e.,

0 ≤ Dα, fαn Dα = 0, fαn ≥ 0, (1)

where α is the number associated to a contact between
two particles, Dα is the normal distance that measures
the gap between the two particles, and fαn is the
normal force intensity between them. These relations
are supplemented by the inelastic contact law. The
tangential contact law that is verified for all contacts is
the Coulomb friction law, involving the tangential and
normal components of the contact force belonging to
Coulomb’s cone, i.e.,

fαt = −µpfαn vαt /‖vαt ‖, if ‖vαt ‖ > 0,

‖fαt ‖ ≤ µpf
α
n , if ‖vαt ‖ = 0,

(2)

where µp is the friction coefficient between the particles,
fαt is the tangential force vector, and vαt is the tangential
relative velocity vector between the two particles involved
in the contact α.

In this paper, to compute the approximated solution
of the motion equation including the contact laws (1)
and (2), we use the numerical method called Convex
Optimization Contact Dynamics (COCD), described in
[51]. In this particular approach, the numerical scheme

is a natural discretization of Newton’s second law and
the non-overlapping constraint (1) is convexified. Doing
so, the grains velocities and positions may be computed
simultaneously using an implicit scheme, which requires
solving a convex minimization problem with conic
constraints at each time step.

The mechanical behavior of such discrete media
results from a combination of geometrical rearrangements
between particles and inter-particle friction forces. In
our discrete model, the only rheological parameter is
the inter-particle friction coefficient mup, present in the
tangential law (2), and which is calibrated to reproduce
laboratory experiments. More precisely, the macroscopic
static friction coefficient µs = tan(θm) – where θm is the
static friction angle, i.e., the angle that the granular mass
forms at rest – can be interpreted as the combination of
the inter-particle friction coefficient µp and the geometric
trapping (dilatancy effect) µg [68]. The coefficient µg is
linked to the grains’ shapes, masses, or inertia, while µp is
a given parameter of the model, and used in the classical
Coulomb’s law of friction at any grain/grain or grain/wall
contact [51].

In this paper, 2D simulations only are considered for
comparing the three models. The value for µp used
here is derived from back-analysis by reproducing the
deposits from experiments through 2D simulations in
the horizontal case. The best-fit interparticle friction
coefficient is µp = 0.9. Note that this value is relatively
large compared to the friction coefficient µp = 0.3,
calibrated by comparing 3D simulations and experiments
[51], and which is in the range of friction coefficients
measured for a perfect glass/glass contact µ = 0.4 [69],
and that measured with MD µ = 0.16 [70]. In COCD,
this difference in calibrated friction coefficients arises
when comparing mass profiles in 2D and 3D simulations.
We discuss this point in Section IVE.

B. Basilisk

Basilisk [52] is a continuum multiphase flow solver
based on a finite volume method (see Fig. 1) and Volume-
Of-Fluid approach to track the interface between phases.
In our case, these two phases are air and granular phase.
The eulerian mesh grid remains constant in the granular
material and coarsens in the air (see figure 2 of [71] for
an illustration). Basilisk solves the local incompressible
mass and momentum equations :

∇ ·V = 0, (3)

ρ

(
∂V

∂t
+ V · ∇V

)
= ρg −∇p+∇ · (2ηD) , (4)

where V = (Vx(x, z, t), Vz(x, z, t)) is the velocity field
with components Vx and Vz in the x- and z-direction,
respectively, g is the gravity field, ρ is the density, and η
the dynamic viscosity. This is equivalent to writing the
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stress tensor σ as

σ = −pId + σ′, (5)
σ′ = 2ηD, (6)

where σ′ is the deviatoric stress tensor, Id is the identity
tensor and the strain rate tensor is

D =
1

2

(
∇V +∇Vt

)
. (7)

Basilisk thus solves the velocity field and the pressure
in the granular phase provided a constant value or a
rheological law is given to define η.

The µ(I)-rheology has met with growing success to
model granular flows [72, 73]. When considering simple
shear dry granular flows, dimensional arguments and
numerical simulations showed that the shear stress is
proportional to the pressure p, through a coefficient µ
that depends on the inertial number I. The tensor
formulation of this rheology is [73]:

σ′ =
µ(I)p

‖D‖
D, (8)

with I =
2‖D‖d√
p/ρ

, (9)

with ‖D‖ =
√

0.5DijDij and d the mean diameter of
grains belonging to the granular phase. Thus, the µ(I)-
rheology boils down to considering a viscous fluid, with
a non-constant viscosity η:

η =
µ(I)p

2‖D‖
. (10)

Finding an explicit and general relation between the
coefficient µ and the inertial number I is an open
question. The most common expression of µ(I) derived
for steady flows on constant slopes is given by:

µ(I) = µ1 +
µ2 − µ1

1 + I0/I
, (11)

where µ1, µ2 and I0 are constants. But the resulting
model may be ill-posed: small-scale instabilities in the
flow can significantly affect simulations results [32, 74].
Nevertheless we use this expression. Furthermore, to
avoid numerical divergence when ‖D‖ tends to 0 in
Equation (10), a maximum value for the viscosity ηmax =
24000 Pa s is imposed following [30] to regularize the
problem when the strain rate tends to zero.

The friction coefficients are µ1 = 0.48, µ2 = 0.73 and
I0 = 0.279. Solving the same equations, they have been
calibrated for a = 0.7 and θ = 0◦ through an Augmented
Lagrangian method and were quantitatively compared
to granular collapse experiments [31]. Note that these
rheological parameters have been slightly overestimated
compared to experimental measurements [73] to take into
account the wall effects. For a detailed analysis of wall
effects in Navier-Stokes and thin-layer models, see [32]
and [75], respectively. A discussion about the influence
of the rheological parameters is presented in Section IV.

C. SHALTOP

Depth-averaged thin-layer granular flow simulations
are carried out with the SHALTOP numerical code
[20, 53–56]. This code has been successfully used to
simulate both laboratory experiments [55] and field scale
landslides on Earth and other planetary bodies, e.g.,
[12, 45, 76–78]. SHALTOP also proved to accurately
reproduce analytical solutions of the dam-break problem
[79–81] and was compared to other depth-averaged
models in one of the only benchmark exercise for these
types of codes [82].

To match as closely as possible the equations
implemented in Basilisk, we use a depth-averaged version
of the µ(I)-rheology following [19, 20, 83]. The resulting
mass and momentum equations are:

∂h

∂t
+
∂(hV )

∂x
= 0, (12)

∂(hV )

∂t
+
∂(hV

2
)

∂x
= S1, (13)

with

S1 = gh cos(θ)(tan(θ)− ∂h

∂x
)− gh cos(θ)µ(I)

V

|V |
. (14)

The term S1 includes the gravitational and longitudinal
pressure forces, and a bottom friction force where µ(I)
appears. As for Basilisk, µ(I) is given by Equation (11),
but with the depth-integrated version of the inertial
number I:

I =
5du

2h
√
ghΦ cos(θ)

, (15)

where Φ is the volumetric solid fraction.
Note that in the derivation of the corresponding thin-

layer equations for flows on inclined planes given in [83,
84], an additional viscous term S2 appears on the right-
hand side of Equation (13):

S2 =
∂

∂x

(
νh3/2

∂V

∂x

)
, (16)

where ν is a coefficient that can be related to bed slope,
µ1 and µ2 [see Equations 4.16 in 84]. However, the
expression of ν in [84] is valid for steady flows only,
when µ1 < tan(θ) < µ2, which is not the case in
our simulations. More generally, it is not valid for
complex, non planar topogaphies. As we want our
results to help improve the interpretation of thin-layer
simulations at the field scale, we will thus not consider the
viscous term S2 in our simulations. Besides, comparisons
with experiments in Section IIIA show that the depth-
averaged µ(I)-rheology without viscosity already allows
to match correctly granular collapse deposits.

We use the same rheological parameters as for Basilisk
simulations: µ1 = 0.48, µ2 = 0.73 and I0 = 0.279.
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t = 2.0 s

t = 6.5 s

FIG. 2. Comparison between experiments and numerical simulations of the granular profiles during a column collapse. We
display the experiment results (red squares), discrete COCD simulations (blue line), Navier-Stokes Basilisk simulations (black
line) and thin-layer SHALTOP simulations (green line). The initial aspect ratio is a = 0.7, with a bed slope θ = 0◦ (a, b, c)
and θ = 16◦ (d, e, f). The light blue line in (f) is the discrete simulation profile at t = 6.5 s.

For simplicity, the solid fraction in Equation (15) is
set to Φ = 1, as it allows to match mass profiles
observed in experiments and simulated with Basilisk,
both for θ = 0◦ and θ = 16◦. We tested Φ = 0.6,
and results are very similar to Φ = 1. Thus, in thin-
layer simulations, the main controlling parameters are
the friction coefficients µ1 and µ2, and not the volume
fraction Φ. We investigated the sensitivity of the results
to µ1 and µ2 in Section IVD.

III. RESULTS

To compare the discrete, Navier-Stokes and thin-layer
models together, and with laboratory experiments, we
focus on the spatio-temporal change of the flow thickness
h(x, t), the position of the flow front xf (t), the velocity
field and the arrest phase, as well as on the basal normal
stress σb and the hydrostatic pressure ph, both applied
by the flow to the bed. Appendix B details how all these
quantities are computed in the different models, and
Table I in Appendix C gives all numerical parameters.

A. Granular mass profiles

1. Horizontal plane

The first row of Fig. 2 shows comparisons between
experimental measurements of the granular mass profile

on a horizontal plane (θ = 0◦) and the different numerical
models at three different times. After the column release
at t = 0 s, the mass spreads on the plane, decelerates,
and stops to form a deposit. The mass profiles obtained
with the Navier-Stokes model Basilisk reproduce very
well the overall granular spreading (compare black line
and red squares in Fig. 2). Moreover, the final deposit
is in excellent agreement with the experiment, although
the initial spreading is slightly faster in the simulation
(Fig. 2a).

The profiles resulting from the discrete model are
initially very similar to those obtained using the Navier-
Stokes model. However, the final deposit slightly differs
from the experiment, with a concave shape of the frontal
part while the deposit front is slightly convex (Fig. 2c
and f).

The depth-averaged thin-layer model SHALTOP
overestimates the initial spreading. However, despite the
initial overestimation of the velocity, the final deposit is
in good agreement with the experiments with a runout
distance overestimated by less than 15%.

2. Inclined plane

The second row of Fig. 2 shows similar profiles of
the granular mass on an inclined plane θ = 16◦,
simulated with the same rheological parameters as for
the horizontal plane. In this case, the results are
more sensitive to the numerical model used. The
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thin-layer model SHALTOP is faster than the others
but yields a final deposit in good agreement with the
experiment. The mass profile has a concave and rounded
front compared to the thin experimental front, and the
thickness at the rear of the flow decreases faster.

The Navier-Stokes model Basilisk is in good agreement
with the experiments throughout the collapse although,
the flow being faster than on the horizontal case, some
drops and bubbles appear at the front as numerical
artifacts (see Section IVA). At t = 1.02 s, a thin layer
(lower than 3.5 mm) develops, which is not observed
in the experiments. The overall profile is also slightly
less convex than in the experiment, and the upper left
thickness of the flow is decreasing faster as in the thin-
layer model.

The most significant difference with the experiment is
observed for the discrete model COCD, where the flow is
still moving after 2 s (compare blue and pale blue lines
in Fig. 2f, giving the flow thickness at t = 2.0 s and
t = 6.5 s respectively). This difficulty in stopping the
granular flow for θ = 16◦ is discussed in Section IV.

B. Flow dynamics

We define the flow’s front position xf (t) as the
maximal length reached by the flow, thicker than five-
grain-diameters height in experiments, i.e., h(xf ) ≥
5d = 3.5 mm. The front position is represented for each
simulation by a green dashed line in Fig. 3. The left
position of the mass is always located at x = 0, whatever
the time. The way the front is computed is explained in
Appendix B. The colors in Fig. 3 represent the depth-
averaged downslope velocity V̄x(x, t) and its space-time
evolution at θ = 0◦ (Fig. 3a-c) and θ = 16◦ (Fig. 3d-f).
The velocities represented in white are those smaller than
the cutoff velocity 1 cm s−1, set as in [17]. It highlights
the spatio-temporal characteristics of the stopping phase.

To describe the dynamics of the column collapse, we
define three different phases. First, the acceleration phase
starts when the gate is instantaneously removed and
ends when the front reaches its maximal velocity. The
deceleration phase follows, and we arbitrarily define its
end when the front stops, even if the rest of the mass
may still be flowing. Finally, the stopping phase follows
and ends when all the material is at rest. The end of the
acceleration (resp. deceleration) phase is represented by
a vertical white dashed line (resp. dotted black line) in
Fig. 3.

The transition between static and moving state within
the granular mass are given by black and gray arrows
in Fig. 3. The black arrow correspond to a rarefaction
wave propagating from the front to the back of the flow,
initiating the movement of materials initially at rest. On
the contrary, grey arrow correspond to stopping waves,
when materials in movement come to rest. This stopping
wave can be initiated at the front of the flow towards the
back (Fig. 3b), from the back towards the front (Fig. 3d),

or from any location within the mass towards the front
or the back (Fig. 3c).

1. Acceleration phase

Figs. 3a-c at θ = 0◦ show a significant difference
between the thin-layer and the two other models in the
acceleration phase of the granular mass. This phase is
very fast, if not instantaneous, in the thin-layer model:
less than 0.02 s, when simulations outputs are written
every 0.01 s. It is more progressive in the discrete (0.24 s)
and Navier-Stokes (0.22 s) models, in better agreement
with experiments (black squares). The propagation of
the static/flowing interface (transition between violet and
white colors along the black arrows in Fig. 3) towards
the left of the column in the thin-layer model is also
different from the other models (Figs. 3a-c). Indeed, this
interface propagates with an almost constant velocity in
the thin layer model while, in the discrete and Navier-
Stokes models, it propagates with decreasing velocity.
In the Navier-Stokes model, the static/flowing interface
stays almost at the same position x = 0.12 m for t > 0.1 s
(Figs. 3c).

The lighter colors in Fig. 3a compared to Figs. 3b,c
show that the maximum depth-averaged velocity V̄ in
the thin-layer model is always higher than in the other
models (above 1.1 m s−1).

For a column collapse on the inclined plane θ =
16◦, Figs. 3(d-f) show qualitatively the same behavior
during the acceleration phase as on the horizontal plane.
Although velocities are higher, acceleration duration are
similar to the horizontal slope case (instantaneous for
SHALTOP, 0.24 s for COCD and 0.20 s for Basilisk). In
comparison, in the experiments, the acceleration phase
lasts 0.26 s and 0.29 s for θ = 0◦ and θ = 16◦ respectively.

2. Deceleration phase

On a flat bottom (Figs. 3a-c), the deceleration phases
have a similar duration in the discrete COCD and Navier-
Stokes Basilisk simulations (about 0.2 s, between white
dashed and black dotted lines in Figs. 3b-c). The portion
of the initial mass that does not move on the left is
slightly larger with the Navier-Stokes model (x ≤ 0.12 m
compared to x ≤ 0.085 m for the discrete model).

In the thin-layer model SHALTOP the maximum
velocities are higher (above 1 m s−1, compared to less
than 0.7 m s−1 in the other models), as expected. As
the acceleration phase is instantaneous, the deceleration
phase last the whole flow duration and ends at t =
0.32 s. It is sooner than the Navier-Stokes and discrete
models (0.45 s for both, black dotted lines in Figs. 3a-
c). Finally, the motion still propagates backward
throughout the deceleration phase in the thin-layer
simulations, while the static/flowing transition almost
stays at the same position in the discrete model and only
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FIG. 3. Spatio-temporal plot representing the depth-averaged along-slope flow velocity V̄x(x, t) (colorscale) for the different
models, with θ = 0◦ (a,b,c) and θ = 16◦ (d,e,f). We only display velocities above 1 cm s−1 (lower velocities are represented
in white), as in the experiments of [17]. For each simulation, the green dashed line represents the time evolution of the front
position. The acceleration and deceleration phases are separated by a vertical white dashed line, and the deceleration and
stopping phases by a vertical black dotted line. Black arrows follow the rarefaction wave where the mass initially at rest is
set in motion. Grey arrows follow the stopping wave where the moving mass stops. Black squares give the front position in
experiments.

slightly propagates backward in the Navier-Stokes model
(compare black arrows in Figs. 3a-c).

In the thin-layer simulation at θ = 16◦, the
static/flowing transition (rarefaction wave) propagates
towards the back during a shorter duration than in the
horizontal bed case (compare black arrows of Figs. 3a
and 3d), and reaches the rear of the initial mass after
about 0.2 s (black arrow in Fig. 3d). Between t = 0.2 s
and t = 0.6 s, almost the whole mass is moving. Then,

after t = 0.6 s, the stopping wave (gray arrow in Fig. 3d)
propagates at constant speed towards the flow’s front.

A qualitatively similar but more complex behavior is
observed in the Navier-Stokes model at θ = 16◦, but at a
latter time (from t ' 0.7 s, Fig. 3f). The flow front is also
more contaminated by drops and air bubbles than at θ =
0◦ due to increased flow front velocity (compare colors
irregularities between Fig. 3c and Fig. 3f). The stopping
waves are initiated during the deceleration phase for θ =
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FIG. 4. Comparison between the horizontal velocity Vx calculated with the Navier-Stokes (Basilisk) (first row) and discrete
(COCD) (second row) simulations, for θ = 0◦. The red continuous line represents the free surface while the red dashed line
the static/flowing transition, considering a threshold value Vx = 1 cm s−1, as in [17]. Figures (a,e) belong to the acceleration
phase, (b,f), to the deceleration phase and (c,d,g,h) to the stopping phase.

16◦, from the left wall and propagates faster than in thin-
layer and discrete simulations (the flow almost stops at
t = 1 s).

3. Stopping phase

On the horizontal bottom, the stopping phases are very
different from one model to the other. The stopping
phase simulated by the thin-layer model is very short,
less than 0.1 s (Fig. 3a). The granular mass stops from
both the front and the rear in an almost symmetrical way
(gray arrows in Fig. 3a). The stopping phase simulated
with the Navier-Stokes model lasts slightly longer (about
0.15 s) but displays three stopping waves: one from the
rear towards the front and two from the middle of the
flow propagating in opposite directions (Fig. 3c). This
is a direct consequence of the stopping criteria in the
Navier-Stokes code Basilisk, see Section IVA. In discrete
simulations, the stopping phase is more extended (about
0.6 s), with only one stopping wave propagating from
the front to the rear at almost constant velocity (about
0.7 m s−1, Fig. 3b).

On the inclined plane θ = 16◦, the stopping phase
is different from that observed at θ = 0◦. This phase
is almost nonexistent in the thin-layer simulations as the
front is the last portion of the flow still in motion. Similar

qualitative behavior is obtained with the Navier-Stokes
model if we disregard the thin layer that stays in motion
beyond the front (above the green dashed line in Fig. 3f).
Indeed, the mass never wholly stops in the Navier-Stokes
code Basilisk in the inclined case. The drops beyond
the front that still move after 1.02 s are thin and slow
and continue flowing until the end of the simulated time
(here t = 2 s). In the discrete model, the stopping
phase starts at t = 6 s (Fig. 3g), and the mass never
entirely stops during the calculation time, as continuous
rearrangements keep occurring behind the front. This is
not the case when smaller inclinations are considered (see
Section IVA).

In all simulations, the final front position is each time
in good agreement with the final front position from
experiments (compare black squares and green dashed
lines in Fig. 3). For θ = 0◦, the front stops at
similar times in experiments, discrete and Navier-Stokes
simulations (0.45 s), while the front stops sooner in thin-
layer simulations (0.32 s). However, for θ = 16◦, the front
stops at 0.64 s, but simulated fronts stop later: 0.93 s for
the thin-layer model, 1.05 s for the Navier-Stokes model,
and 6 s for the discrete model.
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FIG. 5. Basal normal stress and hydrostatic pressure for θ = 0◦. (a) t = 0.18 s, (b) t = 0.48 s, (c) t = 1.99 s. For each
simulation, we compute the basal normal stress σb, and the hydrostatic pressure ph. The light blue, respectively dark blue,
curve is the raw, respectively smoothed, normal stress derived from discrete COCD simulations. See Appendix B 3 for details
on computation. The gray light at the right of the wall limit (dashed black line) represent the left wall.

4. Velocity field and static/flowing interface in discrete and
Navier-Stokes models

The evolution of the horizontal velocity norm through
the depth of the flow and during the collapse, |Vx(z, t)|
is shown in Fig. 4 for θ = 0◦. This information can only
be obtained using the discrete and Navier-Stokes models
since the velocity is depth-averaged in the thin-layer,
one-layer model considered here. The static/flowing
transition is defined by considering a velocity threshold
of 1 cm s−1, as in the previous section and in [17].

Fig. 4a and Fig. 4e, corresponding to t = 0.15 s, are
snapshots of the velocity field during the acceleration
phase for the Navier-Stokes and the discrete models.
During this phase, the horizontal velocities obtained with
the two models are similar (compare the colors). The
static/flowing interfaces also have a similar shape (red
dashed line).

Fig.4b and Fig.4f, at t = 0.30 s, correspond to the
deceleration phase for both simulations (the flow front
has started to slow down). Although velocities are
comparable, the moving part inside the column is larger
in the discrete simulation. In particular, the horizontal
length of the flowing domain, behind the flow front, is
12 cm for the Navier-Stokes (Fig. 4b) and 20 cm for the
discrete model (Fig. 4f).

We observe notable differences between the Navier-
Stokes model (Fig. 4c and d) and the discrete model
(Fig. 4g and h) during the stopping phase even though
similar profiles of the deposit are obtained. The

static/flowing interface propagates from the front to
the left and from the bottom to the free surface for
the discrete code (see the evolution of the red dotted
line between t = 0.5 s and 0.8 s (Fig. 4g, h). For the
Navier-Stokes simulations, the front is always moving and
the static/flowing interface goes up uniformly from the
bottom towards the free surface between t = 0.5 and 0.8 s
(Fig. 4c, d).

The discrete simulation shows deeper rearrangements
than for the Navier-Stokes model, even after the flow
front has stopped. Indeed, motion occurs 4 cm below the
free surface at t = 0.5 s with velocities locally higher than
0.35 m s−1 (Fig. 4g). At t = 0.8 s (Fig. 4h), velocities are
below 0.25 m s−1, but motion still occurs 3 cm below the
surface. We can clearly identify in Fig. 4h the progression
of the stopping wave that propagates from the flow front
towards the rear.

C. Basal stress

1. Spatial variations

The basal normal stress σb and hydrostatic pressure ph
derived from the three codes are represented along with
the domain in Fig. 5 for θ = 0◦, at three different times:
t = 0.18 s, t = 0.48 s and t = 2.0 s, where the flow is
at rest in the three simulations (see the corresponding
mass profiles at these times in Fig. 2c) The basal stress
σb is the stress applied to the bottom by the mass. It
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may differ from the hydrostatic pressure ph related to
the weight of the granular column on the bottom. The
way σb and ph are computed in each code is described in
Appendix B 3.

The stresses σb and pressures ph computed from the
discrete and Navier-Stokes models are in good agreement
for x ≥ 0.2 m (i.e., at the right of the initial gate, see
Figs. 5 a,b, and c) even though σb is much smoother in
the Navier-Stokes model.

The thin-layer model compares well with the others
except for t = 0.18 s (Fig. 5a), where its front is too
far (0.48 m in the thin-layer model against 0.31 m for
the others). As already mentioned in Section IIIA,
it is because the flow propagates faster in thin-layer
models. The other difference is a perturbation observed
at t = 0.18 s and x = 0.045 m in the stress σb (discussed
in Section IVB).

Significant variations in discrete simulation of σb
are observed around the average values calculated in
the other codes (compare blue line to other curves in
Fig. 5a,b,c). These oscillations have amplitudes up to
75% of the mean value computed with the other codes
at t = 0.18 s, while they account only for 50% of it at
t = 0.48 s (Fig. 5b), and 20% at t = 2.0 s (Fig. 5c), when
the flow is at rest. These oscillations are expected. Note
that the more spatially smoothed the stress curve of the
discrete model is, the closer it is to that of the other two
models.

For x ≤ 0.2 m, we observe significant discrepancies
between the different values of σb and ph. For
instance, the basal normal stress σb derived from discrete
simulations is about 50% lower than the hydrostatic
pressure ph derived from the same simulation (compare
blue plain lines and blue dashed lines in Fig. 5).
Interestingly, Fig. 5 also shows that the stress applied on
the bottom in the Navier-Stokes model can be different
from the hydrostatic pressure. For instance, for x '
0.15 m at t = 0.18 s, the basal normal stress is smaller
than hydrostatic and, around x ' 0.15 m, it gets higher,
see Fig. 5a. The Navier-Stokes normal stress σb also
varies less in space, leading to smaller pressure gradients
and thus smaller driving forces than those based on
hydrostatic pressure in thin-layer models.

2. Temporal variation

In Fig. 6, we compare the temporal variation of stress
σb and pressure ph at three different locations (see
caption of Fig. 6) for θ = 0◦ and θ = 16◦. For each
slope, the locations of probes x1, x2 and x3 correspond
respectively to 25%, 50%, and 75% of the runout distance
from the gate. For example, the probes locations are
represented by red dots in Fig. 5c. Fig. 6 also shows
the basal pressure, denoted P , for Navier-Stokes model
Basilisk (khaki line), measured in the first cell above the
bottom boundary layer.

The time at which the mass front reaches the probes is

the minimal time with a non-zero stress signal. This time
is shorter for thin-layer models than for the two others
that are equal (Fig. 6). The difference is approximately
about 1 s for x1 and x2 (Fig. 6a,b,d,e) but may differ for
x3 (Fig. 6c,f). Another characteristic time is the duration
needed by the mass to reach its local maximal height. It
can be measured in Fig. 6 by the the duration between
the time where the front reach the probe and the time at
which the hydrostatic pressure is maximal. This duration
is longer for thin-layer and Navier-Stokes models in the
inclined case than for the horizontal plane. It is 0.06 s
(Fig. 6a) against 0.2 s (Fig. 6d) for Navier-Stokes and
0.26 s (Fig. 6a) against 0.40 s (Fig. 6d). While discrete
model is between them for θ = 16◦ (0.35 s (Fig. 6d)) it is
much longer for the horizontal plane (0.75 s (Fig. 6a)).

For θ = 0◦, Fig. 6 shows that normal stress σb
and pressure P are very close, except for the flow at
high velocities (compare green and khaki lines for t ∈
[0.2, 0.4] s in Fig. 6a). They are obviously equal when
the mass is at rest, t ≥ 2 s (Figs. 6a-c). Additional stress
variations appear in the Navier-Stokes model compared
to the thin-layer model (see, e.g., Fig. 6a). However,
these variations are still much smaller and at much
longer periods than the stress fluctuations calculated
with the discrete model. At a given probe, the local stress
computed by discrete model can be completely different
from the hydrostatic pressure, as expected (see σb for
t ≥ 0.8 s in Fig. 6a and Fig. 6c).

The basal stresses simulated with the continuum
models (thin-layer and Navier-Stokes) at θ = 16◦ are
smaller than for θ = 0◦ for the same position to the front
(compare Figs. 6a with 6d, 6b with 6e, and 6d with 6f
(75%)). Note that the instabilities of SHALTOP and
Basilisk, already observed for θ = 0◦ and probe x1 (see
figure (6a)), are also visible for θ = 16◦ and probes x1,
x2 and x3, (see Fig. 6d-f).

The behaviour is more complex when looking at
discrete simulations. Indeed, in that case, the basal stress
fluctuations are much higher at θ = 16◦ than at θ = 0◦.
For the discrete model COCD, Figs. 6b and Figs. 6d
clearly show that the basal stress can be almost two times
higher or lower than the hydrostatic pressure. Indeed, in
discrete simulations, when the mass is almost at rest for
t ≥ 0.8 s, σb can be close to ph (Figs. 6d, e, f), lower than
ph (Figs. 6a), or higher than ph (Figs. 6b, c).

IV. DISCUSSION

A. Differences in flow dynamics

The discussion focus here on the three different phases
defined in Section III B: the acceleration, the deceleration,
and stopping phases.
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FIG. 6. Time evolution of basal normal stress σb (and hydrostatic pressure ph for the discrete model) at three different probes,
for θ = 0◦ (first row, a-c), and θ = 16◦ (second row, d-f). For θ = 0◦ (resp. 16◦), the probes positions are x1 = 0.266 m
(a), x2 = 0.331 m (b), and x3 = 0.397 m (c) (resp. x1 = 0.357 m (d), x2 = 0.514 m (e), and x3 = 0.671 m (f)). These probes
locations respectively correspond to 25%, 50%, and 75% of the distance between the runout distance and the gate position
(x = 0.2 m). For discrete σb, the light blue, (resp. dark blue) curve is the raw (resp. smoothed), basal normal stress.

1. Flow initiation (acceleration phase)

The flow initiation is quantitatively similar for the
Navier-Stokes model Basilisk and the discrete model
COCD (Figs. 2, 3, 4). During this initiation, the profiles
obtained with the two codes slightly differ from the
experiments from [17] (see Fig. 2a, d). This may be
due to the presence of a gate in experiments, where the
release is fast but not instantaneous [31]. The thin-layer
model SHALTOP overestimates the initial spreading
with higher velocities than the others (compare Fig. 3a
with Fig. 3b, c, and Fig. 3d with Fig. 3e, f). This well-
known behavior of such models [55, 75] is due to non-
negligible vertical velocities/accelerations leading to non-
hydrostatic pressure inside the granular column, which
contradicts the thin-layer approximation (e.g., figure 12
in [85]). Furthermore, the analytical solution of the dam-
break problem, described by thin-layer equations with
constant friction coefficient smaller than the tangent of
the bed slope, shows that the front velocity in these
models is maximum at t = 0 s (see [79] and equation (3)
in [16]). This is consistent with our simulations where the
acceleration phase is less than 0.02 s (when outputs are
written every 0.01 s), although in our case the friction
coefficient is not constant and is higher than the slope
bed.

These behaviors are qualitatively similar for θ = 0◦

and θ = 16◦. The duration of the acceleration phases
simulated by the discrete and Navier-Stokes models does
not depend much on the slope (between 0.20 and 0.24 s

for both θ = 0◦ and θ = 16◦). This is coherent
with laboratory experiments (see location of the curves
maximums in figure 9b in [16]).

2. Deceleration phase

The deceleration phases are quantitatively similar for
the Navier-Stokes and discrete models COCD (Figs. 2a,d,
Figs. 3b,c, 3e,f, and Figs. 4b,f). Differences are observed
near the front where some drops and bubbles appear in
Basilisk as numerical artifacts at θ = 16◦. These artifacts
are due to Basilisk’s flow description. Indeed, as grains
and air are both described as incompressible materials,
the process of bubble formation and dynamics is not
physically appropriate in the model. These instabilities
get stronger as the slope angle increases due to increased
flow front velocity.

However, the stopping “waves” initiation behavior is in
qualitatively good agreement between the three models.
Indeed, for all of them, the stopping “waves” start at
times close to the stopping of the front at θ = 0◦

(Figs. (3a,b,c)) while they start at the left wall before the
front stopping at θ = 16◦ (Figs. (3d,e,f)), even though
this is less clear for the Navier-Stokes model.
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3. Stopping phase

The spatio-temporal characteristics of the stopping
phase are different in the three models. The thin-layer
model stopping phase is the fastest since at θ = 0◦

the whole mass stops shortly after the front and at
θ = 16◦ the front is the last part of the mass to
stop (Figs. 3a,d). Indeed, a flow column will stop as
soon as driving forces related to inertia, gravity and
surface slope drop below gh cos(θ)µ(I). Thus, contrary
to Basilisk and COCD models, vertically distributed
movement (where the base of the flow is at rest but its
top is still moving) is not modelled. However, even if
the surface flows are expected to slightly remodel the
deposit shape, the deposits obtained by SHALTOP are
in excellent agreement with experiments, especially for
the inclined plane, see Fig. 2f. Indeed, as the slope angle
increases, the flow gets thinner and therefore is better
suited to be described by the thin-layer approximation.

The longest stopping phase is with the COCD, see
Figs. (3b,e). At θ = 0◦, the stopping wave, initiated
at the front and propagating backwards (see Figs. 3b
and 4g,h) is in good qualitative agreement with the 3D
granular collapse experiments of similar aspect ratio (see
section 4.2 of [55]). The most significant difference with
the experiment is observed for the discrete model at
θ = 16◦, where the flow is still moving after 1 s, (Fig. 2f),
and stops after t = 6.3 s, (Fig. 3g). This large delay
before the mass stopping at θ = 16◦ is due to the 2D
configuration (see Section IVE).

Finally, the time delay between the initiation of the
stopping and the full stopping of the mass in the Navier-
Stokes model is in between the time delay obtained
with the other models at θ = 0◦, (Fig. 3c) and
similar to the thin-layer model at θ = 16◦. The
Navier-Stokes model provides the closest deposits to the
experiments, see Fig. 2. Interestingly, for θ = 0◦,
it is the unique model that generates three stopping
“waves,” see Fig. (3c). However, a thin layer (lower
than 3.5 mm) is still in motion at a low velocity
(between 1 and 3 cm. s−1) for t ≥ 1.2 s, see Fig. 3f.
Indeed, as a maximum viscosity is imposed in Basilisk,
the mass never really stops. Prescribing a maximum
viscosity is equivalent to regularisation methods (e.g.,
[30]). Increasing the maximum viscosity which would
lead to better deal with the yield behaviour (stopping)
significantly increases the computation time. Optimal
values of the maximum viscosity should be found by
numerical analysis that compares the regularization error
with the spatial discretization error (Section 5.2 in [33]).

The stopping phase appears to have excellent
characteristics to discriminate the models and, in
particular, the appropriate rheological laws. Thus,
qualitative and quantitative comparison with the
stopping phase observed in laboratory experiments would
be very interesting (e.g., section 4.4 and figure 4 of [86]),
but we do not have such data for these experiments.
Indeed, contrary to flow profiles, accessing measurements

inside the moving granular mass to study the stopping
phase is technically challenging in experiments.

B. Differences in basal stresses

A significant part of the basal stress results from
the weight of the granular column (i.e., hydrostatic
pressure) for all three models, see Figs. (5b, c) for x ≥
0.2 m. Consequently, the difference between the absolute
positions of the curves, related to the different models,
is mainly due to the different local mass thicknesses. It
explains why the basal normal stresses obtained with the
three models are in good quantitative agreement if the
free surfaces are similar at a given position.

As the increase of bed inclination favors mass
spreading, flow thickness is reduced. Thus, the weight
of the grains is smaller at θ = 16◦ than at θ = 0◦. It
is why the basal stresses simulated with the continuum
models (thin-layer and Navier-Stokes) at θ = 16◦ are
much smaller than at θ = 0◦ despite higher velocities
(compare Figs. 6a with d, b with e, and c with d).
The perturbation that appears in the basal stress σb
with the thin-layer model at θ = 16◦ can be directly
associated with the formal expression of pb in SHALTOP
(see Eq. (B7)). The spatial derivatives of the velocity
result in numerical artifacts since the velocity is not twice
differentiable at the static/flowing transition.

In the Navier-Stokes simulation, the basal normal
stress σb may be different from the hydrostatic pressure
ph (Fig.5a), but is relatively similar to the pressure P ,
indicating that deviatoric stresses are small (Fig. 6).
When σb ≥ ph, a significant vertical motion induces
a higher basal stress than the hydrostatic pressure.
However, it is not clear how the stress σb can be lower
than ph. However, it is similar to what is observed in
simulations obtained with the discrete model.

The most crucial difference for basal normal stresses
is between the continuum and discrete models. Indeed,
the discrete basal stress depends on the dynamics of
colliding beads and on the geometry of the granular
lattice varying with both space and time, see [87]. The
discrete stress σb highly fluctuates around the hydrostatic
pressure ph (Fig. 5 and Fig. 6). During the flow, multiple
grain rearrangements change force chains distribution
within the granular media leading to strong variations
in the basal stress: as a result, a small surface at
the bottom of the flow may well carry more, or less,
than the weight of the granular column of grains above
it. These stress fluctuations increase with the slope
(compare the two rows in Fig. 6). It is consistent with
experiments and models discussed in [43], showing that
the ratio between force fluctuations and the mean force
at the base of granular flows increases with increasing
inertial number I. These fluctuations decrease during the
stopping phase (Fig. 5). Indeed, as successive collisions
progressively dissipate energy with time, σb depends
more and more on the static distribution of weight
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FIG. 7. Spectral content of the discrete (COCD) basal normal stress σb at θ = 0◦ computed at x1 = 0.27 m (a,d), x2 = 0.33 m
(b,e) and x3 = 0.40 m (c,f). The first line (a-c) is the spectral amplitude (light blue line: raw Fourier transform, dark blue
line: smoothed Fourier transform). The second line (d-f) displays the corresponding spectrograms. The associated signals are
given in Fig. 6.

through the granular lattice and associated force chains,
rather than on dynamics contributions.

Another specific point in discrete model simulations
is the decrease of σb close to the left wall (see Fig. 5).
It is similar to the Janssen effect in a grain silo, where
the stress is far from the hydrostatic pressure at the
silo’s bottom. Indeed, part of the granular weight is
supported by the lateral walls [88, 89]. In this simulation,
the domain left wall contributes to handling part of the
granular weight that is not applied on the bottom. This
particular stress profile can also be explained by the
construction history of the granular column that strongly
affects static stress distributions, as shown by [87] for a
granular pile.

C. Spectral analysis of discrete basal normal stress

Section III C 2 shows that σb calculated from discrete
simulations (COCD) displayed much higher temporal
variations than continuum simulations. Here, we analyze
the spectral content of the basal stress as displayed in
Figs. (7a-c) showing its spectrogram at the different
probes xi, i = 1, 2, 3 for θ = 0◦. More precisely, we
only consider here the fluctuations in the signals by
substracting the smooth signal (the dark-blue line) from
the total signal (light-blue line) in Fig. 6. Figs. (7d, e, f)
are the spectrograms of these signals. The maximum
frequency that can be measured here is 500 Hz, related
to the time step of the discrete simulation (∆t =
0.001 s). Acoustic measurements of waves generated by

steady granular flows or column collapses show that wave
frequencies go up to ten’s of kHz in our conditions,
see [41–43]. These frequencies are related to the Hertz
contact, not accounted for in our Contact Dynamics
framework simulations.

The main frequency observed is around 100 Hz for the
three probes (Fig. 7a-c), and the maximum frequency
decreases as the distance of the probe increases and with
time (Fig. 7d-f). The range of dominant frequencies
(with an associated power higher than 150 in Fig. 7a)
is 35-300 Hz. The corresponding periods (0.003-028 s)
may correspond to the characteristic times tmacro for
grain rearrangements due to the average shear between
layers of grains, see Eq. (6.3) in [1]. For the three
probes, Fig. 8 presents the mean frequency of layer
frequencies fij = 1/tmacro,ij related to the characteristic
time tmacro,ij related to the shear of layers in the mass
thickness. More precisely, tmacro,ij = d/|∆uij |, i < j
where d is the mean grain diameter, and ∆uij is the
relative velocity between two connected layers (see details
of its computation in Appendix B 3). Fig. 8 shows that
this mean frequency belongs to the range of dominant
frequencies mentioned before. It enforces the hypothesis
that the main event during the flow is related to the
time tmacro, corresponding here to the average time for
one bead from layer j to pass over one another bead
from layer i. Further studies are needed to explore this
hypothesis.

The total radiated energy decreases from the first to
the third probe, probably because energy is progressively
dissipated within the granular media. Lab-experiments
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of granular collapses and generated acoustic waves
showed that the radiated energy decreases before the
deceleration phase of the front (see Fig. (8a,b) of [41]).
The deceleration phase at θ = 0◦ is starting around 0.2 s
here, so that when the front arrives at probes x2 and x3
it has already decelerated.

The spectrograms (Fig. 7d-f) highlight that most
energy is radiated when the flow front reaches the probes,
at times t = 0.1, 0.2, and 0.3 s for x1, x2, and x3. One
can distinguish two behaviors: for x1 and x3, (Fig. 7d
and 7f), most of the energy is radiated in the first 0.3
to 0.4 s after the front arrives. The associated frequency
bandwidth is 30-400 Hz, with main frequencies between
100 and 200 Hz. Afterwards, generated frequencies
hardly exceed 175 or 200 Hz. On the contrary for x2,
in the first 0.3 s following the front arrival, energy is
almost evenly distributed over the 30-300 Hz frequency
bandwidth (Fig. 7e). Besides, contrary to the other
probes, the decrease in energy radiation and frequency
bandwidth is more progressive and lasts more than 1 s
(compare white arrows in Fig. 7d-f).

The behavior at x2 compared to x1, and x3 may be
explained by the fact that the flow is more transient
at x1 (quick acceleration near the initial mass) and x3
(flow stop quickly after arrival), than at x2 where the
flow decelerates progressively. Furthermore, at x1, after
the front passes, the grains near the base are almost
static and the moving grains near the free surface are
far from the base (see Fig. 4e-h) so that the stress
fluctuations from the upper grains hardly reach the base.
For x3, at t = 0.5 s there is almost no moving grains
above the front so that the stress fluctuation decreases
rapidly (see Fig. 3b). Then x2 has an intermediate
behavior. Indeed, at this position, the grains near the
free surface are still moving until about 0.8 s (Fig. 4h)
and, as the flow thickness is quite small at this position
(around 2.5 cm corresponding to ∼ 3 beads, Fig. 2b), the
associated stress fluctuations may propagate down to the
base during the relaxation phase of the upper grains up
to full stopping of the mass. However, given the strong
spatial variation of the basal normal stress and the role of
force chains in the stress transmission, a deeper analysis

of these processes should be performed which is beyond
the scope of this paper.

The spectrograms in Fig. 7 can be qualitatively
compared to those obtained in laboratory experiments,
from bottom force measured at the arrival of an avalanche
at a given location (see Fig. 3a of [43]). In these
measurements, the front arrival signature is similar to
that calculated here, even if their dominant frequencies
are much higher. The spectrogram at probe x2 in our
study (Fig. 7e) is closer to the experimental spectrogram
which have been measured for a granular mass reaching a
steady-uniform regime some time after the front arrival.

Note that a pulse of energy can be observed at all
probes at about 1.1-1.4 s, more visible at x3 (Fig. 7f).
This regain of radiated energy is related to the full
stopping of the mass as can be seen in Fig. 3b.

D. Influence of rheological parameters

1. Rheological parameters for the rheology in continuum
simulations

In order to compare the different models considered in
this work, we chose a set of parameters that proved to
reproduce rather correctly the evolution of the column
collapse free surface in the case θ = 0◦. However, the
determination of appropriate rheology for granular flow
modeling and the choice of corresponding rheological
parameters are still open issues.

Considering the µ(I)-rheology for the column collapse
simulations, several values of µ1, µ2 and I0 can be found
in the literature, all being specifically defined either in
experimental or numerical studies. For instance Jop et al.
[73] measure experimentally

RJop = {µ1 = 0.382, µ2 = 0.644, I0 = 0.279} , (17)

whereas [90] obtained, by calibrating µ(I) with
axisymmetric DEM simulations, that the best fit to their
data was

RLac = {µ1 = 0.40, µ2 = 0.70, I0 = 0.3} , (18)

and [30] choose

RLag = {µ1 = 0.32, µ2 = 0.60, I0 = 0.4} , (19)

to match the results obtain with the Navier-Stokes
Gerri’s flow solver to 2D-DEM simulations. Based on
a previous study comparing numerical simulations to
experimental column collapse, [31] defined the friction
parameters in their continuous models as

RIon = {µ1 = 0.480, ∆µ = 0.250, I0 = 0.279} .
(20)

These last coefficients have explicitly been defined to
match the experimental data of [16] by increasing the
static friction coefficient µ1 to consider the effect of the
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FIG. 9. Influence of µ(I)-rheology parameters on simulation
results, for a = 0.7 and θ = 0◦. We display flow profiles at t =
0.4 s and t = 1.0 s. (a) Basilisk simulations with parameters
from [31] (used in previous figures, RIon), parameters from
[73] (RJop), and from [30] (RLag). (a) SHALTOP simulations
with parameters RIon, RJop, and RLag.

lateral walls on the spreading of the granular column.
Indeed, at the moment, the frictional dissipation due to
lateral walls cannot be taken into account otherwise in
2D simulations.

To better evaluate the effect of the frictional
coefficients in the µ(I)-rheology, a comparison between
RIon, RJop andRLag is presented in Fig. 9. As expected,
the lower the friction coefficients, the longer the runout
distance. The longest is obtained using RLag, then RJop
and finallyRIon. However, note that the initial dynamics
are relatively similar, at least during the first 0.15 s.
It suggests that the differences between the thin-layer
and Navier-Stokes dynamics may be still qualitatively
similar to those analysed in this study for a wide range
of parameters.

2. Friction coefficient in discrete COCD simulations

In discrete simulations, it is also non-trivial to choose
the friction coefficient. In [91], a table with values used
in the literature is given: they range between µp = 0 and
µp = 1. The influence of the friction coefficient in COCD
simulations can be found in figure 5 of [51]: it obviously
shows that the smaller the coefficient of friction, the
greater the distance reached by the front. However, the
difference is small (about 15% between µ = 0.2 and 0.8),
especially compared to the influence of the 2D versus 3D
discrete simulations (see Section IVE).
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FIG. 10. Influence of the space dimension on the discrete
model COCD results, for θ = 0◦ (a) and θ = 16◦ (b). The
aspect ratio is a = 0.7. The friction coefficient is exactly
the same between the 2D and 3D simulations, µp = 0.9. We
display flow profiles at t = 0.4, 1.0, and 6.5 s. At θ = 16◦ (b),
the 3D simulation is at rest at 1.63 s.

E. Influence of simulation geometry

In this work, we have considered that the granular flow
dynamics does not change in the direction transverse
to the flow. As discussed in the previous section, it is
not true in reality, as lateral walls can have a significant
impact on the flow [31]. This effect is oversimplified here
and tackled by empirically increasing friction coefficients
of the µ(I) rheology in continuum models (see e.g., [32]
for wall effects).

As explained in Appendix A, SHALTOP’s
implementation does not solve the thin-layer equations in
a 2D domain, and we have to solve them in a 3D domain.
That is, we solve for the depth-averaged velocity field
V̄x(x, y, t) in a channel of arbitrary width W and use
lateral boundary conditions and initial conditions to
ensure that V̄x does not depend on y. With this method,
SHALTOP proved to reproduce the 2D thin-layer
dam-break problem’s analytical solution accurately.
Thus, we can be confident that our simulation results
do not depend on the width W of the channel used in
simulation and are consistent with the 2D thin-layer
equations.

In COCD simulations, the 2D equations describe the
motion of discs, whereas the 3D equations describe the
motion of spheres. Fig. 10 shows that with the same
friction coefficient µp, the repose angle is smaller in 2D
than in 3D. For example, in [51], the maximal avalanche
angle for 2D flows is about 17◦ when considering H0/d =
15, with d the mean diameter of grains while it is above
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FIG. 11. Comparison between experiments and numerical simulations of the granular profiles during a column collapse. We
display the experiment results (red squares), discret COCD simulations (blue line), Navier-Stokes Basilisk simulations (black
line) and thin-layer SHALTOP simulations (green line). The initial aspect ratio is a = 0.7, with a bed slope θ = 10◦ at times
0.18 (a), 0.48 (b), and 2 s (c). At t = 2 s in (c), the three codes are at rest.

22◦ in 3D, as in experiments [16, 17]. The smaller
value of the repose angle in 2D, compared to 3D, can
be explained by the fact that in 3D, spheres can spread
laterally, in the collapse transverse direction. It increases
the number of potential traps but also the number of
potential contacts, inducing a higher dissipation due to
Coulomb friction between the grains. It explains, at
least partly, why the friction coefficient we use in COCD
simulations, µp = 0.9 (see [51]), must be higher than
the friction coefficient between glass spheres estimated
from experiments (0.2 ≤ µ ≤ 0.3), which is in the range
between the friction coefficient measured for a perfect
glass/glass contact µ = 0.4 [69] and that measured with
Molecular Dynamics models (MD) µ = 0.16. Here,
COCD runs in 2D because our goal is to compare the
three models in the same 2D space configuration.

Here, we present the limit case for θ = 16◦ in 2D
COCD simulations where the stopping is difficult but
arises after a long duration (more than 6 s in Figs.3e and
10b). When considering a smaller inclination angle, the
flow stops similarly to the two other models, see Fig. 11.

V. CONCLUSIONS

The comparison between discrete (COCD), Navier-
Stokes (Basilisk), and thin-layer (SHALTOP) models
for a simple granular column collapse simulation show
that they can reproduce the profiles measured in lab-
experiments with different level of accuracy, provided
an appropriate choice of the rheological parameters is
made. The µ(I) rheology is used here for both continuum
models. The rheological parameter are kept constant for
each model when simulating the granular collapses at
three different angles from horizontal to θ = 16◦. Even
if the differences between the models strongly depend on
the rheological parameters and simulation setups, general
conclusions could be made:

• The thin-layer model overestimates the initial
acceleration and velocity compared to the other
models and to the experiments, although the
final deposits are consistent with the Navier-
Stokes simulation with the same values of the µ(I)
rheology (except the volume fraction Φ that has,
however, only a limited influence on simulation
results) and with the experiments.

• The Navier-Stokes and discrete simulations have
the same acceleration and deceleration phases but
differ in the stopping phase. After the front stops,
more and deeper particles are still in motion in
the discrete simulations. The thin-layer simulations
are globally faster than the two others in the three
phases.

• 2D simulations thus requires an artificially higher
inter-particle friction coefficient when compared to
3D experiments (laterally confined flow here). In
particular, in 2D discrete simulations using the
same friction coefficient between the beads for
slopes θ = 0◦ and θ = 16◦ results in a flow lasting
several seconds too long at θ = 16◦.

• For θ = 16◦, the flow front is hardly managed in
the Navier-Stokes code Basilisk with the apparition
of artificial bubbles whose number increase as the
slope angle increases.

• The basal normal stress measured from the Navier-
Stokes and thin-layer models are qualitatively
similar and mainly depend on the flow thickness
even though slightly higher variations are simulated
with the Navier-Stokes model which may be due to
non-hydrostatic effects. The basal stress resulting
from the discrete model is much more complex,
with important spatial and temporal fluctuations
at much higher frequencies, related to the grain-
scale motion.
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A key point is that the differences between the models
are more visible at higher slope angle. Furthermore, the
characteristics of the basal stress and of the stopping
phase appear to be much more discriminant for the
models and rheology than the mass profiles during the
collapse. This strongly suggests to use these quantities
and to consider the configuration of granular flows
on sloping beds to assess the performance and limits
of granular flow models and rheological laws or to
calibrate the models. This is particularly important
for modeling field-scale geophysical flows, when the
simulated dynamics are compared to seismic recordings
that give us a direct measurement of the basal stress
applied by the landslide to the ground [46, 48, 92].
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Appendix A: Numerical set-up

1. Initial conditions

The construction of the initial mass is straightforward
in the Basilisk and SHALTOP simulations because it
boils down to defining the boundary of the initial mass.
In COCD (like in any DEM simulation), generating an
initial state is more complex. The position, size, and the
number of beads must be defined. The way the initial
column is built in COCD can strongly impact the initial
forces distribution in the granular media [87]. Following
[87], the initial arrangement of beads is constructed
by simulating a uniform rain of beads (whose diameter
follows a Gaussian distribution of mean d = 0.7 mm
and standard deviation 0.07 mm). It allows obtaining a
granular network with a quasi-hydrostatic pressure [87].
However, in our initial box, the basal stress is not equal
to the hydrostatic pressure, in particular, close to the left
wall, as shown in section III C.

In experiments, remark that the gate opening affects
only the early stage of the collapse, as shown in [32].
Thus, in our simulations, we consider an instantaneous
release of the initial granular mass (without accounting
for the gate).

2. Boundary conditions

In COCD and Basilisk simulations, the beads and
granular flow dynamics are solved directly in the 2D
domain (x, z), and no lateral boundary conditions are
needed. On the contrary, SHALTOP solves the depth-
averaged mass and momentum equations for flows on
general 2D-topographies Z = Z(X,Y ) in a fixed vertical

cartesian frame and not on 1D-topographies Z =
Z(X). In order to mimic a 1D-topography problem, the
topography is represented by an inclined plane of width
W = 3 × dx in the Y direction, with dx the numerical
cell size. The initial mass spans the width of the grid
uniformly. Then, a non-penetration condition is set on
the lateral boundaries of the grid, i.e., on Y = 0, Y = W .

A non-penetration condition is also used on x = 0 (or
equivalently at X = 0 for SHALTOP) in all three codes.
This condition is done explicitly in COCD’s simulations
through a vertical wall. This wall interacts with the
particles with the same friction coefficient than for grain
to grain contacts. In Basilisk and SHALTOP, we impose
Vx = 0 and V̄X = 0, respectively.

The bottom boundary condition on z = 0 is specific
to each code. In COCD’s simulations, as in experiments,
a glued layer of beads is added to the bed. The size
distribution of these glued beads is identical to the other
grains. There is no space between two consecutive glued
beads. Even if this is not really true because the glued
beads could not move (e.g. role), this can be seen as
a no-slip and non-penetration condition, which is set
explicitly in Basilisk (Vx(z = 0) = 0 and Vz(z = 0) =
0). Note that in Navier-Stokes simulation of the same
set-up, [31] used a Coulomb friction condition at the
base and studied the impact of this condition compared
to the no-slip condition used here (see their figure 16
where deposit calculated with friction went about 0.04 m
further than with no-slip). As SHALTOP solves directly
for the depth-average velocity V̄X , the bottom boundary
condition is included in the equations and does not need
to be specified numerically.

Note that thin-layer equations (12) and (13) can be
derived in two different manners. It is possible to use
the no-slip condition and the internal µ(I)-rheology as
in the Basilisk code. However, the same final equations
are derived if we assume a Coulomb solid friction law
at the interface between the flow and the topography,
with a friction coefficient given by µ(I) as in (11), and
no condition on the bottom velocity (and thus on the
velocity profile). See Chapter 1 in [93] for details.

Appendix B: Simulation output processing

To compare simulations, we extract key characteristics
of the flow and we detail in this section how they are
calculated in each code.

1. Flow height and front position

For COCD’s profiles, we first decompose the horizontal
domain in cells of size dx = 4d, where d = 0.7 mm is
the mean diameters of grains. The flow height is then
defined, in each cell, as the height of the top most beads.
The front is computed with this same method without
other post-process.
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One of Basilisk’s outputs is directly the air/granular
media interface, represented in Fig. 2, from which the
determination of the flow height h(x, t) is straight-
forward. Determining the flow front position is not
straightforward because small drops detach from the
main mass (e.g., Fig. 2e). The µ(I)-rheology is no longer
capable of modeling their propagation correctly, which
may generate numerical issues. Indeed, due to these
drops, the classical definition of the front position:

x̂f (t) = max {x, h(x, t) > 0} , (B1)

does not yield an appropriate (i.e., physically relevant)
position for the flow front. Instead, the front position
xf (t) is given by the intersection of the x-axis with the
tangent to the graph zt(x) = h(x, t), for x = x̃f (t). x̃f (t)
is the last position for which the flow height is positive
for all abscissas before x̃f (t):

x̃f (t) = max {X : ∀x < X, h(x, t) > 0} , (B2)

In practice, before estimating the tangent, the graph
zt(x) = h(x, t) is smoothed (with a Lowess smoothing
algorithm [94]). At time ti, xf (ti) is considered as an
outlier if ∣∣∣∣xf (ti)− xm(ti)

xm(ti)

∣∣∣∣ > 0.01 (B3)

where

xm(ti) = 0.5(xf (ti−1) + xf (ti+1)). (B4)

If Equation (B3) is verified, then we set xf (ti) = xm(ti).
This rough filtering works because, in practice, we never
had two outliers in a row.

In SHALTOP, the layer thickness h(x, t) is directly
given as a simulation result. The flow front xf (t) is then
given by:

xf (t) = min {x, h(x, t) < 5d} (B5)

where d = 0.7 mm is the mean diameter of beads in
COCD’s simulations.

2. Flow velocity and flow depth-integrated velocity

COCD computes every grain velocity. Let us consider
the same domain decomposition described in section B 1.
At a given time t, we define the 2D columns of width dx
and height hdx(x) for each cell and detect all the grains
that belong to them. We then compute its horizontal
mean velocity V̄x(x, t) for each column, by averaging all
the horizontal velocities of grains included in the column.
The local horizontal velocity is the horizontal part of the
velocity vectors of each grain.

Basilisk explicitly solves for the velocity field within
the flow, that is, Vx(x, z, t) and Vz(x, z, t). The depth-
averaged flow velocity in the x-direction V̄x is then
directly deduced following Eq. (13).

SHALTOP solves directly for the depth-averaged
velocity V̄x, and no further processing is needed.

3. Basal stresses and pressures

For COCD, let us consider again the columns,
introduced in precedent section B 2. The probes have
the same length dx as the columns. Since the grains
belonging to each column can be detected, the total mass
of the column is the sum of the masses of grains. In
the computing of any grain mass mi, we multiply the
volume of the disc i by the grain diameter di, and by
the glass density ρ = 2500 kg.m−3. We finally define
the hydrostatic pressure ph as being the column weight
divided by the length (it would be the surface in 3D) of
the bottom column dx.

The basal normal stress σb is directly deduced from
the resulting normal force applied on a probe (i.e., the
resulting normal force applied on the four glued grains
belonging to this probe) divided by its surface. It can
be directly computed from the simulations results that
include every contact force for all contacts at any time.

In SHALTOP, the hydrostatic pressure at the bottom
of the flow is given by

pSHh = ρg cos(θ)h. (B6)

It is derived from the inviscid Navier-Stokes equations
integrated into the topography normal direction (i.e.,
along the z-axis), assuming that the stress tensor is
σ = −pI3 and that Vz = 0 at the bottom. Following
[46] and [92] for more general cases where σ 6= −pI3,
pSHh is the leading term of the basal stress σb in the
direction perpendicular to the topography. In order to
get an accurate value of the basal stress, other terms from
the asymptotic expansion must be included (see Eq. 3 in
[46], Eq. 5 in [92]). In the case of a flow over an inclined
plane, an accurate value is

pSHb = pSHh − ρ

2
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σn = ηeff
∂v

∂y
− p (B10)

with

ηeff =
µ(I)P

|γ̇|
(B11)

Concerning the mean frequency presented in Fig. 8, it
is computed as the average of multiple frequencies fij .
We decompose the mass height in layers of width 3d,
with d, the mean diameter of grains. For each layer i, the
mean along-slope velocity ux,i is computed in a horizontal
range of size 20d, centered in each probe position. It is



19

the velocity of grains belonging to layers of height 3d and
horizontal size 20d, centered in xi, i = 1, 2, 3. We then
compute the relative velocities between two successive
layers ∆uij = ux,j − ux,i, j > i and the time tmacro,ij is
then computed as

tmacro,ij =
d

|∆uij |
.

By definition, tmacro,ij corresponds to the duration

needed for a grain from the above layer j to go over a
grain in the layer below i. The definition can be found
in [1] (Eq. (6.3)). Finally, the mean frequency presented
in Fig. 8 is the average of frequencies fij = 1/tmacro,ij .

Appendix C: Numerical parameters
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TABLE I. Values of numerical parameters.
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