Numerical simulations of granular dam break: comparison between discrete element, Navier-Stokes and thin-layer models

Hugo A. Martin, Marc Peruzzetto, Sylvain Viroulet, Anne Mangeney, Pierre-Yves Lagrée, Stéphane Popinet, Bertrand Maury, Aline Lefebvre-Lepot, Yvon Maday, François Bouchut

To cite this version:

HAL Id: hal-03832494
https://hal.science/hal-03832494v2
Submitted on 8 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Numerical simulations of granular dam break: comparison between discrete element, Navier-Stokes and thin-layer models

Hugo A. Martin,1,2,∗ Marc Peruzzetto,3,1 Sylvain Viroulet,4,1 Anne Mangeney,1,5 Pierre-Yves Lagrée,6 Stéphane Popinet,6 Bertrand Maury,7,8 Aline Lefebvre-Lepot,9 Yvon Maday,9 and François Bouchut10
1 Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
2 Sorbonne Université, CNRS, Université Paris Cité, Laboratoire Jacques-Louis Lions (LJLL), F-75005 Paris, France
3 BRGM, F-45060 Orléans, France
4 Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS-INPT-UPS, Toulouse, France.
5 Institut Universitaire de France (IUF), 75231 Paris Cedex 05, France
6 Institut Jean le Rond d’Alembert, Sorbonne Université, CNRS UMR 7190, F-75005 Paris, France
7 Département de Mathématiques Appliquées, École Normale Supérieure, Université PSL, 75005, Paris, France
8 Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay, 91405 Orsay Cedex, France
9 CMAP, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex
10 Laboratoire d’Analyse Mathématiques Appliquées, CNRS UMR 8050, Université Gustave Eiffel (UPEC), F-77454, Marne-la-Vallée, France
(Dated: November 8, 2023)

Abstract: Granular flows occur in various contexts including laboratory experiments, industrial processes and natural geophysical flows. In order to investigate their dynamics, different kinds of physically-based models have been developed. These models can be characterized by the length scale at which dynamic processes are described. Discrete models use a microscopic scale to model individually each grain, Navier-Stokes models use a mesoscopic scale to consider elementary volumes of grains, and thin-layer models use a macroscopic scale to model the dynamics of elementary columns of fluids. In each case, the derivation of the associated equations is well known. However, few studies focus on the extent to which these modeling solutions yield mutually coherent results. In this work, we compare the simulations of a granular dam break on a horizontal or inclined planes, for the discrete model COCD, the Navier-Stokes model Basilisk, and the thin-layer depth-averaged model SHALTOP. We show that, although all three models allow reproducing the temporal evolution of the free surface in the horizontal case (except for SHALTOP at the initiation), the modeled flow dynamics are significantly different, and in particular during the stopping phase. The stresses measured at the flow’s bottom, reflecting the flow dynamics, are in relatively good agreement, but significant variations are obtained with the COCD model due to complex and fast-varying granular lattices. Similar conclusions are drawn using the same rheological parameters to model a granular dam break on an inclined plane. This comparison exercise is essential for assessing the limits and uncertainties of granular flow modeling.

Keywords: Granular Media, Discrete Element Methods, Navier-Stokes Equations, Thin-layer Models, Granular Flow Dynamics, Basal Stress

INTRODUCTION

Dry granular flows have been widely studied over the past decades, from industrial processes [1, 2] to geophysical flows such as rockfalls [3–5], rock and debris avalanches [6–8], pyroclastic flows [9, 10], or more generally, dry landslides both on Earth and other planets [11, 12].

Laboratory experiments allow investigating the physical processes controlling granular flow dynamics, such as self-channeling [13–15], particle size segregation [2], and bed erosion [16–18]. Nevertheless, some key flow characteristics are challenging to measure in experiments but can be directly estimated in numerical simulations, like the pressure inside the flow or the velocity field. Numerical modeling also helps to validate physically-based models used to describe the processes at stake [4, 19–21], to investigate configurations difficult to set up in a laboratory, and flows at a larger scale such as at the field scale for geophysical flows, where topography effects play a major role. At the scale of landslides, one way to obtain information about their temporal behavior is through the inversion of low-frequency seismic waves they generate. This inversion can then be used to reconstruct the history of forces (stress) exerted by the landslide on the ground.

Multiple modeling solutions exist depending on the scale of the flow description, rheological laws, and numerical methods. At the microscopic scale, simulations with discrete models, generally referred to as Discrete Element Methods (DEM), represent the granular flow by many distinct particles, and all grain-to-grain interactions are modeled [22–25]. This approach is supposed to be the most realistic but has a high computational cost as the number of particles increases [e.g., 26–28]. It limits their applicability to flows at larger scales. Furthermore, the large range of particle sizes that change in time due to fragmentation is still poorly
handled despite the strong effect of particle segregation in granular flows [4, 29]. A second modeling solution considers the granular flow as a continuous medium and solves the Navier-Stokes equations to model the dynamics of each elementary volume [e.g., 30–33]. In this case, larger events can be modeled but the main difficulty remains in the definition of suitable rheological laws. Furthermore, simulating natural flows over complex topography still requires huge computational cost, which complicates sensitivity analyses [34]. A third modeling option is based on the thin-layer approximation where the flow’s thickness is assumed to be small compared to its extent, velocity is assumed to be parallel to the slope, and the equations are generally depth-averaged. Consequently, the model only solves for the thickness of the flow and its depth-averaged velocity. These models are often used empirically because the rheological parameters are calibrated to reproduce experiments or field observations [12]. However, thanks to their relatively low computational cost, they can be used at field scale to reproduce real geophysical events on complex topographies. Since the pioneering work of [35–37], they have been widely used for physics-based landslide hazard assessment [38–41]. Note that unlike the first option using discrete models, the continuous formulation of the Navier-Stokes and thin-layer models cannot represent blocking effects between particles or high frequency fluctuations related to grain-grain and grain-bottom collisions.

All these models are classically tested by comparing observed and simulated granular flow travel distance (or runout) and deposits extent and thickness. Indeed, these characteristics are the easiest to observe on the field for geophysical flows. However, over the past decades, seismic waves generated by these flows have been increasingly used to constrain their dynamics (both at the laboratory and at the field scales [e.g., 42–43]). In turn, seismic waves can be used to calibrate both thin-layer models [46–49] and discrete models [50, 51]. This is done, in particular, by comparing the basal force inverted from seismic signals and deduced from simulations (e.g., 49, 51]). Thus, to accurately interpret the comparison between simulations and observations and be aware of their limitations, it is essential to understand how the dynamics of the simulated flow depends on the type of simulation tool.

Here, we present the differences that exist between simulations performed with these three models, in the case of a granular dam break. Each model has its own pros and cons, depending on the scale of the flow and the objective of the simulation (e.g., laboratory-scale versus natural geophysical scale simulations). In this study, our aim is to highlight the similarities and differences, with a focus on their abilities to simulate mass profiles, flow dynamics, and basal stresses, and a systematic comparison between discrete, Navier-Stokes, thin-layer models, simultaneously with experimental data.

We then compare our 2D simulations, keeping, when possible, as a common reference the experiments (performed under 3D experimental conditions) of Farin et al. (2014) [17]. We investigate the discrepancies between discrete, Navier-Stokes and thin-layer models, with three numerical codes: the discrete model Convex Optimization Contact Dynamics (COCD) [52], the Navier-Stokes model Basilisk [53], and the thin-layer model SHALTOP [20, 54–57]. In order to allow for a more straightforward interpretation, we consider the simple case of a 2D granular dam break, reproducing the 3D experiments of [17] for three slope angles $\theta = 0^\circ, 10^\circ$ and $16^\circ$. Rheological parameters are chosen to match the profiles of one dam break experiment. We compare these methods on their profiles evolution, deposits, dynamics, and normal stresses on the ground.

In Section I, we present the experimental data used to calibrate the model. Then, in Section II, we describe the three different numerical models. Simulations results are presented in Section III, then simulations of flow dynamics and basal normal stresses are discussed in Section IV. An additional spectral analysis of COCD normal stress is done in the same section, with a discussion on rheological parameters, see Section IV.

I. EXPERIMENTAL SETUP

The experimental setup used in the simulations is sketched in Fig. 1 and fully described in detail in Farin et al (2014) [17]. It consists of a 3 m long channel of width 20 cm and inclination $\theta$ between $0^\circ$ and $30^\circ$. Let us define a cartesian reference frame $(x, y, z)$ linked to the bed, such that the $z$-axis is perpendicular to the bed and the $x$-axis is pointing in the downslope direction. In this reference frame, the channel base is given by $z = 0$ (see Fig. 1).

The granular material consists of spherical glass beads released from rest as a rectangular mass of height $H_0 = 14$ cm and length $R_0 = 20$ cm. The corresponding aspect ratio is $a = H_0/R_0 = 0.7$ and additional results with $a = 0.31$ and 1.24 are available in Appendix E. The mean diameter of beads is $d = 0.7 \pm 0.07$ mm. A layer of glass beads is glued to the plane. The initial mass is released by opening a gate in the direction perpendicular to the channel bed.

The experimental setups reproduced in our simulations correspond to slope angles $\theta = 0^\circ$ and $\theta = 16^\circ$, $\theta = 10^\circ$ and $\theta = 22^\circ$ are also considered for comparison. The manner in which the initial state is constructed in simulations is described in detail in Appendix A. A snapshot of the initial state is depicted in Appendix E (Fig. 13).

II. NUMERICAL MODELS

The general concepts and equations of the different models used in this work are now briefly presented. More
The mechanical behavior of such discrete media results from a combination of geometrical rearrangements between particles and inter-particle friction forces. In our discrete model, the only rheological parameter is the inter-particle friction coefficient $\mu_p$, present in the tangential law (2), and which is calibrated to reproduce laboratory experiments. More precisely, the macroscopic static friction coefficient $\mu_s = \tan(\theta_m)$ – where $\theta_m$ is the static friction angle, i.e., the angle that the granular mass forms at rest – can be interpreted as the combination of the inter-particle friction coefficient $\mu_p$ and the geometric trapping (dilatancy effect) $\mu_g$ [69]. The coefficient $\mu_g$ is linked to the grains’ shapes, masses, or inertia, while $\mu_p$ is a given parameter of the model, and used in the classical Coulomb’s law of friction at any grain/grain or grain/wall contact [52].

In this paper, 2D simulations only are considered for comparing the three models. The value for $\mu_p$ used here is derived from back-analysis by reproducing the deposits from experiments through 2D simulations in the horizontal case. The best-fit interparticle friction coefficient is $\mu_p = 0.9$. Note that this value is relatively large compared to the friction coefficient $\mu_p = 0.3$, calibrated by comparing 3D simulations and experiments [52], and which is in the range of friction coefficients measured for a perfect glass/glass contact $\mu_p = 0.4$ [70].
and that measured with MD $\mu_p = 0.16$ [71]. In COCD, this difference in calibrated friction coefficients arises when comparing mass profiles in 2D and 3D simulations. We discuss this point in Section IV.E.

B. Basilisk

Basilisk [53] is a continuum multiphase flow solver based on a finite volume method (see Fig. 1) and Volume-Of-Fluid approach to track the interface between phases. In our case, these two phases are air and granular phase. The eulerian mesh grid remains constant in the granular material and coarsens in the air (see figure 2 of [72] for an illustration). Basilisk solves the local incompressible mass and momentum equations:

$$\nabla \cdot \mathbf{V} = 0,$$

$$\rho \left( \frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V} \right) = -\mathbf{g} \rho - \nabla p + \nabla \cdot (2\eta \mathbf{D}),$$

where $\mathbf{V} = (V_x(x,z,t), V_z(x,z,t))$ is the velocity field with components $V_x$ and $V_z$ in the $x$- and $z$-direction, respectively, $\mathbf{g}$ is the gravity field, $\rho$ is the density, and $\eta$ the dynamic viscosity. This is equivalent to writing the stress tensor $\sigma$ as

$$\sigma = -pI_d + \sigma',$$

$$\sigma' = 2\eta \mathbf{D},$$

where $\sigma'$ is the deviatoric stress tensor, $I_d$ is the identity tensor and the strain rate tensor is

$$\mathbf{D} = \frac{1}{2} \left( \nabla \mathbf{V} + \nabla \mathbf{V}^T \right).$$

Basilisk thus solves the velocity field and the pressure in the granular phase provided a constant value or a rheological law is given to define $\eta$.

The $\mu(I)$-rheology has met with growing success to model granular flows [73, 74]. When considering simple shear dry granular flows, dimensional arguments and numerical simulations showed that the shear stress is proportional to the pressure $p$, through a coefficient $\mu$ that depends on the inertial number $I$. The tensor formulation of this rheology is [74]:

$$\sigma' = \frac{\mu(I)p}{\|D\|} D,$$

with $I = \frac{2\|D\|d}{\sqrt{\rho/\mu}}$.

Finding an explicit and general relation between the coefficient $\mu$ and the inertial number $I$ is an open question. The most common expression of $\mu(I)$ derived for steady flows on constant slopes is given by:

$$\mu(I) = \mu_1 + \frac{\mu_2 - \mu_1}{1 + I_0/I},$$

where $\mu_1$, $\mu_2$ and $I_0$ are constants. But the resulting model may be ill-posed: small-scale instabilities in the flow can significantly affect simulations results [32, 75]. Nevertheless we use this expression. Furthermore, to avoid numerical divergence when $\|D\|$ tends to $0$ in Equation (10), a maximum value for the viscosity $\eta_{\text{max}} = 24000$ Pa s is imposed following [30] to regularize the problem when the strain rate tends to zero.

The friction coefficients are $\mu_1 = 0.48$, $\mu_2 = 0.73$ and $I_0 = 0.279$. Solving the same equations, they have been calibrated for $a = 0.7$ and $\theta = 0^\circ$ through an Augmented Lagrangian method and were quantitatively compared to granular collapse experiments [31]. Note that these rheological parameters have been slightly overestimated compared to experimental measurements [74]. The calibration of the model on experiments requires higher friction coefficients than those including wall effects since Martin et al. (2017) [32] added in some ways two times wall effects. For a detailed analysis of wall effects in Navier-Stokes and thin-layer models, see [32] and [76], respectively. A discussion about the influence of the rheological parameters is presented in Section IV.

C. SHALTOP

Depth-averaged thin-layer granular flow simulations are carried out with the SHALTOP numerical code.
FIG. 3. Comparison between experiments and numerical simulations of the granular profiles during a dam break. We display the experimental results (red squares), discrete COCD simulations (blue line), Navier-Stokes Basilisk simulations (black line) and thin-layer SHALTOP simulations (green line). The initial aspect ratio is $a = 0.7$, with a bed slope $\theta = 0^\circ$ (a-c) and $\theta = 16^\circ$ (d-f). The light blue line in (c,f) is the discrete simulation profile at $t = 6.5 \text{s}$.

This code has been successfully used to simulate both laboratory experiments [56] and field scale landslides on Earth and other planetary bodies, e.g., [8, 12, 46, 77, 78]. SHALTOP also proved to accurately reproduce analytical solutions of the dam-break problem [79–81] and was compared to other depth-averaged models in one of the only benchmark exercises for these types of codes [82].

To match as closely as possible the equations implemented in Basilisk, we use a depth-averaged version of the $\mu(I)$-rheology following [19, 20, 83]. Considering $h$, the mass height and $\nabla$, the depth-averaged downslope velocity (see Fig. 1), the resulting mass and momentum equations are:

\[
\frac{\partial h}{\partial t} + \frac{\partial (h\nabla)}{\partial x} = 0, \tag{12}
\]

\[
\frac{\partial (h\nabla)}{\partial t} + \frac{\partial (h\nabla)^2}{\partial x} = S_1, \tag{13}
\]

with

\[
S_1 = gh \cos(\theta)(\tan(\theta) - \frac{\partial h}{\partial x}) - gh \cos(\theta)\mu(I)\frac{\nabla}{|\nabla|}. \tag{14}
\]

The term $S_1$ includes the gravitational and longitudinal pressure forces, and a bottom friction force where $\mu(I)$ appears. As for Basilisk, $\mu(I)$ is given by Equation (11), but with the depth-integrated version of the inertial number $I$:

\[
I = \frac{5d\nabla}{2h \sqrt{gh \Phi \cos(\theta)}}, \tag{15}
\]

where $\Phi$ is the volumetric solid fraction.

Note that in the derivation of the corresponding thin-layer equations for flows on inclined planes given in [83, 84], an additional viscous term $S_2$ appears on the right-hand side of Equation (13):

\[
S_2 = \frac{\partial}{\partial x} \left( \nu h^{3/2} \frac{\partial \nabla}{\partial x} \right), \tag{16}
\]

where $\nu$ is a coefficient that can be related to bed slope, while $\mu_1$ and $\mu_2$ are rheological parameters [see Equations 4.16 in 84]. However, the expression of $\nu$ in [84] is valid for steady flows only, when $\mu_1 < \tan(\theta) < \mu_2$, which is not the case in our simulations. More generally, it is not valid for complex, non-planar topographies. As we want our results to help improve the interpretation of thin-layer simulations at the field scale, we will thus not consider the viscous term $S_2$ in our simulations. Besides, comparisons with experiments in Section IIIA show that the depth-averaged $\mu(I)$-rheology without viscosity already allows to match correctly granular collapse deposits.

We use the same rheological parameters as for Basilisk simulations: $\mu_1 = 0.48$, $\mu_2 = 0.73$ and $I_0 = 0.279$. For simplicity, the solid fraction in Equation (15) is set to $\Phi = 1$, as it allows to match mass profiles observed in experiments and simulated with Basilisk, both for $\theta = 0^\circ$ and $\theta = 16^\circ$. We tested $\Phi = 0.6$, and results are very similar to $\Phi = 1$. Thus, in thin-layer simulations, the main controlling parameters are the friction coefficients $\mu_1$ and $\mu_2$, and not the volume...
fraction $\Phi$. We investigated the sensitivity of the results to $\mu_1$ and $\mu_2$ in Section IV.D.

III. RESULTS

To compare the discrete, Navier-Stokes and thin-layer models together, and with laboratory experiments, we focus on the spatio-temporal change of the flow thickness $h(x, t)$, the position of the flow front $x_f(t)$, the velocity field and the arrest phase, as well as on the basal normal stress $\sigma_b$ and the hydrostatic pressure $p_h$, both applied by the flow to the bed. Appendix B details how all these quantities are computed in the different models, and Table I in Appendix D gives all numerical parameters.

A. Granular mass profiles

1. Horizontal plane

The first row of Fig. 3 shows comparisons between experimental measurements of the granular mass profile on a horizontal plane ($\theta = 0^\circ$) and the different numerical models at three different times. After the column release at $t = 0$ s, the mass spreads on the plane, decelerates, and stops to form a deposit. The mass profiles obtained with the Navier-Stokes model Basilisk reproduce very well the overall granular spreading (compare black line and red squares in Fig. 3). Moreover, the final deposit is in excellent agreement with the experiment, although the initial spreading is slightly faster in the simulation (Fig. 3a).

The profiles resulting from the discrete model are initially very similar to those obtained using the Navier-Stokes model. However, the final deposit slightly differs from the experiment, with a concave shape of the frontal part while the deposit front is slightly convex (Fig. 3c and f).

The depth-averaged thin-layer model SHALTOP overestimates the initial spreading. However, despite the initial overestimation of the velocity, the final deposit is in good agreement with the experiments with a runout distance overestimated by less than 15%.

2. Inclined plane

The second row of Fig. 3 shows similar profiles of the granular mass on an inclined plane $\theta = 16^\circ$, simulated with the same rheological parameters as for the horizontal plane. In this case, the results are more sensitive to the numerical model used. The thin-layer model SHALTOP is faster than the others but yields a final deposit in good agreement with the experiment. The mass profile has a concave and rounded front compared to the thin experimental front, and the thickness at the rear of the flow decreases faster.

The Navier-Stokes model Basilisk is in good agreement with the experiments throughout the collapse although, the flow being faster than on the horizontal case, some drops and bubbles appear at the front as numerical artifacts (see Section IV.A). At $t = 1.24$ s, a thin-layer (lower than 3.5 mm) develops, which is not observed in the experiments. The overall profile is also slightly less convex than in the experiment, and the upper left thickness of the flow is decreasing faster as in the thin-layer model.

The most significant difference with the experiment is observed for the discrete model COCD, where the flow is still moving after 1.24 s (compare blue and pale blue lines in Fig. 3f, giving the flow thickness at $t = 1.24$ s and $t = 6.5$ s respectively). This difficulty in stopping the granular flow for $\theta = 16^\circ$ is discussed in Section IV.

Simulations for aspect ratio $a = 0.31$ and $a = 1.24$ have also been performed in order to check the accuracy of the models for various column collapses. Comparison of the free-surface profiles are presented in Figs. 14 and 15 in Appendix E. Changing the aspect ratio of the initial column do not significantly change the overall behaviours observed for $a = 0.7$.

B. Flow dynamics

We define the flow’s front position $x_f(t)$ as the maximal length reached by the flow, thicker than five-grain-diameters height in experiments, i.e., $h(x_f) \geq 5d = 3.5$ mm. The front position is represented for each simulation by a green dashed line in Fig. 4. The left position of the mass is always located at $x = 0$, whatever the time. The way the front is computed is explained in Appendix B. The colors in Fig. 4 represent the depth-averaged downslope velocity $V_x(x, t)$ and its space-time evolution at $\theta = 0^\circ$ (Fig. 4a-c) and $\theta = 16^\circ$ (Fig. 4d-f).

The velocities represented in white are those smaller than the cutoff velocity $1$ cm s$^{-1}$, set as in [17]. It highlights the spatio-temporal characteristics of the stopping phase.

To describe the dynamics of the dam break, we define three different phases. First, the acceleration phase starts when the gate is instantaneously removed and ends when the front reaches its maximal velocity. The deceleration phase follows, and we arbitrarily define its end when the front stops, even if the rest of the mass may still be flowing. Finally, the stopping phase follows and ends when all the material is at rest. The end of the acceleration (resp. deceleration) phase is represented by a vertical white dashed line (resp. dotted black line) in Fig. 4.

The transition between static and moving state within the granular mass are given by black and gray arrows in Fig. 4. The black arrow correspond to a rarefaction wave propagating from the front to the back of the flow, initiating the movement of materials initially at rest. On the contrary, grey arrow correspond to stopping waves,
FIG. 4. Spatio-temporal plot representing the depth-averaged along-slope flow velocity $\bar{V}_x(x,t)$ (colors) for the different models, with $\theta = 0^\circ$ (a,b,c) and $\theta = 16^\circ$ (d,e,f). We only display velocities above 1 cm s$^{-1}$ (lower velocities are represented in white), as in the experiments of [17]. For each simulation, the green dashed line represents the time evolution of the front position. The acceleration and deceleration phases are separated by a vertical white dashed line, and the deceleration and stopping phases by a vertical black dotted line. Black arrows follow the rarefaction wave where the mass initially at rest is set in motion. Grey arrows follow the stopping wave where the moving mass stops. Black squares give the front position in experiments.

when materials in movement come to rest. This stopping wave can be initiated at the front of the flow towards the back (Fig. 4a), from the back towards the front (Fig. 4f), or from any location within the mass towards the front or the back (Fig. 4b).

1. Acceleration phase

Figs. 4a-c at $\theta = 0^\circ$ show a significant difference between the thin-layer and the two other models in the acceleration phase of the granular mass. This phase is very fast, if not instantaneous, in the thin-layer model: less than 0.02 s, when simulations outputs are written every 0.01 s. It is more progressive in the discrete (0.24 s)
and Navier-Stokes (0.22 s) models, in better agreement with experiments (black squares). The propagation of the static/flowing interface (transition between violet and white colors along the black arrows in Fig. 4) towards the left of the column in the thin-layer model is also different from the other models (Figs. 4a-c). Indeed, this interface propagates with an almost constant velocity in the thin-layer model while, in the discrete and Navier-Stokes models, it propagates with decreasing velocity. In the Navier-Stokes model, the static/flowing interface stays almost at the same position \( x = 0.12 \text{m} \) for \( t > 0.1 \text{s} \) (Figs. 4b).

The lighter colors in Fig. 4c compared to Figs. 4a,b show that the maximum depth-averaged velocity \( \bar{V} \) in the thin-layer model is always higher than in the other models (above 1.1 m s\(^{-1}\)). We discuss this result in detail in Section IV A 1.

For a dam break on the inclined plane \( \theta = 16^\circ \), Figs. 4(d-f) show qualitatively the same behavior during the acceleration phase as on the horizontal plane. Although velocities are higher, acceleration duration are similar to the horizontal slope case (instantaneous for SHALTOP, 0.24 s for COCD and 0.20 s for Basilisk). In comparison, in the experiments, the acceleration phase lasts 0.26 s and 0.29 s for \( \theta = 0^\circ \) and \( \theta = 16^\circ \) respectively.

### 2. Deceleration phase

On a flat bottom (Figs. 4a-c), the deceleration phases have a similar duration in the discrete COCD and Navier-Stokes Basilisk simulations (about 0.2 s, between white dashed and black dotted lines in Figs. 4a,b). The portion of the initial mass that does not move on the left is slightly larger with the Navier-Stokes model (\( x \leq 0.12 \text{m} \) compared to \( x \leq 0.085 \text{m} \) for the discrete model).

In the thin-layer model SHALTOP the maximum velocities are higher (above 1 m s\(^{-1}\), compared to less than 0.7 m s\(^{-1}\) in the other models), as expected. As the acceleration phase is instantaneous, the deceleration phase last the whole flow duration and ends at \( t = 0.32 \text{s} \). It is sooner than the Navier-Stokes and discrete models (0.45 s for both, black dotted lines in Figs. 4a-c). Finally, the motion still propagates backward throughout the deceleration phase in the thin-layer simulations, while the static/flowing transition almost stays at the same position in the discrete model and only slightly propagates backward in the Navier-Stokes model (compare black arrows in Figs. 4a-c).

In the thin-layer simulation at \( \theta = 16^\circ \), the static/flowing transition (rarefaction wave) propagates towards the back during a shorter duration than in the horizontal bed case (compare black arrows of Figs. 4c and 4f), and reaches the rear of the initial mass after about 0.2 s (black arrow in Fig. 4f). Between \( t = 0.2 \text{s} \) and \( t = 0.6 \text{s} \), almost the whole mass is moving. Then, after \( t = 0.6 \text{s} \), the stopping wave (gray arrow in Fig. 4f) propagates at constant speed towards the flow’s front.

A qualitatively similar but more complex behavior is observed in the Navier-Stokes model at \( \theta = 16^\circ \), but at a latter time (from \( t \simeq 0.7 \text{s} \), Fig. 4e). The flow front is also more contaminated by drops and air bubbles than at \( \theta = 0^\circ \) due to increased flow front velocity (compare colors irregularities between Fig. 4b and Fig. 4e). The stopping waves are initiated during the deceleration phase for \( \theta = 16^\circ \), from the left wall and propagates faster than in thin-layer and discrete simulations (the flow almost stops at \( t = 1 \text{s} \)).

There is no clear end to the deceleration phase (as defined in this paper) for the discrete at \( \theta = 16^\circ \) (Fig. 4b), since the flow is still slightly moving down the slope at \( t = 6.5 \text{s} \).

### 3. Stopping phase

On the horizontal bottom, the stopping phases are very different from one model to the other. The stopping phase simulated by the thin-layer model is very short, less than 0.1 s (Fig. 4c). The granular mass stops from both the front and the rear in an almost symmetrical way (gray arrows in Fig. 4c). The stopping phase simulated with the Navier-Stokes model lasts slightly longer (about 0.15 s) but displays three stopping waves: one from the rear towards the front and two from the middle of the flow propagating in opposite directions (Fig. 4b). This is a direct consequence of the stopping criteria in the Navier-Stokes code Basilisk, see Section IV A. In discrete simulations, the stopping phase is more extended (about 0.6 s), with only one stopping wave propagating from the front to the rear at almost constant velocity (about 0.7 m s\(^{-1}\), Fig. 4a).

On the inclined plane \( \theta = 16^\circ \), the stopping phase is different from that observed at \( \theta = 0^\circ \). This phase is almost nonexistent in the thin-layer simulations as the front is the last portion of the flow still in motion. Similar qualitative behavior is obtained with the Navier-Stokes model if we disregard the thin-layer that stays in motion beyond the front (above the green dashed line in Fig. 4e). Indeed, the mass never wholly stops in the Navier-Stokes code Basilisk in the inclined case (see Discussion in Section IV A 3). The drops beyond the front that still move after 1 s are thin and slow and continue flowing until the end of the simulated time (here 1.24 s). In the discrete model, the stopping phase starts at \( t = 6 \text{s} \) (Fig. 4g), and the mass never entirely stops during the calculation time, as continuous rearrangements keep occurring behind the front. This is not the case when smaller inclinations are considered (see Section IV A).

In all simulations, the final front position is each time in good agreement with the final front position from experiments (compare black squares and green dashed lines in Fig. 4). For \( \theta = 0^\circ \), the front stops at similar times in experiments, discrete and Navier-Stokes simulations (0.45 s), while the front stops sooner in thin-
FIG. 5. Comparison between the horizontal velocity $V_x$ calculated with the Navier-Stokes (Basilisk) (first row) and discrete (COCD) (second row) simulations, for $\theta = 0^\circ$. The red continuous line represents the free surface while the red dashed line the static/flowing transition, considering a threshold value $V_x = 1 \text{ cm s}^{-1}$, as in [17]. Figures (a,e) belong to the acceleration phase, (b,f), to the deceleration phase and (c,d,g,h) to the stopping phase.

Despite the differences observed between the discrete and the Navier-Stokes models in their spatio-temporal representation of the depth-averaged velocity (Fig. 4), their resulting mass profiles are relatively in good agreement, especially for $\theta = 0^\circ$ (see Fig. 3a-c), meaning that different rheological processes may lead to the same granular profiles. This result is confirmed by comparing the two velocity fields and the static/flowing interface as it is done in Section III B 4.

Other comparison of the spatio-temporal evolution of the depth-averaged velocity profile are presented for $a = 0.31$ (Fig. 16) and 1.24 (Fig. 17) in Appendix E, which show that changing the aspect ratio of the initial column do not significantly change the overall behaviours observed for $a = 0.7$.

4. Velocity field and static/flowing interface in discrete and Navier-Stokes models

The evolution of the horizontal velocity norm through the depth of the flow and during the collapse, $|V_x(z,t)|$ is shown in Fig. 5 for $\theta = 0^\circ$. This information can only be obtained using the discrete and Navier-Stokes models since the velocity is depth-averaged in the thin-layer, one-layer model considered here. The static/flowing transition is defined by considering a velocity threshold of 1 cm s$^{-1}$, as in the previous section and in [17].

Fig. 5a and Fig. 5e, corresponding to $t = 0.15$ s, are snapshots of the velocity field during the acceleration phase for the Navier-Stokes and the discrete models. During this phase, the horizontal velocities obtained with the two models are similar (compare the colors). The static/flowing interfaces also have a similar shape (red dashed line).

Fig. 5b and Fig. 5f, at $t = 0.30$ s, correspond to the deceleration phase for both simulations (the flow front has started to slow down). Although velocities are comparable, the moving part inside the column is larger in the discrete simulation. In particular, the horizontal length of the flowing domain, behind the flow front, is 12 cm for the Navier-Stokes (Fig. 5b) and 20 cm for the discrete model (Fig. 5f).

We observe notable differences between the Navier-Stokes model (Fig. 5c and d) and the discrete model (Fig. 5g and h) during the stopping phase even though similar profiles of the deposit are obtained. The static/flowing interface propagates from the front to the left and from the bottom to the free surface for the discrete code (see the evolution of the red dotted line between $t = 0.5$ s and 0.8 s (Fig. 5g, h). For the
Navier-Stokes simulations, the front is always moving and the static/flowing interface goes up uniformly from the bottom towards the free surface between \( t = 0.5 \) and 0.8 s (Fig. 5c, d).

The discrete simulation shows deeper rearrangements than for the Navier-Stokes model, even after the flow front has stopped. Indeed, motion occurs 4 cm below the free surface at \( t = 0.5 \) s with velocities locally higher than 0.35 m s\(^{-1}\) (Fig. 5g). At \( t = 0.8 \) s (Fig. 5h), velocities are below 0.25 m s\(^{-1}\), but motion still occurs 3 cm below the surface. We can clearly identify in Fig. 5h the progression of the stopping wave that propagates from the flow front towards the rear.

C. Basal stress

1. Spatial variations

The basal normal stress \( \sigma_b \) and hydrostatic pressure \( p_h \) derived from the three codes are represented along with the domain in Fig. 6 for \( \theta = 0^\circ \), at three different times: \( t = 0.18 \) s, \( t = 0.48 \) s and \( t = 2.0 \) s, where the flow is at rest in the three simulations (see the corresponding mass profiles at these times in Fig. 3c) The basal stress \( \sigma_b \) is the stress applied to the bottom by the mass. It may differ from the hydrostatic pressure \( p_h \) related to the weight of the granular column on the bottom. The way \( \sigma_b \) and \( p_h \) are computed in each code is described in Appendix B3.

The stresses \( \sigma_b \) and pressures \( p_h \) computed from the discrete and Navier-Stokes models are in good agreement for \( x \geq 0.2 \) m (i.e., at the right of the initial gate, see Figs. 6 a,b, and c) even though \( \sigma_b \) is much smoother in the Navier-Stokes model.

The thin-layer model compares well with the others except for \( t = 0.18 \) s (Fig. 6a), where its front is too far (0.48 m in the thin-layer model against 0.31 m for the others). As already mentioned in Section IIIA, it is because the flow propagates faster in thin-layer models. The other difference is a perturbation observed at \( t = 0.18 \) s and \( x = 0.045 \) m in the stress \( \sigma_b \) (discussed in Section IVB).

Significant variations in discrete simulation of \( \sigma_b \) are observed around the average values calculated in the other codes (compare blue line to other curves in Fig. 6a,b,c). These oscillations have amplitudes up to 75% of the mean value computed with the other codes at \( t = 0.18 \) s, while they account only for 50% of it at \( t = 0.48 \) s (Fig. 6b), and 20% at \( t = 2.0 \) s (Fig. 6c), when the flow is at rest. These oscillations are expected in discrete models and are mainly due to the local structures formed by the contacts between grains, such as force chains, as well as grain-to-grain and grain-to-bottom impacts. Note that the more spatially smoothed the stress curve of the discrete model is, the closer it is to that of the other two models.

For \( x \leq 0.2 \) m, we observe significant discrepancies between the different values of \( \sigma_b \) and \( p_h \). For instance, the basal normal stress \( \sigma_b \) derived from discrete
simulations is about 50% lower than the hydrostatic pressure \( p_h \) derived from the same simulation (compare blue plain lines and blue dashed lines in Fig. 6). Interestingly, Fig. 6 also shows that the stress applied on the bottom in the Navier-Stokes model can be different from the hydrostatic pressure. For instance, for \( x \approx 0.15 \text{ m} \) at \( t = 0.18 \text{ s} \), the basal normal stress is smaller than hydrostatic and, around \( x \approx 0.15 \text{ m} \), it gets higher, see Fig. 6a. The Navier-Stokes normal stress \( \sigma_b \) also varies less in space, leading to smaller pressure gradients and thus smaller driving forces than those based on hydrostatic pressure in thin-layer models.

2. Temporal variation

We now proceed to compare the temporal fluctuations of basal stress at fixed positions. Understanding these variations is crucial to know if the seismic waves generated by the granular flow on the ground can be used to investigate the dynamics of the flow, [e.g., 3, 47, 49, 85]. In Fig. 7, we compare the temporal variation of stress \( \sigma_b \) and pressure \( p_h \) at three different locations (see caption of Fig. 7) for \( \theta = 0^\circ \) and \( \theta = 16^\circ \). For each slope, the locations of probes \( x_1, x_2 \) and \( x_3 \) correspond respectively to 25\%, 50\%, and 75\% of the runout distance from the gate. For example, the probes locations are represented by red dots in Fig. 6c. Fig. 7 also shows the basal pressure, denoted \( P \), for Navier-Stokes model Basilisk (khaki line), measured in the first cell above the bottom boundary layer.

The time at which the mass front reaches the probes is the minimal time with a non-zero stress signal. This time is shorter for thin-layer models than for the others that are equal (Fig. 7). The difference is approximately about 1 s for \( x_1 \) and \( x_2 \) (Fig. 7a,b,d,e) but can differ for \( x_3 \) (Fig. 7c,f). Another characteristic time is the duration needed by the mass to reach its local maximal height. It can be measured in Fig. 7 by the time between the front reaches the probe and the time at which the hydrostatic pressure is maximal. This duration is longer for thin-layer and Navier-Stokes models in the inclined case than for the horizontal plane.

For \( \theta = 0^\circ \), Fig. 7 shows that normal stress \( \sigma_b \) and pressure \( P \) are very close in the Navier-Stokes model, except for the flow at high velocities (compare green and khaki lines for \( t \in [0.2, 0.4] \text{ s} \) in Fig. 7a). They are obviously equal when the mass is at rest, \( t \geq 2 \text{ s} \) (Figs. 7a-c). Additional stress variations appear in the Navier-Stokes model compared to the thin-layer model (see, e.g., Fig. 7a). However, these variations are still much smaller and at much longer periods than the stress fluctuations calculated with the discrete model. At a given probe, the local stress computed by discrete model can be completely different from the hydrostatic pressure (see \( \sigma_b \) for \( t \geq 0.8 \text{ s} \) in Fig. 7a and Fig. 7c).

The basal stresses simulated with the continuum models (thin-layer and Navier-Stokes) at \( \theta = 16^\circ \) are smaller than for \( \theta = 0^\circ \) for the same position to the front (compare Figs. 7a with 7d, 7b with 7c, and 7d with 7f (75\%)). Note that the instabilities of SHALTOP and Basilisk, already observed for \( \theta = 0^\circ \) and probe \( x_1 \) (see figure (7a)), are also visible for \( \theta = 16^\circ \) and probes \( x_1, x_2 \) and \( x_3 \), (see Fig. 7d-f).

The behaviour is more complex when looking at discrete simulations. Indeed, in that case, the basal stress fluctuations are much higher at \( \theta = 16^\circ \) than at \( \theta = 0^\circ \). For the discrete model COCD, Figs. 7b and Figs. 7d clearly show that the basal stress can be almost two times higher or lower than the hydrostatic pressure. Indeed, in discrete simulations, when the mass is almost at rest for \( t \geq 0.8 \text{ s} \), \( \sigma_b \) can be close to \( p_h \) (Figs. 7d, e, f), lower than \( p_h \) (Figs. 7a), or higher than \( p_h \) (Figs. 7b, c).

IV. DISCUSSION

A. Differences in flow dynamics

The discussion focus here on the three different phases defined in Section III B: the acceleration, the deceleration, and stopping phases.

1. Flow initiation (acceleration phase)

The flow initiation is quantitatively similar for the Navier-Stokes model Basilisk and the discrete model COCD (Figs. 3, 4, 5). During this initiation, the profiles obtained with the two codes slightly differ from the experiments from [17] (see Fig. 3a, d). This may be due to the presence of a gate in experiments, where the release is fast but not instantaneous [31]. The thin-layer model SHALTOP overestimates the initial spreading with higher velocities than the others (compare Fig. 4c with Fig. 4a,b, and Fig. 4f with Fig. 4d,e). This well-known behavior of such models [56, 76] is due to non-negligible vertical velocities/accelerations leading to non-hydrostatic pressure inside the granular column, which contradicts the thin-layer approximation (e.g., figure 12 in [86]). Furthermore, the analytical solution of the dam-break problem, described by thin-layer equations with constant friction coefficient smaller than the tangent of the bed slope, shows that the front velocity in these models is maximum at \( t = 0 \text{ s} \) (see [79] and equation (3) in [16]). This is consistent with our simulations where the acceleration phase is less than 0.02 s (when outputs are written every 0.01 s), although in our case the friction coefficient is not constant and is higher than the slope bed.
FIG. 7. Time evolution of basal normal stress $\sigma_b$ (and hydrostatic pressure $p_h$ for the discrete model) at three different probes, for $\theta = 0^\circ$ (first row, a-c), and $\theta = 16^\circ$ (second row, d-f). For $\theta = 0^\circ$ (resp. $16^\circ$), the probes positions are $x_1 = 0.266\ m$ (a), $x_2 = 0.331\ m$ (b), and $x_3 = 0.397\ m$ (c) (resp. $x_1 = 0.357\ m$ (d), $x_2 = 0.514\ m$ (e), and $x_3 = 0.671\ m$ (f)). These probes locations respectively correspond to 25%, 50%, and 75% of the distance between the runout distance and the gate position ($x = 0.2\ m$). For discrete $\sigma_b$, the light blue, (resp. dark blue) curve is the raw (resp. smoothed), basal normal stress. These behaviors are qualitatively similar for $\theta = 0^\circ$ and $\theta = 16^\circ$. The duration of the acceleration phases simulated by the discrete and Navier-Stokes models does not depend much on the slope (between 0.20 and 0.24 s for both $\theta = 0^\circ$ and $\theta = 16^\circ$). This is coherent with laboratory experiments (see location of the curves maximums in figure 9b in [16]).

2. Deceleration phase

The deceleration phases are quantitatively similar for the Navier-Stokes and discrete models COCD (Figs. 3a,d, Figs. 4a,b, 4d,e, and Figs. 5b,f). Differences are observed near the front where some drops and bubbles appear in Basilisk as numerical artifacts at $\theta = 16^\circ$. These artifacts are due to Basilisk’s flow description. Indeed, as grains and air are both described as incompressible materials, the process of bubble formation and dynamics is not physically appropriate in the model. These instabilities get stronger as the slope angle increases due to increased flow front velocity.

However, the stopping “waves” initiation behavior is in qualitatively good agreement between the three models. Indeed, for all of them, the stopping “waves” start at times close to the stopping of the front at $\theta = 0^\circ$ (Figs. 4a-c)) while they start at the left wall before the front stopping at $\theta = 16^\circ$ (Figs. 4d-f)), even though this is less clear for the Navier-Stokes model.

3. Stopping phase

The spatio-temporal characteristics of the stopping phase are different in the three models. The thin-layer model stopping phase is the fastest since at $\theta = 0^\circ$ the whole mass stops shortly after the front and at $\theta = 16^\circ$ the front is the last part of the mass to stop (Figs. 4c,f). Indeed, a flow column will stop as soon as driving forces related to inertia, gravity and surface slope drop below $gh\cos(\theta)\mu(I)$. Thus, contrary to Basilisk and COCD models, vertically distributed movement (where the base of the flow is at rest but its top is still moving) is not modelled. However, even if the surface flows are expected to slightly remodel the deposit shape, the deposits obtained by SHALTOP are in excellent agreement with experiments, especially for the inclined plane, see Fig. 3f. Indeed, as the slope angle increases, the flow gets thinner and therefore is better suited to be described by the thin-layer approximation.

The longest stopping phase is with the COCD, see Figs. (4a,d). At $\theta = 0^\circ$, the stopping wave, initiated at the front and propagating backwards (see Figs. 4a and 5g,h) is in good qualitative agreement with the 3D granular collapse experiments of similar aspect ratio (see section 4.2 of [56]). The most significant difference with the experiment is observed for the discrete model at $\theta = 16^\circ$, where the flow is still moving after 1 s, (Fig. 3f), and stops after $t = 6.3\ s$, (Fig. 4g). This large delay before the mass stopping at $\theta = 16^\circ$ is due to the 2D configuration (see Section IV E).
Finally, the time delay between the initiation of the stopping and the full stopping of the mass in the Navier-Stokes model is in between the time delay obtained with the other models at $\theta = 0^\circ$, (Fig. 4b) and similar to the thin-layer model at $\theta = 16^\circ$. The Navier-Stokes model provides the closest deposits to the experiments, see Fig. 3. Interestingly, for $\theta = 0^\circ$, it is the unique model that generates three stopping “waves,” see Fig. (4b). However, a thin-layer (lower than 3.5 mm) is still in motion at a low velocity (between 1 and 3 cm s$^{-1}$) for $t \geq 1.2$ s, see Fig. 4e. The Basilisk code solves the $\mu(I)$-rheology model, which incorporates a yield stress, allowing in principle for an accurate description of solid regions. However, it faces the technical challenge of the flow front not completely stopping. Indeed, the regularization method used by Basilisk (see, e.g., [30]) approximates the yield stress by assigning a high but finite viscosity, resulting in incomplete stopping. Despite this approximation remains well-suited for short-duration phenomena considered in this article, overcoming this issue could be achieved by increasing the maximum viscosity (or adjusting the regularization parameter) (Figure 9 of [33]). However, this may lead to increased computational costs. Note that the Augmented Lagrangian method is able to overcome the stopping issue at a lower computational cost than the regularization method with a high maximum viscosity (see, e.g., [31, 32]). However, in our case of short-duration flows, the Augmented Lagrangian method would lead to unnecessary increased computational costs.

Moreover, let’s consider $U$, the typical horizontal velocity scale of a granular flow on an inclined plane with an angle $\theta$. This velocity is given by $U = \sqrt{gH \cos \theta}$ [1], where $g$ is the gravitational constant, and $H$ is the initial height of the mass. Hence, we obtain a characteristic horizontal velocity for each of the aspect ratios $a = 0.31$, 0.7, and 1.24 where the slowest one is $U = 0.94$ m s$^{-1}$. Thus, the velocity threshold of 0.01 m s$^{-1}$ chosen to characterize the static/flowing transition is nearly 100 times smaller than the smallest typical horizontal velocity. Consequently, the velocities of the nonzero fronts observed in Fig. 4 are well below the characteristic horizontal velocity scales of the considered flows.

The stopping phase appears to have excellent characteristics to discriminate the models and, in particular, the appropriate rheological laws. Thus, qualitative and quantitative comparison with the stopping phase observed in laboratory experiments would be very interesting (e.g., section 4.4 and figure 4 of [56]), but we do not have such data for these experiments. Indeed, contrary to flow profiles, accessing measurements inside the moving granular mass to study the stopping phase is technically challenging in experiments.

When we compare our 2D simulations to the 2D profiles of the 3D experiments, we see that their deviation increases with the slope angle. This result is not surprising because as the mass velocity increases, the conditions of our 2D simulations deviate from the experiments (for example, the boundary conditions are not well simulated). It is particularly clear for the discrete model because of its smaller avalanche angle in 2D than in 3D (see discussion in Section IV E). Even for the Navier-Stokes model, which is closest to the experiments, the no-slip condition at the bottom becomes less valid as the slope angle increases ([4, 31]). Finally, Basilisk’s solver considers a non-miscible multiphase flow, which can lead to drops and bubbles appearing at the front when the flow velocity is high.

### B. Differences in basal stresses

A significant part of the basal stress results from the weight of the granular column (i.e., hydrostatic pressure) for all three models, see Figs. (6b, c) for $x \geq 0.2$ m. Consequently, the difference between the absolute positions of the curves, related to the different models, is mainly due to the different local mass thicknesses. It explains why the basal normal stresses obtained with the three models are in good quantitative agreement if the free surfaces are similar at a given position.

As the increase of bed inclination favors mass spreading, flow thickness is reduced. Thus, the weight of the grains is smaller at $\theta = 16^\circ$ than at $\theta = 0^\circ$. It is why the basal stresses simulated with the continuum models (thin-layer and Navier-Stokes) at $\theta = 16^\circ$ are much smaller than at $\theta = 0^\circ$ despite higher velocities (compare Figs. 7a with d, b with e, and c with d). The perturbation that appears in the basal stress $\sigma_b$ with the thin-layer model at $\theta = 16^\circ$ can be directly associated with the formal expression of $p_b$ in SHALTOP (see Eq. (B7)). The spatial derivatives of the velocity result in numerical artifacts since the velocity is not twice differentiable at the static/flowing transition.

In the Navier-Stokes simulation, the basal normal stress $\sigma_b$ may be different from the hydrostatic pressure $p_b$ (Fig. 6a), but is relatively similar to the pressure $P$, indicating that deviatoric stresses are small (Fig. 7). When $\sigma_b \geq p_b$, a significant vertical motion induces a higher basal stress than the hydrostatic pressure. However, it is not clear how the stress $\sigma_b$ can be lower than $p_b$. However, it is similar to what is observed in simulations obtained with the discrete model.

The most crucial difference for basal normal stresses is between the continuum and discrete models. Indeed, the discrete basal stress depends on the dynamics of colliding beads and on the geometry of the granular lattice varying with both space and time, see [87]. The discrete stress $\sigma_b$ highly fluctuates around the hydrostatic pressure $p_b$ (Fig. 6 and Fig. 7). During the flow, multiple grain rearrangements change forces chains distribution within the granular media leading to strong variations in the basal stress: as a result, a small surface at the bottom of the flow may well carry more, or less,
C. Spectral analysis of discrete basal normal stress

Section III C2 shows that $\sigma_b$ calculated from discrete simulations (COCD) display high frequency temporal variations, unlike continuum simulations where the basal stress varies at a slower pace. Consequently, the discrete model can be employed to examine high-frequency components arising from grain-to-grain interactions [3, 85]. In contrast, the Navier-Stokes and thin-layer models primarily capture the low-frequency content associated with mass displacement [47, 49]. To gain a comprehensive understanding of these distinctive characteristics in comparison to the other models, we investigate the dominant process responsible for generating these high frequencies in discrete simulations.

We analyze the spectral content of the basal stress as displayed in Figs. (8a-c) showing its spectrogram at the different probes $x_i$, $i = 1, 2, 3$ for $\theta = 0^\circ$. More precisely, we only consider here the fluctuations in the signals by substracting the smooth signal (the dark-blue line) from the total signal (light-blue line) in Fig. 7. Figs. (8d, e, f) are the spectrograms of these signals. The maximum frequency that can be measured here is 500 Hz, related to the time step of the discrete simulation ($\Delta t = 0.001$ s). Acoustic measurements of waves generated by steady granular flows or dam breaks show that wave frequencies go up to ten’s of kHz in our conditions, see [42–45]. These frequencies are related to the Hertz contact, not accounted for in our Contact Dynamics framework simulations.

We analyze the spectral content of the basal stress as displayed in Figs. (8a-c) showing its spectrogram at the different probes $x_i$, $i = 1, 2, 3$ for $\theta = 0^\circ$. More precisely, we only consider here the fluctuations in the signals by substracting the smooth signal (the dark-blue line) from the total signal (light-blue line) in Fig. 7. Figs. (8d, e, f) are the spectrograms of these signals. The maximum frequency that can be measured here is 500 Hz, related to the time step of the discrete simulation ($\Delta t = 0.001$ s). Acoustic measurements of waves generated by steady granular flows or dam breaks show that wave frequencies go up to ten’s of kHz in our conditions, see [42–45]. These frequencies are related to the Hertz contact, not accounted for in our Contact Dynamics framework simulations.

The main frequency observed is around 100 Hz for the three probes (Fig. 8a-c), and the maximum frequency decreases as the distance of the probe increases and with time (Fig. 8d-f). The range of dominant frequencies (with an associated power higher than 150 in Fig. 8a) is 35-300 Hz. The corresponding periods (0.003-028 s) may
correspond to the characteristic times \( t_{\text{macro}} \) for grain rearrangements due to the average shear between layers of grains, see Eq. (6.3) in [1], which would correspond to the so-called modulation frequency measured in granular flow experiments by [45] (their figures 9 and 10). For the three probes, Fig. 9 presents the mean frequency of layer frequencies \( f_{ij} = 1/t_{\text{macro},ij} \) related to the characteristic time \( t_{\text{macro},ij} \) related to the shear of layers in the mass thickness. More precisely, \( t_{\text{macro},ij} = d/|\Delta u_{ij}| \), \( i < j \) where \( d \) is the mean grain diameter, and \( \Delta u_{ij} \) is the relative velocity between two connected layers (see details of its computation in Appendix B3). Fig. 9 shows that this mean frequency belongs to the range of dominant frequencies mentioned before. It enforces the hypothesis that the main event during the flow is related to the time \( t_{\text{macro}} \), corresponding here to the average time for one bead from layer \( j \) to pass over one another bead from layer \( i \). Further studies are needed to explore this hypothesis.

The total energy of the source decreases from the first to the third probe, probably because energy is progressively dissipated within the granular media. Laboratory experiments of granular collapses and generated acoustic waves showed that the radiated energy decreases before the deceleration phase of the front (see Fig. (8a,b) of [42]). The deceleration phase at \( \theta = 0^\circ \) is starting around 0.2 s here, so that when the front arrives at probes \( x_2 \) and \( x_3 \) it has already decelerated.

The spectrograms (Fig. 8d-f) highlight that most energy is radiated when the flow front reaches the probes, at times \( t = 0.1, 0.2, \) and 0.3 s for \( x_1, x_2, \) and \( x_3 \). One can distinguish two behaviors: for \( x_1 \) and \( x_3 \), (Fig. 8d and 8f), most of the energy is radiated in the first 0.3 s from 35 to 300 Hz. Afterwards, generated frequencies hardly exceed 175 or 200 Hz. On the contrary for \( x_2 \), in the first 0.3 s following the front arrival, energy is almost evenly distributed over the 30-300 Hz frequency bandwidth (Fig. 8e). Besides, contrary to the other probes, the decrease in energy radiation and frequency bandwidth is more progressive and lasts more than 1 s (compare white arrows in Fig. 8d-f).

The behavior at \( x_2 \) compared to \( x_1 \), and \( x_3 \) may be explained by the fact that the flow is more transient at \( x_1 \) (quick acceleration near the initial mass) and \( x_3 \) (flow stop quickly after arrival), than at \( x_2 \) where the flow decelerates progressively. Furthermore, at \( x_1 \), after the front passes, the grains near the base are almost static and the moving grains near the free surface are far from the base (see Fig. 5e-h) so that the stress fluctuations from the upper grains hardly reach the base. For \( x_3 \), at \( t = 0.5 \) s there is almost no moving grains above the front so that the stress fluctuation decreases rapidly (see Fig. 4a). Then \( x_2 \) has an intermediate behavior. Indeed, at this position, the grains near the free surface are still moving until about 0.8 s (Fig. 5h) and, as the flow thickness is quite small at this position (around 2.5 cm corresponding to \( \sim 3 \) beads, Fig. 3b), the associated stress fluctuations may propagate down to the base during the relaxation phase of the upper grains up to full stopping of the mass. However, given the strong spatial variation of the basal normal stress and the role of force chains in the stress transmission, a deeper analysis of these processes should be performed which is beyond the scope of this paper.

The spectrograms in Fig. 8 can be qualitatively compared to those obtained in laboratory experiments, from bottom force measured at the arrival of an avalanche at a given location (see Fig. 3a of [44]). In these measurements, the front arrival signature is similar to that calculated here, even if their dominant frequencies are much higher. The spectrogram at probe \( x_2 \) in our study (Fig. 8e) is closer to the experimental spectrogram which have been measured for a granular mass reaching a steady-uniform regime some time after the front arrival.

Note that a pulse of energy can be observed at all probes at about 1.1-1.4 s, more visible at \( x_3 \) (Fig. 8f). This regain of radiated energy is related to the full stopping of the mass as can be seen in Fig. 4a.

\[ R_{\text{Jop}} = \{ \mu_1 = 0.382, \mu_2 = 0.644, I_0 = 0.279 \}, (17) \]

### D. Influence of rheological parameters

#### 1. Rheological parameters in continuum simulations

In order to compare the different models considered in this work, we chose a set of parameters that proved to reproduce rather correctly the evolution of the flow free surface in the case \( \theta = 0^\circ \). However, the determination of appropriate rheology for granular flow modeling and the choice of corresponding rheological parameters are still open issues.

Considering the \( \mu(I)-rheology \) for the dam break simulations, several values of \( \mu_1, \mu_2 \) and \( I_0 \) can be found in the literature, all being specifically defined either in experimental or numerical studies. For instance Jop et al. [74] measure experimentally

\[ R_{\text{Jop}} = \{ \mu_1 = 0.382, \mu_2 = 0.644, I_0 = 0.279 \}, (17) \]
FIG. 10. Influence of $\mu(I)$-rheology parameters on simulation results, for $a = 0.7$ and $\theta = 0^\circ$. We display flow profiles at $t = 0.4$ s and $t = 1.0$ s. (a) Basilisk simulations with parameters from [31] (used in previous figures, $R_{I\text{on}}$), parameters from [74] ($R_{J\text{op}}$), and from [30] ($R_{L\text{ag}}$). (a) SHALTOP simulations with parameters $R_{I\text{on}}$, $R_{J\text{op}}$, and $R_{L\text{ag}}$. whereas [21] obtained, by calibrating $\mu(I)$ with axisymmetric DEM simulations, that the best fit to their data was

$$R_{\text{Lac}} = \{ \mu_1 = 0.40, \mu_2 = 0.70, I_0 = 0.3 \}, \quad (18)$$

and [30] choose

$$R_{\text{Lag}} = \{ \mu_1 = 0.32, \mu_2 = 0.60, I_0 = 0.4 \}, \quad (19)$$

to match the results obtained with the Navier-Stokes Gerri’s flow solver to 2D-DEM simulations. Based on a previous study comparing numerical simulations to experimental dam break, [31] defined the friction parameters in their continuous models as

$$R_{\text{I\text{on}}} = \{ \mu_1 = 0.480, \Delta \mu = 0.250, I_0 = 0.279 \}. \quad (20)$$

These last coefficients have explicitly been defined to match the experimental data of [16] by increasing the static friction coefficient $\mu_1$ to consider the effect of the lateral walls on the spreading of the granular column. Indeed, at the moment, the frictional dissipation due to lateral walls cannot be taken into account otherwise in 2D simulations. It should be noted that [32] added two times wall effects (in the friction coefficient and in the additional force related to wall effects) to reproduce lab-scale experiments at high slopes ($\theta = 22^\circ$).

To better evaluate the effect of the frictional coefficients in the $\mu(I)$-rheology, a comparison between $R_{I\text{on}}$, $R_{J\text{op}}$ and $R_{L\text{ag}}$ is presented in Fig. 10. As expected, the lower the friction coefficients, the longer the runout distance. The longest is obtained using $R_{L\text{ag}}$, then $R_{J\text{op}}$ and finally $R_{I\text{on}}$. However, note that the initial dynamics are relatively similar, at least during the first 0.15 s. It suggests that the differences between the thin-layer and Navier-Stokes dynamics may be still qualitatively similar to those analysed in this study for a wide range of parameters.

2. Friction coefficient in discrete COCD simulations

In discrete simulations, it is also non-trivial to choose the friction coefficient. In [90], a table with values used in the literature is given: they range between $\mu_p = 0$ and $\mu_p = 1$. The influence of the friction coefficient in COCD simulations can be found in figure 5 of [52]: it obviously shows that the smaller the coefficient of friction, the greater the distance reached by the front. However, the difference is small (about 15% between $\mu = 0.2$ and 0.8), especially compared to the influence of the 2D versus 3D discrete simulations (see Section IV E).

E. Influence of simulation geometry

In this work, we have considered that the granular flow dynamics does not change in the direction transverse to the flow. As discussed in the previous section, it is not true in reality, as lateral walls can have a significant impact on the flow [31]. This effect is oversimplified here
FIG. 12. Comparison between experiments and numerical simulations of the granular profiles during a dam break. We display the experimental results (red squares), discret COCD simulations (blue line), Navier-Stokes Basilisk simulations (black line) and thin-layer SHALTOP simulations (green line). The initial aspect ratio is $\alpha = 0.7$, with a bed slope $\theta = 10^\circ$ (a-c), and $\theta = 10^\circ$ (d-f). The light blue line in (c,f) is the discrete simulation profile at $t = 6.5\text{s}$. At $t = 1.02\text{s}$ in (f), the three codes are at rest.

and tackled by empirically increasing friction coefficients of the $\mu(I)$ rheology in continuum models ([e.g., 32] for wall effects although they are considered two times as discussed previously).

As explained in Appendix A, SHALTOP’s implementation does not solve the thin-layer equations in a 2D domain, and we have to solve them in a 3D domain. That is, we solve for the depth-averaged velocity field $\bar{V}_x(x,y,t)$ in a channel of arbitrary width $W$ and use lateral boundary conditions and initial conditions to ensure that $\bar{V}_x$ does not depend on $y$. With this method, SHALTOP proved to reproduce the 2D thin-layer dam-break problem’s analytical solution accurately. Thus, we can be confident that our simulation results do not depend on the width $W$ of the channel used in simulation and are consistent with the 2D thin-layer equations.

In COCD simulations, the 2D equations describe the motion of discs, whereas the 3D equations describe the motion of spheres. Fig. 11 shows that with the same friction coefficient $\mu_p$, the repose angle is smaller in 2D than in 3D. For example, in [52], the maximal avalanche angle for 2D flows is about $17^\circ$ when considering $H_0/d = 15$, with $d$ the mean diameter of grains while it is above $22^\circ$ in 3D, as in experiments [16, 17]. The smaller value of the repose angle in 2D, compared to 3D, can be explained by the fact that in 3D, spheres can spread laterally, in the collapse transverse direction. It increases the number of potential traps but also the number of potential contacts, inducing a higher dissipation due to Coulomb friction between the grains. It explains, at least partly, why the friction coefficient we use in COCD simulations, $\mu_p = 0.9$ (see [52]), must be higher than the friction coefficient between glass spheres estimated from experiments ($0.2 \leq \mu \leq 0.3$), which is in the range between the friction coefficient measured for a perfect glass/glass contact $\mu = 0.4$ [70] and that empirically determined with Molecular Dynamics models (MD) $\mu = 0.16$. Here, COCD runs in 2D because our goal is to compare the three models in the same 2D space configuration.

Here, we present the limit case for $\theta = 16^\circ$ in 2D COCD simulations where the stopping is difficult but arises after a long duration (more than $6\text{s}$ in Figs. 4d and 11b). When considering a smaller inclination angle, the flow stops similarly to the two other models, see Fig. 12.

V. CONCLUSIONS

The comparison between discrete (COCD), Navier-Stokes (Basilisk), and thin-layer (SHALTOP) models for a simple granular dam break simulation shows that they can reproduce the mass profiles measured in laboratory experiments with different level of accuracy, provided an appropriate choice of the rheological parameters is made. The $\mu(I)$ rheology is used here for both continuum models. The rheological parameter are kept constant for each model when simulating the granular collapses at three different angles from horizontal to $\theta = 16^\circ$. Even if the differences between the models strongly depend on
the rheological parameters and simulation setups, general conclusions could be made:

- The thin-layer model overestimates the initial acceleration and velocity compared to the other models and to the experiments, although the final deposits are consistent with the Navier-Stokes simulation with the same values of the $\mu(I)$ rheology (except the volume fraction $\Phi$ that has, however, only a limited influence on simulation results) and with the experiments. This result is important to validate the relevance of using thin-layer models for operational hazard assessment, and in particular to estimate the final mass distribution, travel distance and dynamic impact of potential landslides. Indeed, as they require fewer computing resources than non depth-integrated models, thin-layer models are often used by practitioners and experts.

- The Navier-Stokes and 2D discrete simulations have the same acceleration and deceleration phases but differ in the stopping phase. After the front stops, more and deeper particles are still in motion in the discrete simulations. The thin-layer simulations are globally faster than the two others in the three phases.

- 2D discrete simulations thus requires an artificially higher inter-particle friction coefficient when compared to 3D experiments (laterally confined flow here). In particular, in 2D discrete simulations using the same friction coefficient between the beads for slopes $\theta = 0^\circ$ and $\theta = 16^\circ$ results in a flow lasting several seconds too long at $\theta = 16^\circ$.

- For $\theta = 16^\circ$, the flow front is hardly managed in the Navier-Stokes code Basilisk with the apparition of artificial bubbles whose number increase as the slope angle increases.

- The basal normal stress measured from the Navier-Stokes and thin-layer models are qualitatively similar since they mainly depend on the flow thickness even though slightly higher variations are simulated with the Navier-Stokes model which may be due to non-hydrostatic effects. The basal stress resulting from the discrete model is much more complex, with important spatial and temporal fluctuations at much higher frequencies, related to the grain-scale motion.

A key point is that the differences between the models are more visible at higher slope angle. Furthermore, the characteristics of the basal stress and of the stopping phase appear to be much more discriminant for the models and rheology than the mass profiles during the collapse. This strongly suggests to use these quantities and to consider the configuration of granular flows on sloping beds to assess the performance and limits of granular flow models and rheological laws or to calibrate the models. This is particularly important for modeling field-scale geophysical flows, when the simulated dynamics are compared to high and low frequency seismic recordings that give us a direct measurement of the basal stress applied by the landslide to the ground [47, 49, 91].

ACKNOWLEDGEMENTS

This work was funded by project ERC-CG-2013-PE10-617472 SLIDEQUAKES, DT-GEO European project (A Digital Twin for GEOphysical Extremes), and Institut Universitaire de France. Numerical computations were performed on the S-CAPAD plateforme, IPGP, France.

Appendix A: Numerical set-up

1. Initial conditions

The construction of the initial mass is straightforward in the Basilisk and SHALTOP simulations because it boils down to defining the boundary of the initial mass. In COCD (like in any DEM simulation), generating an initial state is more complex. The position, size, and the number of beads must be defined. The way the initial column is built in COCD can strongly impact the initial forces distribution in the granular media [87]. Following [87], the initial arrangement of beads is constructed by simulating a uniform rain of beads (whose diameter follows a Gaussian distribution of mean $d = 0.7$ mm and standard deviation 0.07 mm). It allows obtaining a granular network with a quasi-hydrostatic pressure [87]. However, in our initial box, the basal stress is not equal to the hydrostatic pressure, in particular, close to the left wall, as shown in section III C. A snapshot of the initial state is depicted in Appendix E (Fig. 13).

In experiments, remark that the gate opening affects only the early stage of the collapse, as shown in [31]. Thus, in our simulations, we consider an instantaneous release of the initial granular mass (without accounting for the gate).

2. Boundary conditions

In COCD and Basilisk simulations, the beads and granular flow dynamics are solved directly in the 2D domain $(x, z)$, and no lateral boundary conditions are needed. On the contrary, SHALTOP solves the depth-averaged mass and momentum equations for flows on general 2D-topographies $Z = Z(X, Y)$ in a fixed vertical cartesian frame $(X, Y, Z)$ and not on 1D-topographies $Z = Z(X)$. In order to mimic a 1D-topography problem, the topography is represented by an inclined plane of width $W = 3 \times dx$ in the $Y$ direction, with $dx$ the
A non-penetration condition is also used on \(z = 0\) (or equivalently at \(X = 0\) for SHALTOP) in all three codes. This condition is done explicitly in COCD’s simulations through a vertical wall. This wall interacts with the particles with the same friction coefficient than for grain to grain contacts. In Basilisk and SHALTOP, we impose \(V_z = 0\) and \(V_X = 0\), respectively.

The bottom boundary condition on \(z = 0\) is specific to each code. In COCD’s simulations, as in experiments, a glued layer of beads is added to the bed. The size distribution of these glued beads is identical to the other grains. There is no space between two consecutive glued beads. Even if this is not really true because the glued beads could not move (e.g., role), this can be seen as a no-slip and non-penetration condition, which is set explicitly in Basilisk \((V_z(z = 0) = 0)\) and \(V_z(z = 0) = 0\). Note that in Navier-Stokes simulation of the same set-up, [31] used a Coulomb friction condition at the base and studied the impact of this condition compared to the no-slip condition used here (see their figure 16 where deposit calculated with friction went about 0.04 m further than with no-slip). In this work, a non-zero basal velocity \(V_Z\) was found near the front of the flowing mass (see their figure 18). As SHALTOP solves directly for the depth-average velocity \(\bar{V}_Y\), the bottom boundary condition is included in the equations and does not need to be specified numerically.

Note that thin-layer equations (12) and (13) can be derived in two different manners. It is possible to use the no-slip condition and the internal \(\mu(I)\)-rheology as in the Basilisk code. However, the same final equations are derived if we assume a Coulomb solid friction law at the interface between the flow and the topography, with a friction coefficient given by \(\mu(I)\) as in (11), and no condition on the bottom velocity (and thus on the velocity profile). See Chapter 1 in [92] for details.

### Appendix B: Simulation output processing

To compare simulations, we extract key characteristics of the flow and we detail in this section how they are calculated in each code.

#### 1. Flow height and front position

For COCD’s profiles, we first decompose the horizontal domain in cells of size \(d_x = 4d\), where \(d = 0.7\) mm is the mean diameters of grains. The flow height is then defined, in each cell, as the height of the top most beads. The front is computed with this same method without other post-process.

One of Basilisk’s outputs is directly the air/granular media interface, represented in Fig. 3, from which the determination of the flow height \(h(x, t)\) is straightforward. Determining the flow front position is not straightforward because small drops detach from the main mass (e.g., Fig. 3e). The \(\mu(I)\)-rheology is no longer capable of modeling their propagation correctly, which may generate numerical issues. Indeed, due to these drops, the classical definition of the front position:

\[
\hat{x}_f(t) = \max \{x, h(x, t) > 0\},
\]

does not yield an appropriate (i.e., physically relevant) position for the flow front. Instead, the front position \(x_f(t)\) is given by the intersection of the \(x\)-axis with the tangent to the graph \(z_i(x) = h(x, t)\), for \(x = \hat{x}_f(t)\). \(\hat{x}_f(t)\) is the last position for which the flow height is positive for all abscissas before \(\hat{x}_f(t)\):

\[
\hat{x}_f(t) = \max \{X : vx < X, h(x, t) > 0\},
\]

In practice, before estimating the tangent, the graph \(z_i(x) = h(x, t)\) is smoothed (with a Lowess smoothing algorithm [93]). At time \(t_i\), \(x_f(t_i)\) is considered as an outlier if

\[
\frac{|x_f(t_i) - x_m(t_i)|}{x_m(t_i)} > 0.01
\]

where

\[
x_m(t_i) = 0.5(x_f(t_{i-1}) + x_f(t_{i+1})).
\]

If Equation (B3) is verified, then we set \(x_f(t_i) = x_m(t_i)\). This rough filtering works because, in practice, we never had two outliers in a row.

In SHALTOP, the layer thickness \(h(x, t)\) is directly given as a simulation result. The flow front \(x_f(t)\) is then given by:

\[
x_f(t) = \min \{x, h(x, t) < 5d\}
\]

where \(d = 0.7\) mm is the mean diameter of beads in COCD’s simulations.

#### 2. Flow velocity and flow depth-integrated velocity

COCD computes every grain velocity. Let us consider the same domain decomposition described in section B1. At a given time \(t\), we define the 2D columns of width \(dx\) and height \(h_i(x)\) for each cell and detect all the grains that belong to them. We then compute its horizontal mean velocity \(\bar{V}_X(x, t)\) for each column, by averaging all the horizontal velocities of grains included in the column. The local horizontal velocity is the horizontal part of the velocity vectors of each grain.

Basilisk explicitly solves for the velocity field within the flow, that is, \(V_z(x, z, t)\) and \(V_X(x, z, t)\). The depth-averaged flow velocity in the \(x\)-direction \(\bar{V}_X\) is then directly deduced following Eq. (13).

SHALTOP solves directly for the depth-averaged velocity \(\bar{V}\), and no further processing is needed \((V_Z = \bar{V})\).
### 3. Basal stresses and pressures

For COCD, let us consider again the columns, introduced in precedent section B2. The probes have the same length $dx$ as the columns. Since the grains belonging to each column can be detected, the total mass of the column is the sum of the masses of grains. In the computing of any grain mass $m_i$, we multiply the volume of the disc $i$ by the grain diameter $d_i$, and by the glass density $\rho = 2500 \text{kg.m}^{-3}$. We finally define the hydrostatic pressure $p_h$ as being the column weight divided by the length (it would be the surface in 3D) of the bottom column $d_x$.

The basal normal stress $\sigma_b$ is directly deduced from the resulting normal force applied on a probe (i.e., the resulting normal force applied on the four glued grains belonging to this probe) divided by its surface. It can be directly computed from the simulations results that include every contact force for all contacts at any time.

In SHALTOP, the hydrostatic pressure at the bottom of the flow is given by

$$p_h = \rho g \cos(\theta) h.$$  \hspace{1cm} (B6)

It is derived from the inviscid Navier-Stokes equations integrated into the topography normal direction (i.e., along the $z$-axis), assuming that the stress tensor is $\sigma = -pI_3$ and that $V_z = 0$ at the bottom. Following [47] and [91] for more general cases where $\sigma \neq -pI_3$, $p_h$ is the leading term of the basal stress $\sigma_b$ in the direction perpendicular to the topography. In order to get an accurate value of the basal stress, other terms from the asymptotic expansion must be included (see Eq. 3 in [47], Eq. 5 in [91]). In the case of a flow over an inclined plane, an accurate value is

$$\sigma_b = p_h - \frac{\rho}{2} \left( \frac{\partial}{\partial t} \left( h^2 \frac{\partial V_z}{\partial x} \right) + \frac{\partial}{\partial x} \left( h^2 V_z \frac{\partial V_z}{\partial x} \right) \right).$$  \hspace{1cm} (B7)

In Basilisk, the basal stress $\sigma_b$ is given by

$$\sigma_b = (\sigma n) \cdot n = \left( \left[ \eta_{eff} \gamma_{xx} - P \right., \eta_{eff} \gamma_{xy} \right] \left[ 0 \\ -1 \right] \right) \cdot \left[ 0 \right]$$  \hspace{1cm} (B8)

$$\sigma_b = \eta_{eff} \frac{\partial v}{\partial y} - P$$  \hspace{1cm} (B9)

with

$$\eta_{eff} = \frac{\mu(I)P}{\gamma}$$  \hspace{1cm} (B10)

and $P$ the pressure, defined as the mean total stress.

Regarding the mean frequency presented in Fig. 9, it is computed as the average of multiple frequencies $f_{ij}$. We decompose the mass height in layers of width $3d$, with $d$, the mean diameter of grains. For each layer $i$, the mean along-slope velocity $u_{x,i}$ is computed in a horizontal range of size $20d$, centered in each probe position. It is the velocity of grains belonging to layers of height $3d$ and horizontal size $20d$, centered in $x_i$, $i = 1, 2, 3$. We then compute the relative velocities between two successive layers $\Delta u_{ij} = u_{x,j} - u_{x,i}$, $j > i$ and the time $t_{macro,ij}$ is then computed as

$$t_{macro,ij} = \frac{d}{|\Delta u_{ij}|}.$$  \hspace{1cm} (B11)

By definition, $t_{macro,ij}$ corresponds to the duration needed for a grain from the above layer $j$ to go over a grain in the layer below $i$. The definition can be found in [1] (Eq. (6.3)). Finally, the mean frequency presented in Fig. 9 is the average of frequencies $f_{ij} = 1/t_{macro,ij}$.

### Appendix C: Computational costs

We do not perform a detailed comparison of computational costs in this paper, as our focus is on comparing these three physical models rather than their numerical solution methods and possible implementations. For each of the three models, various
numerical solution methods exist, as well as multiple implementation algorithms (computer codes) for these methods. As this would constitute a separate study, we only indicate the orders of magnitude of the computation times required for conducting our simulations. It should be noted that the codes were executed on different machines, further adding to the complexity of their comparison.

Simulations of the discrete model were conducted using the COCD code on two Intel Xeon E5-2650 2.00 GHz (2 × 8 cores) processors on the S-CAPAD platform, IPGP, France. On average, they required about 7 hours of computation time for a 2 s flow simulation.

Simulations of the Navier-Stokes model were performed using the Basilisk code on a Intel Xeon(R) W-2125 4.00 GHz processor. On average, they required less than 1 minute and 45 seconds of computation time for a 2 s flow simulation. Note that a constant mesh on the entire domain has been used here.

Simulations of the thin-layer model were carried out using the SHALTOP code on a 12th Gen Intel(R) Core(TM) i5-12500H processor, 2.50 GHz, 32 GB RAM. On average, they required less than 1 minute and 45 seconds of computation time for a 2 s flow simulation.

Appendix D: Numerical parameters

Table I in Appendix D provides all the numerical parameters that have been used to perform the simulations presented in this article using the three models.

Appendix E: Extended Data

Fig. 13 depicts the initial configuration of the granular mass. The zoom performed in the red rectangular area allows for a better understanding of the sizes of the different grids in relation to the system size. The discrete model involves spherical grains with an average diameter of 0.7 mm. The Navier-Stokes model considers a space composed of square cells with sides measuring 2.7 mm, and the thin-layer model employs cells with heights equal to the free surface height and with a constant width of 0.6 mm.

Figs. 14 to 17 display the results of simulations conducted with different aspect ratios \( a = 0.31 \) and \( a = 1.24 \) than the one used throughout the rest of the article \( a = 0.7 \). Figs. 14 and 15 provide snapshots of the flow, along with experimental data, while Figs. 16 and 17 present spatio-temporal plot of the depth-averaged along-slope flow velocity. These four figures demonstrate that the results presented in this article are not dependent on the aspect ratio of the initial mass configuration, whether it is small \( (a = 0.31, \text{ resulting in a spread-out mass) or large } (a = 1.24, \text{ resulting in a vertical mass).}

References


[12] A. Lucas, A. Mangeney, and J. P. Ampuero, Frictional velocity-weakening in landslides on Earth and on other
FIG. 13. Snapshot of the initial state for an aspect ratio of $a = 0.7$. The red boxes represent a rectangular area of size 4 by 3 cm located near the front, allowing us to observe the fine grids used by Basilisk and Shaltop, as well as the size of grains simulated by COCD.

FIG. 14. Comparison between experiments and numerical simulations of the granular profiles during a dam break. We display the experimental results (red squares), discrete COCD simulations (blue line), Navier-Stokes Basilisk simulations (black line) and thin-layer SHALTOP simulations (green line). The initial aspect ratio is $a = 0.31$, with a bed slope $\theta = 0^\circ$ (a, b, c) and $\theta = 16^\circ$ (d, e, f). The light blue line in (c,f) is the discrete simulation profile at $t = 6.5$ s.
FIG. 15. Comparison between experiments and numerical simulations of the granular profiles during a dam break. We display the experimental results (red squares), discrete COCD simulations (blue line), Navier-Stokes Basilisk simulations (black line) and thin-layer SHALTOP simulations (green line). The initial aspect ratio is $a = 1.24$, with a bed slope $\theta = 0^\circ$ (a, b, c) and $\theta = 16^\circ$ (d, e, f). The light blue line in (c,f) is the discrete simulation profile at $t = 6.5 \text{ s}$.


[30] P. Y. Lagrée, L. Staron, and S. Popinet, The granular column collapse as a continuum: Validity of a two-dimensional Navier-Stokes model with a $\mu(I)$-rheology,
FIG. 16. Spatio-temporal plot representing the depth-averaged along-slope flow velocity $\bar{V}_x(x,t)$ (colorscale) for the different models, with $\theta = 0^\circ$ (a,b,c) and $\theta = 16^\circ$ (d,e,f). The initial aspect ratio is $a = 0.31$. We only display velocities above 1 cm s$^{-1}$ (lower velocities are represented in white), as in the experiments of [17]. Black squares give the front position in experiments.


[35] A.-J.-C. Barré de Saint-Venant, Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leur lit, Comptes rendus hebdomadaires des séances de
FIG. 17. Spatio-temporal plot representing the depth-averaged along-slope flow velocity $\bar{V}_x(x,t)$ (colorscale) for the different models, with $\theta = 0^\circ$ (a,b,c) and $\theta = 16^\circ$ (d,e,f). The initial aspect ratio is $a = 1.24$. We only display velocities above 1 cm s$^{-1}$ (lower velocities are represented in white), as in the experiments of [17]. Black squares give the front position in experiments.


[71] H. Tang, R. Song, Y. Dong, and X. Song, Measurement of


