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Abstract: Machine learning tools have experienced a growing interest in the early 2010s,
providing efficient predictive approaches for artificial intelligence and statistical analysis. These
same prediction methods have also sparked interest in the operations research community
for decision-making based on predictive analysis by exploiting massive histories and datasets.
This study investigates the potential of machine learning tools to predict the feasibility of a
production plan. Production schedules are often not able to adhere to the production plans
because production plans are built without accounting for all the detailed requirements that
arise at the scheduling level. We show that predicting the feasibility of a production plan with
a decision tree yields a precision of around 90% versus 70% in the classical capacity constraints
considered in planning tools.
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1. INTRODUCTION

Production planning is a crucial function in manufacturing
operation management that aims to decide the production
quantity per period and item. The resulting production
plan is the basis to accept customer orders, quote the
customer’s delivery lead time, place raw material and
components orders to suppliers, and adjust the produc-
tion capacity. Production planning is typically a tactical
decision, and it is the input for production scheduling at
the operational level. Often, the planner discovers during
the scheduling that the production capacity is too tight
to implement the production plan. While some planning
methods such as MRPII (Manufacturing Ressource Plan-
ning II) include capacity computation, the computation
of the capacity should be accurate. If the capacity con-
sumption is underestimated, the schedule cannot adhere
to the plan. These infeasible schedules lead to firefighting,
loss of the service level to customers when an order must
be delayed, increased production costs when urgent orders
must be placed to suppliers or urgent machine setups must
be performed.

To ensure adherence to the plan, the capacity consumption
has to be approximated for the period, and the planner
must check whether the whole production can be handled
within the available time or not. However, the consump-
tion of the capacity remains difficult to determine, because
it depends on the types of task to be carried out, the quan-
tities to be produced for the period, and the uncertainties
met during the production. In this work, we propose a
machine learning approach to estimate the feasibility of a
plan with given resources, job characteristics, and produc-
tion lot sizes.

Machine learning approaches are growing in popularity
since the early 2010s, and they have reached a good ability
to predict values by relying on abstract and aggregated
data. The machine learning model proposed in this work
aims to be used during manual planning. While there is
more and more software to automated the creation of the
plan, the human planner remains in charge, and he often
modifies the plan manually. The prediction of the available
capacity is also valuable to accept production orders and to
quote the lead times in make-to-order production systems.
Finally, an accurate estimation of the available production
capacity per period is valuable to deal with disruptions
on the shop floor, which require to manually correct the
plan. In this context, the present work provides a tool to
determine in real-time if the plan created by the planner
is implementable on the shop floor.

This work also aims to serve as a basis for future research,
where we would like to investigate the use of the machine
learning model as a surrogate model within a lot-sizing
problem. The goal is to solve the integrated lot-sizing and
scheduling problems where the complex scheduling model
is replaced with a machine learning model (Dias and Ier-
apetritou, 2019). More precisely, we aim to train a machine
learning method to predict the capacity consumption of
a production period, and to translate this model into a
mixed-integer linear program (Biggs and Hariss, 2017).
To this end, we focus in this paper on the performance
of a random forest classifier for predicting the feasibility
of scheduling problem instances.

In this work, we consider that the scheduling problem
corresponds to a flexible job shop with sequence-dependent
setup times. Our motivation to consider this particular
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1. INTRODUCTION

Production planning is a crucial function in manufacturing
operation management that aims to decide the production
quantity per period and item. The resulting production
plan is the basis to accept customer orders, quote the
customer’s delivery lead time, place raw material and
components orders to suppliers, and adjust the produc-
tion capacity. Production planning is typically a tactical
decision, and it is the input for production scheduling at
the operational level. Often, the planner discovers during
the scheduling that the production capacity is too tight
to implement the production plan. While some planning
methods such as MRPII (Manufacturing Ressource Plan-
ning II) include capacity computation, the computation
of the capacity should be accurate. If the capacity con-
sumption is underestimated, the schedule cannot adhere
to the plan. These infeasible schedules lead to firefighting,
loss of the service level to customers when an order must
be delayed, increased production costs when urgent orders
must be placed to suppliers or urgent machine setups must
be performed.

To ensure adherence to the plan, the capacity consumption
has to be approximated for the period, and the planner
must check whether the whole production can be handled
within the available time or not. However, the consump-
tion of the capacity remains difficult to determine, because
it depends on the types of task to be carried out, the quan-
tities to be produced for the period, and the uncertainties
met during the production. In this work, we propose a
machine learning approach to estimate the feasibility of a
plan with given resources, job characteristics, and produc-
tion lot sizes.

Machine learning approaches are growing in popularity
since the early 2010s, and they have reached a good ability
to predict values by relying on abstract and aggregated
data. The machine learning model proposed in this work
aims to be used during manual planning. While there is
more and more software to automated the creation of the
plan, the human planner remains in charge, and he often
modifies the plan manually. The prediction of the available
capacity is also valuable to accept production orders and to
quote the lead times in make-to-order production systems.
Finally, an accurate estimation of the available production
capacity per period is valuable to deal with disruptions
on the shop floor, which require to manually correct the
plan. In this context, the present work provides a tool to
determine in real-time if the plan created by the planner
is implementable on the shop floor.

This work also aims to serve as a basis for future research,
where we would like to investigate the use of the machine
learning model as a surrogate model within a lot-sizing
problem. The goal is to solve the integrated lot-sizing and
scheduling problems where the complex scheduling model
is replaced with a machine learning model (Dias and Ier-
apetritou, 2019). More precisely, we aim to train a machine
learning method to predict the capacity consumption of
a production period, and to translate this model into a
mixed-integer linear program (Biggs and Hariss, 2017).
To this end, we focus in this paper on the performance
of a random forest classifier for predicting the feasibility
of scheduling problem instances.

In this work, we consider that the scheduling problem
corresponds to a flexible job shop with sequence-dependent
setup times. Our motivation to consider this particular
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job shop environment is its wide popularity in industrial
applications (Blażewicz et al., 1996; Shen et al., 2018). In
a job shop environment, each job has its routing, where a
routing corresponds to successive operations performed by
different machine. Due to the rise of flexible manufactur-
ing environments, modern machines have high flexibility.
This leads to alternative routings for jobs, where some
operations can be performed by more than one machine
(Yang et al., 2016; Candan and Yazgan, 2014). Alterna-
tive routing offers major improvements to the quality of
schedules, and they prevent the whole shop floor from
general breakdowns typically induced by failures of one
bottleneck machine. In addition, real applications of job-
shop scheduling also have to deal with setup times between
jobs, which depend on jobs and also on machines in which
the changeover occurs. Besides its importance in practice,
the flexible job-shop scheduling problem with sequence-
dependent setup times (FJSP-SDST) is a generic model,
and our work may remain valid for special cases (such as
flow shop, simple job shop, . . . ).

This paper is organized as follows. Section 2 provides
a literature review on machine learning approaches for
scheduling. The problem treated in this paper and a
formulation using constraint programming are defined in
Section 3. A description of our approach based on machine
learning is provided in Section 4. Section 5 provides the
numerical experiments carried out to assess our approach,
before concluding in Section 6.

2. LITERATURE REVIEW ON MACHINE
LEARNING APPROACHES FOR SCHEDULING

There exist a wide variety of application of machine
learning in the scheduling literature. The first work to use
machine learning in scheduling (Nakasuka and Yoshida,
1992) seeks to predict the best dispatching rule for a
given instance. This research area is still active nowadays
(Jun et al., 2019; Li and Olafsson, 2005), and researchers
aim to tackle more complex environments, such as job-
shop scheduling problems, or they try to learn abstract
dispatching rules from data obtained through simulation.
These approaches can be seen as a pre-processing phase to
improve the performance of a heuristic method. Machine
learning may also be used as a post-processing phase (e.g.,
Li et al., 2020). When a feasible schedule is found, the
machine learning model predicts if a rescheduling can
improve the current solution.

Very few papers consider the use of machine learning
models to predict either a value for the makespan of a
scheduling problem or the feasibility of a schedule before
given deadlines. In batch processing, machine learning
based approaches have been the main focus of several
papers trying to estimate the makespan. Raaymakers and
Weijters (2003) investigate regression and neural networks
to predict the makespan in a job-shop environment. Sch-
neckenreither et al. (2020) also investigate this approach
using neural networks, and the authors compare the neural
network with other methods using simulation. Both papers
highlighted the robustness of such models, and the poten-
tial of machine learning based approaches in predicting
the lead time. In these papers on batch processing, the
makespan prediction is used to provide quick answers for

orders acceptance. Our study provides further work on
machine learning models for the makespan estimation, by
investigating this approach in a more complex production
environment and using another machine learning model
based on random forest. This type of machine learning
model have also a prospective usage for the integration of
scheduling and production planning problems.

Casazza and Ceselli (2019) and Dias and Ierapetritou
(2019) propose approaches based on machine learning to
integrate planning and scheduling activities. Casazza and
Ceselli (2019) consider an integrated production planning
and scheduling problem. The production planning part
considers a set of jobs with release dates and due dates,
which have to be performed within a given set of peri-
ods. Each job can also be split into two, to make the
assignments easier. For each period, a scheduling problem
with parallel machines is considered and the objective
is to find a feasible assignment of jobs to periods that
minimizes the total number of splits. Dias and Ierapetritou
(2019) propose a similar approach using a discrete state-
task network model for the scheduling part and a lot-
sizing problem for the production planning. Both papers
proposed a model based on machine learning methods
to predict the feasibility of each schedule for each pe-
riod given the corresponding jobs to be performed. The
proposed machine learning model is then converted into
a set of linear constraints and variables and added to
MILP model to substitute the constraints related to the
scheduling part. Dias and Ierapetritou (2019) has proven
the efficiency of such an approach for solving large-scale
instances.

3. PROBLEM DEFINITION

3.1 Description of the problem

In this paper, we focus on a hierarchical production
planning with a planning and a scheduling level. At the
planning level, the planner handles the orders acceptance
by assigning a set of orders to a planning horizon divided
into T time periods (e.g., weeks or months). The orders
are assigned to time periods such that each order is
entirely completed by the shop floor before the end of
the time period. At the scheduling level, the orders are
decomposed into a set of jobs, and these jobs are scheduled
such that the makespan (i.e., the completion time of the
last performed job) does not exceed the end of the time
period. As a consequence, the scheduler has to construct a
schedule for the jobs to be performed within each time
period. The scheduling problem consider in this paper
is a flexible job shop scheduling problem with sequence-
dependent setup times (FJSP-SDST).

The FJSP-SDST is a variant of the well-known Job-Shop
Scheduling Problem, where a set of n jobs J have to be
performed following a routing on a set of m machines M .
Each job i requires to perform ni consecutive operations,
and we denote by Oij the jth operation of a job i. Each
operation Oij can be performed on a subset of machines
Mij ⊆ M , and its processing time pijk gives the number
of time unit required to process Oij on machine k ∈ Mij .
In addition, a setup must be performed on the machine
before to process an operation, and we consider a sequence

dependent setup time skii′ if job i′ is process after job i on
machine k. We also denote by Dk the setup matrix for
machine k, i.e., Dk = (skii′)1≤i≤n,1≤i′≤n. The objective is
to minimize the makespan Cmax (i.e., the completion time
of the last performed operation).

Consequently, before accepting an order, the planner must
determine if the shop floor can handle the production load
associated with this order, which is a hard task. The orders
acceptance requires to consider T instances of the FJSP-
SDST to check if the schedule can accommodate the addi-
tional load. Therefore, our paper presents a methodology
based on machine learning to predict if all jobs in a FJSP-
SDST can be completed within a planning time bucket.

3.2 Problem formulation

Training the machine learning model requires positive
and negative examples, and these examples correspond to
solutions to the FJSP-SDST. To get these solutions, we
use IBM ILOG CPLEX CP Optimizer. The formulation of
the FJSP-SDST with the notations and global constraints
provided by CP Optimizer (IBM, 2021) is as follow:

Variables:

• Iops{ij} : Interval variables representing all possible

operation choices, for each jth operation of job i ∈ J ,
• Imops

{ijkp} : Interval variables for each operation, i.e.,

the jth operation of job i ∈ J , to be performed on
machine k with finite duration p,

• S{k} : Sequence variable for each machine k ∈ M for
all operation interval variable Imops

ijkp ,
• Cmax : Makespan to be minimised, i.e. the latest

ending time among all operations j ∈ ni for all job
i ∈ J .

min Cmax (1)

s.t.

endBeforeStart(Iops{ij}, I
ops
{i(j+1)})

∀i∈J,
∀j∈1..ni−1 (2)

alternative
(
Iops{ij},

{
Imops
{ijkp}| ∀k ∈ Mij

})
∀i∈J,

∀j∈1..ni
(3)

noOverlap(S{k}, D
k) ∀k∈M (4)

max
i∈J

j∈1..ni

(endOf(Iops{ij})) ≤ Cmax (5)

The objective is to minimize the makespan (1). Con-
straints (2) states that the jth operation of each job i must
be performed before its successor j + 1. Constraints (3)
guaranty that each operation j of job i is performed by a
machine in its set of possible alternative Mij . Constraints
(4) ensure that each machine processes at most one op-
eration at a time, and that a setup given by matrix Dk

occurs between each pair of jobs. Note that p corresponds
to the size of interval variable Imops

{ijkp}, and it is set to the

processing time of operation Oij (p = pijk). Therefore,
it should not be considered as an index for this variable.
Inequality (5) sets the variable Cmax to the completion
time of the last performed job.

4. DESCRIPTION OF THE MACHINE LEARNING
BASED APPROACH

4.1 Tree based model

In machine learning, a classifier predicts the class of an
input described with a set of features F . A decision tree
for classification is a classifier with a binary tree structure
(Breiman et al., 1983). To classify a given input, one starts
at the root node and follows the path until reaching a leaf
node. Each node of the tree split the search space into the
two following subtrees, and the path to follow depends on
whether a linear inequality is respected or not. The leaf
node provides the prediction. The training of the decision
tree requires a dataset X of N samples, where each sample
is described by a set of feature values and its outcome. The
training algorithm usually finds the best possible splits by
minimizing the errors between the targeted values and the
prediction.

Fig. 1. Example of a single classification tree trained to
predict a binary class

Figure 1 provides an example of a decision tree. For each
node split, Figure 1 gives the linear condition based on
one feature f ∈ F , the number of samples belonging to
this node, the number of samples belonging to each class,
and, for each leaf node, the class value corresponding to
the value predicted by the tree (here binary values True
or False) for any example arriving in this leaf node. To
predict the class of a given input data x, the method starts
at the root node and browses the tree until it reaches a leaf
node. At each split node, the prediction method selects the
branch according to the binary conditions computed with
the features of x. The prediction corresponds to the class
of the leaf node.

Decision trees have the benefits of being easily explainable
compared to other machine learning methods (such as
Neural Networks or Logistic Regression). As a result, the
human planner can easily understand why the plan is
not feasible, and he can correct it. In addition, these
machine learning model can be converted into a set of
linear constraints, and thus they can be incorporated into
a mixed integer linear program (Biggs and Hariss, 2017).
Therefore, our work open the way to further researches
where the decision tree could approximate the capacity
constraint in planning models.

To provide more accurate predictions, we considered a
method based on decision tree called random forest classi-
fier (Breiman, 2001). Random Forest model belongs to the
ensemble methods, which use the performance of several
estimators and return a prediction based on the average
among all estimators. Since ensemble methods consider
several estimators, they are less prone to overfitting, and
thus they provide a better accuracy than a single esti-
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dependent setup time skii′ if job i′ is process after job i on
machine k. We also denote by Dk the setup matrix for
machine k, i.e., Dk = (skii′)1≤i≤n,1≤i′≤n. The objective is
to minimize the makespan Cmax (i.e., the completion time
of the last performed operation).

Consequently, before accepting an order, the planner must
determine if the shop floor can handle the production load
associated with this order, which is a hard task. The orders
acceptance requires to consider T instances of the FJSP-
SDST to check if the schedule can accommodate the addi-
tional load. Therefore, our paper presents a methodology
based on machine learning to predict if all jobs in a FJSP-
SDST can be completed within a planning time bucket.

3.2 Problem formulation

Training the machine learning model requires positive
and negative examples, and these examples correspond to
solutions to the FJSP-SDST. To get these solutions, we
use IBM ILOG CPLEX CP Optimizer. The formulation of
the FJSP-SDST with the notations and global constraints
provided by CP Optimizer (IBM, 2021) is as follow:

Variables:

• Iops{ij} : Interval variables representing all possible

operation choices, for each jth operation of job i ∈ J ,
• Imops

{ijkp} : Interval variables for each operation, i.e.,

the jth operation of job i ∈ J , to be performed on
machine k with finite duration p,

• S{k} : Sequence variable for each machine k ∈ M for
all operation interval variable Imops

ijkp ,
• Cmax : Makespan to be minimised, i.e. the latest

ending time among all operations j ∈ ni for all job
i ∈ J .

min Cmax (1)

s.t.

endBeforeStart(Iops{ij}, I
ops
{i(j+1)})

∀i∈J,
∀j∈1..ni−1 (2)

alternative
(
Iops{ij},

{
Imops
{ijkp}| ∀k ∈ Mij

})
∀i∈J,

∀j∈1..ni
(3)

noOverlap(S{k}, D
k) ∀k∈M (4)

max
i∈J

j∈1..ni

(endOf(Iops{ij})) ≤ Cmax (5)

The objective is to minimize the makespan (1). Con-
straints (2) states that the jth operation of each job i must
be performed before its successor j + 1. Constraints (3)
guaranty that each operation j of job i is performed by a
machine in its set of possible alternative Mij . Constraints
(4) ensure that each machine processes at most one op-
eration at a time, and that a setup given by matrix Dk

occurs between each pair of jobs. Note that p corresponds
to the size of interval variable Imops

{ijkp}, and it is set to the

processing time of operation Oij (p = pijk). Therefore,
it should not be considered as an index for this variable.
Inequality (5) sets the variable Cmax to the completion
time of the last performed job.

4. DESCRIPTION OF THE MACHINE LEARNING
BASED APPROACH

4.1 Tree based model

In machine learning, a classifier predicts the class of an
input described with a set of features F . A decision tree
for classification is a classifier with a binary tree structure
(Breiman et al., 1983). To classify a given input, one starts
at the root node and follows the path until reaching a leaf
node. Each node of the tree split the search space into the
two following subtrees, and the path to follow depends on
whether a linear inequality is respected or not. The leaf
node provides the prediction. The training of the decision
tree requires a dataset X of N samples, where each sample
is described by a set of feature values and its outcome. The
training algorithm usually finds the best possible splits by
minimizing the errors between the targeted values and the
prediction.

Fig. 1. Example of a single classification tree trained to
predict a binary class

Figure 1 provides an example of a decision tree. For each
node split, Figure 1 gives the linear condition based on
one feature f ∈ F , the number of samples belonging to
this node, the number of samples belonging to each class,
and, for each leaf node, the class value corresponding to
the value predicted by the tree (here binary values True
or False) for any example arriving in this leaf node. To
predict the class of a given input data x, the method starts
at the root node and browses the tree until it reaches a leaf
node. At each split node, the prediction method selects the
branch according to the binary conditions computed with
the features of x. The prediction corresponds to the class
of the leaf node.

Decision trees have the benefits of being easily explainable
compared to other machine learning methods (such as
Neural Networks or Logistic Regression). As a result, the
human planner can easily understand why the plan is
not feasible, and he can correct it. In addition, these
machine learning model can be converted into a set of
linear constraints, and thus they can be incorporated into
a mixed integer linear program (Biggs and Hariss, 2017).
Therefore, our work open the way to further researches
where the decision tree could approximate the capacity
constraint in planning models.

To provide more accurate predictions, we considered a
method based on decision tree called random forest classi-
fier (Breiman, 2001). Random Forest model belongs to the
ensemble methods, which use the performance of several
estimators and return a prediction based on the average
among all estimators. Since ensemble methods consider
several estimators, they are less prone to overfitting, and
thus they provide a better accuracy than a single esti-
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mator. In a random forest classifier, the estimators are
classification trees. Each tree is trained in differently, such
that predictions may differ from one tree to another.

4.2 Features Selection

Although the choice of the machine learning model is an
important step, the prediction performance mainly relies
on noticeable features extracted from a dataset. These
numerical features have to be selected thoroughly since
they play a crucial role in the predictive capability of a
machine learning model. Several raw parameters, such as
the processing time of each operation, directly impact the
makespan of a production plan, and thus its feasibility
over a production period. However, due to the large
number of such parameters, the model may overfit and
lead to poor quality of prediction. Similarly, approximated
values provided by fast heuristics (such as scheduling by
shortest processing times) appear to be promising features.
However, these approximations are too hard to convert
into linear constraints, which can lead to very complex
decision trees for the perspective of a surrogate MILP
model based on random forest.

The idea is to find linear combinations of parameters which
improve the prediction performance of the machine learn-
ing model. After preliminary experiments, we highlighted
several features having promising capabilities for predict-
ing a suitable decision for the respect of the capacity. First,
we define the following parameters:

• oijk : The “operating ratio” for each operation Oij

performed on machine k.
• ok : Estimated number of operation to be performed
on machine k ∈ M .

• smean
k : Average setup times between each pair of jobs
that can be performed on machine k.

• smin
k : Minimum setup times between each pair of jobs
that can be performed on machine k.

The operating ratio oijk estimates the likelihood for op-
eration Oij to be performed on machine k ∈ Mij . Since
flexible operations are more likely to be performed on
machines where the processing time is the lowest, oijk must
be large when the processing time pijk is small. In addition,
the operating ratio must be computed such that:

k∈Mij

oijk = 1.

We compute the operating ratios of each operation Oij

and each machine k ∈ M as follow:

oijk =





0 if k /∈ Mij

1 if Mij = {k}
1

pijk ·


k′∈Mij

1
pijk′

otherwise

The estimated number of operations to performed on
machine k ∈ M is computed based on the operating ratio
as follows:

ok =

i∈J


j∈ni


k∈M

oijk.

Five features based on these parameters have been selected
and computed for our dataset:

• F1 = max
k∈M



i∈J

ni
j=1


Mij={k}

pijk + smin
k


− smin

k



• F2 = max
k∈M



i∈J

ni
j=1

oijk · pijk


+ (ok − 1) · smean

k



• F3 = 1
m


k∈M



i∈J

ni
j=1

oijk · pijk


+ (ok − 1) · smean

k



• F4 = max
i∈J


ni
j=1

min
k∈Mij

{pijk}



• F5 = 1
m


i∈J

ni
j=1

min
k∈Mij

{pijk}

F1 estimates the largest workload among the machine
k ∈ M . The computation of F1 uses a lower bound on
the workload on machine k, and this lower bound sums
the processing time of non flexible operation and the
minimum setup time on machine k. F2 and F3 represent
respectively the maximum and the average estimated
processing time per machine. This estimated processing
time per machine is computed with the operating ratio of
each operation. Finally, F4 and F5 correspond respectively
to the maximum and the average minimum processing
time per job. Note that preliminary experiments showed
that using the estimated processing time per machine as
a feature (rather than taking the average over all machine
in F3) did not yield good prediction.

A1 denotes an approximation of the makespan that we use
to benchmark our approach. A1 is computed as the max-
imum between features the F1 and F4 approximations,
since these two methods are classical lower bounds of the
makespan in job shop scheduling problems (Raaymakers
and Weijters, 2003). F1 and F4 also commonly used as ap-
proximations of the capacity consumption for production
plannings models (Drexl and Kimms, 1997; Stefan Voß,
2006). Since approximation A1 is based on a theoretical
lower bounds of the makespan, it should be noticed that
A1 cannot results in false negatives, i.e., it is not possible to
predict as infeasible a schedule which is labeled as feasible
by using this approximation.

5. COMPUTATIONAL EXPERIMENTS

5.1 Instances generation

We trained the machine learning model with a dataset of
optimally solved FJSP-SDST instances. The benchmark
instances from the literature on Flexible Job Shop Schedul-
ing problem (Hurink et al., 1994; Brandimarte, 1993) con-
tain around 250 instances with different sizes, which is not
large enough to train the random forest model and may
cause underfitting. Thus, we generate two datasets, D1 and
D2, both composed of 5000 instances of FJSP-SDST. Each
instance has been generated using the following rules:

(1) All instances in D1 have 6 jobs, 6 machines and 6
operations per job, and 10 jobs, 10 machines and 10
operations per job for D2.

(2) We only considered sets Mij with a maximum length
of 2. For each operation |Mij | is set to 1 or 2 with
probability 0.5, and the machines in Mij are selected
randomly (all machines have the same probability of

being selected). However, to avoid inconstancy, two
consecutive operations of the same job cannot be
performed on the same machine, excepted if one of
the two operations is flexible.

(3) The processing times per unit of job puijk, the setup

times skii′ and the number of lots lsi have been
randomly generated using a uniform distribution with
support [1, 100], [100, 150], and [0, 10], respectively.
We also set siik = 0 since no setup is required for
operations of the same jobs performed on the same
machine. To compute the processing times per lot for
every job i, we multiply the processing time per unit
of job by its lot-size (i.e., pijk = puijk · lsi, ∀i ∈ J, ∀j ∈
1..ni, ∀k ∈ M). If the lot size of a job i is equal to 0,
this jobs is not considered and any setup times and
processing times involving this job i are set to 0.

We consider the instance sizes of Fisher and Thompson
(1963) with 6 jobs with 6 machines (small instances)
and 10 jobs with 10 machine (medium instances), since
these instances are considered as classical instances of
the literature for the job-shop along with 20 jobs and 5
machines (Jain and Meeran, 1999). However, we were not
able to solve enough data for the training phase with 20
jobs and 5 machines, this size is thus not considered in
this study. The processing times and the setup times are
generated similarly to Shen et al. (2018), but since we
apply a batch-size to each job, the setup times were no
longer significant compared to the resulting makespan, and
we decided to consider larger setup times.

For each instances, the constraint programming model
described in Section 3.2 was solved to optimality with IBM
Ilog CP Optimizer. The experiments were conducted on
a Windows 11 computer running with a Intel Core i7-
1185G7 @ 3.00GHz processor with 32 Go of RAM. Dataset
D1 was generated in 3,502s, with an average computation
time of 0.7s for each instance and D2 was generated in
45,363s with an average of 9s per instance.

dataset mean std min 25% 50% 75% max

D1 2586 580 839 2188 2583 2980 4487

D2 4446 686 1988 3988 4461 4906 7391

Table 1. Dataset’s descriptive statistics around
the makespan

Table 1 provides descriptive statistics of the datasets. 25%,
50%, 75% represent respectively the 25th percentile, the
median, and 75th percentile. Since the median makespan
in our dataset D1 is 2583, we trained our machine learning
model to predict the feasibility of the schedule under
the available capacity. In other words, we considered an
available capacity of 2583 for our shop floor and half of
the instances with a makespan lower than this capacity
were labeled as True, while the remaining half was labeled
as False. The same process was applied on dataset D2.
The random forest model was trained in Python using the
Scikit-Learn methods RandomForestClassifier with
default parameters (Pedregosa et al., 2011) and trained
in less than 2s in average. We randomly sampled 70% of
our dataset for training and the remaining 30% for the
testing phase.

5.2 Numerical results

Model RF A1

Instances D1 D2 D1 D2

Accuracy(%) 91.93 91.00 79.06 73.80
Precision(%) 91.07 91.99 70.40 66.03
Recall(%) 92.90 90.18 100.0 100.0

Table 2. Prediction performance between ran-
dom forest model and other approximation of

capacity consumption

Table 2 report the performance of random forest model
and of the approximation of capacity consumption A1.
The three rows (Accuracy, Precision, and Recall) are the
common metrics used to evaluate a classifier model. The
precision represents the ratio between the number of sched-
ules correctly predicted as feasible and the number total
number of schedules predicted as feasible. The recall gives
the ratio between the number of schedules predicted as
feasible and the actual number of feasible schedules in
the test dataset. The accuracy provides the proportion of
schedules correctly classified as feasible or infeasible. For
the considered problem, a model with high precision is
crucial to limit the number of instances wrongly predicted
as feasible by our model. These infeasible schedules are
undesirable since they lead to the unfeasible production
plan, and this result in a lot of firefighting on the shop
floor. At the operational level, planners employs various
levers to deal with such infeasible plans, but they lead
to larger production cost and lower service level. These
levers includes rejection of some orders, express distri-
bution modes, late deliveries to customer, express raw
material deliveries, . . . (Thevenin et al., 2017). On the
contrary, an approach with low recall would remove a set
of feasible solutions, but the resulting schedules would still
be feasible. Therefore, a low recall may lead to sub-optimal
planning. While a model with low recall results in larger
costs at the planning level, it is preferred over a model
with low precision that leads to infeasible plans.

Table 2 shows that the random forest model gives better
overall results compared to method A1. Although A1 has
better recall (100%) than the random forest, the random
forest has a significantly better precision which is more
important than the recall for our model. The Random For-
est method provides a better approximation of feasibility,
and its predictive performance is stable from dataset D1

to D2, while approximation A1 seems to provide a more
inaccurate approximation of the feasibility as instances
become larger. Finally, the random forest gives a better
trade-off between precision and recall, whereas A1 favors
the recall metrics over precision and accuracy.

6. CONCLUSION

This study investigates the use of machine learning to
predict if a production plan is implementable or not. In
practice, manufacturers often discover a production plan
is not feasible when trying to create the production sched-
ule. Our results show that machine learning tools such
as random forest can provide accurate predictions on the
feasibility of a production plan. We first defined a set of
relevant features for the training of a random forest model.
After training our model, we compared our approach with
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being selected). However, to avoid inconstancy, two
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performed on the same machine, excepted if one of
the two operations is flexible.

(3) The processing times per unit of job puijk, the setup
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we decided to consider larger setup times.

For each instances, the constraint programming model
described in Section 3.2 was solved to optimality with IBM
Ilog CP Optimizer. The experiments were conducted on
a Windows 11 computer running with a Intel Core i7-
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dataset mean std min 25% 50% 75% max
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Table 1. Dataset’s descriptive statistics around
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5.2 Numerical results

Model RF A1
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Table 2. Prediction performance between ran-
dom forest model and other approximation of

capacity consumption

Table 2 report the performance of random forest model
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crucial to limit the number of instances wrongly predicted
as feasible by our model. These infeasible schedules are
undesirable since they lead to the unfeasible production
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floor. At the operational level, planners employs various
levers to deal with such infeasible plans, but they lead
to larger production cost and lower service level. These
levers includes rejection of some orders, express distri-
bution modes, late deliveries to customer, express raw
material deliveries, . . . (Thevenin et al., 2017). On the
contrary, an approach with low recall would remove a set
of feasible solutions, but the resulting schedules would still
be feasible. Therefore, a low recall may lead to sub-optimal
planning. While a model with low recall results in larger
costs at the planning level, it is preferred over a model
with low precision that leads to infeasible plans.

Table 2 shows that the random forest model gives better
overall results compared to method A1. Although A1 has
better recall (100%) than the random forest, the random
forest has a significantly better precision which is more
important than the recall for our model. The Random For-
est method provides a better approximation of feasibility,
and its predictive performance is stable from dataset D1

to D2, while approximation A1 seems to provide a more
inaccurate approximation of the feasibility as instances
become larger. Finally, the random forest gives a better
trade-off between precision and recall, whereas A1 favors
the recall metrics over precision and accuracy.

6. CONCLUSION

This study investigates the use of machine learning to
predict if a production plan is implementable or not. In
practice, manufacturers often discover a production plan
is not feasible when trying to create the production sched-
ule. Our results show that machine learning tools such
as random forest can provide accurate predictions on the
feasibility of a production plan. We first defined a set of
relevant features for the training of a random forest model.
After training our model, we compared our approach with
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an approximation of the capacity consumption commonly
used in production planning tools. The computational
experiments show that the random forest classifier outper-
forms classical capacity restriction in terms of precision
and accuracy. These results confirm the effectiveness of
machine learning approaches for the makespan estimation.
Future works are twofold. First, since only five features
have been selected in the current study, the model can
be improved by refining the features selection by adding
other features with a high potential for determining if
the capacity is reached or not. Second, we will investi-
gate the possibility to integrate the learned model into
MILP model used for lot-sizing. The goal is to better
approximate the capacity restriction and to automatically
generate implementable production plans. Note that we
pay attention to selecting only features that can be easily
formulated as linear formulas, to be easily converted into
linear inequalities.
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ASSISTANT: Learning and robust decision support
system for agile manufacturing environments. IFAC-
PapersOnLine, 54(1), 641–646.

Biggs, M. and Hariss, R. (2017). Optimizing objective
functions determined from random forests. SSRN Elec-
tronic Journal.
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