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Abstract. If the inflaton gets trapped in a local minimum of its potential shortly before
the end of inflation, it escapes by building up quantum fluctuations in a process known
as stochastic tunnelling. In this work we study cosmological fluctuations produced in
such a scenario, and how likely they are to form Primordial Black Holes (PBHs). This
is done by using the stochastic-δN formalism, which allows us to reconstruct the highly
non-Gaussian tails of the distribution function of the number of e-folds spent in the false-
vacuum state. We explore two different toy models, both analytically and numerically, in
order to identify which properties do or do not depend on the details of the false-vacuum
profile. We find that when the potential barrier is small enough compared to its width,
∆V/V < ∆φ2/M2

Pl, the potential can be approximated as being flat between its two
local extrema, so results previously obtained in a “flat quantum well” apply. Otherwise,
when ∆V/V < V/M4

Pl, the PBH abundance depends exponentially on the height of
the potential barrier, and when ∆V/V > V/M4

Pl it depends super-exponentially (i.e. as
the exponential of an exponential) on the barrier height. In that later case PBHs are
massively produced. This allows us to quantify how much flat inflection points need to
be fine-tuned. In a deep false vacuum, we also find that slow-roll violations are typically
encountered unless the potential is close to linear. This motivates further investigations
to generalise our approach to non–slow-roll setups.
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1 Introduction and motivations

Cosmic inflation is, to date, the simplest and phenomenologically most successful
paradigm to describe the early universe [1–6]. Other than solving a number of puzzles in
the standard Big Bang cosmology, this early phase of almost exponential expansion also
provides the seeds for all cosmological structures in our universe, through the parametric
amplification of quantum vacuum fluctuations [7–11]. These cosmological perturbations
can be observed in the Cosmic Microwave Background (CMB) anisotropies [12–14], and
in the Large-Scale Structures (LSS) of the universe [15]. They are predicted to be almost
scale-invariant, quasi-Gaussian and quasi-adiabatic, which is in excellent agreement with
current observations [13].

However, we are still far from having a complete picture of the early universe. CMB
and LSS observations only give access to a restricted range of physical wavelengths, which
emerged from the Hubble radius during a short period of about 7 e-folds, over the ∼ 50
e-folds required to account for the observable universe. At these scales, perturbations
are constrained to be small, at the level of ζ ' 10−5, where ζ is the so-called curvature
perturbation [16]. Even though this is enough to indicate that the inflationary potential
could be of the plateau type around 50 e-folds before the end of inflation (at least in
the minimal setting of single-field slow-roll inflation) [17, 18], the lack of observational
constraints at small scales makes the reconstruction of the inflationary potential close
to the end of inflation still elusive. On the one hand, this calls for new observational
windows at small scales; on the other hand, this prompts us to keep an open view about
possible deviations from “vanilla inflation” outside the constrained range [19], and to
investigate possible phenomenological consequences that might be looked for in those
new windows.
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Figure 1. Sketch of the inflationary potential considered in this work. The large scales observed
in the CMB and the LSS exit the Hubble radius at large-field value, where the potential is of the
plateau type (1). The inflaton φ then falls in a false vacuum state, i.e. a local minimum, from
which it escapes through quantum fluctuations (2). It finally reaches the true vacuum state,
around which it oscillates during the preheating phase (3).

False vacuum

Among the panorama of possible features that could alter the inflationary potential at
small scales, in this work we consider the possibility of a false vacuum state, i.e. a local
minimum that is up-shifted compared to the global vacuum in which (p)reheating takes
place. The situation is depicted in Fig. 1. This is somehow reminiscent of the “old
inflation” proposal [3], where inflation occurs while the universe is trapped in a false
vacuum state, from which a graceful exit to the true vacuum is enabled by quantum
tunnelling [20, 21]. It was then realised that reheating through percolation of true-
vacuum bubbles was challenging in this setup [22]. This led to the “new inflation”
proposal [4, 5], in which inflation is driven by a scalar field φ along a smooth potential
V (φ), and terminates by violation of the slow-roll conditions. The situation depicted in
Fig. 1 may thus be seen as a hybrid setup mixing old and new inflation (see Refs. [23, 24]
for other setups combining the two mechanisms).

False vacua may appear naturally in various high-energy constructions of infla-
tionary potentials: when embedded in supersymmetry or supergravity constructions,
plateau-like potentials at CMB scales often include features like local minima at smaller
scales [25]. Moreover, in models yielding inflection points in the potentials, as usually
encountered in string- or supersymmetry-inspired constructions [26–29] (and as often
studied in the context of primordial black hole production [30–32]), the breaking of the
flat-inflection point condition through radiative corrections [33–35] may create an ad-
ditional local minimum, depending on its sign. Finally, false vacua are found in more
specific scenarios such as the critical Higgs inflationary model [36, 37].

When the inflaton encounters a false vacuum, there are two ways it can climb up
the potential barrier and reach the global minimum of the potential, close to which
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inflation ends. This first possibility, as recently investigated in Refs. [25, 38–40], is that
the field’s classical velocity is large enough to overshoot the local minimum. In that
case, the slow-roll conditions are necessarily violated, which leads to a sharp increase in
the amplitude of curvature perturbations that may later collapse into primordial black
holes (PBHs) [41–43]. The second possibility is that the inflaton gets trapped in the
false vacuum. In that case, quantum fluctuations jiggle the inflaton and after some time
they shall push it outwards. In that case, large fluctuations have to build up, and as a
consequence one may also expect PBHs to form.

The goal of this paper is to put this statement under closer scrutiny, and investigate
how quantum diffusion proceeds in a false-vacuum state during inflation. The reason is
that, while non-linear structure formation makes primordial fluctuations of small ampli-
tude difficult to reconstruct at small scales, the presence of PBHs is a distinct feature
that can be specifically looked for (and, if not detected, at least constrained). There-
fore, they constitute an important window into small-scales fluctuations of large-enough
amplitude, hence into the potential presence of a false-vacuum state during inflation.

Stochastic-δN formalism

During inflation, quantum diffusion can be described by means of the stochastic-inflation
formalism [9, 44], where small-scale fluctuations behave as a random noise acting on the
large-scale evolution as they cross out the Hubble radius. These “quantum kicks” make
the inflaton wriggle away from the false vacuum, a process known as stochastic tunnelling
(note that it is different from standard quantum tunnelling that proceeds below the
potential barrier and for which there is no classical description). Stochastic tunnelling
has been studied in various contexts in Refs. [24, 45–57], and here we investigate how
this mechanism affects cosmological perturbations. This can be done by following the
stochastic-δN approach, which we now briefly summarise in the case of a single field φ
slowly rolling on a potential V (φ) (see e.g. Ref. [58] for a more extensive review).

On the slow-roll attractor, the long-wavelength part of the inflaton is driven by the
Langevin equation

dφ

dN
= − V ′(φ)

3H2(φ)
+
H(φ)

2π
ξ , (1.1)

where N = ln(a) is the number of e-folds [59, 60] with a the scale factor, a prime
denotes a derivative with respect to φ, H = ȧ/a is the Hubble parameter where a dot
denotes derivation with respect to cosmic time, and ξ is a white Gaussian noise with
vanishing mean and unit variance, i.e. 〈ξ(N)ξ(N ′)〉 = δ(N − N ′). This noise describes
the inflow of small wavelength scales as the universe expansion stretches them into the
long-wavelength sector, and hereafter 〈·〉 denotes stochastic average. At leading order in
slow roll, H2 ' V/(3M2

Pl) where MPl is the reduced Planck mass, because of Friedmann
equation. This Langevin equation can then be turned into a Fokker-Planck equation for
the probability density function (PDF), P (φ,N), associated with the field value at time
N ,

∂

∂N
P (φ,N) = M2

Pl

∂

∂φ

[
v′(φ)

v(φ)
P (φ,N)

]
+M2

Pl

∂2

∂φ2
[v(φ)P (φ,N)] , (1.2)
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where for convenience we have introduced the rescaled potential v = V/(24π2M4
Pl).

Starting from a certain initial field value φ, let N denote the number of e-folds that
is realised until inflation ends. This is a random quantity, since it is different for each
realisation of the stochastic process (1.1). It is therefore endowed with a distribution
function P (N , φ), which can be shown to follow the adjoint Fokker-Planck equation [61,
62], namely

∂

∂N P (N , φ) = −M2
Pl

v′(φ)

v(φ)

∂

∂φ
P (N , φ) +M2

Plv(φ)
∂2

∂φ2
P (N , φ). (1.3)

This equation needs to be solved with the boundary condition P (N , φend) = δ(N ),
assuming that inflation ends at φend (an additional boundary condition is sometimes
needed at large-field values [63, 64]). The statistics of cosmological perturbations can
then be extracted using the δN formalism [65–68], which states that on super-Hubble
scales, the curvature perturbation ζ is related to the integrated local amount of expansion
of a homogeneous patch, treated as a separate universe [60, 65, 68–73], i.e.

ζ(x) = N (x)− 〈N〉 . (1.4)

In this expression, which is valid even at the non-perturbative level, ζ is coarsed-grained
at the Hubble radius at the end of inflation, but the statistics of the curvature per-
turbation (and of related quantities such as the density contrast or the compaction
function) when coarse-grained at arbitrary scales can be inferred using the techniques
introduced in Ref. [74]. In this way, solving the first-passage time problem described by
Eq. (1.3) allows one to reconstruct the statistics of cosmological fluctuations on large
scales, by taking into account the backreaction of small-scales quantum diffusion in a
non-perturbative way. This is the so-called stochastic-δN program [61, 75, 76], which
we intend to apply to the false-vacuum setup in this work.

Let us stress that the above equations are written in the slow-roll regime, which
at the classical level assumes that the acceleration term φ̈ is subdominant in the Klein-
Gordon equation φ̈+ 3Hφ̇+ V ′ = 0. One may be concerned that this condition cannot
be satisfied around a local minimum of the potential, since there V ′ = 0. However,
slow roll being a dynamical attractor, if the potential function satisfies the slow-roll
conditions then the system does not leave the attractor even when approaching a local
minimum.1 In other words, although it is true that V ′ decreases to 0 when reaching
the local minimum, so do 3Hφ̇ and φ̈, at a rate such that the acceleration term remains
negligible. Our use of the slow-roll approximation is therefore fully justified, as long as
one makes sure that the potential function satisfies the slow-roll conditions all along,
which we will carefully check in what follows.

1For explicitness, let us expand V ' V0 + m2φ2/2 around a local minimum located at φ = 0. Upon
linearising the Klein-Gordon and Friedmann equations around the phase-space point (φ = 0, φ̇ = 0), in

the regime m2 � H2
0 = V0/(3M

2
Pl), one finds that φ(t) is attracted towards the solution φ ∝ e−m

2t/(3H0),
which is such that 3Hφ̇ ' −V ′(φ) and φ̈ ' m2/(9H2

0 )V ′(φ) � V ′(φ), and which therefore corresponds
to the slow-roll attractor.
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The rest of the paper is organised as follows. In Sec. 2 we solve the first-passage
time problem in two toy-model potentials that feature a false vacuum: a linear potential
with negative slope and a more refined quadratic-piecewise potential. Our goal is to
determine which features are generic of false-vacuum models and which depend on its
detailed properties. In Sec. 3, we then derive estimates for the abundance of PBHs
in these models. This allows us to constrain the shape of the local minimum, i.e. its
width, height and depth, from the existing upper bounds on PBHs. Finally, we provide
concluding remarks in Sec. 4.

2 Statistics of fluctuations in a false vacuum

In this section, we apply the stochastic-δN program reviewed in Sec. 1 to the false-
vacuum region of models such as the potential depicted in Fig. 1. This will lead us
to investigate the production of PBHs in such models in Sec. 3. Since PBHs arise
from large density fluctuations, their abundance is driven by the tail of the distribution
functions of cosmological perturbations. We thus start by explaining how such tails can
be reconstructed, following the approach developed in Refs. [62, 77].

2.1 Tail reconstruction

The distribution function of the curvature perturbation can be obtained by solving the
adjoint Fokker-Planck equation (1.3). This equation being a linear partial differential
equation, it is convenient to introduce the characteristic function

χ(φ, t) ≡
〈
eitN (φ)

〉
=

∫ ∞
−∞

eitNP (N , φ)dN , (2.1)

which depends on a dummy variable t and on the initial field configuration φ. It is clear
that the characteristic function is nothing but the inverse Fourier transform of the PDF,
which can thus be obtained by Fourier transforming

P (N , φ) =
1

2π

∫ ∞
−∞

e−itNχ(t, φ)dt . (2.2)

Moreover, by inserting Eq. (2.2) into the adjoint Fokker-Planck equation (1.3), one
obtains an ordinary differential equation for the characteristic function

− itχ(t, φ) = −M2
Pl

v′(φ)

v(φ)

∂

∂φ
χ(t, φ) +M2

Plv(φ)
∂2

∂φ2
χ(t, φ) , (2.3)

with the boundary condition χ(t, φend) = 1. The procedure is therefore the following:
solve Eq. (2.3) to compute the characteristic function, and infer the PDF using Eq. (2.2).

This second step can be performed explicitly if the characteristic function can be
decomposed in a pole expansion

χ(t, φ) =
∑
n

an(φ)

Λn − it
+ g(t, φ) , (2.4)
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where Λn are positive numbers that do not depend on φ, an are real functions of φ and
g(t, φ) is a regular function of t [77]. Because of the residue theorem, the PDF thus
reads

P (N , φ) =
∑
n

an(φ)e−ΛnN , (2.5)

where we assume that the Λn have been ordered, 0 < Λ0 < Λ1 < · · ·Λn. This may be
viewed as a tail expansion, since terms of higher n are more strongly suppressed at larger
N . Therefore, on the tails, the PDF is dominated by the first poles only. The main
task becomes to find the zeros of the inverse characteristic function, Λn, and extract the
residues by evaluating

an(φ) = −i
[
∂

∂t
χ−1(t = −iΛn, φ)

]−1

. (2.6)

When the location of the poles Λn are known only approximately, a more convenient
expression can be obtained by decomposing

χ(t, φ) =
χnum(t, φ)

χden(t)
, (2.7)

where the denominator χden does not depend on φ since, as mentioned above, the poles
are independent of the initial condition φ. In this form, Eq. (2.6) leads to

an(φ) = −iχnum(−iΛn, φ)
∂
∂tχden(−iΛn)

, (2.8)

where we have used that χden(−iΛn) = 0 (if Λn is known only approximately, this
condition cannot be enforced exactly in Eq. (2.6), which then makes Eq. (2.8) more
accurate).

In passing, let us stress that Eq. (2.5) indicates that the tail of the PDF for ζ has
an exponential, rather than Gaussian, fall-off behaviour. This has strong consequences
for the formation of extreme objects such as PBHs, since exponential tails are much
heavier, but also for galaxy and structure formation in general [78]. This type of non-
Gaussianities cannot be captured by perturbative parametrisations (such as the fNL

expansion [79]), which only account for small deviations from Gaussian statistics around
the maximum of the PDF [80–82] and not on its tail.

2.2 Linear toy model

Let us now apply this computational programme to a false-vacuum potential. In practice,
we assume that slow roll is not violated as the inflaton approaches the local minimum,
which is guaranteed [83] if the potential never violates the slow-roll conditions ε, |η| � 1,
where ε = M2

Pl(v
′/v)2/2 and η = M2

Pl(v
′′/v), given that slow roll is a dynamical attractor.

Otherwise, a phase of near ultra-slow roll may take place. We start by considering the
toy model displayed in the left panel of Fig. 2, where the potential

v(φ) = v0

(
1− α φ

∆φ

)
(2.9)
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Figure 2. Schematic depiction of the linear potential with negative slope (left panel) and of the
piecewise-quadratic potential (right panel) that we consider in this work. We only include the
effect of quantum diffusion in the regions highlighted in pink, and assume that the inflaton is
mostly driven by the potential gradient elsewhere.

is linear between the local minimum and the local maximum, which without loss of
generality are located at φ = ∆φ and φ = −∆φ respectively, and where α is a positive
parameter.2 We assume that outside this region, the classical drift provides the main
contribution to the inflaton motion and that quantum diffusion can be neglected. This
is why, in practice, a reflective boundary condition is placed at φ = ∆φ (such that the
inflaton cannot climb up the region it comes from), and an absorbing boundary condition
is placed at φ = −∆φ (such that the inflaton necessarily falls away from the false vacuum
once it has reached the local maximum). These translate into

χ(t,−∆φ) = 1 and
∂

∂φ
χ(t,∆φ) = 0 . (2.10)

As mentioned above, the slow-roll conditions must be satisfied, which here implies
that α � ∆φ/MPl (there is no condition coming from η since the second derivative of
the potential is assumed to identically vanish in this toy model). Furthermore, as we will
see below, for the typical number of e-folds spent in the false vacuum to be smaller than
∼ 50, the height of the potential barrier ∆v = v(−∆φ)− v(∆φ) has to be much smaller
than v0, which also implies that α � 1. In this regime, the differential equation (2.3)
for the characteristic function can be approximated as

∂2

∂φ2
χ(t, φ) +

α

v0 ∆φ

∂

∂φ
χ(t, φ) + i

t

v0M2
Pl

χ(t, φ) = 0 . (2.11)

With the boundary conditions (2.10), the solution is given by

χ(z, x) =
e−

a
2

(1+x)
{
z cos

[
1
2(x− 1)z

]
+ a sin

[
1
2(x− 1)z

]}
z cos z − a sin z

, (2.12)

2The case of a linear potential with a positive slope (i.e. negative α) was considered in Ref. [77],
and most of the formulas derived below can be checked to be consistent with analytical continuations
of those derived in Ref. [77], up to small differences in the notations employed, i.e. α = −α[77]∆φ/MPl,
∆φ = φuv/2, x = 2(x[77] − 1) + 1 and a = −1/(2a[77]) (where x and a are introduced below).
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Figure 3. Inverse characteristic function for the linear potential with negative slope, for a = 2
and a few values of φ in the left panel, and for φ = ∆φ and a few values of a in the right panel.
The solid coloured lines correspond to a numerical solution of the differential equation (2.3) with
v0 = 10−10, while the black dotted lines show the approximated solution (2.12), which provides
an excellent fit. On the left panel, one can check that the poles (i.e. the values of t where
1/χ intersects 0) are independent of φ, as expected. In both panels, diamonds denote the pole
exact locations, while the approximations derived in the text (namely Eqs. (2.19), (2.22), (2.23)
or (2.26) depending on the case under consideration) are displayed with circles in the left panel.
The agreement is always very good except in the deep-well (a > 1) regime at large n (which
already occurs at n = 2 for a = 2 in the left panel).

where we have introduced

z =
√
iµ2t− a2 and x =

φ

∆φ
, (2.13)

together with the parameters

µ2 =
4 ∆φ2

v0M2
Pl

and a =
α

v0
, (2.14)

in terms of which the following discussion takes a clearer form. The parameter µ may be
seen as measuring the amplitude of quantum-diffusion effects, while a parametrises the
slope of the potential (a = 0 for a flat potential), hence the depth of the false vacuum.
The approximation (2.12) is compared with a full numerical solution of the differential
equation (2.3) in Fig. 3, where one can check that the agreement is indeed excellent.

One may also note that Eq. (2.12) is such that χ(t = 0, φ) = 1, which from Eq. (2.1)
implies that the first-passage-time distribution is always normalised to unity. This means
that “infinite inflation” as discussed in Refs. [63, 64] does not occur in this setup, and
that the field always tunnels out of the false-vacuum state in finite time, which precludes
the existence of ever-inflating regions.

2.2.1 Mean number of e-folds

In order to better frame the relevant region of parameter space, let us compute the mean
number of e-folds spent in the false vacuum. Clearly, it has to be smaller than ∼ 50
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Figure 4. Mean number of e-folds 〈N〉 to escape from the linear false vacuum, starting from
the bottom (x = 1), as obtained from Eq. (2.16). The pink line corresponds to 〈N〉 = 60, above
which the model affects CMB and larger scales and should thus be discarded. The grey line
corresponds to where the first slow-roll parameter, ε = 2a2v0/µ

2, is ε = 0.1. Below that line,
the slow-roll approximation does not apply, and nor does our analysis. The remaining region
constitutes the relevant region of parameter space on which we focus. Note that ε is computed
assuming v0 = 10−10, which is the largest value allowed by current measurements of the CMB
power-spectrum amplitude and upper bound on the tensor-to-scalar ratio [84]. If v0 is smaller,
ε is smaller (at fixed a and µ), which somewhat relaxes the slow-roll constraint.

in order for the false vacuum to affect scales that are smaller than those probed in the
CMB. Upon Taylor expanding the first relation given in Eq. (2.1), one has

〈N〉(φ) = −i ∂χ(t, φ)

∂t

∣∣∣∣
t=0

, (2.15)

which together with Eq. (2.12) reduces to

〈N〉(x) = −µ
2

4a
(x+ 1) +

µ2

4a2

[
e2a − ea(1−x)

]
. (2.16)

The result is displayed in Fig. 4 as a function of a and µ, where the shaded region above
the pink line corresponds to where 〈N〉 > 60 and is therefore to be avoided in order
to preserve CMB scales.3 We have also displayed the slow-roll condition derived above,
which in terms of a and µ reads µ � a

√
2v0 . The shaded region below the grey line

corresponds to where the slow-roll parameter ε is larger than 0.1 and our analysis does
not apply. The remaining region encompasses values of µ and of a that can be as large as
a few, but not larger. In particular, the exponentials appearing in Eq. (2.16) makes the

3Due to the contamination effect highlighted in Ref. [85], the upper bound on 〈N〉 might be smaller,
hence the exclusion zone in Fig. 4 and in similar figures below is conservative.
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mean number of e-folds strongly dependent on the potential’s slope: as the height of the
potential barrier increases, it takes exponentially more time for quantum fluctuations to
tunnel through it.

With those restrictions in mind, let us now consider the pole equation, which from
Eq. (2.12) is given by z cos z − a sin z = 0. There is an obvious solution z = 0, but one
can check that the numerator of Eq. (2.12) also vanishes at z = 0, and that it is in fact
not a pole (except in the singular case a = 1, which will be discussed separately below).
The pole equation can thus be re-written as

z

tan z
= a . (2.17)

This equation is transcendental and the structure of its solutions depends on whether
a � 1 or a � 1, which will be referred to as the “shallow-well” and the “deep-well”
limits respectively in what follows.4 As stressed above, a cannot be much larger than
order unity, but we will find that the deep-well approximation is still reliable for the
leading poles even when a is of order one, which makes it useful in that regime. This
will also allow us to highlight a special property of false-vacuum potentials, namely the
appearance of a new pole as soon as a > 1. Let us finally note that when evaluating the
residues with Eq. (2.8), one finds

an(x) =
2e−

1
2
a(x+1)zn
µ2

zn cos
[

1
2(x− 1)zn

]
+ a sin

[
1
2(x− 1)zn

]
(a− 1) cos zn + zn sin zn

, (2.18)

where zn = z(t = −iΛn).

2.2.2 The shallow-well limit

If a � 1, the solutions to Eq. (2.17) are such that tan z � z and are therefore close to
z = π/2 + nπ, where n is a non-negative integer. Upon plugging z = π/2 + nπ + δz in
Eq. (2.17) and expanding in δz, one can solve for δz and find that the poles are located
at t = −iΛn with

Λshallow
n =

1

µ2

[
π2

(
n+

1

2

)2

− 2 a+O
(
a2
)]
. (2.19)

Compared to the flat-potential case (a = 0, as studied in Ref. [62]), a negative slope
(a > 0) thus makes the tails heavier, while a positive slope (a < 0) makes the tails lighter
(in agreement with Ref. [77]). This is consistent with our previous finding that the typical
number of e-folds spent in a false vacuum increases with a. The approximation (2.19)
can be compared with the full numerical solution of Fig. 3 in the case where a = 0.1
(right panel), where one can check that the agreement is indeed excellent.

4In Ref. [77] the same regimes are called “narrow” and “wide” in the case of a linear potential with
a positive slope.
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Figure 5. Probability density function of the number of e-folds N in the linear potential with
negative slope (2.9), for a = 2 and a few values of φ (left panel), and for φ = ∆φ and a few
values of a (right panel). The full result, obtained from numerically Fourier transforming the
characteristic function (solid coloured lines) is compared with the leading term n = 0 in the tail
expansion (2.5), where the first poles and residues have been obtained either numerically (dashed
lines) or by the analytical approximations derived in the text (dotted lines, namely Eqs. (2.19)
and (2.20) when a < 1, Eqs. (2.23) and (2.24) when a > 1, and Eqs. (2.26) and (2.27) when
a = 1). Note that the axes are rescaled by µ2 such that, due to the self-similarity of the PDF,
the result is independent of µ.

For the residue, by inserting Eq. (2.19) into Eq. (2.18) and further expanding in a,
one obtains

ashallow
n (x) =

π

µ2
(−1)n(2n+ 1) cos

[π
4

(2n+ 1)(x− 1)
]
− a

2µ2
(−1)n(x+ 1)×{

(2n+ 1)π cos
[π

4
(2n+ 1)(x− 1)

]
− 2 sin

[π
4

(2n+ 1)(x− 1)
]}

+O
(
a2
)
.

(2.20)

Compared to the flat-well case where a = 0 [62], the inclusion of a negative slope a > 0
thus slightly decreases the leading residue a0, hence the amplitude of the tail (which is
nonetheless heavier because of the negative correction to Λ0).

The PDF can then be obtained from Eq. (2.5). On the tail the leading pole domi-
nates, P (N , φ) ' a0(φ)e−Λ0N , so one has

P shallow(N , φ = ∆φ) ' π

µ2
(1− a)e

−
(
π2

4
−2a

)
N
µ2 (2.21)

where the result is evaluated at the bottom of the false vacuum φ = ∆φ. It is displayed
for a = 0.1 with the dotted line in Fig. 5 (right panel), where it is compared with
the full result obtained by numerically Fourier transforming the characteristic function
according to Eq. (2.2), and it is found to fit the tail very well. Close to the maximum of
the PDF, the negative slope introduces a correction to the PDF that is parametrically

– 11 –



10−2 10−1 100 101

a

10−4

10−3

10−2

10−1

100

101

102

Λ
n
µ

2

n = 0

n = 1

n = 2

n = 3

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

φ/∆φ

10−6

10−5

10−4

10−3

10−2

10−1

100

101

a
0
(φ

)
µ

2

a = 0.1

a = 2

a = 4

a = 6

a = 8

Figure 6. Decay rates in the linear potential with negative slope, for the few first values of n
and as a function of a (left panel), and the leading residue for a few values of a and as a function
of φ (right panel), both rescaled by µ2. Solid lines stand for numerical results obtained from
Eq. (2.12), dashed lines display the shallow-well approximation (given by Eq. (2.19) in the left
panel and by Eq. (2.20) in the right panel) and dotted lines display the deep-well approximation
(given by Eqs. (2.23) and (2.22) in the left panel and by Eq. (2.24) in the right panel).

suppressed by a and is thus mostly negligible in the shallow-well regime. On the tail
however, the PDF is enhanced by a factor ∼ e2aN/µ2 ' eaN/〈N〉, which becomes large
for values of N that are ∼ 1/a standard deviations away from the mean.

2.2.3 The deep-well limit

If a � 1, the solutions to Eq. (2.17) are such that tan z � z and are now close to
z = π + nπ. By expanding Eq. (2.17) around that value, one finds

Λdeep
n+1 =

a2

µ2
+
π2

µ2
(n+ 1)2

[
1 +

2

a
+O

(
1

a2

)]
. (2.22)

Note that this assumes that z is real, i.e. that Λn ≥ a2/µ2. When a < 1, one can
show that Eq. (2.17) does not admit imaginary solutions indeed, but when a > 1, this
is not true anymore: there is one imaginary solution, corresponding to Λ0, which is
therefore not captured by Eq. (2.22) (this is why the poles are labeled with the index
n + 1 in Eq. (2.22)). An approximate expression for this missing pole can be obtained
by further expanding z0 =

√
Λ0µ2 − a2 ' ia− iΛ0µ

2/(2a) in the large-a limit, inserting
this formula into Eq. (2.17) and solving for Λ0. One obtains

Λdeep
0 =

4a2e−2a

µ2

[
1 + 2(2a− 1)e−2a +O

(
e−4a

)]
. (2.23)

By comparing Eqs. (2.22) and (2.23), one can check that, when a � 1, Λ0 � 1 and
Λn � 1 for n ≥ 1. As a consequence, the 0th pole quickly dominates the tail of the
PDF. Let us stress that this additional pole Λ0 does not exist in the case of a linear
potential with a positive slope, where all poles are given by Eq. (2.22) (where the sign of
a needs to be flipped, see Ref. [77] – interestingly, that sign flipping does not affect the
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leading order, which depends on a2). The fact that it is exponentially suppressed with
a implies a very heavy tail, which is expected in the deep-well regime (namely there is
a large probability associated with large escaping times from a deep well), and which is
also consistent with Eq. (2.16).

The approximations for the poles in both the shallow-well and deep-well regimes
are compared to the exact results in the left panel of Fig. 6. In particular, one can check
that the leading pole Λ0 is well reproduced by Eq. (2.23) for a > 1 and by Eq. (2.19) for
a� 1. The higher poles can also be compared with the numerical solution of Fig. 3 for
a = 2, where one can check that Eq. (2.22) gives a reasonable fit to Λ1 but starts failing
for Λ2 (we have checked that, as a increases, the value of n at which Eq. (2.22) breaks
down increases too, as can be seen from the left panel of Fig. 6).

The residues can be obtained by inserting Eqs. (2.22) and (2.23) into Eq. (2.18)
and further expanding in e−a and 1/a respectively, leading to

adeep
0 (x) =4

a2

µ2
e−2a

[
1− e−(x+1)a

]
− 4

a2

µ2
e−4a

{
(x− 7)a+ 4 + e−(x+1)a [(x+ 9)a− 4]

}
+O

(
e−6a

)
,

adeep
n+1 (x) =

2π

µ2
e−

1
2
a (x+1)(−1)n+1(n+ 1) sin

[π
2

(n+ 1)(x− 1)
] [

1 +O
(

1

a

)]
.

(2.24)

When x > −1, at leading order one has a0(x) ' 4a2e−2a/µ2, which does not depend on
x. This can be checked in the right panel of Fig. 6, where a0(x) is found to be mildly
dependent on x except when it approaches −1, and where the above expression is found
to provide an excellent approximation.

As before, the PDF can then be obtained from Eq. (2.5). On the tail, the leading
pole strongly dominates as mentioned above, and one has

P deep(N , φ = ∆φ) ' 4
a2

µ2
e−2ae

− 4a2

µ2
e−2aN

. (2.25)

This can be checked to provide a reliable approximation to the full numerical result in
Fig. 5. In particular, it works remarkably well even when a is only mildly larger than
one. This makes it particularly useful to discuss the case of mildly deep false vacua,
i.e. the rightmost corner of parameter space as displayed in Fig. 4, where the tail of the
PDF is very heavy.

2.2.4 Singular case a = 1

As mentioned above a = 1 is singular since z = 0 is a true pole of the characteristic
function in that case, so

Λ
(a=1)
0 =

1

µ2
, (2.26)

which is an exact solution. By inserting a = 1 in Eq. (2.6) and letting z → 0, this leads
to

a0(x)(a=1) =
3

2µ2
e−

1
2

(x+1)(x+ 1) , (2.27)

– 13 –



which is again exact. It is thus fortunate that in the case a = 1, the asymptotic tail can
be derived exactly, P (a=1)(N , φ) ' 3e−

1
2

(x+1)(x + 1)/(2µ2)e−N/µ
2
. These expressions

are confirmed by the numerical analysis performed in the right panels of Figs. 3 and 5.

2.3 Quadratic piecewise toy model

Although the linear toy model discussed above yields simple analytical formulas that
provide rather straightforward insight, it may be seen as too simplistic to fully describe
the physics of a false vacuum. In particular, the potential function being locally extremal
at φ = ±∆φ, its derivative should vanish there, which is not the case in the linear model.
A more refined description of a false vacuum may therefore be provided by a piecewise
quadratic potential,

v(φ) = v0


1 + α

[(
φ

∆φ − 1
)2
− 1

]
if 0 ≤ φ ≤ ∆φ ,

1− α
[(

φ
∆φ + 1

)2
− 1

]
if −∆φ ≤ φ ≤ 0 .

(2.28)

In this expression, the parameters are arranged in such a way that the potential is made
of two parabolas with opposite curvatures, matched at the central point of the well φ = 0.
The potential’s derivative vanishes at φ = ±∆φ, and it is continuous at the matching
point φ = 0 (where the second derivative flips sign). The height of the potential barrier,
∆v = v(−∆φ)− v(∆φ), is proportional to v0α, as in the linear potential. Therefore, the
parameters v0 and α play similar roles in both models, which will enable a straightforward
comparison. Our goal is to determine which of the conclusions drawn for the linear toy
model are generic to false vacua in general, and which depend on the details by which
it is realised. Since the approach is very similar to the one employed in Sec. 2.2, some
of the technical details will be deferred to Appendix A.

The potential function (2.28) is displayed in the right panel of Fig. 2. As for the
linear model, it is endowed with a reflective boundary at φ = ∆φ and an absorbing
boundary at φ = −∆φ. For the ε slow-roll parameter to be small, one must impose
α� ∆φ/MPl, while α� 1 is required for the height of the potential barrier to be small
compared to v0. Those two conditions were the same in the linear toy model. However,
since the second derivative of the potential does not vanish in the quadratic model, there
is another condition coming from |η| � 1, which reads α� (∆φ/MPl)

2.5

The differential equation (2.3) for the characteristic function can be solved sepa-
rately in the two domains φ < 0 and φ > 0, where the solution is denoted χ− and χ+

respectively. When α� 1, Eq. (2.3) reduces to

∂2

∂φ2
χs(t, φ) +

2α

v0 ∆φ

(
1− s φ

∆φ

)
∂

∂φ
χs(t, φ) + i

t

v0M2
Pl

χs(t, φ) = 0 (2.29)

5One may be concerned with the fact that, since v′′ is discontinuous at the matching point φ = 0,
the third slow-roll parameter might diverge. However, for the background field trajectory to remain
on the slow-roll attractor, only the first two slow-roll parameters need to be small. Moreover, the fact
that v′′ remains finite guarantees that the first three Hubble-flow functions are finite, hence that the
Mukhanov-Sasaki frequency is finite when crossing the matching point.
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where s = ±1, and it can be solved as

χs(t, φ) = cs H

[
2z2

sa
,
√
sa (x− s)

]
+ ds 1F1

[
−z

2

sa
,
1

2
, sa (x− s)2

]
. (2.30)

In this expression, H(n, x) denotes the Hermite polynomial [sometimes noted Hn(x)] and

1F1 stands for the Kummer confluent hypergeometric function [86]. For convenience we
have introduced z = µ

√
it /4, while x, a and µ are still given by Eqs. (2.13) and (2.14) to

allow for a direct comparison with the linear case. The parameters c−, c+, d− and d+ are
four integration constants that can be fixed by imposing the boundary conditions (2.10)
together with the continuity of χ and of its field derivative, ∂χ/∂φ, at the matching
point φ = 0.6 This leads to an expression for χ that we do not reproduce here since it is
not particularly insightful, but which is given in Appendix A.1, see Eqs. (A.1) and (A.2).

One can check that it guarantees that χs(t = 0, φ) = 1, i.e. that the field always
escapes from the false-vacuum state in finite time, see the remark made below Eq. (2.14).

2.3.1 Mean number of e-folds

As for the linear potential, let us now identify the parameters of the model for which the
typical time spent in the false vacuum does not exceed a few tens of e-folds. The mean
number of e-folds can still be evaluated with Eq. (2.15), and making use of the above
expression for the characteristic function one obtains the formulas (A.3) and (A.4) for
〈N〉. They are displayed in Fig. 7 when starting from the bottom of the false vacuum
at φ = ∆φ. 〈N〉 still features an exponential dependence on the parameter a.

Given that ∆φ/MPl =
√
v0 µ/2, and since v0 . 10−10 while µ is at most of order

10, the width of the false vacuum is necessarily sub-Planckian, ∆φ�MPl. This implies
that |η| � ε, hence η provides the most stringent slow-roll constraint. The contour
|η| = 0.1 is shown in Fig. 7 in order to frame the parameters for which the slow-roll
approximation applies. When comparing with Fig. 4, one can see that the structure
of parameter space is very similar, the main difference being that values of a & 1 are
now excluded.7 The reason for this difference is that, in the quadratic model, the slow-
roll conditions involve η, hence they are more restrictive. In the linear case one simply
sets η = 0 by construction, and this allows for the existence of a “deep-well” (a > 1)
regime. The present discussion suggests that such a regime may simply be absent in
more realistic models. This is why, below, we only consider the “shallow-well” limit.

Before turning to the shallow-well limit, let us note that the poles of the character-
istic function are such that the denominators of Eqs. (A.1) and (A.2) vanish, i.e. such

6The continuity of χ and ∂χ/∂φ can be shown by similar arguments as those usually employed to
demonstrate continuity conditions for the wavefunction obeying the Schrödinger equation in a piecewise
potential: let us rewrite Eq. (2.29) as χ′′ = F (χ, χ′, φ, t), where a prime denotes derivation with respect
to φ and where F is a discontinuous though finite function at φ = 0. By integrating this relation over φ
around the matching point, one finds χ′(t, δ)− χ′(t,−δ) =

∫ δ
−δ F [χ(t, φ), χ′(t, φ), φ, t]dφ, which vanishes

when δ → 0 since F is finite. This proves the continuity of χ′, hence of χ.
7As mentioned before, the position of the contour lines of the slow-roll parameters in the plane (a, µ)

depends on the value of v0, but even when decreasing v0, a = 1 is never found to be allowed.
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compute the slow-roll parameters). The remaining, unshaded region thus corresponds to where
our analysis applies.

that(
1− z2

a2

)
1F1

(
−z

2

a
,
1

2
, a

)2

+

(
1 + 2

z2

a

)2

1F1

(
−z

2

a
,
3

2
, a

)2

− 2

(
1 + 2

z2

a

)
1F1

(
−z

2

a
,
1

2
, a

)
1F1

(
−z

2

a
,
3

2
, a

)
= 0 .

(2.31)

Upon inspection of Eq. (A.1), one may get the wrong impression that an additional set
of poles exist in the branch φ > 0, when 1F1(−z2/a, 1/2, a) = 0. However, one can check
that the numerator vanishes too when this condition is realised, such that it does not
give any new pole. This is consistent with the fact that the location of the poles must be
independent of φ, as shown in Ref. [77]. The inverse characteristic function is displayed
in Fig. 8, where the approximation (2.30) is compared with a numerical integration of
Eq. (2.3). One can check that the agreement is excellent, and that the same poles are
obtained in the two branches φ < 0 and φ > 0, as expected.

2.3.2 The shallow-well limit

The solutions to the pole equation (2.31) cannot be obtained analytically but as in the lin-
ear model, some limits of interest can be studied. Contrary to the linear model however,
only the shallow-well limit a� 1 is relevant, since as explained above a > 1 cannot be re-
alised without violating the slow-roll conditions. When a� 1, the first argument of the
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Figure 9. Decay rates in the quadratic piecewise potential, for the first few values of n and as
a function of a (left panel), and the leading residue for a few values of a and as a function of φ
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from Eq. (2.30), dashed lines display the shallow-well approximation (given by Eq. (2.32) in the
left panel and by Eq. (A.18) in the right panel, only for φ > 0). The agreement is excellent,
except when a is order one and at low n, as expected.

hypergeometric functions in Eq. (2.31) becomes large (given that, when a→ 0, the roots
zn asymptote the flat-well (a = 0) result zn = π(n + 1/2)/4, hence z2

n/a = O
(
n2/a

)
).
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Expanding the hypergeometric functions in this regime, in Appendix A.3 we obtain

Λn =
π2

µ2

[(
n+

1

2

)2

+
4a2

3π2
− (−1)n

8a

π3(2n+ 1)

]
+O

[
(n+ 1/2)−2

]
. (2.32)

This expression should be compared with Eq. (2.19) for the linear-well model. In
both cases, the flat-well result is recovered when letting a → 0, and at leading order
in a, Λ0 is decreased by a quantity proportional to a, leading to a heavier tail. The
approximation (2.32) is compared to a numerical solution of the pole equation in Fig. 9,
where one can check that the agreement is indeed excellent. One may be surprised to
notice that, for higher poles, the approximation is reliable even when a is of order unity,
but this is because, as mentioned above, it relies on an expansion on a/n2, which is small
even for a ' O(1) when n is large.

The residues can be evaluated by inserting the characteristic function obtained
above into Eq. (2.8). In the shallow-well limit, an expansion in 1/n of the corresponding
formula is performed in Appendix A.4, and this leads to

a+
n (x) =

(−1)ne
1
2
a[x(x−2)−1]

µ2

{
2π

(
n+

1

2

)
cos

[
π

2

(
n+

1

2

)
(x− 1)

]
+

2

3
a(x− 1)[a(x− 2)x− 3] sin

[
π

2

(
n+

1

2

)
(x− 1)

]
+O(n+ 1/2)−1

} (2.33)

when x > 0, where a formula valid at order O(n+ 1/2)−2 is also derived in Eq. (A.18).
This expression should be compared to its counterpart in the linear model, namely

Eq. (2.20). In both cases, when a → 0 one recovers the flat-well limit, and the first
correction controlled by a leads to a decrease of the leading amplitude a0, which can
be seen by further expanding Eq. (2.33) in a once n = 0 has been fixed. In fact, when
starting from the bottom of the false vacuum, x = 1, both expressions lead to the
same result at order O(a), i.e. a0(x = 1) = (1 − a)a0(x = 1)|a=0 in both models. The
approximation (A.18) is compared to a numerical solution in Fig. 9 for n = 0, which
shows that the agreement is excellent for a� 1 and at the bottom of the false vacuum
(x = 1) and less accurate for larger values of a when approaching the middle point of
the well. A similar expression can be obtained for x < 0, but it is found to be less
accurate when compared to numerical results. Moreover, in what follows we will be
mostly interested in the PDF of the number of e-folds when starting from the bottom
of the false vacuum, x = 1. This makes the expression for x < 0 of limited interest and
this is why we do not reproduce it here.

Once the poles and the residues have been found, one can compute the PDF of the
number of e-folds using Eq. (2.5). The result is displayed in Fig. 10, where a full numer-
ical computation is compared with our approximation for the tail, P (N ) ' a0e

−Λ0N ,
which for x = 1 and further expanding in a reduces to

P shallow(N , φ = ∆φ) ' π

µ2
(1− a)e

−
(
π2

4
− 8
π
a
)
N
µ2 . (2.34)
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Figure 10. Probability density function of the number of e-folds N in the piecewise quadratic
potential, for a = 0.1 and a few values of φ (left panel), and for φ = ∆φ and a few values of a
(right panel). The full result, obtained from numerically Fourier transforming the characteristic
function (solid coloured lines) is compared with the leading term n = 0 in the tail expansion (2.5),
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analytical approximations derived in the text (dotted lines, namely Eqs. (2.32) and (A.18), only
for φ > 0). Note that the axes are rescaled by µ2 such that, due to the self-similarity of the
PDF, the result is independent of µ.

One can verify in Fig. 10 that it provides a good fit to the tail, and only starts to be
less accurate when a is of order 1. This expression needs to be compared with Eq. (2.21)
for the linear model, and is found to be very similar, hence the same conclusions apply
to both models in the shallow-well regime.

3 Implications for primordial black holes

Let us now study what the above results imply for the abundance of PBHs in false-
vacuum models. There are different criteria for the formation of PBHs, the most
advanced ones relying on the compaction function [87–89] with critical-scaling rela-
tions [90–92], the mass fraction being computed via the excursion-set [93–95] or the
peak-theory [96] approach. Those methods were however developed for Gaussian or
quasi-Gaussian fields, and are therefore not directly applicable to the heavy-tailed dis-
tributions obtained in Sec. 2. Although a research program [74, 97] is underway to
generalise them to such highly non-Gaussian statistics, it is yet to be completed and
this clearly falls outside the scope of our work. This is why, here, we adopt the simplest
viewpoint that PBHs form when the curvature perturbation exceeds a threshold ζc of
order unity [98, 99], and that the resulting mass fraction (i.e. the fraction of the universe
made of PBHs) is of order the Press-Schechter estimate [100]

β ∼
∫ ∞
ζc

P (ζ)dζ . (3.1)
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Figure 11. Typical mass fraction β of primordial black holes for the linear potential with
negative slope (left panel) and for the quadratic piecewise potential (right panel) as a function of
µ for a few values of a, assuming ζc = 1. We compare the full numerical result (solid line) with
our analytical approximations (dotted line), namely Eqs. (3.4), (3.5), (3.6) or (3.7) depending on
the case of interest. Values of a > 1 are not displayed in the quadratic model since they lead to
slow-roll violation at 〈N〉 < 60. The dashed gray line stands for the flat-well limit, i.e. a = 0, for
which the difference with a = 0.01 (red curve) can be barely seen. The two shaded regions stand
for the two typical observational upper bounds mentioned in the text, namely β < 10−24 (light
pink region) and β < 10−11, the applicability of which depends on the mass at which the black
hole forms (which can be tuned by shifting the location of the false vacuum along the inflationary
potential, hence it may be seen as an additional free parameter of the models).

This formula makes clear that the abundance of PBHs mostly depends on the tail of the
relevant distributions. In principle, the mass at which the black hole forms is related to
the scale at which ζ is coarse-grained, but here we will use Eq. (3.1) as a crude estimate
only. The reason is that, as we will see, the PBH abundance is so sensitive on the model’s
parameters that refining the mass-fraction calculation would clearly not alter our main
conclusions. In what follows, we thus evaluate the “typical” PBH abundance with the
proxy8

β ∼
∫ ∞
〈N〉+ζc

P (N , φ = ∆φ)dN , (3.2)

where we have made the identification (1.4). Various observational constraints can be set
on β (see Refs. [101, 102] for a comprehensive list of constraints and Ref. [103] for a more
recent update). To summarise, for masses between 109 and 1016 g, the constraints come
primarily from the effects of PBH Hawking evaporation on Big Bang Nucleosynthesis
(BBN) and on the extragalactic photon background, and range from β < 10−24 to
β < 10−17. Heavier PBHs, whose masses are comprised between 1016 and 1050 g,

8Here the PDF of N is evaluated when starting from the bottom of the potential, φ = ∆φ. In
principle, the details of the mass distribution are encoded in the way the result depends on φ (although
there is no one-to-one relationship between φ and the mass, and one rather has to convolve first-passage
time distributions with backward probabilities, see Ref. [74]). However, as shown in Refs. [62, 77] the
dependence on φ is usually mild, and in the present work we only aim at assessing the typical abundance
of PBHs, without reconstructing their detailed mass distribution.
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have still not evaporated, thus the constraints mostly come from their gravitational
and astrophysical effects, and range from β < 10−11 to β < 10−5. For ultra-light
PBHs, i.e. black holes with masses lower than 109 g, which Hawking evaporate before
BBN, there are no direct observational constraints on their abundance. As pointed
out in Refs. [104–106], such black holes could even dominate the energy content of the
primordial universe during a transient phase, and would leave a stochastic background
of gravitational waves as (one of) their only imprint.

Let us stress that, since we have found the PDF of N to feature exponential,
rather than Gaussian, tails, the integral appearing in Eq. (3.2) would be vastly under-
estimated by using a Gaussian (or quasi-Gaussian) ansatz, and it is crucial to account
for non-Gaussianities by means of non-perturbative techniques such as the stochastic
δN formalism employed here [62, 77, 78, 107–111]. This has strong consequences not
only for the predicted abundance of PBHs, but also for the viability of a given model in
terms of the above-mentioned observational constraints.

By inserting Eq. (2.5) into Eq. (3.2), one obtains

β ∼
∑
n

an(∆φ)

Λn
e−Λn[ζc+〈N〉(∆φ)] , (3.3)

where 〈N〉 can be evaluated with Eq. (2.15), leading to 〈N〉 (φ) =
∑

n an(φ)/Λn. The
result is displayed in Fig. 11 for the linear (left panel) and quadratic (right panel)
false-vacuum models. The solid lines stand for a full numerical calculation, i.e. they
are obtained by numerically integrating the PDFs (themselves obtained by numerically
Fourier transforming the characteristic function) above the threshold 〈N〉 + ζc. The
dotted lines correspond to the approximations derived in Sec. 2, and which we now
review.

In the linear toy model, in the shallow-well regime the PDF can be approximated
by Eq. (2.21) on the tail, and the mean number of e-folds is given by Eq. (2.16), which
reduces to 〈N〉 (∆φ) ' µ2(1 + 2a/3)/2 in the limit a � 1. Inserting those expressions
into Eq. (3.2), one finds

βlinear, shallow ' 4

π

[
1 +

(
8

π2
− π2

12

)
a

]
e
−π2

8
−
(
π2

4
−2a

)
ζc
µ2 . (3.4)

This needs to be compared with the shallow-well limit of the quadratic toy model. Upon
expanding Eq. (A.3) in the regime a � 1, one finds 〈N〉 (∆φ) ' µ2(1 + 5a/6)/2, and
together with Eq. (2.34) this leads to

βquadratic, shallow ' 4

π

[
1 +

(
32

π3
+

4

π
− 5π2

48
− 1

)
a

]
e
−π2

8
−
(
π2

4
− 8
π
a
)
ζc
µ2 . (3.5)

When a = 0, in both cases one recovers the flat-well result, displayed with the dashed
grey line in Fig. 11, and for a < 1 one can check in Fig. 11 that Eqs. (3.4) and (3.5)
provide a good fit to the full result indeed. This shows that PBHs form in the far-tail
region of the PDF, which is dominated by the leading pole. Two main comments are in
order at this stage.
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First, we note that the result is very similar in the linear and the quadratic models.
In Sec. 2, we had found that the two models differ in the properties of their higher poles,
which scale differently with n, but here we find that since PBHs form in the region of the
tail that is dominated by the leading pole, they are produced with similar abundances
in both models. This makes our conclusions for the shallow regime generic, since they
seem independent of the precise way the false vacuum is realised.

Second, the introduction of a local minimum through the small parameter a leads
to a parametrically small modulation of the prefactor in β, which is negligible, but it
also enhances the mass fraction exponentially, β ∼ β(a = 0)eAaζc/µ

2
, where A = 2 in the

linear model and A = 8/π in the quadratic model. In the quadratic model, the slow-roll
condition reads µ � √a , so this exponential enhancement is negligible too (recall that
ζc is of order one). We thus reach the important conclusion that, in the quadratic false
vacuum, the flat-well approximation applies whenever the slow-roll approximation does.

In contrast, in the linear model, the slow-roll condition reads µ� a
√
v0 , where v0

needs to be smaller than 10−10. This implies that the exponential enhancement factor
may be large even at small values of a, and without violating the slow-roll conditions.
More precisely, two cases must be distinguished. If µ is large, then PBHs are over-
produced, β ∼ 1, which is excluded except if they have masses smaller than 109 g and
Hawking evaporate before BBN as explained above. In that case, the result is only
mildly affected by a, and the flat-well approximation may be used. If µ is small, then
PBHs are produced with small initial abundance, such that they might play a relevant
astrophysical role later on. In that case, a linear false vacuum with µ2 . a � 1 yields
abundances that are substantially different from the flat-well model, and needs therefore
to be properly described. This can be clearly seen in Fig. 11: when µ ∼ 0.1, slight
changes in a result in orders-of-magnitude differences in β.

When a is not a small parameter, as explained in Sec. 2.3 the quadratic model
cannot be described within the slow-roll approximation while keeping 〈N〉 small enough,
and only the linear model should be discussed. If a = 1, combining Eqs. (2.16), (2.26)
and (2.27) leads to

βlinear, a=1 ' 3e
3−e2

4
−1e
− ζc
µ2 ' 0.37e

− ζc
µ2 . (3.6)

Recall that this expression is exact on the tail, i.e. a0 and Λ0 have been derived without
performing any approximation in the special case a = 1. In the deep-well limit, expand-
ing Eq. (2.16) in the regime a� 1 leads to 〈N〉 (∆φ) ' µ2e2a/(4a2), and together with
Eq. (2.25) one finds

βlinear, deep ' e−1e
−(2ae−a)

2 ζc
µ2 . (3.7)

The two expressions above can be checked to provide good fits to the full numerical
result in Fig. 11. The mass fraction features super-exponential dependence on a in the
deep-well regime, which implies that PBHs are over-produced as soon as a & 8.

The discussion is summarised in Fig. 12 where we show the mass fraction in the
parameter space (a, µ). As in Figs. 4 and 7, we also display contour lines for the mean
number of e-folds spent in the false vacuum, and the regions where the slow-roll approx-
imation does not apply (hence our result cannot be trusted) is shaded in grey.
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Figure 12. Colour map of the mass fraction β of primordial black holes for the linear potential
with negative slope (left panel) and for the quadratic piecewise potential (right panel) as a
function of µ and a, for ζc = 1. In each panel, the grey shaded area corresponds to where slow
roll is violated, and the red and pink shaded areas stand for 〈N〉 > 60 and 〈N〉 > 10 respectively.
For convenience, we set the lower limit of the colour bar to 10−60, such that all the uniform dark
violet region corresponds to values of β ≤ 10−60.

In the quadratic false vacuum (right panel), imposing that the slow-roll approxima-
tion applies and that 〈N〉 < 60 leads to PBH abundances that are always well-captured
by the flat-well limit (a = 0) [62]. The relevant parameter in that case is µ: if µ � 1,
a tiny amount of PBHs is produced; if µ . 1, PBHs are produced with sizeable abun-
dances, which makes them of potential astrophysical interest, while if µ & 1 they are
overproduced, which is excluded if they form with masses larger than 109 g, and which
can lead to a transient PBH-dominated universe otherwise (large values of µ are excluded
by the condition 〈N〉 < 60).

The same considerations apply to the linear false vacuum when a � µ2, but the
fact that slow-roll conditions are less stringent in this model leads to the existence of
two additional regimes. When µ2 � a� 1 (which implies that µ is small), one obtains
large deviations from the flat-well reference case, while still being in the shallow-well
domain. In this regime, one may obtain PBHs with initial abundances that make them
of astrophysical interest, and with mass distributions that carry a non-trivial imprint
of the false-vacuum profile and which cannot be simply described by flat-well models.
When a is of order one, there is a small corner in parameter space where the slow-
roll approximation applies and 〈N〉 < 60, and which is well described by the deep-well
regime. There, PBHs are more massively produced.

4 Discussion and conclusion

Despite the eminent phenomenological success of the inflationary paradigm, there are
still a number of open fundamental questions that leave us far from a comprehensive
understanding of the early universe. As mentioned in Sec. 1, one of the main limitations
is that current observations only probe a restricted range of cosmological modes, which
in turn shed light on a limited interval of the inflationary phase, leaving the rest almost
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Figure 13. Summary of PBH production in false-vacuum models, which depends on two main
parameters, a, the ratio between the height of the potential barrier and the potential squared
(in Planckian units), and µ2, the ratio between the squared width of the false vacuum and the
potential (still in Planckian units). In quadratic realisations of the false vacuum, the slow-roll
approximation breaks down when a > µ2 (grey region), and for a < µ2 the flat-well approxima-
tion (which consists in replacing the false vacuum by a constant potential of the same width)
applies (green region). In linear realisations, the slow-roll condition is less stringent and there
exist a regime with large deviations from the flat-well limit, where PBHs can be overproduced
(red region) or not (orange region), see main text.

completely unconstrained. The phenomenological investigation of specific features that
could affect the inflationary potential at late time during inflation (hence at small scales),
such as the production of primordial black holes in models featuring a local minimum,
represents an interesting plan to learn more about these open issues.

This is why in this work, we have studied cosmological fluctuations produced in
potentials with a false vacuum state. Such models appear naturally when a flat inflection
point is broken downwards. So by studying them one also learns about the amount of
fine-tuning required in flat inflection-point models. This analysis has been done by
means of the stochastic-δN formalism, which allowed us to describe the backreaction
of quantum diffusion onto the expansion dynamics of the universe. This leads to non-
perturbative effects that are crucial to account for, in order to properly reconstruct the
(highly non-Gaussian) tail of the distribution function of cosmic inhomogeneities.

In practice, we have considered two toy models, depicted in Fig. 2, one where the
potential is linear between the local minimum and the local maximum, and one where
the potential is made of two quadratic profiles with opposite curvatures, arranged in
such a way that the derivative of the potential vanishes at its local extremums. This has
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allowed us to draw some conclusions that are independent of the precise way by which
the false vacuum is realised, and to highlight properties that do depend on the details
of the false vacuum profile.

We found that false-vacuum models depend on two main parameters, a, the ratio
between the height of the potential barrier and the potential squared (in Planckian units),
and µ2, the ratio between the squared width of the false vacuum and the potential energy
(still in Planckian units). The mean number of e-folds elapsed while trapped in the false
vacuum state depends quadratically on µ and exponentially on a. For the false vacuum
to leave CMB scales unaffected, that number needs to be much smaller than ∼ 50 (and
potentially even smaller due to the contamination effect uncovered in Ref. [85]). Since
µ is also constrained from below by the slow-roll conditions, this implies that a cannot
be much lager than one.

More precisely, the structure of the parameter space is summarised in Fig. 13, and
features two main regimes: the shallow-well regime (a � 1) and the deep-well regime
(a & 1). When a� µ2, the flat-well limit [62], a = 0, provides a reliable approximation
and the false vacuum can be merely described by assuming the potential to be flat
between the local maximum and the local minimum. This indicates how much flat-
inflection point models need to be fine tuned with respect to stochastic effects: the
flat-condition breaking parameter, a, needs to be smaller than µ2, or in other words the
potential barrier needs to be such that ∆V/V � ∆φ2/M2

Pl.
If the false vacuum is realised via a quadratic potential, this is the only regime of

interest since a > µ2 leads to a violation of the slow-roll conditions (via the so-called
η parameter). In contrast, if the false vacuum is realised via a linear potential, the
slow-roll conditions are less stringent and allow for the existence of a shallow, still non-
flat well regime (µ2 < a � 1), and of a deep well regime (a & 1). In the deep-well
regime, PBHs are massively produced. This is due to the appearance of a new pole at
the bifurcation point a = 1,9 which is found to depend exponentially on a and which
gives the decay rate of the distribution function for large cosmic inhomogeneities. In
the shallow-well regime, PBHs may be substantially produced or not, depending on the
value of µ2, and the precise value of their abundance crucially depends on a and on the
detailed properties of the false vacuum.

As argued above, the quadratic realisation of the false vacuum may be seen as more
realistic, since it ensures that the first derivative of the potential is smoothly connected
with the preceding and subsequent phases of inflation. The above considerations there-
fore suggest that, unless the false vacuum is so shallow that it falls into the realm of
the flat-well regime, violations of slow roll are to be expected. This bears similarities
with the conclusion drawn in Ref. [77] that in cubic flat-inflection point models, PBHs
are overproduced unless slow roll is violated. It requires to generalise the framework
developed in this work to non–slow-roll situations, which should be the topic of future
investigations.

9Mathematically, we have checked that this additional pole when a > 1 also appears in the quadratic
model, although we have not reported on it since it occurs in a regime of parameters where the slow-roll
approximation is violated.
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A Additional formulas

In this appendix, we provide additional formulas that are not given in the main text
since they do not bring particular insight, but which are nonetheless useful to carry out
actual computations such as those leading to the figures displayed above.

A.1 Characteristic function in the quadratic piecewise model

When the integration constants c± and d± appearing in Eq. (2.30) are fixed using the
boundary conditions (2.10) together with the requirement that χ and ∂χ/∂φ are con-
tinuous at the matching point φ = 0, one obtains

χ+(z, x) =
1F1

[
− z2

a ,
1
2 , a (x− 1)2

]
1F1
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(A.1)
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and

χ−(z, x) = e−a (1+x)2
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(A.2)

A.2 Mean number of e-folds in the quadratic piecewise model

To obtain the mean number of e-folds one can apply the formula (2.15) to the solutions
for the characteristic function given by Eqs. (A.1) and (A.2). This leads to

〈N〉+ (x) =
µ2

16 a

{
π erf(

√
a )
[
e2 a erf(

√
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(A.3)

and
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(A.4)
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In these expressions, erf and erfi denote the error function and the imaginary error
function erfi(z) = erf(iz)/i respectively, and the notation 1F′1 stands for the derivative
of the hypergeometric function with respect to its first argument. As a consistency check,
one can verify that both expressions coincide at the matching point φ = 0, i.e. 〈N〉 is a
continuous function of the initial condition φ as it should.

A.3 Poles in the quadratic piecewise model

In this appendix, we want to solve the pole equation (2.31) in the shallow-well limit where
a � 1. Our first step is to rewrite the pole equation in terms of Laguerre polynomials,
using the identity [86]

1F1(a, b, x) =
Γ(1− a) Γ(b)

Γ(b− a)
L(−a, b− 1, x) , (A.5)

where Γ(x) is the Gamma function and L(a, b, z) is the generalised Laguerre polynomial.
This leads to
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(A.6)

for the pole equation. Since the Γ function has no zeros, the pre-factor in Eq. (A.6)
never vanishes and the pole equation can be written as(
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= 0 . (A.7)

In the shallow-well limit, a � 1, hence the first argument of the Laguerre poly-
nomials is large and their last argument is small, while their product is kept fixed.
Unfortunately, we are not aware of any approximation for the Laguerre polynomials in
this regime, which is why we have to use a different expansion strategy. In practice, we
rely on an expansion in the regime where the first argument is large,

L(ρ, λ, x) =
1√
π
ex/2z−

2λ+1
4 ρ

2λ−1
4 cos

[(
2
√
ρx − π(2λ+ 1)

4

)][
1 +O

(
1√
ρ

)]
, (A.8)

see Eq. (18.15.14) of Ref. [86]. Note that the next term in the expansion, denoted
O
(
1/
√
ρ
)
, is in fact of order 1/

√
ρx (see also Ref. [112]), so it is not further suppressed

by a. This can therefore not be seen as an expansion in a, but rather as an expansion
in 1/z, which as we shall see below corresponds to an expansion in 1/n. Inserting the
above expression into Eq. (A.7), one obtains

(−3 a+ a4 − 72 z2) cos(4 z) + 3 a [3− 4 a z sin(4 z)] +O(1/z) = 0 . (A.9)
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At leading order in 1/z, this reduces to z2 cos(4z) = 0. The solution z = 0 can be safely
discarded10, so cos(4z) = 0. This leads to zn = (π/2 + nπ)/4, hence

Λn =
16

µ2
z2
n =

π2

µ2

(
n+

1

2

)2

+O
[
(n+ 1/2)0

]
, (A.10)

which matches the flat-well result [62] (also obtained when letting a = 0 in Eq. (2.19)).
Since zn ∝ n, this justifies the above claim that the present calculation is an expansion
in large n. In order to carry on the expansion, let us plug zn = (n+ 1/2)π/4 + A/(n+
1/2)+O[(n+1/2)−2] into Eq. (A.9) and expand in 1/(n+1/2). Solving for A, one finds

Λn =
16

µ2
z2
n =

π2

µ2

[(
n+

1

2

)2

+
4a2

3π2

]
+O

[
(n+ 1/2)−1

]
. (A.11)

This expansion can be carried on again, by inserting zn = (n+ 1/2)π/4 +A/(n+ 1/2) +
B/(n+ 1/2)2 +O[(n+ 1/2)−3] into Eq. (A.9), expanding in 1/(n+ 1/2) and solving for
B. This leads to

Λn =
π2

µ2

[(
n+

1

2

)2

+
4a2

3π2
− (−1)n

8a

π3(2n+ 1)

]
+O

[
(n+ 1/2)−2

]
. (A.12)

A.4 Residues in the quadratic piecewise model

The residues can be obtained by inserting Eqs. (A.1) and (A.2) into Eq. (2.8). In the
shallow-well limit, following the same strategy used for the pole equation, we rely on
a large z (and thus on a large n) expansion, and we can expand the corresponding
expressions by making use of Eqs. (A.5) and (A.8). However, Eq. (A.8) applies to the
case where the first argument of the Laguerre function is large positive, hence to where
the first argument of the hypergeometric function is large negative. This allows us to
take care of the χ− branch of the characteristic function, since in the limit a � 1 all
hypergeometric functions appearing in Eq. (A.2) have a large negative first argument.
For the χ+ branch however, some hypergeometric functions have a large positive first
argument, such as in 1F1(z2/a, 1/2, a) for instance, see Eq. (A.1). This prevents us from
making direct use of Eq. (A.8).

This issue can be addressed by noticing that those “problematic” terms do not
depend on x. More precisely, Eq. (A.1) can be rewritten as

χ+(z, x) =
h(z, x)

h(z, 0)
j(z) , (A.13)

where

h(z, x) = 1F1

[
−z

2

a
,
1

2
, a(x− 1)2

]
(A.14)

10The value z = 0 corresponds to t = 0, for which the characteristic function has to equal one due to the
normalisation condition. This can be shown explicitly by carefully taking the limit t→ 0 (or equivalently
z → 0) in the characteristic function (A.1)-(A.2). This is because the numerator also vanishes at z = 0,
which is therefore not a pole.
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and j(z) is the quantity in braces in Eq. (A.1). The “problematic” terms, i.e. those
containing hypergeometric functions with a first argument that is positive in the regime
a � 1, are contained in j(z). The trick is to use the continuity of the characteristic
function at the matching point x = 0, which implies that

j(z) = χ−(z, 0) . (A.15)

This leads to an expression for χ+(z, x),

χ+(z, x) =
h(z, x)

h(z, 0)
χ−(z, 0) , (A.16)

which does not involve any “problematic” term, since χ− does not contain any such
term as mentioned above. This allows us to expand both branches of the characteristic
function using Eq. (A.8).

In the χ+ branch, this leads to

a(+)
n (x) ' e−a+ 1

2
a (x−1)2

6µ2 [(3 + a2) cos 4zn − 6zn sin 4zn]

{
− 36 a cos [2 (x− 3) zn] +[

−6 a3(x− 1)4 + a4(x− 1)6 − 9 a2(x− 3)(x+ 1)− 288 z2
n + 72 a cos 4zn

]
×

cos [2 (x− 1) zn]− 36 a cos [2 (x+ 1) zn] + 24 a
[
−3 + a(x− 1)2

]
×

(x− 1) zn sin [2 (1− x) zn]
}
.

(A.17)
By replacing zn by their expression found in Appendix A.3, namely zn = (n+1/2)π/4+
A/(n+ 1/2) +B/(n+ 1/2)2 +O[(n+ 1/2)−3] and further expanding in 1/(n+ 1/2), one
finds

a+
n (x) =

(−1)ne
1
2
a[x(x−2)−1]

µ2

(
2π

(
n+

1

2

)
cos

[
π

2

(
n+

1

2

)
(x− 1)

]
+

f1(a, x) sin

[
π

2

(
n+

1

2

)
(x− 1)

]
+

1

π

(
n+

1

2

)−1{
4 a cos

[
π

2

(
n+

1

2

)
(x− 3)

]
+ 4 a cos

[
π

2

(
n+

1

2

)
(x+ 1)

]
+

a2f2(a, x) cos

[
π

2

(
n+

1

2

)
(x− 1)

]}
+O(n+ 1/2)−2

)
,

(A.18)

where

f1(a, x) =
2

3
a(x− 1)[a(x− 2)x− 3] ,

f2(a, x) =
1

9

(
−39 + 9(x− 2)x+ 6ax(x− 2)(x− 1)2−

a2{7 + (x− 2)x[x(x− 1)2(x− 2)− 1]}
)
.

(A.19)
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A similar calculation can be performed in the χ− branch. However, in the main
text we are mostly interested in the PDF of the number of e-folds when starting from the
bottom of the potential, x = 1, which makes this expression of limited interest. This is
why we do not display here, although it can be readily derived using the above formulas.
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