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Low-fidelity analytical models are often used at the conceptual aircraft design stage. Because of uncertainties on

these models and their corresponding input variables, deterministic optimizationmay achieve under-design or over-

design. Therefore it is important to already consider these uncertainties at the conceptual design stage in order to

avoid inefficient design and then costly time over runs due to re-design. This paper presents a procedure for reliable

and robust optimizationof an aircraft at the conceptual designphase.Uncertainties onmodel anddesign variables are

taken into account in a probabilistic setting.Moreprecisely, at eachpoint of the optimizationprocess uncertainties are

modeled by an adaptive normal law strategy in order to fit the historical aircraft database. The statistical parameters

are adjusted depending on the available information at the current point of the optimization process. To improve

computational cost, response surface approximations are constructed to represent reliability constraints. The

developed methodology is applied to the conceptual design of a short range aircraft. Compared to standard

deterministic optimization without design margins, the result shows a modest increase on weight, which allows

however to ensure a desired reliability and robustness of the design compared to the unreliable and sensitive

deterministic optimum.

Nomenclature

Apref = target cruise altitude
Ar = wing aspect ratio
Cbuf = minimum altitude for buffeting ceiling
Cclb = minimum altitude for climb ceiling
Ccrz = minimum altitude for cruise ceiling
Coei = minimum altitude for one engine inoperative ceiling
Ctk = central tank fuel
Fmarg in = difference between the amount of fuel required for a

nominal mission and the fuel capacity
hfus = fuselage height
LTofl = maximum take off field length
lfus = fuselage length
Ne = number of engines
Npax = total number of passengers
R = nominal range
RBPR = engine by pass ratio
Swing = wing area
Vapp = maximum approach speed
VCruise = Cruise number
wAfus = fuselage gross wetted area
wfus = fuselage width

I. Introduction

T HE conceptual aircraft design is a multidisciplinary optimi-
zation problem which consists of finding a set of parameters

defining the performances subjected to various constraints [1–3]. At

this stage of the design, knowledge is limited (for example on
material properties, weights data, propulsion data, etc.), the analysis
is thus based on low-fidelitymodels from empirical equations or sim-
plified physical models [4]. In this context, modeling the uncer-
tainties is important because at this stage deterministic optimization
can lead to over-design (if arbitrary design margins are taken into
account) or under-design (without design margins) during detailed
phases of the design [5,6]. Efficient uncertaintymodeling allows us to
construct a robust and reliable design, thus reducing the time and cost
of engineering development.
Conceptual aircraft design involves multiple disciplines (propul-

sion, aerodynamics, structure, etc.) that can be closely linked: the
inputs of a disciplinemay be the output of another one and vice versa,
thus creating feedback loops [7,8]. Multidisciplinary optimization
(MDO) has been the subject of various studies [9–11]. It has been
shown that these methods can significantly enhance conceptual
aircraft optimizations, notably by taking into account the link
between the different disciplines. These MDO methods are more
efficient than successive monodisciplinary design optimizations,
avoiding multiple loops between the different disciplines (decrease
computation time), by simultaneously manipulating variables in
every disciplines of the problem and determining rapidly the best
design [12]. However, conventional methods of aircraft multi-
disciplinary design optimization are deterministic and any uncer-
tainties introduced by manipulating simplified analytical models are
neglected or taken into account by arbitrary safety factors (which
consist of replacing the random data by more reliable values than
the means). Thus, it is necessary to develop specific methods to
propagate uncertainty in a conceptual aircraft sizing problem to
ensure both reliability and robustness. Early robust approaches aimed
at minimizing a dual-objective optimization problem. Generally, the
objective is to minimize the mean value of a performance while
reducing or controlling the variance. Green et al. proposed a single
objective problem, introducing weights to obtain a compromise
between variance and expectation [13]. Delaurentis and Mavris
proposes a probabilistic method [8]. This technique uses a measure
of the probability of success which is based on the cumulative
distribution function (CDF) of the objective function. This method
also uses metamodels to minimize the number of functions eval-
uations (objective or constraints) usually required in a robust
optimization problem.
Recent works have been conducted to develop techniques to take

into account the uncertainties in conceptual aircraft design. In this
context Daskilewicz et al. [14] highlight the impact of disciplinary
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uncertainties. They show that the impact of uncertainties on the
optimal aircraft design depends on the amplitude of the uncertainties
and on the location of the design parameters in the search space.
These conclusions are based on the study of Pareto fronts, visualized
for different scenarios of uncertainty (variation of themean and of the
standard deviation of themodeling uncertainties). The authors do not
define an optimal design but provide elements for the designer to find
regions of the search space where a compromise is established
between robustness and performance.
In their work, Neufeld et al. [15] have developed reliability-based

design optimization methods to design an aircraft that is both robust
and reliable. Their techniques allow taking into account themodeling
uncertainties and quantifying the reliability of the conceptual design.
Modeling uncertainties are determined from a historical database of
the different parameters for commercial aircraft. According to the
available information, the modeling uncertainties are modeled by a
uniformprobability lawor by a normal probability law.Themean and
standard deviation characterizing this model uncertainty is constant
over the entire range of the design variables.
To continue improving the approaches of conceptual aircraft

design under uncertainty, further developments appear worthwhile to
adjust themagnitude of the uncertainty to the design regionwhere it is
used. Indeed, the setup of normal uncertaintieswith constant standard
deviation may in some regions not reflect the real accuracy of analyt-
ical models and can cause a loss of performance (the uncertainties
may sometimes be lower in some regions and higher in others). Thus,
we propose in the present article a novel approach to considering
model uncertainties in conceptual aircraft design. The approach is
based on the construction of the uncertainty distributions whose
standard deviation is variable and adapted to the current point of the
optimization.
This article is organized as follows. In Sec. II, we will describe the

conceptual aircraft sizing problem. First, we will present the
deterministic formulation and then the formulation of the problem
under uncertainties. In Sec. III, we will explain the method of
sensitivity analysis to determine the relevant uncertain variables
causing the greatest sensitivity of the objective function and/or
constraints. Once these relevant uncertain variables determined, we
will detail in Sec. IV the probabilistic method that has been devel-
oped. This novel method takes into account the modeling
uncertainties and the uncertain design variables. It is based on the
development of adaptive modeling of the uncertainty: the value of
the standard deviation of the uncertainty distribution is adjusted to the
available information. It reflects the fact that in different parts of the
model the uncertainty can be quite different. Because the conceptual
aircraft design is a complex, computationally expensive problem,
response surfaces approximations are constructed based on Monte
Carlo simulations to represent the reliability constraints at low
computational cost. The construction of these surrogate models will
be presented in Sec. V. We will then examine the different results by
comparing the deterministic optimization and the optimization under
uncertainty. Moreover, in Sec. VI we take into account the variation
between the conceptual and final design parameters and show their

effect on optimization. Finally, in Sec. VI, conclusions and future
work are presented.

II. Conceptual Aircraft Design

The role of the conceptual aircraft design is to propose aircraft
configurations that can best meet a set of needs, then to identify
several design alternatives [1]. The objective of this section is to
present the deterministic aircraft multidisciplinary design optimiza-
tion that is used to date. The conceptual design of a short-range
aircraft (e.g., Airbus A320) will be considered, which allows us to
define the main features of the aircraft. Conceptual sizing is the first
step in aircraft design. It is a multidisciplinary optimization problem
that consists of finding a set of parameters defining the aircraft.
Performances that are subjected to constraints are also determined
[7]. In this problem, the maximum takeoff weight of the aircraft must
be minimized while satisfying various operating performance
constraints gi: the maximum approach speed, the maximum takeoff
field length, flight ceilings (minimum altitude for climb ceiling,
minimum altitude for cruise ceiling, minimum altitude for one engine
inoperative ceiling, and the minimum altitude for buffeting ceiling)
and the fuel capacity. This optimization problem is composed of
several disciplines: geometry, propulsion, weights, operating perfor-
mances, aerodynamics, etc. There are dozens of main parameters for
the conceptual design. Among these parameters, the most influential
ones are thewing area Swing and the maximum engine thrust sea level
static thrust (SLST), which are thus defined as the optimization
variables. The conceptual sizing is a step in the overall aircraft design,
which turns out to be crucial but complex for several reasons:
decisions are taken in a context where few features of the plane are
defined and the problem data are not yet very well known, the search
space solutions must remain general enough not to exclude potential
solutions, and finally the models used are often relatively rough. At
this stage of the design, the uncertainties in the problem may be
significant and are mainly modeling uncertainties due to the
simplicity of the used models. Risk control becomes an important
element of the project. Identifying risks and uncertainties from the
beginning of the design process (i.e., conceptual aircraft design) will
allow us to control the reliability and robustness of the design early
on, thus preventing cost overruns due to iterations late in the design
cycle and redesign. In this section, we present the deterministic and
probabilistic formulation.

A. Deterministic Aircraft Multidisciplinary Design Optimization

Conceptual design, based on a comprehensive description of
the plane and a set of performance requirements, is discussed when
the overall configuration of the aircraft (location of engines, aspect
ratio of the wings, etc.) is fixed (see Table 1, design assumption and
performances). The problem is to define the right aircraft
characteristics to meet the performances and thus to minimize our
objective function, which is the mass of the airplane at takeoff
(MTOW). A conceptual design framework called simple models for
conceptual aircraft design (SIMCAD) is used for this purpose [16].

Table 1 Data for the conceptual aircraft design problem

Performances imposed Design assumption Constraints

Npax Total number of passengers 150 Ne Number of engines 2 Fmargin difference between the amount of fuel
required for a nominal mission and the
fuel capacity (l); it is the fuel reserve

for a nominal mission

≥ − 2000

R Nominal range, km 5556 RBPRBPR Engine by-pass ratio 6 Cclb Minimum altitude for climb ceiling, ft ≥10; 668
VCruise Cruise Mach number 0.78 Ar Wing aspect ratio 9.5 Ccrz Minimum altitude for cruise ceiling, ft ≥10; 668
Apref Target cruise altitude, m 10,668 Ctk Central tank fuel

(Ctk � 1 to include a
central tank, 0 otherwise)

1 Cbuf Minimum altitude for
buffeting ceiling, ft

≥11; 277.6

Ttk Tail tank fuel
(Ttk � 1 to include a

central tank, 0 otherwise)

1 Coei Minimum altitude for one
engine inoperative ceiling, ft

≥5791.2

LTofl Maximum takeoff field length, m ≤2100
Vapp Maximum approach speed, kt ≤41.4528
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This approach allows us to build the objective functionMTOW from
the assembly of disciplinary models. The SIMCAD algorithm is in
linewith amultidisciplinary context inwhich the different disciplines
are provided in the following list:
1) Environment: determination of the characteristics of the

environment in which the aircraft is evolving (air density, sound
velocity, Mach number, air pressure, etc.).
2) Fuselage: determination of the fuselage geometry (thewidth, the

length, and the fuselage gross wetted area), the mass, the fuselage
shape, and the drag coefficient. The general size and shape
of the fuselage are determined according to the payload.
3) Wing: determination of the wing geometry (area, wing gross

wetted area, wing fuel tank capacity, andwing sweep angle), themass
and aerodynamics of the wing (length, drag coefficient, wing-
induced drag, compressibility drag, buffeting lift, divergence Mach
number, etc.).
4) Propulsion: determination of the engine nacelle geometry (the

nacelle design must satisfy both the geometric constraints and the
engine requirements), aerodynamics (friction coefficient), the pylon
mass, and the engine thermodynamics (fuel consumption, engine
thrust, etc.).
5) Tail: determination of the tail geometry (fuel capacity and area

are determined for both the horizontal and vertical parts of the tail,
volume, etc.), the masses (mass of the horizontal and vertical part of
the tail), and aerodynamic coefficients.
6) Landing gear: calculation of the number of wheels and the

landing gear mass.
7) Cabin and cargo: determination of the passenger number in the

different classes and the total number of passengers.Mass calculation
(payload, furnishing mass, operator item mass, and container and
pallet masses).
8) Plane: determination of the design parameters (wing surface and

engine size), the objective function (maximum takeoff weight), mass
(weight of the aircraft without fuel, mission payload, etc.), aero-
dynamics (pressure drag, induced drag, drag coefficient, maximum
lift at landing, etc.) and the cost of the mission.
9) Performance: determination of the different constraints and the

performances, which are listed in Table 1.
The environment block allows us to simulate the influence of

external factors: gravity, atmosphere, pressure, etc. The blocks fuse-
lage, wing, propulsion, tail, landing gear, and cargo are used to
calculate certain parameters such as the weight, the width, etc. of the
corresponding component (fuselage, etc.). The aircraft discipline and
the performances discipline are used to obtain general information
about the plane: its operational weight when it is empty and its
aerodynamic performance. These models are used to calculate a
typical configuration of an aircraft from any inputs in terms of
required performances and only by running a loop of calculations
called “mass-mission.” This loop is nested in the constrained
optimization algorithm, and so it allows us to model the constraints
imposed by the process weight/performance and to provide the set of
parameters satisfying all the disciplines.
This design process is highly interdependent: to achieve amission,

a certain amount of fuel is needed, but this quantity affects the
maximum takeoff weight, the structure of the aircraft, and therefore
the mission. These constraints require a model that allows us to
evaluate the mass and know the range of the aircraft, and vice versa,
i.e., amodel that allows us to evaluate themission (and thus the range)
to know the mass of the aircraft. Thus, one gets a feedback loop. The
nature of the mission (reflected by the range) is both a calculation
hypothesis to provide as an input to the function and an evaluation
result. Therefore, the system is consistent if the value of the range
provided in input is equal to the output value obtained by the
algorithm. This constraint is ensured by the “mass-mission” loop (see
Fig. 1).
During the complete design of the aircraft, the number of

parameters involved in the various disciplinary models is very high,
and it is thus necessary to start the optimization with a simplified
aircraft model. This is what is done during conceptual design, in
which all models are analytical models derived from either simplified

physical models or simple regression models based on aircraft
databases.
In the SIMCAD program, some models that allow us to determine

the system’s parameters are derived from simplified physical models.
For example, the sound velocity is calculated assuming that air is a
perfect gas. The specific parameters of the environment block, such
as the standard temperature and pressure, are also determined thanks
to simplified physical models. All the other models are derived from
simple regression models based on aircraft databases. Measurements
were made on 47 commercial aircrafts (aircrafts built in recent
decades) that lead to a historical database. An example of such a
regression model is given after, with the fuselage gross wetted area,
wAfus. The regression tries to make a simple model (linear or
quadratic) fitting an aircraft parameter, a performance or an
operational characteristic, y, based on a number of other parameters,
x. These parameters, x, are either the aircraft parameters directly or a
combination of parameters resulting from physical considerations.
The models that describe the physical aircraft behavior are
represented by a linear regression function:

Y � β0 � β1X�1� � β2X�2� � : : : � βpX�p� (1)

where Y is the output and X�1�; X�2�; : : : ; X�p� are the input
parameters. Note, however, that each input parameter can be a
nonlinear combination of others variables characterizing the aircraft.
For example variable X�1� can be modelled as X�1� � X1 × X2

where X1 and X2 are some other variables characterizing the system.
To illustrate our explanations, we take the example of the wAfus
parameter (fuselage gross wetted area).
A linear model that allows us to evaluate wAfus is deduced from

the linear regression:

wAfus � β1
������������������������
wfus × hfus

q
× lfus � β0 (2)

This model depends on the variable x � lfus
������������������������
wfus × hfus

p
where

lfus is the fuselage length, wfus is the fuselage width and hfus is the
fuselage height (x is in m2): wAfus � 2.3x� 66.6 (see Fig. 2). The
coefficients βi are the coefficients determined by the linear
regression.
Among the small group of high-level parameters that are handled

during the conceptual aircraft design, three have a significant impact
on the design of the aircraft: the wing area (Swing), the engine size
(guided by the variable SLSThrust: engine thrust at sea level), and the
maximum takeoff weight (MTOW). This study will focus on
determining these three parameters for an aircraft configuration. The
deterministic process is based on a classical constrained optimization
(where the constraints are a set of high-level requirements on
aircraft). There are only two design variables: the wing surface and
the engine size, which are the main variables of our optimization
problem. These designvariables associated with the fixed parameters
(design assumption and performances) allow us to determine the
overall parameters describing the aircraft (160 parameters). The
formulation of the deterministic optimization problem based solely
on these two design parameters is the formulation advocated by
Airbus as part of this research project [16]. However, the
methodology can be straightforwardly extended to more optimiza-
tion design variables. The objective function f and the constraints gi
are constructed based on analytical models as described above
[16,17]. For some given design assumptions and functional
characteristics of the product (Top level aircraft requirements) the
optimization formulation can be written as:

Find�S�wing; SLST�� solution of

min
Swing;Slst

MTOW � f�Swing; SLST�
where Swing; SLST ∈ S; S being the search space

subjected to∶ gi�Swing;SLST� ≤ ci; i � 1; : : : ; 7

(3)

where the operational performance constraints, gi, are the maximum
approach speed, the maximum takeoff field length, the flight ceilings
(minimum altitude for climb ceiling, minimum altitude for cruise
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ceiling, minimum altitude for one engine inoperative ceiling, and the
minimum altitude for buffeting ceiling), and the fuel capacity (see
Table 1).
The various steps in the calculation used to define a typical

configuration of an aircraft from any arbitrary input data desired are
listed below (see Fig. 1, inner loop). Note that in Fig. 1, the arrows
represent the interdependencies between the different disciplines, the
exchange of variables (a model output parameter is the input
parameter of another model). The small loop represents the mass-
mission loop and the largest one represents the optimization process:

1) Design assumption and performances are decided (the perfor-
mances become the operational constraints that one wishes to meet
during the optimization calculation, see Fig. 1). The design assump-
tions and the performances (top level aircraft requirements or
functional characteristics of the designed aircraft) are fixed input
parameters, which are not modified during the optimization process.
These data provide the context of the study, and they allow us to
characterize the aircraft and so to define the fuselage, the propulsion,
the geometry, and the flight conditions.
2) Calculations are made of the different parameters and the

aircraft performances for each discipline by using simple analytical
models (these disciplines are represented by a box inside the inner
loop of Fig. 1). The set of parameters that define the conceptual
aircraft design (160 parameters) are computed from the input data set
of the optimization problem: the design assumptions, the perfor-
mance, and also the design parameters. Therefore, there are no
presumed design assumptions about other parameters.
3) Once the parameters are determined, the “mass-mission” loop is

executed for obtaining the parameters satisfying all disciplines (this is
the loop between the “Weights” box and the “Designmission” box of
the inner loop of Fig. 1).
4) Following the “mass-mission” loop, the disciplines that are

impacted by this coupling are recalculated.
5) The aircraft takeoff weight MTOW is determined.
6) This calculation is then embedded in an optimization loop to

solve the problem of Eq. (1) and determine the configuration of the
aircraft with the minimum mass that also meets the constraints that
have been set.

The fuselage gross wetted area regression : wAfus

wAfus = 2.2984x + 66.602
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Fig. 2 Example wAfus � f�x�.
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The optimization algorithm is of pattern search type [18], which is
an exploration method.
In the following paragraph, an application of the described

approach is presented for the deterministic design optimization of a
short-range type aircraft (e.g., A320). The design assumptions and
the operational performances of the considered problem are given in
Table 1.
Firstly, one calculates the optimum of the problem without

uncertainties. Thus, Eq. (1) is rewritten as

min
Swing;Slst

MTOW�Swing; SLST�
Where Swing;SLST ∈ S; S the search space

subjected to∶ gi�Swing; SLST� ≤ 0; i � 1; : : : ; 7

(4)

The deterministic optimum found for this problem has the following
parameters: MTOW � 75; 415 kg for a wing area Swing �
129.35 m2 and an engine thrust SLST � 89; 474 N (see Fig. 3). In
Fig. 3, the takeoff weight of the aircraft,MTOW, is represented in the
background by the color map: the darker the background, the higher
themass. The optimum is indicated by a black dot in Fig. 3. The active
constraints at the optimum are theminimum altitude for climb and the
minimum altitude for buffeting (these constraints operate as equal-
ities at the optimum point). Note that only the active constraints are
represented in Fig. 3.
The problem of conceptual aircraft sizing is characterized by

limited knowledge and important uncertainty. To develop effective
conceptual design that is both robust and reliable and that fareswell in
later design phases, there is a need to develop a probabilistic optimi-
zation approach taking into account various uncertainties present in
the problem.
Uncertainty canmanifest itself undermultiple forms. A distinction

is usually made between aleatory uncertainty and epistemic uncer-
tainty [19]. Aleatory uncertainty is also known as stochastic
uncertainty, irreducible uncertainty, inherent uncertainty, variability,
or type I uncertainty. It can stem from environmental stochasticity,
inhomogeneity of materials, fluctuations in time, variation in space,
heterogeneity, or other intrinsic differences in the features of a
system. Epistemic uncertainty on the other hand, sometimes called
reducible uncertainty or type II uncertainty, stems from a lack of
knowledge. This kind of uncertainty is usually related to scientific
ignorance, measurement uncertainty (e.g., sensor uncertainty),
insufficient experimental data, phenomena inobservability, or cen-
soring, thus in general terms, lack of knowledge. Note that after
reducing the epistemic uncertainty, aleatory uncertainty may still
remain and become the preponderant, irreducible uncertainty.
The theory of probabilities has historically provided the first

framework for modeling and quantifying uncertainty [20]. Currently,

it is generally agreed that aleatory uncertainty can be appropriately
handled by the theory of probabilities. The probability method is the
most mature due to the large number of developments it has benefited
from. It is also the best known in industry. While the probabilistic
approach can also be used to model epistemic uncertainty, other
alternative representations for this type of uncertainty are also
available. With interval analysis [21], the uncertain variable is de-
scribed as an interval and the width represents the extent of
the uncertainty. This is especially useful in cases where we lack
information for determining an exact probability distribution that
accurately represents the reality and when only the worst case needs
to be considered. While epistemic uncertainty was quantified by
bounds in interval analysis, there are often cases where more
information is available than just bounds. The information provided
by the expert can be modeled by fuzzy set theory [22,23]. For
example,when asking an expert what he can tell about a quantity x, he
may be able to provide approximate bounds on a quantity. In [24], the
authors worked on a method coupling both aleatory and epistemic
uncertainties to develop fuzzy sets for improved pattern recognition
and decision making. Specifically, they address the challenge of
using both dense and sparse data. Finally, possibility theory [25] and
evidence theory [26] provide bounds on the actual unknown
probability. This can be very useful in situations where, due to lack of
knowledge, we cannot derive accurate probability density functions.
Note that both evidence and possibility theories provide a bounding
of the actual probability by belief and plausibility (evidence theory)
and necessity and possibility (possibility theory). However, because
belief and plausibility can be simultaneously different from 0 and 1,
the bounding in evidence theory can be much tighter, and thus less
conservative, than in possibility theory.
In this paper we chose to model the uncertainties entirely by

probabilistic approaches for two main reasons: one, probability
theory is the approach that has benefited from the largest number
of theoretical developments, and two, compared to alternative
approaches it is also the best known in industry. Next, wewill present
the probabilistic optimization approach developed.

B. Probabilistic Aircraft Multidisciplinary Design Optimization

The optimization under uncertainty aims at designing a system
insensitive to variations, having statistically the best performances
and satisfying a given reliability level. To do this, the deterministic
problem is modified, to include constraints of robustness and
reliability as follows [17,27]:

min
Swing;Slst

E�MTOW�Swing; SLST; δ��with Swing;SLST ∈ S

such as∶
COV�MTOW�Swing; SLST; δ�� ≤ α and
Prob�gi�Swing; SLST� ≤ 0� ≥ αgi with i � 1; : : : ; 7

(5)

where δ represents the uncertainties involved in the problem and α is
the variation tolerated on the coefficient of variation (COV),
representing the robustness constraint. In practice, an acceptable α is
taken as 2% here, and (1 − αgi ) is the risk of violating the constraints
provided in Table 2. The imposed reliability thresholds are based on
the risk that the manufacturer is willing to take at the conceptual
aircraft design. In this article, these are the ones desired by Airbus at
the end of the conceptual aircraft design stage. Taking into account
uncertainties allows us to introduce margins to ensure robustness and
reliability.
Note that because the COV is the ratio of the standard deviation to

the mean, the higher the value of the COV, the greater the dispersion
around the mean. Being dimensionless, it allows for the comparison
of different distributions when the scales of the uncertain parameters
are not comparable. We deal with physical parameters of very
different scales and the COV is a relative value, so it is found to be
more suitable than the standard deviation. Because for this proba-
bilistic optimization problem a pattern search algorithm was not
efficient enough, we used a search algorithm based on the simplex
method (Nelder–Mead).Fig. 3 Deterministic optimization.

532 JAEGER ETAL.



Note that it would be possible to make a robust optimization based
on a weighting of mean and variance, but the aim here is to minimize
the performance of the system while controlling the risk [28,29].
In our problem, we found the objective function was close to

linearity with respect to the uncertain parameters and because the
uncertainties are centered, the equality E�MTOW�Swing; SLST;
δ�� � MTOW�Swing; SLST� is approximately verified, which allows
us to simplify the calculation of the objective function.Moreover, this
approximation was verified by experiments: for each step of the
optimization, the calculations E�MTOW�x�� and MTOW�E�x��
were carried out and the mean relative error between the two terms
was found to be less than 0.0006%.
Carrying out the optimization with all the uncertain parameters

involved in the problem is possible but computationally very
expensive, whereas some parameters would have only minor effect.
Thus, in the next section wewill implement a sensitivity analysis that
aims to describe how much system output values (objective function
and constraints) are affected by changes in model input values. This
study allows us to determine the model inputs with the highest
influence in the modeling process, on which we will implement
uncertainties.

III. Selection of Relevant Modeling Uncertainties

The conceptual aircraft design problem involves more than
160 parameters that are the outputs of simple analytical models (note
that a model output parameter is often the input parameter of another
model). Therefore, all of the parameters can potentially have uncer-
tainty. Assuming that uncertainties would be introduced on each of
these parameters, the evaluation of the constraints would become
very costly in computing time. In addition, all the uncertainties are
not significant and some of them can be eliminated. Prevalent uncer-
tain parameters have to be chosen to reduce the number of uncertain
parameters and also the number of simulations in the optimization
process.
To do this, selection of a local sensitivity analysis around the

deterministic optimum point is performed. The goal is to seek
information about the impact of the change of a certain factor Xi at a
local level, i.e., in the vicinity of the deterministic optimum valueX0.
In a local sensitivity analysis, we make the assumption that the local
behavior is enough to characterize the effect of the variable over the
entire search space. Because the conceptual designmodels are almost
linear, local sensitivity gives significant quantitative information of
the influence of each parameter.
The aim of sensitivity analysis is to estimate the rate of change in

the output of a model with respect to changes in model inputs. To do
this, the impact of each uncertain parameter on the objective function
and on the constraints is measured by the formula [30]

Si �
xopti
yopt

∂f
∂Xi

����
Xi�xopti

(6)

where Si is the sensitivity of the variable xi on the function f�x� � y,
where f may be the objective function (aircraft mass) or any of the
constraints. The partial derivative is calculated by finite difference
ΔX � 1∕100xopti . Note that the calculation of the sensitivity is
dimensionless and that it is normalized to obtain an objective value
(one estimates what is the value of the percentage variation of the

objective function and constraints when one considers an uncertain
parameter X varying by a certain percentage). The model parameters
are thus classified according to their degree of influence on the
variability of the objective function and on the constraints. Sensitivity
analysis on a short-range aircraft leads to 15 significant parameters
(less than 10% of the initial parameters) that are the parameters that
cause the greatest sensitivities (in %) of the objective function and/or
constraints. These parameters are the uncertain parameters of our
optimization under uncertainty. They are: the fuselage section width,
the fuselage section height, the total fuselage length, the wing mean
aerodynamic chord, the fuel volume in the wing, the fuselage gross
wetted area, the wing gross wetted area, the maximum lift factor in
takeoff configuration, the maximum lift factor in landing configura-
tion, the maximum equipment weight, the operational empty weight,
the payload of nominal mission, the maximum zero fuel weight, the
approach speed for landing case 1, and the range of nominal mission.
Once the significant uncertain parameters are defined, uncertainty

quantification is an important challenge in multidisciplinary optimi-
zation. This problem will be addressed with both model and design
variables in the next section.

IV. New Approach for Uncertainty Quantification

To consider the effect of uncertainties on the physical phenom-
enon, we opted for a probabilistic modeling. Each model output
variable of the conceptual aircraft design problem is supposed to be
expressed as follows, to include the modeling uncertainty:

Y � β0 � β1X�1� � β2X�2� � : : : � βpX�p� � ε (7)

where Y is the model output related to the explanatory variables X�i�
through the coefficients β. Y is also considered to be one of the
uncertain variables of the optimization problem and the uncertainty,
ε, represents modeling uncertainty due to the relative simplicity of
the model form. This uncertainty is modeled by the random variable,
ε, following a normal distribution with mean 0, so that E�Y� �
β0 � β1X�1� � β2X�2� � : : : � βpX�p�. In general terms, this is a
linear regression problem for which the parameters β are obtained by
minimizing the sum of the residual squared:

L �
Xn
i�1

ε2i �
Xn
i�1
�yi − β0 − βjXij�2 (8)

To minimize the L function, the partial derivatives of this function
with respect to the parameters β are set equal to 0:

∂L
∂βj

����
b0 ;b1; : : : ;bp

� −2
Xn
i�1
�yi − β0 − βjXij�Xij � 0 (9)

In matrix form this can be written as

β � �X 0X�−1X 0y (10)

with X the Xij matrix and y the response vector at the point of the
design of experiments.
The modeling uncertainties that are considered are due to the fact

that there is a difference between the real points stemming from the
historical database and the model predictions stemming from the
linear regression model. The corresponding errors between actual
and predicted values are highlighted on an example of a model (see
Fig. 4), wAfus which is the fuselage gross wetted area.
One way to take into account these modeling uncertainties and to

characterize εwould be to define them from the residuals of the linear
regression. This method results in a normal uncertainty, ε, with a 0
mean and a standard deviation, σ, calculated from the residuals: it is
the least squares error between the real points and themodel points of
the simple model (linear or quadratic). The standard deviation thus
calculated represents the residuals on thewhole variation range of the
function. This can be problematic, because in relative terms to the
function’s value, the standard deviation can be very important and

Table 2 Ceiling values not to exceed

Constraint Minimum reliability
of constraint satisfaction (%)

Maximum approach speed 98
Maximum takeoff field length 90
Minimum altitude for climb 95
Minimum altitude for cruise 90
Minimum altitude for buffeting 90
Minimum altitude for one engine inoperative 95
Fuel capacity 90
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the confidence interval very large. This behavior is illustrated by the
following example: the empirical standard deviation calculated for
the Fwing function (fuel volume in the wing) in relative terms is very
large for low values of Fwing (cf. Fig. 5). So there is a strong proba-
bility that for low values of Fwing, random draws can give negative
points and therefore nonphysical points. This is illustrated in Fig. 5, in
which it can be seen that for values of the abscissa below 100,
the function value less one standard deviation becomes negative.
Such a high confidence interval may also result in designs that are
unnecessarily conservative, thus detrimental to the performance of
the airplane (the optimum airplane will be robust to uncertainties
but the weight will be too high). Hence, we propose in the next
paragraphs an improved representation of the modeling uncertainty.
As a first approach for avoiding the use of too large uncertainties,

which can lead to nonphysical results for somevariables, the standard
deviations were truncated to �2 standard deviations. The imple-
mentation of this first approach still led to an unacceptable
configuration (excessiveweight) due to a large confidence interval on
the constraints. Next, we provide some theoretical background
on the method we eventually implemented for modeling variable
uncertainty depending on the abscissa of the regression.
Consider the regression model Yi � βiXi � εi, 1 ≤ i ≤ n, with

nonrandom design variables (Xi) and measurements (Yi) for the
unknown regression function g�Xi� � βiXi. The values of Yi are
contaminated with errors (εi), which are assumed to have an
expectation value of zero and are independent but can be not
identically distributed. The data, εi, are called heteroscedastic [31,32]
ifVar�εi� � σ2i is nonconstant (see for example Fig. 4). The function
σi such as σ

2
i �Xi� � σ2 can be determined by kernel smoothers [33–

35]. The principle of the kernel smoother is a generalization of the
histogram estimation. It is a nonparametric method of estimating the
probability density of a random variable. It is based on a statistical

population sample and allows us to estimate the density at any point
of the support. The density at a point x is estimated by the proportion
of data x1; x2; : : : xN , that are close to x. For this, a box is drawn
around x, whosewidth is governed by a smoothing parameter h. Then
the number of observations into this box is counted. This estimate,
which depends on the smoothing parameter h, has good statistical
properties but is noncontinuous by construction. The method of
Parzen-Rozenblatt [36] (kernel method) allows continuity. For this,
the box centered at x is replaced by a curve centered at x, which is a
Gaussian function (reduced Gaussian distribution); this is shown by
the dashed curve in Fig. 6. The more a data point is close to the
support point x, the greater the value of the weight is. On the other
hand, observations too far from x are assigned with a negligible
weight. The estimator of the density function is formed by the mean
of the curves [37], which is the curve represented by a solid line in
Fig. 6. The resulting final estimator of the local error variance is
uniformly consistent [32]. These methods are popular in many
different areas, such as econometrics [33,35,38]. In [38], a
relationship between electricity sales and temperature is estimated
using a regression and the distribution of model uncertainty is based
on kernel smoothing. An equivalent method is used in [35] to
determine financial data. For our conceptual aircraft design problem
we propose a method that is based on an adaptation of the kernel
smoothers method. It allows us to both account for the fact that some
areas have a higher density of points and also that some points are not
well predicted by the analytical model.
To accurately model the uncertainties, the standard deviation

needed to vary according to the current point on the model is
evaluated. The variable uncertainty model will take into account two
phenomena:
1) Phenomenon 1 iswhere the points of the database are sometimes

concentrated in certain regions.
2) Phenomenon 2 is that inwhich some regions of themodel can be

much better than in others.
The first phenomenon is highlighted by an example. In Fig. 4,
representingwAfus (the fuselage gross wetted area), one can see that
there is a cloud of points in the low values area and a cloud of points in
the high values area. In the middle area, for wAfus values between
500 and 800 m2 there are relatively few points. One would like the
modeling uncertainty to be slightly higher in the areas where there is
an absence of points in the database, to reflect the fact that one has
little information available to actually assess the modeling
uncertainty based on actual database points. One therefore introduces
a more complex uncertainty model. To account for phenomenon 1,
one introduces the prediction variance at point x0 [39]:

σ1 � Var�ŷ�x0�� � σ20x
0
0�X 0X�−1x0 (11)

with σ0 the standard deviation characterizing the residues. The value
of our standard deviation is adjusted to the available information, i.e.,
the standard deviation will be less important if the region is well
defined (many points in the database); however, it will be important
when fewer points define the region in the database (the uncertainty in
the predicted characteristics can possibly be more important).
The first formulation with a variable standard deviation accounts

for phenomenon 1 but does not reflect the fact that certain regions are
much better predicted by themodel than others (phenomenon 2). This
second phenomenon is illustrated again in Fig. 4, where one can see
that the low values region is much better predicted by the model than
the high values region. This phenomenon will be taken into account
by incorporating a mean standard deviation, σ2, defined only in the
vicinity of the studied point (at which one would like to predict the
modeling uncertainty). Similarly to kernel smoothing, this deviation
is the least squares error calculated in a “Gaussian window” of

The fuselage gross wetted area regression : wAfus

wAfus = 2,2984x + 66,602
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Fig. 4 Comparison between the real points and the model points.

Fig. 5 Constant standard deviation for the Fwing parameter.

Fig. 6 Density function built from a kernel smoother.
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variable size. It is the mean errors of the points situated in a window
whose dimensions vary so as to maintain a constant number of points
within it. Aweight is assigned to each point of the database based on a
Gaussian weighting function and depending on the region in which
our current point is located. The Gaussian function is such that the
standard deviation is equal to half the size of thewindow constructed,
and it is normalized so that the weight of the point where it is desired
to define themodel uncertainty is equal to 1. Thus, themore a point of
the database is close to the point where we want to determine the
uncertainty, the more its impact on the calculation of the uncertainty
is important.

σ2 �

�������������������������������������������������������������������P
n
i�1 �yreali − ymodeli �2 × p�yreali �P

n
i�1 p�yreali �

s
(12)

where n is the number of points in the database, yreal the value of the
real point, ymodel is the value given by the model, and p�yreali � is the
weight that is assigned to each point of the database based on
theGaussianweighting function. The functionp is given by Eq. (13):

p�y� � 1

σ
�������
2Π
p e−1∕2�

y−μ
σ �2 (13)

The standard deviation of the modeling uncertainty thus becomes

σtot � σ22x
0
0�X 0X�−1x0 (14)

The resulting uncertainty using the total variance is illustrated in
Fig. 7 for the wAfus function. The new formulation of the standard
deviation is adjusted to the available information, i.e., it is an adaptive
standard deviation. In Fig. 6, we can see that the reduction of the
average of the confidence interval is around 50% over the range of
variation of wAfus and X (combination of the fuselage dimensions).
The modeling of variable uncertainties from a historical database

can give a prediction of the uncertainty value at any point of the
search space. This uncertainty represents the variability that can
occur in the prediction of the physical phenomena. Note that even if
the manufacturer decides to build a plane with the same parameters
again, model uncertainty is not zero. This is due to the fact that
regression models do not pass exactly through all the points, which
translates to the fact that even at a known point, the uncertainty is not
equal to zero. Furthermore, when no information is available in a
certain area (that is to say, when no plane has yet been designed with
such dimensions), it is possible to predict the parameter’s value but
uncertainty will be greater. Of course, if there is a significant
technological breakthrough, the variability in prediction models
may be underestimated or overestimated. But it is also possible to

introduce subjective information based on expert opinion or calibrate
the uncertainty based on previous technological breakthrough.

V. Calculation of the Probabilistic Constraints

The goal of the probabilistic optimization problem is to design an
aircraft robust to the parameters variations and satisfying a certain
level of reliability [cf. Eq. (3)]. The probability of failure of the
constraints and the robustness of the system can be evaluated by
randomly sampling the uncertain parameters and thus determining
each times the constraint and the objective function. The probability
of failure is estimated by the ratio of failures to the total number of
samples. To reduce the number of calls to the computer code and to
minimize the computation time, we chose to replace the constraints
by surrogate models with a fast response time; these surrogate
models provide directly the reliability index, β, which is further
detailed below.
The minimum level of reliability is often characterized using the

reliability index. The reliability constraints of the Eq. (3) may be
expressed as [40]

β�Swing; SLST; δ� ≥ βgi (15)

where the reliability index β is calculated by determining the
most probable failure point in random variable space for each limit
state equation gi�Swing; SLST; δ� � 0. The symbol βgi is the target
reliability index corresponding to the allowable violation probability
Pgi . In the case where the uncertain variables are Gaussian variables,
we have

βgi � −Φ−1�Pgi � (16)

where Φ is the cumulative density function of a normal variable.
The probabilistic constraints are estimated in terms of reliability

index to build the response surfaces. This is because the reliability
index lends itself better to a polynomial fit than the probability of
failure itself. The surrogate models are constructed using a quadratic
polynomial on a database generated from a design of experiments
(two-dimensional grid design). At each point of the design of
experiments, Monte Carlo runs are carried out with the proposed
modeling uncertainties (3000 runs per point for a satisfactory
accuracy given the probabilities thought to be about 90%). Thus,
thanks to the construction of response surfaces to model reliability
constraints and robustness constraints we are able to efficiently
obtain the values of the constraints at any point in the search space
(i.e., we now have reasonable computational cost). The computation
time of the optimization under uncertainty is thus the same as for the
deterministic optimization, whereas the construction time of the
response surface approximation reduces the computational cost by a
factor of three compared to an approach based on Monte Carlo
simulations at each optimization step.
The formulation of the optimization in Eq. (3) is solved using the

response surfaces for the constraints and the simplex (Nelder–Mead)
algorithm. The graphical illustration of the optimization result and of
the active constraints is given in Fig. 8, whereas the numerical results
at the optimum are 8<

:
Swing � 133.4 m2

SLST � 92094 N

MTOW � 76044 kg

(17)

When comparing the results of the deterministic optimization with-
out design margins with those obtained for the optimizations under
uncertainty in Table 3, one notices an increase in the objective
function: the takeoff weight of the aircraft is higher for the reliability-
based optimum (this is a normal tendency when one sets up a
reliability and/or robustness problem: the presence of margins for the
reliability-based optimization method has the effect of moving the
location of the optimum towards the conservative side). In particular,
to take into account the uncertainty and design a system that is
reliable and robust, the optimum point has to be moved to the

Fig. 7 Comparison of different standard deviations for the wAfus
parameter.
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conservative domain, generating an increase of about 1.3% of the
maximum take of weight compared to the deterministic optimum.
However, if we chose to solve the deterministic formulation instead
of the probabilistic one, the designer does not control the risk taken;
thus, as he goes along in the design process, hemay need to undertake
multiple redesign iterations if the constraints are not met.
Table 3 allows us to highlight the fact that the deterministic

approach leads to a probability of satisfying the active constraints of
the order of 50% when Monte Carlo experiments are done in the
vicinity of the deterministic optimumby considering uncertainties on
the same variables as in the optimization under uncertainty. Such low
values are not satisfactory because they would in many cases imply
redesign iterations. On the other hand, the probability of satisfying
the active constraints are, as required, 90 or 95% in the case of the
optimization under uncertainty.

VI. Design Parameter Uncertainty

Another possible source of uncertainty in model output results
from modeling inaccuracies on the optimization design variables
themselves. These inaccuracies stem from differences between the
idealized model used in the conceptual design and final design of the
aircraft after all the design phases. For example, the wing area in
conceptual design is derived from simple geometry formulas on a
simple polyhedron. On the built airplane, however, the wing area is
calculated of course on the much more complicated geometry of the
actual wing. So, we will also take into account now the uncertainties
on the design variables: the wing area Swing and the engine thrust at
sea level SLST. The probabilistic problem to solve is the following
one:

8>>>>><
>>>>>:

Find�S�wing; SLST��solution of

min
Swing;Slst

E�MTOW�Swing; SLST; δ�� with Swing; SLST ∈ S

such as∶
COV�MTOW�Swing; SLST; δ�� ≤ α
Prob�Swing; SLST; δ� ≤ 0� ≥ αgi with i � 1; : : : ; 7

(18)

where δ represents the uncertainties on both the design parameters
and the disciplinary models. We consider here an additive uncer-

tainty, δ, i.e., f�x; δ� � f�x� � δwhere δ is a normal probability and
variable standard deviation determined as described in Sec. IV. This
problem is solved by a double-loop procedure: at each point of the
optimization process, a reliability and robustness study is conducted.
To do this, we performed simulations of Monte Carlo: draws of 15
uncertain parameters that have been selected according to the
sensitivity study (Sec. III) and draws of the design parameters (wing
surface and engine thrust at sea level). The set of uncertain design
parameters are modeled as follows:

xincert � xopt � ε�xopt� (19)

where xopt is the parameter value at the current point of the optimiza-
tion process. Thevalue ε�xopt� is the uncertainty determined using the
method presented in Sec. IV, and it follows a normal distribution with
mean zero and a variable standard deviation (dependent on the
location of the current point xopt in the search space) determined from
a historical data base (same database for all the uncertain parameters,
including uncertainties of design parameters). Note that the uncer-
tainties of the design are determined from the database as well. More
precisely, the design parameters can themselves be roughly expressed
as regression models of a certain number of design assumptions (see
Table 1 and Sec. IV). These coarse models are consistent with the
other models used in the conceptual design, in terms of modeling
fidelity. In comparison with the real data derived from the historical
database, we can thus estimate the variability of these design
variables. The estimate of this variability shows that the dispersion is
less than 5% for the Swing parameter and 8% for the SLST parameter.
Once the simulations are done, we can estimate the reliabilities of the
constraints and the robustness of the objective function.
New response surfaces are constructed for the probability of failure

taking into account the modeling uncertainties and the design
variables uncertainties. The result of the probabilistic optimization is
provided in Fig. 8.
It is shown by comparing the optimal designs that the design

parameter uncertainties have a nonnegligible effect on the solution,
i.e., when the design parameter uncertainties are taken into account
the location of the optimum point has moved towards the conser-
vative side (weight increased by a further 0.4%). The uncertainties are
larger, thus introducing an additional margin to ensure that the
aircraft is robust. However, we can see that the impact of the design
parameter uncertainties on both the active constraints is different: one
of the constraints is muchmore sensitive to the parameter uncertainty
than the other constraint. Indeed, the minimum altitude for climb
constraint becomes more critical, i.e., the translation towards the
conservative side is important for this constraint (cf. Fig. 8). On the
other hand, the minimum altitude for buffeting constraint changes
relatively little. This means that to assure the robustness and the
reliability of the aircraft, it is important to take into account the design
variable uncertainties at the conceptual design level as well.

VII. Conclusion

The present paper addresses the problem of optimization under
uncertainty applied to the conceptual aircraft design. Conceptual
aircraft design involves low-fidelity models that are characterized by
significant modeling uncertainty. In this paper we proposed a novel
approach which allows us to update uncertainties from the historical
database at each step of the optimization process. This more accurate
adaptive uncertainty quantification allowed us to take into account
two phenomenon:

Modeling and 
parameter  
uncertainty:
SLST= 93251N
Swing= 133.5m²
MTOW= 76133kg

Modeling 
uncertainty:
SLST= 92094 N
Swing= 133.4 m²
MTOW= 76044 kg
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Fig. 8 Comparison of the optimization with and without design

variables uncertainty.

Table 3 Comparison between the probabilistic optimization and the deterministic optimization

Variable Deterministic optimization Optimization under uncertainties

MTOW 75415.36 kg 76123 kg
Swing 129.35 m2 132.9 m2

SLST 89474.97 N 94022.7 N
Success probability (active constraints) Prob�gclimbceil �Swing; SLST� ≤ 0� � 54.9% Prob�gclimbceil �Swing; SLST� ≤ 0� � 95%

Prob�gbuffetceil �Swing; SLST� ≤ 0� � 51.05% Prob�gbuffetceil �Swing; SLST� ≤ 0� � 90%
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1) The output models are subjected to varying uncertainty
depending on the region inwhich themodel is queried (the amount of
data available varies).
2) Some regions are more poorly predicted by the regression than

others. This adaptive uncertainty quantification is based on a
combination of the regressionvariance prediction and of least squares
errors on Gaussian windows, similar to kernel smoothing.
Through this framework,which takes into account uncertainties on

both model and design variables, an optimization problem under
constraints of robustness and reliability applied to the conceptual
aircraft design was presented. The computational cost was reduced
by replacing the probabilistic constraints with approximate models
(response surfaces) built using Monte Carlo simulations. The
resolution of the problem allowed us to define the additional margins
needed to ensure the levels of robustness and reliability required. It
was shown that design variable uncertainties have an important
impact on the location of the optimum point. Compared to standard
deterministic optimization without a design margin, the results show
quite different design variables and a light increase on weight. This
modest increase in weight allows us to ensure a high reliability and
robustness of the design compared to the unreliable and sensitive
deterministic optimum. Future work involves integrating the optimi-
zation problem under uncertainty within a multi-agent optimization
framework [41], which is expected to solve more efficiently highly
multidisciplinary optimization problems.
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