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A B S T R A C T 

After their birth a significant fraction of all stars pass through the tidal threshold (pr ́ah) of their cluster of origin into the 
classical tidal tails. The asymmetry between the number of stars in the leading and trailing tails tests gravitational theory. 
All five open clusters with tail data (Hyades, Praesepe, Coma Berenices, COIN- Gaia 13, NGC 752) have visibly more stars 
within d cl ≈ 50 pc of their centre in their leading than their trailing tail. Using the Jerabko va-compact-conv ergent-point (CCP) 
method, the extended tails have been mapped out for four nearby 600–2000 Myr old open clusters to d cl > 50 pc . These are on 

near-circular Galactocentric orbits, a formula for estimating the orbital eccentricity of an open cluster being derived. Applying 

the Phantom of Ramses code to this problem in Newtonian gravitation the tails are near-symmetrical. In Milgromian dynamics 
(MOND), the asymmetry reaches the observed values for 50 < d cl /pc < 200 being maximal near peri-galacticon, and can slightly 

invert near apo-galacticon, and the K ̈upper epicyclic overdensities are asymmetrically spaced. Clusters on circular orbits develop 

orbital eccentricity due to the asymmetrical spill-out, therewith spinning up opposite to their orbital angular momentum. This 
positive dynamical feedback suggests Milgromian open clusters to demise rapidly as their orbital eccentricity keeps increasing. 
Future work is necessary to better delineate the tidal tails around open clusters of different ages and to develop a Milgromian 

direct n -body code. 

Key words: gravitation – methods: numerical – Galaxy: kinematics and dynamics – Galaxy: stellar content – open clusters and 

associations: individual: Hyades, Praesepe, Coma Berenices, COIN- Gaia 13, NGC 752, NGC 2419, Pal 5, Pal 14, GD-1 – solar 
neighbourhood. 
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 I N T RO D U C T I O N  

 galaxy is not populated by stars randomly, because observations 
how stars to form predominantly as binary systems in embedded 
lusters which emanate from sub-pc density maxima of molec- 
lar clouds (Kroupa 1995a , b ; Lada & Lada 2003 ; Porras et al.
003 ; Marks & Kroupa 2011 ; Megeath et al. 2016 ; Dinnbier,
roupa & Anderson 2022a ). The properties of these change with 
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alactocentric distance as a result of the varying local gas density
Pflamm-Altenburg & Kroupa 2008 ; Pflamm-Altenburg, Gonz ́alez- 
 ́opezlira & Kroupa 2013 ; Miville-Desch ̂ enes, Murray & Lee 2017 ;
jordjevic et al. 2019 ; Wirth et al. 2022 ). Depending on the
umber of embedded clusters and their masses, a molecular cloud 
an spawn an OB association upon the expulsion of residual gas
e.g. Dinnbier & Walch 2020 ; Dabringhausen, Marks & Kroupa 
022 ). The kinematical state of the molecular cloud (e.g. it may be
ontracting if it formed from converging gas flows) defines if the
B association is expanding, still or contracting, or it may even be
 mixture of these states (e.g. Wright et al. 2019 ; Kuhn et al. 2020 ;
rmstrong et al. 2022 for evidence for complicated kinematics). 
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hus, the expansion due to gas-expulsion of a very young cluster can
e masked by the still-ongoing radial infall of very young stars from
he surrounding molecular cloud. Overall, the embedded clusters
xpand due to expulsion of their residual gas to the sizes of the
bserved open clusters (Banerjee & Kroupa 2017 ). 
Each young open cluster is therefore expected to be surrounded

y a natal cocoon of stars. This natal cocoon consists (i) of coe v al
tars lost through the gas expulsion process forming a tidal tail I
Kroupa, Aarseth & Hurley 2001 ; Moeckel & Bate 2010 ; Dinnbier &
roupa 2020a , b ), and (ii) of stars that are nearly co-e v al and which

ormed in other embedded clusters within the same molecular cloud
Dinnbier & Kroupa 2020a , b ). The shape and extend of (i) and (ii) can
e used to age-date the cluster (Dinnbier et al. 2022b ). Evidence for
atal cocoons around young (30 −300 Myr aged) open clusters have
een found and named ‘coronae’ (Meingast, Alves & Rottensteiner
021 ) or ‘haloes’ (Bouma et al. 2021 ). Extreme examples of such
atal cocoons are the recently disco v ered few-dozen-Myr old relic
laments that are interlaced with very young open clusters (Jerabkova
t al. 2019 ; Beccari, Boffin & Jerabkova 2020 ). As the open cluster
ges, the natal cocoon expands and thins out while the classical
inematically cold tidal tail (referred to as ‘tidal tail II’) develops over
ime through energy-equipartition driven evaporation (Henon 1969 ;
aumgardt, Hut & Heggie 2002 ; Heggie & Hut 2003 ). For velocities
1 km s −1 of the outgoing stars and at an age > 200 Myr, the natal

ocoon has largely dispersed from the ≈200 pc region around the
luster, and the e v aporating open cluster has gro wn a detectable
lassical cold kinematical tidal tail II (Dinnbier & Kroupa 2020a , b ).

The abo v e processes contribute together with resonances and
erturbations to a complex distribution of Galactic disc stars in
hase space. The purpose of this contribution is to consider the
articular process of how stars spill from their open cluster into the
alactic field in view of the newly-disco v ered asymmetry of the

idal tail 1 around the Hyades open cluster by Jerabkova et al. ( 2021 ).
he asymmetry is a potentially decisive diagnostic as to the nature
f gravitation, which drives cluster dissolution through the process
f energy equipartition within the cluster. As demonstrated in an
ccompanying publication (Pflamm-Altenburg et al., in preparation)
n Newtonian gravitation and for a smooth Galactic potential, the
eading and tidal tail must be symmetric within Poisson noise due to
he finite number of stars. The ESO/ESA team (Boffin et al. 2022 ;
erabkova et al., in preparation) has now used the Gaia eDR3 to map
ut the extended tidal tails of three further open clusters (Praesepe,
oma Berenices, NGC 752) with ages in the range 600–2000 Myr.
s calculated by Pflamm-Altenburg et al. (in preparation), the null
ypothesis that the tails of Hyades and NGC 752 show the Newtonian
ymmetry is in tension with the data with more than 6.5 and 1.3 sigma
onfidence, respectively (the leading tail having more stars in both
ases). An asymmetry can arise through a very specific perturbation
Jerabkova et al. 2021 ), but the same perturbation cannot have
ffected the Hyades and NGC 752 in a similar manner. Here the
lternative hypothesis is tested if Milgromian gravitation, which is
on-linear and thus leads to a lopsided equipotential surface around
n open cluster (Wu, Zhao & F amae y 2010 ; Wu et al. 2017 ) can
ccount for the amplitude and sign of the observed asymmetries. This
ontribution constitutes a first e xplorativ e step towards relaxational
tellar dynamics in Milgromian gravitation such that this topic can
nly be superficially skimmed pointing out, where a future significant
esearch effort is needed to deepen our understanding of the observed
henomena on star-cluster scales. 
NRAS 517, 3613–3639 (2022) 

 Unless otherwise stated, ‘tidal tail’ will refer to the classical tidal tail II. 
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v  
In the following, the formation and properties of tidal tails and the
bserv ed e xtended tidal tails of four open clusters are described
Section 2 ). Milgromian gravitation is introduced in Section 3
ith the here-applied simulation method of tidal tails. The models

re documented in Section 4 . Section 5 contains the results with
ection 5.5 outlining the formation and evolution of embedded
lusters through the Newtonian into the Milgromian regime. The
onclusions with a discussion and an outline for future work are
rovided in Section 6 . 

 OPEN  CLUSTERS  A N D  T H E I R  TI DAL  TA ILS  

he tidal tail of a star cluster contains fundamental information on
he nature of gravitation, and a brief discussion of its formation
nd evolution around an initially virialized star cluster in Newtonian
ravitation is provided (Section 2.1 ). This is followed by a discussion
f the extraction and properties of real tidal tails (Section 2.2 ). 

.1 The decomposition of open star clusters into their galaxy 

aumgardt & Makino ( 2003 ) performed direct Newtonian n -body
odels of initially virialized clusters of different initial masses
 oc,0 . These orbit in a spherical logarithmic Galactic potential.
uring the first ≈50 Myr, a cluster looses about 30 per cent of its

nitial mass due to stellar evolution, assuming it to be populated
ith a canonical stellar initial mass function (IMF, Kroupa 2001 ).
fter these ≈50 Myr, an open cluster evolves through two-body-

elaxation-dri ven e v aporation that continuously pushes stars across
ts tidal pr ́ah, thereby populating the classical tidal tail II. The
luster thus slowly dissolves with a near-constant mass-loss rate,
˙
 oc ≈ 0 . 7 M oc , 0 /T diss , 0 . The lifetime of an open cluster starting
ith a canonical IMF (average stellar mass m̄ ≈ 0 . 55M �, table 4-
 in Kroupa et al. 2013 ) can be approximated to be (equation7 in
aumgardt & Makino 2003 ) 

T diss 

Myr 
≈ 0 . 86 G 

− 1 
2 

[
M oc 

m̄ ln (0 . 02 M oc / ̄m ) 

]0 . 79 

, (1) 

here G ≈ 0 . 0045 M 

−1 
� pc 3 Myr −2 is the gravitational constant.

hus, a very young open cluster weighing M oc , 0 = 1300M �( = M oc )
issolves within T diss , 0 ≈ 2 Gyr. The remaining lifetime of an
lready evolved open cluster (with τ oc / T diss,0 � 0.3, τ oc being its
urrent astrophysical age) can be approximated by equation ( 1 )
ith m̄ ≈ 0 . 75M �, because it has lost most of its lowest-mass

tars. The present-day Hyades ( M oc ≈ 275M �) will thus dissolve
n about 800 Myr. These estimates provide a useful orientation of
he life-times of open clusters but are uncertain since they rely on
imulations made for significantly more massive cluster models not
rbing near the mid-plane of the Galaxy, and since individual open
lusters containing n < 10 000 stars follow evolutionary tracks that
ncreasingly diverge from each other for smaller n due to the chaotic
ature of small- n dynamics. 
The escape process of stars from their cluster is complex. Stars

hat are ejected typically leave the cluster faster than the velocity
ispersion after an energetic close encounter with a binary in the
luster. Energy-equipartition-driv en e vapor ation , on the other hand,
roduces stars that hav e v ery small v elocities relativ e to the cluster’s
entre of mass. This two-body-relaxation driven process dominates
y far the flux of stars from the cluster at least after the initial
inary population has been mostly dynamically processed (Kroupa
995c ). Evaporation can be visualized by noting that at any time the
elocity distribution function of stars in the cluster is approximately



Milgrom’s pr ́ah 3615 

Figure 1. Direct Newtonian n -body computation of a Hyades-like star cluster 
with initial mass M oc , 0 = 1235M � and initial half-mass radius r h0 = 2 . 6 pc 
in a realistic Galactic potential. Stellar particles are shown for a series of 
snapshots at 620, 625, 630, 635, 640, 645, 650, 655, 660, 665, 670, 675, 
680, 685, 690, and 695 Myr in Galactic Cartesian coordinates. The Sun is 
marked as a yellow point. The grey arrow points to the Galactic centre, and 
the black arrow is the cluster velocity vector in the corresponding coordinates 
with the Z-axis pointing towards the North Galactic Pole. The time stacking 
of snapshots shows the mo v ement of individual stars to and from the K ̈upper 
epic yclic o v erdensities. The realistic star cluster trajectory with excursions 
out of the Galactic plane does not significantly affect the physical appearance 
of the tails, while projection effects as seen from the Sun do (model M1 and 
figure with permission from Jerabkova et al. 2021 ). 
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axwellian. The high-velocity tail is lost across the pr ́ah and is
onstantly refilled stochastically through two-body relaxation. Even 
fter being formally unbound (having a positive energy), a star can 
rbit many times around and even through the cluster such that each
luster is surrounded by a ‘halo of lingering stars’ waiting to exit
Fukushige & Heggie 2000 ). Whether the star exits near the inner
1 Lagrange point or the outer L2 point is random as it results from

he accumulation of many uncorrelated stellar-orbital perturbations 
Pflamm-Altenburg et al., in preparation). At galactocentric distances 
ignificantly larger than the tidal radius of the cluster, r tid (equation 20
elow), the cluster-centric potential is symmetric in Newtonian 
ravitation and L1 and L2 are equidistantly placed at a distance 
 tid from the cluster centre-of-mass (CCoM) along the line joining 
he galactic-centre–CCoM. Due to this symmetry, the leading and 
railing tails contain the same number of stars to within Poisson
uctuations. This follows from detailed calculations of stellar orbits 
Just et al. 2009 ; Pflamm-Altenburg et al., in preparation) as well
s in the standard linearized treatment of the tidal field (Chumak &
astorguev 2006a ; Ernst et al. 2011 ). The expected symmetry of the

ails is demonstrated in Fig. 1 for a Hyades-like open star cluster. 
Since the dispersion of velocities of the e v aporated stars is

omparable to the velocity dispersion of the cluster, the leading and 
railing tidal tails are kinematically cold. Each star that leaves the 
luster is on its own rosette orbit about the galaxy. While the rosette
rbits belonging to one of the two tails are all ne xt-to-equal, the y are
hase shifted relative to each other and form a complex superposition
attern of stellar density along the tidal tail. The motion of the stars
an be mathematically approximated as epicyclic motions relative 
o the local guiding centre, which is the CCoM, a detailed analysis
eing provided by Just et al. ( 2009 ). The stars accumulate where
heir v elocities relativ e to the local circular v elocity are slowest and
orm regularly-spaced K ̈upper epicyclic overdensities along the tails 
K ̈upper, MacLeod & Heggie 2008 ; Just et al. 2009 ; K ̈upper, Lane &
e ggie 2012 ). F or clusters not on circular orbits, the same holds
xcept that the form of the tails become more complicated and
ime-dependent (K ̈upper et al. 2010 ). The spacing of the K ̈upper
 v erdensities is a sensitive function of the gravitational potential of
he galaxy and of the mass of the cluster which defines the velocity
ispersion of the e v aporating stars: a larger escape speed implies a
arger velocity dispersion and less-well defined and more distantly- 
paced o v erdensities (K ̈upper et al. 2015 ). In Newtonian gravitation,
he K ̈upper o v erdensities are symmetrically and periodically spaced
long the tidal tails. The K ̈upper o v erdensities hav e been detected but
ot recognized as such around the globular cluster Pal 5 (Odenkirchen
t al. 2001 , 2003 , section 7.3 therein), but have been discussed as
uch by Erkal, Koposov & Belokurov ( 2017 ) [see also Section 5.1 ]. A
ully-dissolv ed massiv e-born cluster left the stellar stream GD-1 that
as been observed to harbour strong evidence for regularly-spaced 
 ̈upper o v erdensities (Ibata et al. 2020 ) and Jerabkova et al. ( 2021 )
isco v ered the o v erdensities for the first time around an open cluster
the Hyades). Apart from being gravitational probes in association 
ith the current mass of the cluster, the tidal tails can test whether the

MF is a probabilistic or an optimal distribution function (Wang &
erabkova 2021 ). Once the entire population of stars in the tidal tails
s known, then the rate of dissolution of an open cluster can be tested
or – can the Newtonian expectation (equation 1 ) be confirmed? 

The open cluster leaves, as its remnant, a high-order multiple 
tellar system often made of similar-mass stars (de La Fuente Marcos
998a , b ; Angelo et al. 2019 ), or a dark cluster dominated by stellar
emnants (Banerjee & Kroupa 2011 ). The tidal stream becomes 
ndistinguishable from the Galactic field population as it spreads 
n length and thickens through perturbations (Chumak & Rastorguev 
006a ), a process not yet well understood. Given that embedded
lusters loose between 50 to 80 per cent of their stars through gas
xpulsion (Kroupa & Boily 2002 ; Brinkmann et al. 2017 ), it is to
e expected that about 20 per cent to a half of all stars would have
een released into a galactic field through classical tidal tails II. The
pilling-out of stars from their clusters is thus important for defining
he stellar phase-space distribution function of a galaxy. 

.2 Extraction from the field and the disco v ery of the tidal tail 
symmetry 

etecting and interpreting the properties of tidal tails is easiest for
lusters on circular orbits. By the nature of their origin from the
nter-stellar medium of their host galaxy, young (age τoc � 100 Myr )
o intermediate-aged (100 � τoc / Myr � 1500) open clusters are 
n near-circular orbits within the disc of their galaxy (Chumak &
astorguev 2006b ; Carrera et al. 2022 ). With the Gaia mission, open

tar clusters have become prime targets to analyse tidal tails. 
The tidal tails around open clusters are difficult to extract from the

eld population of the Galaxy, since the tail stars are already part
f the field population and because they comprise a small fraction
f stars in a given volume near an open cluster. Thus, returning to
he example of Fig. 1 , the open cluster with M oc , 0 = 1235M � will
ave ≈1180 stars in the tails at an age of ≈650 Myr, given the cluster
ooses 30 per cent of its mass due to stellar evolution and the average
tellar mass is ≈0 . 5M �. From Fig. 1 , each tail can be approximated as
 cylinder with a radius of 30 pc and a length of 600 pc corresponding
o a volume of 1 . 7 × 10 6 pc 3 . The stellar number density in the Solar
eighbourhood is about one star per pc 3 such that the one-sided tail
olume contains about 1 . 7 × 10 6 field stars while consisting of 590
x-cluster stars. 

The members of a dissolving cluster that are still close to the
luster have nearly parallel velocity vectors such that their proper 
MNRAS 517, 3613–3639 (2022) 
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otion directions when plotted as great circles on the celestial sphere
ntersect at two opposite convergent points. Using this convergent
oint (CP, Str ̈omberg 1939 ; de Bruijne 1999 ; van Leeuwen 2009 )
ethod to identify co-moving stars in the Gaia DR2, the parts of

he tails closest to their clusters have been found around the Hyades
Meingast & Alves 2019 ; R ̈oser, Schilbach & Goldman 2019 ), the
raesepe (R ̈oser & Schilbach 2019 ) and Coma Berenices (F ̈urnkranz,
eingast & Alves 2019 ; Tang et al. 2019 ). These three clusters have

imilar intermediate-ages (Table 1 ) such that the stars born in them
o not stand-out from the field population in a colour-magnitude
iagram. They are close-by to the Sun within 190 pc such that the
aia data are no w allo wing the tidal tails to be extracted from the
ackground field population. Using the CP method, the tails of the
yades (fig. 1 in Meingast & Alves 2019 ; fig. 3 in R ̈oser et al.
019 ), Coma Berenices (fig. 2 in F ̈urnkranz et al. 2019 ; fig. 7 in
ang et al. 2019 ), and the Praesepe (fig. 2 in R ̈oser & Schilbach
019 ) have been mapped out to distances of about d cl ≈ 30–170 pc
rom their clusters. All leading tails are more populated than the
railing tails. In addition, Bai et al. ( 2022 ) report the tidal tails of the
pen cluster COIN- Gaia 13, which is about 513 pc distant, has an
ge of about 250 Myr and a mass of about 439M �. Its leading tail
lso appears to contain more stars than its trailing tail (their fig. 4).
iven the importance of mapping out tidal tails for the fundamental
uestions noted abo v e, it would be desirable to trace the tails to their
nd tips. But the CP method cannot pick-up stars in the extended tails
ecause their space motions differ systematically from the CCoM. 
The new compact convergent point method (CCP) introduced

y Jerabkova et al. ( 2021 ) uses the information that a tidal tail
s a causally correlated but extended kinematical structure. The
erabkova-CCP method uses direct n -body computations of each
pen cluster to quantify a transformation which maps the extended
idal tail phase-space structure into a compact configuration for
tars that belong to the structure. This allows extraction of strong
andidates from the background field population even to the tips of
he tidal tails. The K ̈upper o v erdensities were found for the first time
or an open cluster using this method (Jerabkova et al. 2021 ). The
CP method is not v ery sensitiv e to the exact dynamical age of the

o-designed model since the tails develop slowly and on a much
onger time-scale than the present-day half-mass crossing time in the
luster (being about 10 Myr for the Hyades). 

How confidently are the extended tidal tails mapped out using the
ew CCP method? The CCP method uses the older CP method as
 benchmark. The CP method is essentially a zeroth-order approxi-
ation as it assumes the tail stars to share the same space motion as

he bulk of the cluster. The CCP method relies on an n -body model
f the star cluster to have been evolved to its present-day position
nd velocity such that the calculated tidal tails are used to filter out
rom the Gaia data, those stars that match, within a tolerance, the
hase-space occupied by the model tails. In this procedure the zeroth
rder approximation in the model needs to match the CP-derived tidal
ails exactly, therewith enforcing a strict anchor for the CCP method.
ue to uncertainties in the orbit determination the final model needs

o be adjusted in position and velocity (the same shift in 6D space
or all stars in the model) to agree with the real cluster position.
his adjusted model is then compared to the tidal tails reco v ered
ith the CP method. The details are documented in Jerabkova et al.

 2021 ). It will be important to continue testing the CCP method with
he newer Gaia DR3 and DR4 including complementary data (e.g.
adial velocities, stellar spin rates, chemical tagging) and further
 -body models to more comprehensively quantify the degree of
ncertainty, bias, and large-scale completeness in the derived tidal
ails. 
NRAS 517, 3613–3639 (2022) 
The CCP method has been applied to the the similarly-aged
600 −800 Myr) open clusters Hyades (Jerabkova et al. 2021 ),
raesepe and Coma Berenices (Jerabkova et al., in preparation). The
xtracted tidal tails are shown in Fig. 2 . Boffin et al. ( 2022 ) applied
 slightly amended Jerabkova-CCP method to the ≈1.75 Gyr old
pen cluster NGC 752, finding the tails to be extended for at least
60 pc from tip to tip and the leading tail to also contain more stars
han the trailing one. 

In summary, it is noteworthy that all five open clusters (Hyades,
raesepe, Coma Berenices, COIN- Gaia 13 and NGC 752) which
ave tail data have the leading tail more populated than the trailing tail
ithin a cluster-centric distance of d cl ≈ 50 pc . To avoid the halo of
nbound stars lingering around each cluster and numerical resolution
ontraints, we here only study the tail asymmetry in the distance
ange 50 < d cl /pc < 200 for the three similarly-aged clusters Hyades,
raesepe and Coma Berenices with corresponding data (Section 2.3 ),
 ut the ca veat be added that the results on Praesepe and Coma Ber
re preliminary. The NGC 752 cluster is much older, further from
s and the tail data only reach to d cl ≈ 130 pc , such that this cluster
s not currently accessible to the MOND models with the available
pproximative means, as discussed below. 

.3 Properties of the Hyades, Praesepe, Coma Berenices, 
GC 752 

n order to take the first step towards constraining the possible origin
or the observed tail asymmetry evident in the previous work using
he CP method (Section 2.2 ) and the new results applying the CCP

ethod (Fig. 2 ), the known data on the four clusters with CCP-
xtracted tail data are collated in Table 1 . 

The table lists the positions and velocities of the four clusters, and
lso different estimates for their orbital properties in the Galactic po-
ential. The true orbits are somewhat uncertain because the Galactic
otential is uncertain. Two methods are applied to estimate the orbital
ccentricity for each cluster: The first method (Pflamm-Altenburg
t al., in preparation) assumes the Galactic potential as given in
llen & Santillan ( 1991 ). Each cluster is integrated backwards with
 time-symmetric Hermite method (Kokubo, Yoshinaga & Makino
998 ) for the nominal age as given in Table 1 . For this purpose, the
bserved postions and velocities of the star clusters in the equatorial
ystem are converted into a Galactic inertial rest frame using a
olar position of ( −8300, 0, 27 pc) and a velocity of 11.1, 232.24,
.25 km s −1 , as in Jerabkova et al. ( 2021 ). This provides the most
ecent peri- and apo-galacticon distances, R peri , R apo , respectively,
nd the maximum excursion from the Galactic mid-plane, Z max . The
rbital eccentricity, e , follows from 

 = ( R apo − R peri ) / ( R apo + R peri ) . (2) 

n alternative estimate of the orbital eccentricity, e snap , follows from
he current position and velocity data of the cluster, i.e. from the
resent-day snapshot. The method assumes the Galaxy has a flat
otation curve, the details being provided in Appendix A. 

In order to focus on the parts of the tidal tails closest to the
lusters but sufficiently far to a v oid the halo of lingering stars
Section 2.1 ), and to be outside the tidal radius (equation 20 ) of
he models developed below, the number of stars is counted in
he leading and trailing tails in the distance range 50–200 pc from
he clusters. That the K ̈upper o v erdensities are located within this
istance in the real open clusters (e.g. the first K ̈upper o v erdensity
s expected to be, in Newtonian-models at about d cl = 130 pc for
he Hyades, Fig. 1 ), does not affect the ratio since the stars drift
long the tail and through the o v erdensity which only very slowly
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Table 1. The present-day cluster parameters for the Hyades, Praesepe, Coma Berenices, and NGC 752. These are from top to bottom: alternative name, right 
ascension (RA), declination (DEC), both epoch J2000), and parallax, � of the cluster’s centre, it’s distance from the Sun, d , and proper motion in RA, μα∗ in 
DEC, μδ , and line of sight velocity, v los . Assuming the Galactic potential of Allen & Santillan ( 1991 ) and the Solar position ( R GC � = 8300 pc ) and velocity 
v ector as giv en in Jerabko va et al. ( 2021 ): the v elocity components V X , V Y , V Z and the total velocity or speed, v tot , current Galactocentric distance, R , its 
last apo-, R apo , and last peri-galactic distance, R peri , the last maximum orbital e xcursion a way from the Galactic midplane, Z max , the orbital eccentricities, e 
(equation 2 , obtained by full orbit integration in the Galactic potential from Allen & Santillan 1991 ), e snap (app) (obtained from the current postion and velocity 
vector and the approximative solution for a flat rotation curve with v circ = 220 km s −1 , see Appendix A), and e snap (num) (obtained from the current postion and 
v elocity v ector and the Newton–Raphson solution, see Appendix A), (Section 2.3 ), and the sign of the Galactocentric radial velocity component ( + 1 = receding, 
−1 = approaching the Galactic centre). The constrained age range is given by τ oc and the stellar mass is M oc within the tidal radius r tid (equation 20 ). The 
half-mass radius is r h . The MOND radius (equation 13 ) is r M 

. The number of stars found using the Jerabkova-CCP method in the cluster and in the tidal tail II 
are, respectively, N tot , N tidal . N lead , and N trail stars and in the leading and trailing tails, respectively. Within the distance 50–200 pc, N lead (50 −200 pc) of these 
stars are in the leading tail and N trail (5 −200 pc) in the trailing tail, the ratio of these being given by q 50 −200 pc . The following numbers assume the cluster has 
a present-day stellar mass M oc : The internal acceleration is a int (equation 9 ), the external acceleration (equation 8 ) is a ext,kin = a bulge + a disc + a halo (adopting 
here v circ = 250 km s −1 in equation 8 ; this includes the total gravitational acceleration in Milgromian or equi v alently in Ne wtonian gravitation with the dark 
matter halo such that the rotation curve is as shown in Fig. 4 ), and a ext,bary = a bulge + a disc (i.e. only Newtonian-baryonic without the phantom dark matter halo, 
Fig. 4 ). The line-of-sight (1D) velocity dispersion in Milgromian gravitation is σM,iso,los assuming the cluster is isolated (equation 10 ) and σM,ef,los assuming it 
is situated within an EF given by a ext,kin (equation 11 ). The Newtonian line-of-light (1D) velocity dispersion is equation ( 11 ) with G = G eff . 

Name Hyades Praesepe Coma Berenices NGC 752 

alt. names Mel 25 Mel 88, M44, NGC 2632 Mel 111 Mel 12 
RA(J2000) 04h 31min 56.4s (1) 08h 40min 12.9s (3) 12h 25min 06s (4) 01h 56min 39.21s (11) 
DEC(J2000) 17.012 ◦ (1) 19.621 (3) 26.100 ◦ (4) 37.795 ◦ (11) 
�/ mas 21.052 (2) 5.361 (3) 11.640 (2) 2.281 (11) 
d/ pc 47.5 186.5 85.9 438 
μα∗/ mas yr −1 101.005 (2) −36.090 (3) −12.111 (2) 9.77 (11) 
μδ/ mas yr −1 −28.490 (2) −12.919 (3) −8.996 (2) −11.78 (11) 
v los / km s −1 39.96 (2) 35.84 (2) −0.52 (2) 8.2 (11) 

( V X , V Y , V Z ) / pc Myr −1 ( −32.01, 212.37, 6.13) ( −32.56, 216.53, −2.74) (8.92, 231.78, 6.29) ( −8.37, 221.02, −13.10) 
V tot / pc Myr −1 220.3 219.0 232.0 221.6 
( X , Y , Z )/pc ( −8344.44, 0.06, 10.22) ( −8441.57, −68.90, 127.03) ( −8306.71, −5.91, 112.44) ( −8294.05, 275.07, −158.408) 
R /pc 8344.4 8441.9 8306.7 8298.6 
R apo /pc 9013.4 9060.4 8937.4 8604.7 
R peri /pc 7311.7 7375.0 8217.7 7746.8 
Z max /pc −63.8 130.8 −136.0 213.4 
e 0.104 0.103 0.042 0.052 
e snap (app) 0.115 0.114 0.038 0.0567 
e snap (num) 0.105 0.103 0.041 0.0538 
d R GC /d t (sign) + 1 + 1 −1 + 1 

τoc / Myr 580–720 (10) 708–832 (6) 700–800 (9) ≈1.75 (11) 
M oc /M � 275 (5) 311 (6) 112 (8) 379 (11) 
r h /pc 4.1 (5) 4.8 (6) 3.5 (7) 5.3 (11) 
r tid /pc 9.0 (5) 10.77 (6) 6.9 (9) 9.4 (11) 
r M 

/pc 0.57 0.61 0.36 0.67 
N tot 862 (1) 1170 (12) 730 (12) 640 (11) 
N tidal 541 (1) 833 (12) 640 (12) 298 (11) 
N lead 351 (1) 384 (12) 348 (12) 163 (11) 
N trail 190 (1) 449 (12) 292 (12) 135 (11) 
N lead (50 –γ pc ) 162 ( γ = 200) 87 ( γ = 200) 133( γ = 200) 56( γ = 130) 
N trail (50 –γ pc ) 64( γ = 200) 140( γ = 200) 111( γ = 200) 43( γ = 130) 
q 50 −γ pc 2.53 ± 0.37( γ = 200) 0.62 ± 0.08( γ = 200) 1.20 ± 0.15( γ = 200) 1.30 ± 0.24( γ = 130) 

a int / pc Myr −2 0.037 0.030 0.021 0.030 
a ext, kin / pc Myr −2 7.5 7.4 7.5 7.5 
a ext, bary / pc Myr −2 4.1 4.1 4.2 4.3 
σM , iso , los / km s −1 0.69 0.71 0.55 0.75 
σM , ef, los / km s −1 0.29 0.28 0.20 0.28 
σN , los / km s −1 0.22 0.22 0.15 0.23 

Notes . References : (1) Jerabkova et al. ( 2021 ), (2) Gaia Collaboration ( 2018 ), (3) Cantat-Gaudin et al. ( 2018 ), (4) Dias et al. ( 2014 ), (5) R ̈oser et al. ( 2011 ), (6) 
R ̈oser & Schilbach ( 2019 ), (7) Krause et al. ( 2016 ), (8) Kraus & Hillenbrand ( 2007 ), (9) Tang et al. ( 2019 ), (10) R ̈oser et al. ( 2019 ), (11) Boffin et al. ( 2022 ), 
(12) Jerabkova et al. (in preparation). 
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hifts closer to the cluster as the cluster e v aporates (Section 2.1 ). The
umber ratio of leading to trailing tail stars in the distance range 50–
00 pc, q 50–200 pc is listed in Table 1 . The Hyades and NGC 752 show
 similar asymmetry with the leading tail containing, respectively, 
.53 ± 0.37 and 1.30 ± 0.24 times as many stars than the trailing tail
etween, respectively, d cl = 50 and 200 pc and 50 to 130 pc from the
CoM. This is in 6.5 sigma tension for the former with Newtonian
odels assuming the Hyades orbits in a smooth axisymmetric 
MNRAS 517, 3613–3639 (2022) 
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M

Figure 2. The classical tidal tails II extracted from the Gaia eDR3 using the CCP method by Jerabkova et al. ( 2021 ) for the Hyades, and for Coma Berenices 
and Praesepe by Jerabkova et al. (in preparation) in the three projections in Galactic Cartesian coordinates. The Galactic centre is towards positive X and Galactic 
rotation points towards positive Y . The coordinate system is anchored at ( X, Y , Z) = (0 , 0 , 0) pc and the Sun is the filled yellow circle at (0, 0, + 27) pc. The 
centre of each cluster is indicated by the filled red dot. Note that Coma Berenices lies almost directly abo v e the Sun towards the Galactic north pole. The arrows 
show the full orbital and peculiar motions of each cluster with a length corresponding to V X , Y , Z in Table 1 . The middle panel does not show the velocity arrows 
as these are directed mostly into the plane. 
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llen & Santillan ( 1991 ) Galactic potential (Pflamm-Altenburg et al.,
n preparation). 

The observed degree of asymmetry for the Hyades can be obtained
hrough an on-going encounter with a dark lump of mass ≈10 7 M �
Jerabkova et al. 2021 ). This is a reasonable hypothesis to explain
he asymmetry for one cluster. But such a dark lump is not observed
n the form of a molecular cloud (fig. 11 in Miville-Desch ̂ enes et al.
017 ; the Sun and Hyades cluster lying within the local cavity of
ow density, high-temperature plasma of radius ≈150 pc, Zucker
NRAS 517, 3613–3639 (2022) 
t al. 2022 ), and if it were a dark-matter subhalo, a similar type
f encounter with a similar geometry and timing would have had
o have happened also for NGC 752 simultaneously at the present
ime in the immediate vicinity of the Sun. This is unlikely (with
ark matter not having been detected and probably not existing
roupa 2015 ; Roshan et al. 2021 ; Asencio et al. 2022 ). With no

orresponding perturbation in the local phase-space distribution of
eld stars having been reported, a perturbation being the origin for

he observed asymmetries is not further considered in the following.
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 M I L G RO M I A N  G R AV I TAT I O N  A N D  OPEN  

TAR  C LUSTER S  

iven that the observed asymmetry between the leading and trailing 
ails of open clusters appears to be difficult to be explained in Newto-
ian gravitation, the asymmetry problem is now studied in a modern 
on-relativistic theory of gravitation. This section contains a brief 
ntroduction to M ilgr o mia n D ynamics (MOND), the revised Poisson 
quation (Section 3.1 ), its implication for the equipotential surface 
round a gravitating body and for open star clusters (Section 3.2 ). 

.1 The generalized Poisson equation and the PoR code 

he standard (Newtonian) Poisson equation, 

� 
 · [ � ∇ φN ] = 4 πGρb , (3) 

llows the position vector, � R , dependent phase-space baryonic mass 
ensity, ρb ( � R ), of the cluster plus hosting galaxy to generate the
ewtonian potential, φN ( � R ), the ne gativ e gradient of which provides

he acceleration at � R . 
Milgrom ( 1983 ) extended the non-relativistic formulation of 

ewton/Einstein beyond the Solar system by invoking dynamics 
ata, which had become available for disc galaxies a few years prior to 
983, but decades after Einstein ( 1916 ). Milgrom ( 1983 ) conjectured
hat gravitational dynamics changes to an ef fecti vely stronger form
hen the gradient of the potential falls below a critical value, 2 a 0 ≈
 . 8 pc Myr −2 , which appears to be a constant in the local Universe
ut may be related to an energy scale of the vacuum and to the
xpansion rate of the Universe (for re vie ws see Sanders & McGaugh
002 ; Scarpa 2006 ; Sanders 2007 , 2015 ; F amae y & McGaugh 2012 ;
ilgrom 2014 ; Trippe 2014 ; Merritt 2020 ; Banik & Zhao 2022 ,

he latter containing discussions of relativistic formulations that are 
onsistent both with the cosmic microwave background (CMB) and 
he speed of gravitational waves.). 3 

Energy- and momentum conserving time-integrable equations of 
otion of non-relativistic gravitating bodies became available 

hrough the disco v ery of ‘a quadratic Lagrangian’ (AQUAL) as
 generalization of the non-relati vistic Ne wtonian Lagrangian 
y Bekenstein & Milgrom ( 1984 ). This lead to the non-linear
QUAL-MOND Poisson equation that is related to the well-known 
-Laplace operator, 

� 
 ·
[ 

μ

( 

| � ∇ � | 
a 0 

) 

� ∇ � 

] 

= 4 π G ρb , (4) 

here μ( x ) → 1 for x = | � ∇ � | /a 0 → ∞ and μ( x ) → x for x →
, the transition function, μ( x ), being deri v able from the quantum
acuum (Milgrom 1999 ). Observational data show the value of 
ilgrom’s constant a 0 to be 0.9 × 10 −10 < a 0 /(m/s 2 ) < 1.5 × 10 −10 

Gentile, F amae y & de Blok 2011 , i.e. a 0 ≈ 3 . 8 pc Myr −2 ). 
Equation ( 4 ) allows ρb ( � R ) to generate the full Milgromian poten-

ial, � ( � R ), the ne gativ e gradient of which pro vides the acceleration as
n standard gravitation. Solving this generalized Poisson equation in 
egions of high acceleration recovers the Newtonian potential ( μ = 
 Throughout this text and depending on the context, the unit for velocity is 
c Myr −1 or km s −1 , noting that 1 pc Myr −1 = 0.9778 km s −1 ≈ 1 km s −1 to 
 sufficient approximation. 
 The interpretation of MOND as a generalized-inertia theory is an alternative 
o interpreting MOND as a theory of gravitation, and is related to Mach’s 
rinciple, but has not been developed as a computable theory (Milgrom 2014 ; 
ilgrom 2022 ). Loeb ( 2022b ) points out an implication for space travel. 

2  

n
t

4

c
‘
m

 retrieving equation 3 ), while in low-acceleration regions where the
radient of the potential is smaller than a 0 , the acceleration comes
ut to be stronger. As a consequence of the non-linear nature of the
eneralized Poisson equation, the boundary conditions differ to those 
n Newtonian gravitation and � depends on the external acceleration 
rom the mass distribution in the neighbourhood. The rotation curve 
f a non-isolated disc galaxy of baryonic mass M b within an external
eld (EF) will decrease with increasing galactocentric distance, while 

t is constant for an isolated (no EF) disc galaxy of the same baryonic
ass (Haghi et al. 2016 ; Chae et al. 2020 ). In other words, the

solated galaxy has a larger ef fecti ve-Ne wtonian gravitational mass, 4 

 grav,iso , than the non-isolated galaxy ( M grav,niso ), generating around
tself at large | � R | a spherical logarithmic potential � ( � R ). In both
ases though, M grav > M b with M grav,iso > M grav,niso . This effect on �
s called the ‘external field effect’ (EFE) and causes self-gravitating 
ystems to become ef fecti vely Ne wtonian when the external acceler-
tion is stronger than the internal acceleration. The EFE has been
bservationally confirmed with more than 5 σ confidence (Chae 
t al. 2020 , 2021 , see also Haghi et al. 2016 ; Hees et al. 2016 ). The
xternal field is also present in Newtonian gra vitation b ut because the
otentials add linearly, it can be subtracted and has no influence on
he internal dynamics of a self-gravitating system falling within the 
xternal field. In Milgromian gravitation on the other hand, due to
he generalized Poisson equation (equation 4 ), the internal dynamics 
epends on this external field by non-linearly changing the ef fecti ve-
ewtonian gravitational masses of the constituents in dependence of 

heir location within the system. The strong equi v alence principle is
hus not obeyed in Milgromian gravitation and the internal physics of
alling bodies depend on their gravitational environment. Oria et al. 
 2021 ) discuss the EFE in the context of the mass distribution in the
ocal Cosmological Volume. 
Equation ( 4 ) can be readily solved using well-known methods if

he distribution of matter, ρb , can be approximated as a continuum,
hich is equi v alent to the system in question being ‘collision-less’,
r synonymously, the system having a two-body relaxation time 
onger than a Hubble time (Kroupa 1998 ; Forbes & Kroupa 2011 ;

isgeld & Hilker 2011 ). Galaxies are collision-less systems such 
hat particle-mesh-grid-based methods can be used to calculate the 
ow of phase-space mass density. In Newtonian gravitation, the 
istribution of discrete particles can be combined in discrete spatial 
rid cells in which the mass density, ρb ( � R ), is thusly defined. The
tandard Newtonian potential, φN ( � R ), can thereupon be computed 
y solving the Poisson equation (equation 3 ) on the discrete grid
sing different efficient techniques. Once the potential is known in 
ach cell, the Newtonian acceleration, � a ( � R , t) = −� ∇ φN ( � R , t), can
e computed for each grid point and thus for each particle at its
ocation by interpolation, to finally advance each particle through 
osition-velocity space by one step in time. This process is repeated
fter each time-step to mo v e a Newtonian system forwards in time. 

A collision-less n -body code based on solving equation ( 4 ) on
 spherical-coordinate grid for isolated systems was developed by 
ondrillo & Nipoti ( 2009 ). This code has been applied to a number
f star -cluster -rele v ant problems including the EFE (Haghi et al.
009 ; Sollima et al. 2012a ; Wu & Kroupa 2013 , 2018 , 2019 ) but is
ot usable here as the spherically-symmetrical grid does not allow 

he tidal tails to be followed in sufficient detail. 
MNRAS 517, 3613–3639 (2022) 

 Note that in MOND there is no ‘gravitating mass’ beyond the mass 
ontributed by the particles in the standard model of particle physics, and 
ef fecti ve-Ne wtonian gravitational mass’ is not a true gravitating mass but a 
athematical formulation assuming Newtonian gravitation. 
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The computational burden for calculating � ( � R ) has been reduced
ignificantly by the development of a quasi-linear formulation
f MOND (QUMOND, Milgrom 2010 ), which requires to solve
nly linear differential equations, with one additional algebraic
alculation step, allowing a quick and efficient implementation
n existing particle-mesh n -body codes. The generalized Poisson
quation in QUMOND is 

 

2 � ( � R ) = 4 πGρb ( � R ) + 

� ∇ · [ ̃  ν( | � ∇ φN | /a 0 ) � ∇ φN ( � R )] , (5) 

here ̃  ν( y) → 0 for y 
 1 (Newtonian regime) and ̃  ν( y) → y −1 / 2 

or y � 1 (Milgromian regime; note that μ and ̃  ν are algebraically
elated, see F amae y & McGaugh 2012 ; Milgrom 2014 ) with y =
 

� ∇ φN | /a 0 . This means that the total Milgromian gravitational poten-
ial, � = φN + � ph , can be divided into a Newtonian part, φN , and an
dditional phantom part, � ph . The matter density distribution, ρph ( � R ),
hat would, in Newtonian gravitation, yield the additional potential,
 ph ( � R ), and therefore obeys ∇ 

2 � ph ( � R ) = 4 πGρph ( � R ), is known in
he Milgromian context as the phantom dark matter (PDM) density, 

ph ( � R ) = 

1 

4 πG 

� ∇ · [ ̃  ν( | � ∇ φN ( � R ) | /a 0 ) � ∇ φN ( � R )] . (6) 

DM is not real matter but a mathematical description helping to
ompute the additional gravity in Milgrom’s formulation, giving
t an analogy in Newtonian dynamics. In the context of the Local
osmological Volume, Oria et al. ( 2021 ), calculate regions with
ph < 0 that may be identifiable with weak lensing surv e ys. This
hantom mass density does not take part in the time-integration
nd does not introduce Chandrasekhar dynamical friction into the
ystem. In the abo v e terminology, M oc,grav = M oc + M oc,ph > M oc .
he PDM density that would source the Milgromian force field in
ewtonian gravity can thus be calculated directly from the known
aryonic density distribution, ρb ( � R ). A grid-based scheme can be
sed to calculate ρph ( � R ) from the discrete Newtonian potential, φi,j,k 

N 

see equation 35 in F amae y & McGaugh 2012 , and also Milgrom
010 ; Gentile et al. 2011 ; L ̈ughausen et al. 2013 ; L ̈ughausen,
 amae y & Kroupa 2014 , L ̈ughausen, F amae y & Kroupa 2015 and
ria et al. 2021 ). Once this source of additional acceleration is
nown, the total (Milgromian) potential can be computed readily
sing the Poisson solver already implemented in the grid-based code.
The abo v e Q UMOND technique w as implemented independently

y L ̈ughausen et al. ( 2015 ) and Candlish, Smith & Fellhauer ( 2015 )
nto the existing RAMSES code developed for Newtonian gravitation
y Teyssier ( 2002 ). RAMSES employs an adaptively refined grid
tructure in Cartesian coordinates such that regions of higher density
re automatically resolved with a higher resolution. It computes the
ewtonian potential φN ( � R ) from the given baryonic mass-density
istribution, ρb ( � R ), i.e. it solves the discrete Poisson equation (equa-
ion 3 ). In the Phantom of Ramses (PoR) code, L ̈ughausen et al.
 2015 ) added a subroutine, which on the adaptive grid computes
he PDM density from the Newtonian potential (equation 6 ) and
dds the (mathematical) DM-equi v alent density to the baryonic one.
he Poisson equation is then solved again to obtain the Milgromian
otential, � = φN + � ph , i.e. the ‘true’ (Milgromian) potential, which
s used to integrate the stellar particles in time through space (each
tellar particle experiencing the acceleration � a star ( � R ) = −� ∇ � ( � R ))
nd to solve the Euler equations for the dynamics of the gas. 

Although any interpolating function can in principle be chosen,
he PoR code adopts as the default interpolating function 

 ( y) = −1 

2 
+ 

(
1 

4 
+ 

1 

y 

) 1 
2 

, (7) 
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nd has already been used on a number of problems (for the manual
nd description see Nagesh et al. 2021 ). 

By employing a Cartesian grid, the PoR code is suited to study
he leakage of stellar particles across a cluster’s pr ́ah and to follow
he tidal tails with an application to this problem by Thomas et al.
 2018 ) accounting for the observed length asymmetry between the
eading and trailing tail of the globular cluster Pal 5. 

.2 Open clusters 

.2.1 General comments 

n contrast to galaxies, open star clusters are ‘collisional’ systems
n which the two-body relaxation time is significantly shorter than
ne Hubble time, τH , i.e. in which the thrive towards energy-
quipartition plays a decisive evolutionary role. For open clusters,
he dissolution time (equation 1 ) is shorter than the Hubble time,
 diss < τH . The evolution of an open cluster therefore needs to
e calculated through the direct star-by-star accelerations. Due to
he simplifying linear-additivity of forces in Newtonian gravitation,
dvanced computer codes have been developed for this purpose
Aarseth 1999 ; Aarseth, Tout & Mardling 2008 ; Aarseth 2010 ;
ortegies Zwart et al. 2013 ; Wang et al. 2020 ). With these codes,

t has been possible to solve the problem why the binary-star fraction
n the Galactic field is 50 per cent, while it is about 100 per cent
n star-forming regions (Kroupa 1995a , b ; Marks & Kroupa 2011 ),
o infer that the Pleiades cluster formed from a binary-rich Orion
eb ula Cluster -like precursor (Kroupa et al. 2001 ) with multiple

tellar populations (Wang, Kroupa & Jerabkova 2019 ), and how
ntermediate-massive clusters are affected by a realistic high-initial
inary population (W ang, T anikawa & Fujii 2022 ). But at the
resent there are no codes that allow this to be done in Milgromian
ravitation. 

.2.2 Open clusters in Milgromian gravitation: the phantom 

xtends the pr ́ah 

espite it not being possible at this time to do exact calculations of
he dynamical evolution of open clusters in Milgromian gravitation,
ome estimates are possible, given the existing tools. 

An open cluster (or satellite galaxy) at a position vector � R in the
alactocentric reference frame will be subject to an EF, 

�  ext, kin = −v 2 circ 

R 

� R 

R 

≈ −G 

M MW , grav ( R) 

R 

3 
� R , (8) 

here M MW,grav ( R ) is the ef fecti ve-Ne wtonian gravitational mass
f the here-assumed-spherical Galaxy within � R , M MW,grav ( R ) being
btained from dynamical tracers, such as the rotation curve within
 . F or e xample, for the Hyades | � a ext, kin | ≡ a ext, kin ≈ 7 . 5 pc Myr −2 ≈
 . 0 a 0 ( M MW , grav ≈ 1 . 15 × 10 11 M �, R ≈ 8300 pc for circular ve-
ocity v circ = 250 pc Myr −1 ). As a consequence, the dynamics of
pen star clusters is much richer than in Newtonian gravitation,
ince, for example, a star cluster will change its self-gravitational
nergy and thus its two-body relaxational behaviour as it orbits
ithin a galaxy due to the changing external field from the galaxy

Wu & Kroupa 2013 ). In Table 1 a ext,kin (equation 8 ) and a ext,bary are
ocumented for the four open clusters, referring to the EF generated
y the total gravitating mass ( M MW,grav , baryonic plus dark matter
or the rotation curve as shown in Fig. 4 ) and only the Newtonian
cceleration through the baryons (replacing M MW,grav in equation ( 8 )
y M bulge + disc ), respectively. 
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Figure 3. The radial acceleration-field around an open cluster, approximated 
here as a point-mass, is enhanced in Milgromian dynamics, as shown by the 
‘boost’ of the radial component of the gravitational acceleration abo v e the 
Newtonian expectation. Positions on the x , y -axes are in units of the MOND 

radius r M 

(equation 13 ). The Galactic centre is in the direction of positive x 
and is 8.3 kpc distant and a constant a ext = a 0 (equation 8 ) pointing towards 
the Galactic centre is assumed across the cluster. The distance orthogonal 
to this direction, which is the direction of a circular orbit, is shown on the 
y -axis. Thus, a star on the far side of the cluster at x = −4, y = 0 experiences 
a radial acceleration towards the cluster centre at x = 0, y = 0, which is about 
15 per cent larger than a star at x = 4, y = 0 on the near-side of the cluster. 
For numerical reasons, accurate results within ≈0.1 r M 

are not possible, a 
region where Newtonian and Milgromian gravity should be almost identical 
(for details on the calculation, see Banik & Kroupa 2019b ; reproduced with 
kind permission from Banik & Kroupa 2019b ). 
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6 Analytical estimates of the velocity dispersion of star clusters that have an 
internal acceleration comparable to the external one ( a int ≈ a ext ≈ a 0 ) are 
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The open clusters in Table 1 have an internal Newtonian acceler- 
tion (Haghi et al. 2019 ) 

 int = G 

M oc 

2 r 2 h 

� a 0 . (9) 

s already noted by Milgrom ( 1983 ), the open clusters in the Solar
eighbourhood are in the EF dominated regime with a int � a ext, kin ≈
 a 0 . Their internal dynamics can therefore roughly be approximated 
y Newtonian gravitation with a larger effective Newtonian constant 
equation 12 below). 

Because the ef fecti ve-Ne wtonian gravitational mass of an open 
luster is larger than its mass in stars, M oc,grav > M oc , 5 the escape
peed from the open cluster is increased in comparison to the New-
onian/Einsteinian case, where M oc,grav = M oc . Detailed calculations 
ave shown the zero-equipotential surface around the cluster to be 
opsided about the position of the density maximum of the cluster 
ue to the non-linearity of the generalized Poisson equation (Fig. 3 
elow, Wu et al. 2010 , 2017 ; Thomas et al. 2018 ), such that the
scape of stars may be directionally dependent. But also the internal 
tellar-dynamical exchanges differ from Newtonian gravitation. One 
an visualize this problem as follows: An isolated star A of mass
 A generates around itself a logarithmic Milgromian potential � A 

ith a gravitating phantom mass, m ph,A 
 m A , at large distances. 
lacing another star B near it reduces m phA by virtue of the EF
rom star B. A third star C will thus experience an acceleration from
tar A and B which is not the vectorial sum of their Newtonian
ccelerations and with a magnitude and direction which depends on 
he separation of A and B. Gravitational dynamics thus has parallels 
o quark dynamics, as has been pointed out by Bekenstein & Milgrom
 1984 ). The larger ef fecti ve-Ne wtonian gravitational masses of the
tars lead to stronger two-body relaxation while the larger ef fecti ve-
ewtonian gravitational masses of the whole cluster increases the 
 The ratio M oc,grav / M oc depends on the EF (Section 3.1 ). 

n
1
f
a

arrier for escape. It is therefore unclear for the time being how real
pen clusters evolve in Milgromian gravitation. 
The isolated open cluster would have a 1D (line-of-sight) velocity 

ispersion (assuming spherical symmetry and an isotropic velocity 
istribution function) 

M , iso , los ≈
(

4 

81 
G a 0 M oc 

) 1 
4 

, (10) 

ith the 1D velocity dispersion of an EF-dominated open cluster 
eing 

M , ef, los ≈ 3 −1 / 2 

(
G 

′ M 

′ 

2 r h 

) 1 
2 

. (11) 

n this equation we can write either 

 

′ = G eff = 

G 

μ(x) 
with M 

′ = M oc , 

or 

 

′ = G with M 

′ = M oc , grav = 

M oc 

μ(x) 
, (12) 

eing, respectively, the boosted gravitational constant or the 
f fecti ve-Ne wtonian gravitational mass of the open cluster with μ( x )
eing given by equation ( 17 ) below (e.g. McGaugh & Milgrom
013 ). 6 For the open clusters in Table 1 , either G eff ≈ 1 . 5 G or
 oc , grav ≈ 1 . 5 M oc . 
Table 1 provides estimates of a int and of σ M,iso,los , assuming the

lusters are isolated, and of σ M,ef,los using the abo v e analytic estimate.
he variation of a ext,bary and a ext;kin as an open cluster oscillates

hrough the Galactic mid-plane adds to the complexity, but these 
ariations are of second order only. 

The data in Table 1 show that open clusters in isolation would
e significantly supervirial by a factor of 2.3–3.4 relative to the
ewtonian expectation. This is indeed the case in observations and 

s equi v alent to the Milgromian e xpectation that M grav,oc > M oc . F or
he Hyades, σ3D , obsI ≈ 0 . 8 ± 0 . 15 km s −1 , (R ̈oser et al. 2011 ) and
3D , obsII ≈ 0 . 7 ± 0 . 07 km s −1 (Oh & Evans 2020 ). For the Praesepe,

he observational results are meagre, but R ̈oser & Schilbach ( 2019 )
eport σ3D , obs ≈ 0 . 8 km s −1 (their section 2.3). For both clusters, 
3D,obs is larger by a factor of approximately two than the expected 
e wtonian v alue (Table 1 ). The standard explanation is that this
iscrepancy is due to additional mass in stellar remnants and a larger
easured velocity dispersion due to unresolved multiple stars (cf. 
ieles, Sana & Portegies Zwart 2010 for ≈10 Myr old clusters).
pen clusters are known to have a deficit of white dwarfs compared

o the expected number (Fellhauer et al. 2003 ) so the contribution by
emnants is unclear, and the contribution to the velocity dispersion 
n proper motion and line-of-sight velocity measurements needs to 
e assessed with realistic initial binary populations (Dabringhausen 
t al. 2022 ). In Milgromian gravitation, the EF-dominated estimate 
 σ M,ef,los ), on the other hand, is larger than the Newtonian value
y only ≈25 per cent, as is confirmed with the PoR simulations in
ection 5.1 below. It is unclear, ho we ver, ho w a fully collisional

reatment of an open cluster embedded in an external field would
nhance the velocity dispersion (see Section 5.4 ), so that these
MNRAS 517, 3613–3639 (2022) 

ot possible. From equation ( 9 ) such clusters would need to have M oc ≈
0 000 M �. Haghi et al. ( 2019 ) published interpolation formulae obtained 
rom fits to Milgromian simulations of dwarf galaxies, but these cannot be 
pplied to the star-cluster regime. 
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stimates have to be taken with great caution. Geometric factors
the density profile) need to be taken into account and the observed
alues bear some contamination by field stars. 

Incidentally, Sollima, Bellazzini & Lee ( 2012b ) analyse the
ynamical masses of six globular clusters finding them to be
bout 40 per cent larger than the stellar-population masses assuming
 canonical IMF. The authors include modelling the binary-star
opulation, do not exclude a possible systematic bias, and attribute
he larger dynamical masses to retained stellar remnants or the
resence of a modest amount of dark matter. For a canonical IMF
he remnants, if retained, contribute about 22 per cent of the mass
e.g. fig. 5 in Mahani et al. 2021 ), although larger fractions are
ossible as a result of dynamical evolution (see figs 11 and 12
n Baumgardt & Makino 2003 ; Banerjee & Kroupa 2011 ). The
uthors do not discuss Milgromian implications, and it is noted
ere that the larger ef fecti ve-Ne wtonian gravitational masses of the
ix clusters are qualitatively consistent with the general expectation
rom Milgromian gravitation. A detailed analysis of the velocity
ispersion of the outer halo globular cluster Pal 14 by Sollima
t al. ( 2012a ) leads to the cluster being reproducible with Newtonian
ravitation. Ho we ver, Milgromian solutions may be possible if the
tellar population lacks low-mass stars. This is possible if Pal 14
ormed with an IMF lacking low-mass stars as is expected at low
etallicity (Marks et al. 2012 ; Kroupa et al. 2013 ; Je ̌r ́abkov ́a et al.

018 ; Yan, Je ̌r ́abkov ́a & Kroupa 2021 ). In addition, the initially
ass se gre gated cluster is likely to have lost low-mass stars through

arly expulsion of residual gas during its formation phase (Marks,
roupa & Baumgardt 2008 ; Haghi et al. 2015 ). 
Based on the suggested test for the validity of MOND by

aumgardt, Grebel & Kroupa ( 2005 ), the outer halo globular cluster
GC 2419 has been much debated concerning how it fits-in with
ilgromian gravitation (Ibata et al. 2011a , b , 2013 ). According to

bata et al. ( 2011a ), Ibata et al. ( 2011b ), and Derakhshani ( 2014 )
ewtonian models significantly better represent the observed lumi-
osity and line-of-sight velocity dispersion profiles than Milgromian
nes, while Sanders ( 2012 ) developed Milgromian models that match
he observed cluster assuming a strong degree of radial anisotropy.
his cluster has a half-mass radius which is about seven times larger

han usual globular clusters and is therefore unusual. The phase-
pace distribution function of stars within the cluster is likely to
e affected by the Milgromian phase transition as the cluster orbits
rom the inner Newtonian Galactic regime into the outer Milgromian
egime (Wu & Kroupa 2013 ). This leads to an anisotropic velocity
istribution function of stars in the cluster. Also, violent expulsion
f residual gas in Milgromian gravitation when the cluster formed
enerates a strong anisotropic velocity distribution function (Wu &
roupa 2018 , 2019 ), and may have changed the mass function of

tars in the cluster if it was mass-se gre gated at birth (cf. Haghi et al.
015 ). At birth, the low-metallicity cluster is likely to have been
ass-se gre gated and to have had a top-heavy IMF (Marks et al.

012 ; Kroupa et al. 2013 ; Je ̌r ́abkov ́a et al. 2018 ; Yan et al. 2021 )
hrough which the innermost regions of the cluster could contain
 large fraction of stellar remnants (Mahani et al. 2021 ) affecting
he velocity dispersion profile in the way observed (larger in the
nnermost region, dropping outwards). More inclusive modelling
f this cluster is clearly needed to advance our knowledge of this
nigmatic object. 

Returning to the tidal tails, as a consequence of the non-linear
eneralized Poisson equation, the Milgromian potential, � , around
n open cluster situated within the thin disc of the Galaxy is lopsided.
t generates a stronger restoring force towards the cluster on its far
ide. The external field, � a ext, kin , is directed towards the Galactic centre
NRAS 517, 3613–3639 (2022) 
cross the cluster (equation 8 ). It adds to the radial cluster-centric
cceleration on the far side of the cluster relative to the Galactic
entre, and it opposes the cluster-centric acceleration field on the near
ide. Due to the non-linearity of the generalized Poisson equation
equations ( 4 ) and ( 5 )), the Milgromian restoring force towards the
luster’s centre comes out to be stronger on the far side and weaker on
he near side. The cluster’s potential is therefore lopsided (Wu et al.
008 ; Wu et al. 2010 , 2017 ; Thomas et al. 2018 ). A visualization of
his radial acceleration field is provided by Fig. 3 , where the radius,
ithin which the radial acceleration around a point-mass cluster is
ell approximated by Newtonian gravitation is the MOND radius, 

 M 

= 

(
GM oc 

a 0 

) 1 
2 

. (13) 

While being only a point-mass approximation of the cluster, Fig. 3
hus provides the likely reason why the trailing tail contains fewer
tars in the fiv e observ ed open clusters (Section 2.2 ). If the cluster
enerates a constant and isotropic flux of escaping stars through the
OND radius, the higher escape threshold at the far side will deflect

 fraction of these back to the cluster such that they are likely to exit
n the near side to populate the leading tail. 
In order to make a first step towards quantifying the population of

scaping stars in the leading versus the trailing tidal tail of an open
luster, the self-consistent code PoR is applied. 

 T H E  M O D E L S  

iven the non-availability of a Milgromian relaxational (direct n -
ody) code, a very rough approximation is made to obtain a first
nsight as to whether Milgromian gravitation might lead to the
bserved asymmetry in the tidal tails of open star clusters. For
his purpose the collision-less (no two-body relaxation) PoR code
Section 3.1 ) is applied. As a consistency check, Newtonian models
f the equi v alent Milgromian ones are compared using this same
ode to test if the former lead to symmetrical tidal tails. Do the
ilgromian models develop an unambiguous asymmetry? Is this

symmetry equi v alent to the observed asymmetry? And does the
symmetry vary with time? 

The underlying energy equipartition process is entirely missing
uch that the flux of stellar particles across the pr ́ah will not be correct:
n the simulations, stellar particles leave the cluster by acquiring
nergy through the time-dependent tidal field as well as through
rtificial heating due to the limited numerical resolution and not due
o two-body encounters. We concentrate on the differential effect
Milgrom versus Newton) and therefore only on the asymmetry,
hich is go v erned by the asymmetry of the radial acceleration

owards the cluster between the far and near sides (Fig. 3 ), since
he PoR code self-consistently quantifies the shape of the cluster
otential. 
The computations are performed with the PoR code by applying

he ‘staticparts patch’ (Nagesh et al. 2021 ), which is available
t https:// bitbucket.org/ SrikanthTN/bonnpor/src/master/ . This code
llows a subset of dynamical particles to be integrated in time within
he background potential of another subset of particles treated as
tatic, i.e. which are not inte grated o v er time. Both Newtonian
nd Milgromian models have been computed with the exact same
umerical procedure. To keep the models as consistent as possible,
he selection of the Newtonian model has not been done by switching
ff the Milgromian option of PoR but by setting the Milgromian
onstant a 0 to 30 decimal orders of magnitude below the canonical
alue of a 0 = 1 . 2 × 10 −10 m s −2 ≈ 3 . 8 pc Myr −2 . 

https://bitbucket.org/SrikanthTN/bonnpor/src/master/
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Figure 4. The rotation curves for the total gravitational potential (Milgrom 

or Newton plus DM halo, solid purple line) and the Newtonian baryonic 
component (dashed green line). The vertical dashed line marks the orbital 
distance of the model clusters from the Galactic centre. 
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7 The rotation curve (Fig. 4 ) is higher by about 10 per cent than in the 
real Galaxy that has v circ ≈ 220 km s −1 because the initialization through 
a particle dark matter halo (for the Newtonian models) has this amount of 
uncertainty. We leave the models at the slightly higher v circ and adopt this 
higher value also for the Milgromian models as the model clusters need to be 
computed in a comparable tidal field. 
8 That the well-observed open and globular clusters, which are the simplest 
(coe v al and equal-metallicity) stellar populations, are next-to-perfectly de- 
scribed by the Plummer phase-space distribution function (Aarseth, Henon & 

Wielen 1974 ; Plummer 1911 ; Heggie & Hut 2003 ), which is the simplest 
analytical solution of the collision-less Boltzmann equation, is interesting 
and deserves emphasis. Note that the Milgromian models retain a Plummer 
density distribution as they evolve (Fig. 5 below). 
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In the following, the Galactic potential used (Section 4.1 ) and the
luster models (Section 4.2 ) are described. 

.1 The galactic potential 

or a comparison of equi v alent Ne wtonian versus Milgromian 
odels, it is necessary to insert the same cluster model on the same

nitial orbit into a galaxy which has the same rotation curve at the
osition of the cluster. Thus, the tidal effects in the two galaxy models
re comparable, one being purely baryonic in Milgromian dynamics, 
he other being Newtonian with the same baryonic component and 
ith an additional spherical dark matter (DM) component. To achieve 
 rotation curve which matches that observed for the Galaxy nearby 
o the Sun, the baryonic component is modelled as two radial 
xponential and vertical sech 2 discs: Component I has an exponential 
cale-length of 7 kpc and an exponential scale height of 0.322 kpc
aking up 17.64 per cent of the total baryonic mass. Component II

as a scale-length of 2.15 kpc and a scale height of 0.322 kpc making
p 82.64 per cent of the total baryonic mass. We emphasize that this
s not meant to be an exact representation of the Galaxy but merely a
escription sufficiently realistic to provide a radial and perpendicular 
pproximation of the Galactic accelerations near the Solar circle. 
he density distribution of the DM component is defined to match 

he Milgromian rotation curve shown in Fig. 4 . Thus the Galaxy is
utomatically on the radial-acceleration relation (RAR, McGaugh, 
elli & Schombert 2016 ; Lelli et al. 2017 ) and on the baryonic
ully–Fisher relation (BTFR, McGaugh et al. 2000 ; McGaugh 2005 ; 
elli, McGaugh & Schombert 2016 ) in both cases. The DM halo

s truncated outside 10 kpc to save computing ressources. This is
hysically justified since the cluster models orbit the Galactic centre 
t R gal ≈ 8 . 3 kpc , i.e. well within the truncation radius. In Newtonian
ravity, the field of a spherically symmetrical shell cancels out inside 
he shell, so any DM component outside the orbit of any cluster
article can be ignored. This is, ho we ver, not true for the non-
pherical disc potential, therefore a disc template with a maximum 

adius of about 50 kpc is employed. Since both galaxy models only
erve as a constant background potential, no velocity component 
eeds to be added, but rather the galaxy + DM particles are treated
s static gravity sources. 

The models invoke 30 million static particles to provide a smooth 
ackground potential. In the Newtonian DM case another 10 million 
tatic particles are used for the DM halo. 7 The minimum and
aximum grid refinement levels are set to 7 and 21, respectively. In

he computations, ho we ver, the maximum refinement le vel actually
eached is only 17. Given a total box length of 256 kpc, this
orresponds to a spatial resolution of about 1.95 pc. The dynamical
ubset consists of the stellar particles of the model clusters introduced
n the next section. 

.2 Milgromian and Newtonian models of open clusters 

n the Solar neighbourhood, open clusters are well described by 
 Plummer phase-space distribution function (R ̈oser et al. 2011 ;
 ̈oser & Schilbach 2019 ), which corresponds to a King model with
 concentration parameter W o ≈ 6 (Kroupa 2008 ). 8 The spherical 
nd isotropic PoR cluster models are therefore set up as Plummer
hase-space distribution functions. 
The Newtonian Plummer models are initialized following Aarseth 

t al. ( 1974 ). The Milgromian Plummer models are constructed as
ollo ws. First, a Ne wtonian Plummer model is set-up using the
ewtonian method. A Milgromian velocity scaling factor f M 

is 
ntroduced as 

 M 

= 

√ 

ν( y ) , (14) 

ith ν( y ) = 

√ 

1 / 4 + 1 /y + 1 / 2 , y = g N /a 0 , being the Milgromian–
ewtonian transition function, and g N = | � a N | with � a N = � a i , N + � a ef, N 

s the Newtonian acceleration obtained by adding the internal and 
xternal Newtonian accelerations. The particle velocities � v i , M 

are 
hen derived from the Newtonian model velocities, � v i , N , via 

�  i , M 

= f M 

� v i , N . (15) 

he Newtonian internal acceleration � a i , N is taken directly from the 
ewtonian Plummer model, while the Newtonian external field 

omponent, � a ef, N , is related to the actual Galactic external field, 
�  ext, kin , via 

�  ef, N = μ( x) � a ext, kin (16) 

ith 

= x/ ( x + 1) , x = a ext, kin /a 0 (17) 

section 4.2.2. in L ̈ughausen et al. 2015 ), being the inverse transition
unction and a ext, kin = | � a ext, kin | = v 2 circ /R gal in the direction to the
alactic centre. Since a ext, kin ≈ 7 . 5 km s −2 (Table 1 ), μ ≈ 0.66 in the
resent context. 
The real open clusters (Table 1 ) have masses of a few hundred M �

nd half-mass radii ( r h ≈ 1.3 × r pl ) near 4 pc, which is a regime
hat the particle-mesh models cannot resolve adequately because the 
ensity contrast to the surrounding field is too small and available
omputational resources constrain the reachable refinement level. 
MNRAS 517, 3613–3639 (2022) 
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Figure 5. The volume density Plummer fit (green dashed line) versus 
the density for the M oc , 0 = 5000M � Milgromian cluster (solid red line, 
model cM3) at 500 Myr. Note that the simulated model is next-to-perfectly 
represented by the Plummer model with Plummer radius r npl = 4 . 9 pc . 
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he approach taken here is to start with a large M oc , 0 = 2 × 10 4 M �
nd to initialize a set of cluster models with decreasing mass but
ith the same theoretical Plummer radius, r pl = 10 pc ( r h ≈ 13 pc ).
hile the initial Plummer model is set-up with this Plummer radius,

 numerical alteration to the particle distribution is needed to avoid
trong mass loss at the beginning: A numerical model inserted within
he disc of the galaxy does not correspond to the analytical Plummer
hase space distribution function, which is bounded in mass but
nbounded in radial e xtend. P articles that are at too large cluster-
entric distances are unbound in the numerical model. Particles
utside r = r pl are therefore re-positioned to be inside r pl and
he kinetic energy is reset to a value corresponding to a particle
rbiting inside r pl . This stabilizes the cluster against initial mass
oss, ho we ver, it also ef fecti vely compactifies the cluster. After a
rief period of settling, the cluster models stabilize at an ef fecti ve
lummer radius of about r npl ≈ 4 . 5 pc initially. The models remain
xcellent approximations to the Plummer model (Fig. 5 below) and
he Plummer radius increases with time as the cluster loses mass and
hus becomes less bound. 

The models are created to have a velocity dispersion that reaches
hat of the Hyades cluster in order to achieve a comparable dynamical
tate. The full computed set comprises Milgromian and Newtonian
odels with M oc , 0 = 2500 , 3500 , 5000, 6000, 7000, 8500, 10 000,

2 000, 14 000, 20 000M �. Each model is composed of 0.1M �
qual mass particles such that the Plummer phase-space distribution
unction is well sampled and different initial random number seeds
o not affect the results. The models are computed o v er 1 Gyr.
nly five in each set (with M oc , 0 = 2 500, 3 500, 5000, 7000,
0 000M �) are analysed in more detail, the heavy models being
ot representative of the observed open clusters by having too large
elocity dispersions (Fig. 10 below). The initial analytical Plummer
D velocity dispersion in Newtonian gravitation (Heggie & Hut 2003 ;
roupa 2008 ), 

ch = 

(
3 π

32 

G M oc , 0 

r Pl 

) 1 
2 

, (18) 

s, for the full set of models, in the range ≈0.86–2.43 km s −1 for
 pl = r npl ≈ 4 . 5 pc , being near the range of the real open clusters
Table 1 , see Fig. 10 below for the velocity dispersions at 500 Myr).
ince the ef fecti ve-Ne wtonian gravitational mass of an open cluster

n the Solar neighbourhood is M oc , grav ≈ 1 . 5 M oc , it follows that the
NRAS 517, 3613–3639 (2022) 
ilgromian 3D velocity dispersion of the models should be 

ch , Mil ≈ 1 . 2 σch . (19) 

The tidal radius of a cluster can be approximated as 

 tid ≈
(

M oc 

K M MW , grav 

)1 / 3 

R, (20) 

here K = 2 for the logarithmic ( K = 3 for a point-mass) galactic
otential, and M MW , grav = ( R /G ) v 2 circ ( M MW , grav ≈ 1 . 15 × 10 11 M �
ithin R = 8300 pc for the MW with v circ = 250 pc Myr −1 ). Since

he initial tidal radii of the models are in the range 18 � r tid,0 /pc �
7, the shape of the zero-potential surface which defines the cluster
r ́ah is well resolved such that the anisotropy of the flux of escaping
articles should adequately approximate the true anisotropy allowing
 physically correct comparison of the Newtonian (symmetrical
urf ace, anisotrop y expected to be negligible) with the Milgromian
non-symmetrical surface, Fig. 3 ) models. 

The real clusters (Table 1 ) are currently on orbits that are nearly
ircular with 0.03 < e < 0.12. The inclination angles, ι, relative
o the Galactic mid-plane are also small ( tan ( ι) = z max /R, ι < 1 ◦).
iven the explorative nature of this work, the models are initialized
n circular orbits within the mid-plane of the galactic model. Future
ork will address more realistic, slightly inclined orbits. The current
rbits end up being slightly eccentric in the actual discretized galaxy
otential. In order to track the orbit of the cluster, the density centre
f each model cluster is calculated using the density measurement
ethod described by Casertano & Hut ( 1985 ) and the density centre

osition formula by von Hoerner ( 1963 ). Given an ensemble of n
tellar particles, the local density around any stellar particle i of mass
 i is defined in the volume of the distance to its j th neighbour, 

 ρi = 

j − 1 

V ( r i ,j ) 
m i , (21) 

here r i, j is the distance from stellar particle i to its j th neighbour
nd V ( r i ,j ) = 4 π r 3 i ,j / 3 is the volume of the enveloping sphere. The
alactocentric position of the density centre is then defined as the
ensity-weighted average of the positions of the stellar particles, 

 � R = 

∑ n tid 
i = 1 

� R i 
j ρi ∑ n tid 

i = 1 
j ρi 

, (22) 

here n tid is the number of stellar particles within the initial tidal
adius, r tid,0 (as a simplification this radius cut-off is kept constant),
nd � R i is the galactocentric position vector of particle i. Following the
uggestion by Casertano & Hut ( 1985 ), j = 6 is used in this study.
t emanates that the orbits are not perfectly smooth (Fig. 13 ) as a
onsequence of the live dynamical computation of the cluster centre.
or the calculation of the cluster specific angular momentum, its
elocity dispersion and the asymmetry of the tidal tails, the position
f the density maximum is used as the reference. 

 RESULTS  

.1 The cluster profile, evolution of model mass, and velocity 
ispersion 

s noted in Section 4.2 , the observed density profiles of open clusters
re well fit by the Plummer profile. The present models are initialized
s Plummer phase-space density distribution functions, but do they
etain Plummer profiles as they evolve? The numerical density profile
f the Milgromian 5000M � cluster at an age of 500 Myr is shown
n Fig. 5 . The numerical model is well represented by an analyitcal
lummer density distribution, as is the case for all the other models.
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Figure 6. The relative number of stellar particles within the initial tidal radius 
(equation 20 ) as a function of time in the five models with an initial mass of 
M oc , 0 = 2500 , 3500 , 5000 (blue), 7000, and 10 000 M � (bottom to top). Top 
panel: Newtonian models, middle panel: Milgromian models, bottom panel: 
ratio of the two. Note that the Milgromian models dissolve faster than the 
Newtonian models. The fluctuations in the ratio (bottom panel) is large for the 
least-massive models (red dotted lines) due to the small number of particles 
and the PoR code not well-resolving their weak potentials. The general trend 
is for the less-massive Milgromian models to dissolve faster than the more 
massive ones, and, at a given mass for them to dissolve faster than their 
Newtonian counterparts. The horizontal dashed lines in the upper two panels 
correspond to the 10 per cent dissolution threshold. 
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9 Note that an open cluster with M oc = 2500M � would, in Newtonian 
gravitation, dissolve in T diss ≈ 3 Gyr, equation ( 1 ). 
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The models dissolve by loosing stellar particles as is shown in 
ig. 6 . As for real star clusters, the low-mass models dissolve
ore rapidly than the more massive ones. Compared to realistic 
ewtonian calculations using the direct n -body method, which 
ave n ( t ) decrease following a concave curve (i.e. with a slight
lo w-do wn of the e v aporati ve stellar loss with decreasing n ( t ), e.g.
g. 1 in Baumgardt & Makino 2003 ), the present models show an

ncreasing rate of loss of stellar particles with time. This occurs 
ecause the adaptive-mesh method reduces the refinement with 
ecreasing density that compromizes the accuracy of tracing the 
orces, leading to an artificial speed-up of mass loss. This is not a
roblem for the purpose of the present study which is concerned 
ith the asymmetry of the tidal tails which probes the asymmetry of

he potential generated by the cluster–Galaxy pair, but implies that 
he lifetimes of the present models cannot be applied to real open
lusters, although they allow an assessment of the relative lifetimes 
etween the Milgromian and Newtonian cases. Beside the effect of 
he adaptive mesh, the different shape of the mass evolution obtained 
ere (conv e x) compared to collisional n -body simulations (concave) 
s due to two-body relaxation in the collisional n -body simulations
eading to cluster core contraction as energy-equipartition-driven 

ass loss occurs, thus increasing the binding energy of the cluster 
nd its resistance to tidal effects (e.g. Baumgardt & Makino 2003 ). 
The more rapid dissolution of the Milgromian models compared 
o the Newtonian ones (Fig. 6 ) can be understood as follo ws: Gi ven a
mall loss of mass, δM oc , the change in binding energy of a Newtonian
tar cluster is δE bind , N ≈ (2 /r grav ) G M oc δM oc , where r grav is the
ravitational radius of the cluster. The here-rele v ant open clusters
Table 1 ) are near-Newtonian but with a larger ef fecti ve gravitational
onstant, G eff ≈ 1.5 G (equation 12 ). Thus, for the same mass loss of
M oc , a Milgromian open cluster of the same mass and radius suffers
 reduction of its binding energy relative to that of the Newtonian
ase, δE bin,M 

/ δE bind,N ≈ G eff / G ≈ 1.5. The Milgromian models can
e understood to dissolve more rapidly as a consequence of more
apidly loosing their binding energy (see also Section 5.5 ). 

The Milgromian open clusters are expected to be super-virial 
hen compared to their Newtonian counterparts (Table 1 ). Thus, 

t is of interest to consider how super-virial the here-computed 
ilgromian cluster will appear to a Newtonian observ er. F or the

urpose of comparing the velocity dispersion of the Newtonian 
nd Milgromian models at the same stage of dissolution, it is
seful to estimate their dissolution time. Because the more massive 
odels are not computed to complete dissolution, the lifetimes of 

he Newtonian model clusters are estimated as follows: First, the 
ecay times of the two least massive models (2500 and 3500M �)
own to 1/10th of the initial mass are extracted from the data.
hese are defined as their lifetimes, t life,N , being 570 and 854 Myr,

especti vely. 9 Gi ven the mass ratio of 0.714, this corresponds to
n exponent of about 1.2, t life , N / Myr ≈ 570 ( M oc , 0 / (2500M �)) 1 . 2 .
he resulting approximate lifetimes are then t life , N ≈ 570 Myr for 
500M �, 860 Myr for 3500M �, 1300 Myr for 5000M �, 2000 Myr for
000M �, and 3000Myr for 10 000M �. For the Milgromian models
e obtain likewise t life , M 

/ Myr ≈ 595 ( M oc , 0 / (2500M �)) 0 . 95 . Note
hat the Milgromian model with the initial mass M oc = 2500M �
issolves slightly later (at 595 Myr) than the Newtonian model of the
ame initial mass (570 Myr). Studying Fig. 6 , one can see that the
ed dotted curve has significant fluctuations such that this difference 
s not significant. The here estimated PoR lifetimes merely serve to
efine the time-scale o v er which the velocity dispersion is calculated,
nd also as an indication of the ratio, t life,M 

/ t life,N , as a consequence of
oss of particles across the pr ́ah through non-relaxational processes 
probably mostly orbital precession, as discussed in Section 5.4 ). 
he elapsed relative time is then divided by the lifetime for each
luster model. For the least massive cluster, the existing simulation 
ata correspond to as much as 1.8 lifetimes since the simulation ran
or 1000 Myr and thus continued some 430 Myr after the ef fecti ve
ecay of that model. This allows the tidal tails to be traced because
he stellar particles continue to orbit the Galaxy after the dissolution
f the cluster model. 
The 3D velocity dispersion in a model is 

3D = 

( 

1 

n tid 

( 

n tid ∑ 

i = 1 

� v 2 i 

) ) 

1 
2 

, (23) 

here � v i is the velocity vector of particle i relative to the model
luster’s centre. 

In Fig. 7 , the ratio of σ 3D for the Milgromian and Newtonian
odels is shown as a function of time. The Milgromian models con-

istently have a velocity dispersion which is about 20 per cent larger
han the Newtonian models with excursions to ratios as large as 1.4.
he tendency is that the less-massive models show a larger ratio, but
MNRAS 517, 3613–3639 (2022) 
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Figure 7. The ratio of the Milgromian to Newtonian 3D velocity dispersion 
(equation 23 ) as a function of relative time for the five cluster models (the 
initial masses in M � of which are indicated in the legend). The relative time 
is t / t life = 1 when the model has lost 90 per cent of its stellar particles. The 
data are truncated to the lifetime to focus on the most meaningful data range. 
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the cluster-centric distance range 50–200 pc and averaged over 400–800 Myr 
as a function of the initial model cluster mass M oc,0 . The green dashed line 
corresponds to the Newtonian models while the purple solid line shows the 
results for the Milgromian models. The errorbars indicate the 5- σ Poisson 
errors. The dependence of the ratio on the velocity dispersion is shown in 
Fig. 11 . 
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iven the limitation of the numerical method applied, it is not possible
o assess this ratio for a model with a mass as low as the observed
pen clusters in Table 1 . The analytically calculated Milgromian
elocity dispersion documented in this table under the influence of
he EF provides a similar estimate (compare σ M,ef,los with σ N,los ). 

Concerning the o v erall structure of the model tidal tails, snapshots
f the simulation with M oc , 0 = 5000M � in Newtonian and Milgro-
ian dynamics are shown in Fig. 8 as an o v erview (left-hand panels)

nd zoomed-in (right-hand panels). Note the apparent asymmetry in
he number of particles: the leading (rightwards) tidal tail has more
NRAS 517, 3613–3639 (2022) 

igure 8. Snapshot of the cluster model with initial mass M oc , 0 = 5000M � at 60
ynamics. The right-hand panels are detailed views of the model’s surroundings. N
revious work (Wu et al. 2008 ; Wu et al. 2010 , 2017 ; Thomas et al. 2018 ). The gala
ight. The surface density scale (key to the right of each panel) is in log 10 (M � kpc −
teps to enhance the visibility. 
articles (see the bottom left-hand panel) relative to the number in
he trailing tail in the Milgromian model compared to the Newtonian
ne that appears much more symmetrical as should be the case in
ewtonian gravitation (Fig. 9 ). This asymmetry is consistent with

he basic consequence of Milgromian gravitation, namely that the
ar-side (to the left) of the cluster has a larger barrier against escape
han the near side, as evident in Fig. 3 . 
0 Myr in Newtonian (upper two panels) and Milgromian (lower two panels) 
ote the lopsided shape of the Milgromian model, which is consistent with 

ctic centre is towards the bottom of the plot and the orbital direction is to the 
2 ) and is for illustration only. The colour scale has been divided into discrete 
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Figure 10. The numerically calculated 3D velocity dispersion, σ 3D, of all 
particles within the initial r tid (0) of the cluster centre is shown at 500 Myr for 
the Newtonian (short-dashed blue) and Milgromian (long-dashed purple) 
models. The analytical Newtonian characteristic velocity dispersion, σ ch 

(equation 18 ), is plotted as the solid blue line. 
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The visual appearance of the tail asymmetry near to the Milgro-
ian model clusters in Fig. 8 resembles the previously published 

mages of the tidal tails close to the Hyades, Coma Berenices, 
raesepe and COIN- Gaia 13 clusters (Section 2.2 ). 
In Newtonian dynamics, the first K ̈upper o v erdensities are equidis-

ant from the open cluster in the leading and trailing tail and mo v e
o a smaller distance from the open cluster as the cluster e v aporates
K ̈upper et al. 2008 , 2010 ; K ̈upper et al. 2012 ). The two distances
etween the centre of the cluster and the two first o v erdensities can
e used to measure the ef fecti ve-Ne wtonian gravitational mass of
he cluster (K ̈upper et al. 2015 ). We refrain from doing so here since
he computed models are exploratory and we do not want to o v er-
nterpret them. The models are useful for probing the asymmetry 
etween the two distances, as this may be an additional diagnostic 
or assessing whether Newtonian or Milgromian gravitation is closer 
o reality. Due to the cluster-centric potential being asymmetrical in 

ilgromian gravitation (Fig. 3 ), the distances between the o v erdensi-
ies are expected to differ. Indeed, in this simulation, the first K ̈upper
pic yclic o v erdensity is located at ±270 pc in the Newtonian models
Fig. 8 ), while the Milgromian models have the leading overdensity 
ocated at + 360 pc and the trailing one at −290 pc. The larger cluster-
entric distance in the leading tail comes from the particles spilling
cross the pr ́ah into the leading tail having larger velocities due
o the smaller potential barrier at the first Lagrange point. That 
oth K ̈upper o v erdensities are at larger distances from the cluster
entre in Milgromian dynamics than in Newtonian dynamics is due 
o the larger ef fecti ve-Ne wtonian gravitational mass of the former.
his Milgromian asymmetry and Newtonian symmetry appears to be 
vident in the observed and modelled tidal tails of the globular cluster
 al 5, respectiv ely (figs 7 and 8 in Erkal et al. 2017 : the observed

eading K ̈upper o v erdensity being at coordinate φ1 = −0.7 and the
railing one being at φ2 = + 0.6 with the cluster at φ = 0), but its
on-circular orbit complicates the interpretation and no conclusive 
onclusion can emanate. Noteworthy in this context is that modelling 
 satellite galaxy in Newtonian gravitation, Reinoso, Fellhauer & 

 ́ejar ( 2018 ) find the position of the first K ̈upper o v erdensity to be
orrelated with the orbital distance and the mass of the satellite. They
lso find the first K ̈upper epic yclic o v erdensity to be closer to the
atellite in the leading tail than in the trailing tail (their fig. 5). The
uthors argue that this asymmetry, which is inverted to the asymmetry 
f the present Milgromian star-cluster models, ‘could be explained 
y the fact that we have a much more extended object than used
n the pre vious study.’ A follo w-up study will address this aspect
the relative distances of the K ̈upper o v erdensities in the leading
nd trailing tails) to probe how these can be employed as a test of
ravitational theory. 

.2 Time-averaged leading-to-trailing tail number ratio, 
 50 −200 pc , in terms of model mass and velocity dispersion 

s a next step in the analysis, the ratio of the number of particles in
he leading versus the trailing tail per output time, q ( t ), is computed
or the Newtonian and Milgromian models. To calculate q ( t ), it is
ecessary to distinguish between particles from each tail. The coor- 
inate system is first translated to the position of the density centre
f the model cluster. The coordinates refer to the galactic coordinate 
ystem, i.e. the X-axis points towards the galactic centre and Y is
long the orbital motion. A dividing line is defined through the den-
ity centre at an angle of 45 ◦ (counterclockwise), therewith lying at 
bout a right angle relative to the inner tidal tails (i.e. a diagonal from
he lower left to the upper right passing through the position of the
luster centre in Fig. 8 ). The number of particles to the left and right
f this line enumerates, respectively, the numbers in the trailing and
he leading arms. As for the real clusters (Section 2.2 ), q 50 −200 pc ( t)
s calculated between model cluster-centric radial limits of d cl = 50
nd 200 pc (but see Fig. 12 for an exploration of different ranges).
ince the tails consist of particles that drift away from the models,
 50 −200 pc ( t) is here time-averaged between 400 and 800 Myr, co v er-
ng the ages of the observed clusters in Table 1 , yielding q 50 −200 pc . 

Fig. 9 shows q 50 −200 pc in dependence of the model cluster mass. 
he Newtonian models have 0 . 85 < q 50 −200 pc < 1 . 03, being close

o unity for the smaller model masses but showing an increasing
eparture towards q 50 −200 pc < 1 for the more massive models except 
or the most massive model. The Milgromian models, on the other
and, have 1 . 01 < q 50 −200 pc < 1 . 25. Note the apparent systematic
ariation of the Milgromian q 50 −200 pc from q 50 −200 pc ≈ 1 . 25 for 
 oc , 0 = 3500M � to a minumum near M oc , 0 = 8500M � with an

ncrease again towards larger masses (the value of q 50 −200 pc for 
 oc , 0 = 2500M � may be affected by the limited resolution). For

he time being it remains unclear if this systematic behaviour of
 50 −200 pc is a real feature. 
Given the time-averaged systematic change of q 50 −200 pc with M oc,0 , 

his behaviour is next probed in terms of the 3D velocity dispersion,
3D , of the cluster models. This might lead to insights concerning

he real open clusters since the models are, by numerical necessity,
uch more massive than the real clusters. By having larger radii, the

elocity dispersion falls into the range of the observed open clusters
 ≈0.8 km s −1 ). 

For all cluster models in both Newtonian and Milgromian dy- 
amics, a Plummer sphere is fitted through the volume density 
istribution out to a radius of 20 pc. The free parameters are the
lummer radius, r Pl , and the cluster mass, M oc (e.g. Fig. 5 ). The
elocity dispersion, σ 3D , is calculated within the initial tidal radius 
t 500 Myr. The time of 500 Myr ensures the clusters to be well
irialized while the lowest-mass models are still not too dissolved. 
he velocity dispersions of the models is shown in Fig. 10 . As can
e seen from the diagram, the velocity dispersion in the numerical
ilgromian case is about 20 per cent higher than in the numerical
ewtonian case and about 25 per cent higher than in the correspond-

ng analytical Plummer Newtonian models. This is also evident in 
ig. 7 . 
Fig. 11 shows q 50 −200 pc for the Newtonian and Milgromian cases as 

 function of the respective velocity dispersion. Both, the Newtonian 
MNRAS 517, 3613–3639 (2022) 
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Figure 11. Same as Fig. 9 (the models are the same from left to right), 
but showing q 50 −200 pc as a function of the velocity dispersion (Fig. 10 ) of 
the models at 500 Myr. Note the same shape of the dependency as in Fig. 9 
and that at the same mass, the Milgromian models have a larger velocity 
dispersion. The observed Hyades and Praesepe have an observed 3D velocity 
dispersion near 0.8 km s −1 (Section 3.2.2 ), which, according to these results, 
is near to where the systems achieve the maximum tail asymmetry in the 
Milgromian models. 

Figure 12. Same as Fig. 11 , but for different radial averaging intervals. 
Milgromian (Newtonian) models are shown as thick (thin) lines. The solid 
line corresponds to the 50–200 pc interval, the dashed line to the 50–100 pc 
interval, and the dotted line to the 50–300 pc interval. The errorbars are 
omitted for better visibility and because the errors are similar for all averaging 
intervals. 
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nd Milgromian models show a comparable shape of the q 50 −200 pc 

ersus σ 3D numerical data with a minimum near σ3D ≈ 2 km s −1 ,
ut the Milgromian models are systematically asymmetrical with the
eading tail containing significantly more stellar particles than the
railing tail in the distance range 50 to 200 pc from the cluster centre.
ig. 12 displays also the additional intervals 50–100 pc and 50–
00 pc, demonstrating that the q 50 −200 pc > 1 . 1 asymmetry remains
omparable in the Milgromian models, while the Newtonian models
ave values of q 50 −200 pc closer to 1 in all cases. 

.3 q 50 −200 pc as a function of time: models versus observations 

ow do these results compare with observations? 
A direct comparison between the model- and real-cluster- q 50–200 pc 

alues needs to be made with due caution because it is not clear if the
alues actually depend on the mass or the velocity dispersion of the
lusters, and because the models suggest the Milgromian prediction
NRAS 517, 3613–3639 (2022) 
f q 50–200 pc to vary with the Galactocentric orbital phase (as discussed
elow) with this information not being available for the real clusters.
ut the comparison with the observations is valuable because it shows

hat the observed tidal tail asymmetry is not expected in Newtonian
ynamics while it can occur in the Milgromian framework. The
symmetry ratio, q 50–200 pc , of the real clusters (Table 1 ) cannot be
lotted versus the theoretical initial mass, M oc,0 (to be equi v alent to
ig. 9 for the models), because the present-day masses of the real
lusters are highly uncertain. These have not been well constrained,
ropagating through to a significant uncertainty in their initial
asses, M oc,0 . The ages of the real clusters are better constrained

hough, and Fig. 13 plots q 50–200 pc versus age for these. 
The Hyades (square) has q 50 −200 pc = 2 . 53 ± 0 . 37 and for

GC 752 (upside down open triangle) q 50 –130 pc = 1 . 30 ± 0 . 24,
oma Berenices (circle) has q 50 −200 pc = 1 . 2 ± 0 . 15 and the
raesepe (triangle) has q 50 –200 pc = 0 . 62 ± 0 . 08. The latter case
ppears to contradict the expectation from the abo v e theoretical
nalysis that q 50 −200 pc > 1 al w ays if Milgromian gravitation were to
e correct. Note that this apparent contradiction would not salvage
ewtonian gravitation because of the simultaneous (now on-going)

imilar asymmetry of the Hyades, Coma Berenices and NGC 752
ails. A clue to this problem is obtained by noting that the data may
uggest an age sequence of q 50–200 pc . 

This is tested for in Fig. 13 by plotting the temporal evolution
f q 50–200 pc ( t ) for five models with σ3D < 2 km s −1 constituting
omputationally-reachable approximate conformity with the ob-
erv ed open clusters. F or t � 100 Myr , the models are evolving
nto an equilibrium mass-loss rate across the d cl = 50 pc to 200 pc
istance range. After ≈400 Myr, the Newtonian models are limited
o 0 . 6 < q 50 −200 pc ( t) < 1 . 4, while the Milgromian models have
 50–200 pc ( t ) oscillating near-periodically between 0.6 and 2.5. The
resent computations indicate the clusters to show an encouraging
greement with the Milgromian models within the 1 σ error ellipse
ince these rise to the level of the observed asymmetry (Fig. 13 ).
oteworthy is that the Milgromian models show oscillations in
 50–200 pc ( t ) with it increasing to larger values when the models are
ear perigalacicon to afterwards fall slightly below q 50–200 pc = 1. 

As a caveat and reminder though: while consistency with the
ilgromian models is evident, the Newtonian PoR models are

nconsistent at more than 5 sigma confidence only with the Hyades
atum with the other three clusters being also consistent with the
ewtonian PoR models. Before reaching final conclusions on which

heory of gravitation is valid, more observational work is needed to
mpro v e the quantification of the tidal tail asymmetry. 

.4 Why does q 50 −200 pc ( t) oscillate? 

ith the aim to shed some light on the question why the Milgromian
odels have an oscillating q 50–200 pc ( t ) with maxima occurring near

he cluster’s peri-galactica, the velocity dispersion and spin angular
omentum of the cluster models are studied next. The notion is that

roups of stellar particles might be moving in a correlated manner
ithin the cluster to exit across the pr ́ah together as the Milgromian

luster potential adjusts, causing the momentary flare-like increase
f q 50–200 pc ( t ). 
The bulk 3D velocity dispersion of the stellar particles within the

idal radius, σ 3D ( t ) (equation 23 ), is plotted in Fig. 14 . Neither the
ilgromian nor the Newtonian models show a near-periodic change

n σ 3D ( t ) that resembles the quasi-periodic evolution of q 50–200 pc ( t )
n Fig. 13 , such that the notion that the Milgromian cluster might
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Figure 13. The number ratio, q 50 −200 pc ( t), for five Milgromian (left-hand panels) and five Newtonian (right-hand panels) models as a function of time. The 
horizontal dashed line marks q 50 −200 pc ( t) = 1 (values > 1 correspond to more stars in the front tail while values < 1 correspond to the trailing tail having more 
stars, i.e. the dashed horizontal line is a marker for perfect symmetry in both tails for the left y -axis, and marks the Galactocentric radius of a circular orbit 
at 8.3 kpc for the right y -axis) and the initial masses, M oc,0 are written into the panels. The shaded region corresponds to the Poisson 1 σ uncertainty range at each 
time. The data for the four open clusters listed in Table 1 , for which the extended tidal tails have been extracted using Gaia eDR3 with the Jerabkova-CCP method 
(Section 2.2 ) are shown as the symbols (square: Hyades, circle: Coma Berenices, triangle: Praesepe, upside down open triangle: NGC 752). For each cluster, 
the error-bar on q 50 −200 pc is the 1 σ Poisson uncertainty and the error-bar on the age is the age range given in Table 1 except for NGC 752, which has an age 
of ≈1.75 Gyr not reached by the present simulations. For NGC 752, q 50 −130 pc is shown. Note that the Newtonian models fluctuate erratically around the value 
of q 50 −200 pc ( t) ≈ 1 while the Milgromian models show quasi-periodic excursions to q 50 −200 pc ( t) > 1 and q 50 −200 pc ( t) < 1 with maxima near perigalacticon. 
The dotted line is the galactocentric distance in kpc ( R = | j = 6 � R | , equation 22 ) relative to a circular orbit at R circ = 8 . 3 kpc . The model cluster orbits thus have 
apo-g alactica at ≈8 . 3 kpc and peri-g alactica at ≈8 . 1 kpc . The model clusters are on approximate rosette orbits such that the apo-galactica are < 360 ◦ distant 
from each other and occur about every 150 Myr while the orbital period is about 209 Myr (Fig. 4 ). The computations indicate that the Milgromian models show 

a pronounced asymmetry in the tidal tails when the model clusters are near peri-galacticon. 
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xperience an internal kinematically instability cannot, herewith, be 
ffirmed. 

The specific angular momentum per stellar particle for particles 
ithin the initial tidal radius, r tid,0 (equation 20 ), of their model

luster centre is calculated as 

� 
 /n = 

1 

n tid 

( 

n tid ∑ 

i = 1 

� r i × � v i 

) 

, (24) 

here � r i , � v i are, respectively, the position and velocity vectors 
f particle i relative to the model cluster’s centre. The Z-axis
oints towards the galactic north pole and the model clusters orbit
nticlockwise about the galactic centre. The specific inner angular 
omentum per particle of a model, � L /n 2 , is calculated for all particles
ithin half of r tid . 
The temporal evolution of the components of � L /n is plotted in 

ig. 15 . It is evident that the models are initially non-rotating,
ut that rotation develops with the loss of stellar particles. The
ewtonian and Milgromian models follow a similar evolution. All 
odels spin-up rapdily within the first ≈100 Myr due to the inital

ettling phase into the galactic potential which is associated with 
nhanced loss of particles. 
MNRAS 517, 3613–3639 (2022) 
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Figure 14. As Fig. 13 but plotting (w/o the Poisson uncertainties) the 3D velocity dispersion of particles within the initial tidal radius (equation 23 ). The 
velocity dispersion decreases as the models loose particles and the initially lighter models show erratic fluctuations in σ 3D ( t ) after they have largely dissolved. 
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This spin-up of initially not-rotating open clusters that fill their
idal radii is well understood and has been found to be the case also
or the evolution of the Milky Way satellite galaxies (Kroupa 1997 ):
he escaping stellar particles preferably stem from the pro-grade
opulation within the cluster as this is energetically fa v oured (Henon
970 ; Read et al. 2006 ). An unbound star on a pro-grade cluster-
entric orbit experiences a smaller tidal radius than other stars. It may
 v ertake the cluster slightly but by retarding from it towards a larger
alactocentric distance it will fall behind and populate the trailing
ail. If it transits the pr ́ah near the inner Lagrange point at smaller
alactocentric distance it will initially fall behind the cluster but will
o v e ahead of it due to the increasing angular orbital frequency
ith smaller galactocentric distance, populating the leading tail.
his pro-grade population can be re-populated after its loss from

he cluster through artificial grid-relaxation in the models here and
wo-body relaxation in real clusters. From Fig. 15 , it can be seen that
he Milgromian models have a faster spin-up which continues over
ime, while the Newtonian models show a near negligible rise in the
pin after the the first ≈100 Myr. This indicates that artificial grid
elaxation is negligible (the Newtonian models do not re-populate
heir pro-grade stellar population significantly at the expense of
NRAS 517, 3613–3639 (2022) 
he retrograde population) confirming the collision-less nature of
hese models. That the Milgromian models continue to spin-up o v er
ime (the blue lines have a small positive gradient) indicates that
nother process is at work that re-populates the pro-grade population
ithin the models at the expense of the retro-grade orbits, and that

his process accelerates. It needs to accelerate because the pro-
rade population needs to be lost more rapidly than the retrograde
opulation is depleted into the pro-grade one in order for the cluster
pin to increase. Since the equi v alent Ne wtonian models rule out
rtificial grid relaxation to be significant, this process is probably
elated to the precession of stellar orbits within the Milgromian
lusters through the external field. 

Indeed, in Milgromian gravitation, the EF leads to a star’s orbit
ithin the EF-dominated cluster to be torqued and thus to precess
ith the rate �̇. An estimate of the precession rate can be obtained by

dapting equation (34) in Banik et al. ( 2020 ), although it is not clear
hat it is fully applicable to the present fully EF-dominated case, 

˙ = 

f g G M oc a 0 r st sin ( θ ) cos ( θ ) 

2 v st r 
3 
efe 

. (25) 
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Figure 15. As Fig. 13 but plotting (w/o the Poisson uncertainties) the X- (dotted red line), the Y- (dashed green line), and the Z-component (solid blue line) of 
the time-evolution of the cluster’s specific spin angular momentum per particle, � L /n (equation 24 , using all particles within the initial r tid of each model). A 

positive Z-component is antiparallel to the angular momentum of the cluster’s orbit around the Galaxy. Note that the Milgromian models typically have larger 
spins which is consistent with their larger mass loss and the argument of cluster spin-up in Section 5.4 . The time-deri v ati ve of L z/ n is plotted in Fig. 16 . 
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ssuming M oc = 275 M �, its r efe ≈ 0 . 29 pc (equation 31 in Banik
t al. 2020 : r efe = 

√ 

G a 0 M oc /a ext, kin is the radius in the cluster
eyond which the EF dominates; a ext, kin ≈ 7 . 5 pc Myr −2 from Ta-
le 1 ), the inclination between the direction of the EF and the orbital
ngular momentum of the star in the cluster, θ = 45 o , maximizes
he sin-cos product, and f g = 1/2 is a geometric factor that accounts
or azimuthal averaging. Equation ( 25 ) suggests a precession rate 
f ≈240 rad Myr −1 for a star at r st = 5 pc moving with a circular
peed of v st = 0 . 5 pc Myr −1 . This is extremely rapid, implying a
recession-induced orbital instability. Note that 

˙ ∝ M 

−0 . 5 
oc , (26) 

uch that the precession speeds up as the cluster looses mass. This
ay be the reason for the increasing spin of the Milgromian models

oted abo v e. Also, 

˙ ∝ a 3 ext, kin , (27) 
uggests that the process of precession of cluster-centric stellar orbits 
ncreases significantly at peri-galacticon, such that the e v aporation 
ate may be more sensitive to the orbital eccentricity of the open
luster in Milgromian than in Newtonian gravitation. 

The abo v e estimate for �̇ is rough and other stars will e xperience
ignificantly different precession rates, but it indicates that the EF 

s likely to have a highly significant systematic effect on the orbital
tructures and orbital angular momenta orientations of stars in an 
pen cluster and may thus constitute an additional important contri- 
ution to the energy-redistribution process in Milgromian gravitation. 
his EF-relaxation process demands further investigation as it should 
lso be important in globular clusters. 

Every star cluster on a near-circular galactocentric orbit that is 
lder than t ≈ 100 Myr (conserv ati vely 200 Myr), that had revirial-
zed after gas expulsion with a negligible spin (but see Mapelli 2017
or models of forming rotating clusters and H ́enault-Brunet et al.
012 for observational evidence for rotation in a very young massive
luster) will thus spin-up to rotate with a spin oppositely directed to
MNRAS 517, 3613–3639 (2022) 
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Figure 16. The rate of change of the Z-component of the specific spin 
angular momentum per particle of the model clusters, d L z/ n /d t , in dependence 
of the initial model mass, M oc,0 , for all particles within the initial tidal 
radius. The shaded regions corresponding to the 1 σ uncertainty in the linear 
fit to L z/ n ( t ) (Fig. 15 ). For this purpose, the linear fit is restricted to the 
follo wing time interv als: 200–500 Myr ( M oc , 0 = 2500M �), 200–750 Myr 
( M oc , 0 = 3500M �), 200–1000 Myr ( M oc , 0 > 3500M �). Fig. 17 shows the 
time deri v ati ve of L z,/n2 for particles within half the tidal radius. 
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Figure 17. As Fig. 16 but for all particles within half the initial tidal radius. 

Figure 18. The evolution of the orbital eccentricity, e snap ( t ), of the Mil- 
gromian model with M oc , 0 = 5000M � (lower panel) in comparison with 
the evolution of q 50 −200 pc ( t) (upper panel, same as in Fig. 13 ). The orbital 
eccentricity varies as q 50 −200 pc does, but is retarded by about 40 Myr for the 
first two maxima. The dashed line shows the o v erall linear trend of e snap ( t ). 
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ts orbital angular momentum around the galactic centre. 10 This is
hown in Fig. 15 in that the Z-component of � L /n , L z / n , increases and is
ositive while the orbital angular momentum of the cluster about the
alaxy is directed towards the ne gativ e Z -direction: if the initially
on-rotating open cluster orbits the Galaxy in an anti-clockwise
irection, then the open cluster will begin to rotate clockwise. 
According to Fig. 15 , the evolution of � L /n does not show fluctua-

ions that would support the notion that correlated particle motions
ead to the near-periodic increases and decreases of q 50 −200 pc ( t). The
ate of change of L z/ n ( t ) and of L z/ n 2 ( t ) (using only particles within
alf of the initial r tid ) are plotted in Fig. 16 and 17 , respectively. The
odels with M oc , 0 � 4000M � are barely resolv ed giv en the small

ensity contrast of the cluster relative to the field, and the more reli-
ble more massive models indicate that the Milgromian clusters keep
pinning up at a constant rate, d L z /n / d t ≈ 0 . 22 × 10 −6 pc 2 Myr −2 ,
ndependently of their initial mass (similarly for the inner part), while
he Newtonian models experience a significantly smaller spin-up o v er
ime which decreases with increasing model mass (see Tiongco et al.
016 for an in-depth n -body study). Given the e xplorativ e and grid-
ased approximative nature of this work, we do not further analyse
he rate of spin-up in relation to cluster mass loss rate. 

The e xplorativ e calculations performed so far show Milgromian
odels to preferentially loose stars across their pr ́ahs through the
NRAS 517, 3613–3639 (2022) 

0 Globular clusters are typically on chaotic rosette-type orbits about the 
alactic centre such that their spins are not likely to be well correlated 
ith their Galactocentric orbital angular momenta. The interested reader is 

eferred to the comprehensive Newtonian n -body study of rotating globular 
lusters by Tiongco, Vesperini & Varri ( 2016 , 2017 , 2018 , 2022 ), Tiongco, 
ollier & Varri ( 2021 ). Bianchini et al. ( 2018 ) find significant evidence for 
 non-negligible spin of 11 out of 51 globular clusters but do not place 
his in relation to the orbital angular momentum of the clusters. Sollima 
 2020 ) analyses Gaia-selected member stars around 18 globular clusters, 
nding evidence for tidal tails in seven of them with five having asymmetric 

ails (the directions of motion of the clusters are not given though). This 
symmetry may be related to the asymmetry discussed here, but is likely 
ffected significantly by the eccentricities of the cluster orbits. Flat outer 
elocity dispersion profiles around some globular clusters have been reported 
Scarpa et al. 2011 ). 

t  

v  

e
 

M  

m  

a  

t  

t  

l  

t
 

o  

i  

s  

g  

rch 2023
eading tidal tail. This leads to them spinning up with time (Fig. 15 )
nd also leads to growth of their orbital eccentricity (equation 2 )
ince the clusters decelerate through this one-sided out-sourcing of
heir stars. The initial orbital eccentricities of the present models
re e ≈ 0.012, and using the method of Appendix A to calculate
he momentary value of e ( t ) = e snap from the position and velocity
ectors of the model centres (equation A1 ), the time evolution of
 snap ( t ) can be studied. 

The evolution of e snap ( t ) is shown for the Milgromian model with
 oc , 0 = 5000M � in Fig. 18 . It is evident that, when the model looses
ore stars across its pr ́ah into the leading tail, then e snap increases as
 consequence of the loss of momentum of the cluster, while, when
he trailing tail receives more stars, e snap decreases again. Due to
he time-averaged asymmetry the clusters loose more stars into the
eading tail (Fig. 9 , 11 , and 12 ), and thus continuously decelerate
herewith steadily increasing their o v erall e ( t ) with time. 

While the Newtonian models approximately retain their initial
rbital eccentricity, the Milgromian models thus show an approx-
mately linearly increasing e snap ( t ). By performing a linear regres-
ion on the e snap ( t ) data (as shown for example in Fig. 18 ), the
radient, d e snap /d t is e v aluated and sho wn in Fig. 19 . Interestingly,
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Figure 19. The rate of change of the orbital eccentricity in dependence 
of the initial model mass, M oc,0 . The shaded regions correspond to the 1 σ
uncertainty in the linear fit to e sn ( t ). 
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he Milgromian models have a similar time-gradient d e snap / d t ≈
 . 8 × 10 −6 Myr −1 at more than 5 σ confidence, while the Newtonian
odels have a gradient consistent within 2 σ with zero. The present 
ilgromian models thus increase their orbital eccentricity by 20 

er cent o v er a time of 1 Gyr. 
This confirms the supposition that the one-sided loss of stars 

ecelerates the Milgromian models such that their orbital eccentricity 
ncreases with time. A more detailed analysis of this problem is be-
ond this e xplorativ e study, giv en the limited access to computational
esources, and is relegated to a follow-up study. This explorative 
ork does, ho we ver, suggest that in Milgromian dynamics open 

tar clusters would self-destroy as they spin-up. The asymmetrical 
oss of stars dominantly into the leading tail leads to a deceleration
f the cluster, a decreasing peri-Galacticon, which increases the 
symmetrical loss to a potentially catastrophic level as the process 
ppears to be subject to positive dynamical feedback. Clearly, further 
esearch on this process of open-cluster suicide is needed to reach 
ore secure conclusions. 

.5 Emergence from molecular cloud and lifetimes 

n Milgromian gravitation, galactic discs have a stronger self- 
ravitation than in Newtonian plus dark-matter-halo models, leading 
o an enhanced star-formation rate per unit gas mass and also 
o star-formation extending to larger galactocentric radii (Zonoozi 
t al. 2021 ). The emergence of star clusters from their molecular
louds of birth involves a phase transition from the Newtonian 
eeply embedded cluster phase to the Milgromian open cluster 
onfiguration. 

From the half-mass radius–embedded-cluster mass-in-stars rela- 
ion, r h / pc = 0 . 10 ( M ecl / M �) 0 . 13 (Marks & Kroupa 2012 ), it follows,
ogether with equation ( 13 ), that r M 

> r h for M ecl > 4M � for a
tar-formation efficiency of 33 per cent. It is interesting to note that
 ecl ≈ 5M � corresponds to the least-massive embedded clusters that 

re observed in nearby molecular clouds (Kroupa & Bouvier 2003 ; 
oncour et al. 2018 ). This also means that the precursors of all open
nd globular star clusters form in the Newtonian regime. But, the 
east-massive embedded clusters have a MOND radius comparable 
o their half-mass radius, suggesting they would form in the EF-
ominated Milgromian gravitational regime, i.e. with an ef fecti vely 
arger gravitational constant, G eff . The emergence from the natal 

olecular cloud and the re-virialization of a part of the embedded 
luster will occur mostly in the Milgromian EF dominated spatially 
symmetrical regime (Fig. 3 ) such that the presently known limits
n bound fractions of this process (e.g. Boily & Kroupa 2003a , b ;
rinkmann et al. 2017 ; Farias et al. 2018 ; Dom ́ınguez et al. 2021 )
ay need adjustment. This problem has been studied by Wu &
roupa ( 2018 ) and Wu & Kroupa ( 2019 ) indicating the rich stellar-
ynamical evolution and possible outcomes. A larger fraction of 
tars can remain bound to the freshly formed open cluster due to the
arger G eff with a reduced fraction of stars to be found in tidal tail I
Section 1 ) compared to Newtonian models. These processes will 
eed future attention to better understand the kinematics and shapes 
f natal cocoons. 
Observations of extragalactic open star clusters appear to show 

hese to dissolve unexpectedly quickly (Fall & Chandar 2012 ; Chan-
ar et al. 2017 ). The dissolution appears to be faster than expected
rom Newtonian n -body simulations in smooth galactic potentials 
Dinnbier et al. 2022a ). The lifetimes of real open clusters are subject
o assumptions on their orbits, the IMF, binary fraction, their initial
izes and masses (e.g. Mapelli 2017 ; Ballone et al. 2020 ; Gonz ́alez-
amaniego & Vazquez-Semadeni 2020 ; Ballone et al. 2021 ). The
alculated models are thus degenerate to various combinations of 
he parameters (unless all open clusters form following the same 

ass-radius relation, the same IMF and initial binary population 
nd the Galactic potential is smooth, cf. Marks & Kroupa 2012 ;
innbier et al. 2022a ). Therefore, the reported short lifetime problem
eeds more research and should not, for the time being, be taken as
onclusi ve e vidence in the one or other direction. Given this situation,
t is rele v ant to ask: Is it possible that Milgromian open clusters
issolve faster than Newtonian ones? 
In Section 5.1 , it was found that the particle-mesh Milgromian
odels dissolve more rapidly than the Newtonian models of the 

ame mass due to Milgromian clusters becoming more unbound 
er unit mass loss. In addition to this general process, the energy-
quipartition-driven stellar loss is likely to be faster for Milgromian 
lusters than for Newtonian clusters. Ciotti & Binney ( 2004 ) showed
hat the two-body relaxation time-scale is significantly shorter in 

ilgromian clusters, although reliable values are not available and 
heir computation is only valid for clusters in isolation. Ignoring 
his (truly fundamental) limitation for the moment, we can compute 
he relaxation time ignoring the external field. The following two 
stimates can be made: The lifetime of a Newtonian open cluster
e.g. Binney & Tremaine 1987 ), T diss , N = γ t relax , where γ ≈ 19 when
he cluster is in the field of the Solar neighbourhood and t relax is the
edian two-body relaxation time scale. According to Ciotti & Binney 

 2004 ), the ratio of the two-body relaxation time in Milgromian to
ewtonian gravitation is 

t relax , M 

t relax , N 
= 1 . 4 (1 + R ) −� / ∈ , (28) 

here R = ( M oc , grav − M oc ) /M oc . F or e xample, for the Hyades,
 oc = 275M � is the stellar mass (Table 1 ) while the ef fecti ve-
ewtonian gravitational mass is about a factor of four larger (R ̈oser

t al. 2011 ). Thus, for the Hyades, t relax,M 

/ t relax,N ≈ 0.044 such
hat Milgromian open clusters would dissolve about 23 times more 
apidly than Newtonian ones (taking the Hyades as representative). 
 twenty-fold shortening of the life-times is ruled out by the
bservation that Hyades-type clusters with a birth mass near 1300 M �
Jerabkova et al. 2021 ) have life-times longer than 600 Myr while the
ewtonian expectation is 2 Gyr (Section 2.1 ). The empirical evidence 

uggests a shortening at most by not much more than a factor of two.
Another estimate can be obtained by remembering that t relax , N ≈

2 N / ln ( N / 2)) t cross , where t cross = 2 r h /σ3D is the half-mass crossing
ime. If the boost in velocity dispersion is only 25 per cent using the
F-dominated MOND estimates (Section 5.1 ), then the lifetimes 
MNRAS 517, 3613–3639 (2022) 
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ould be shorter by only about 20 per cent. Assuming that, for some
et unknown reasons, the collisional treatment would reproduce the
bserv ed v elocity dispersion, then the relaxation time and thus the
ifetime would be reduced by a factor of two for the Hyades. 

Another estimate for the shortening of the lifetimes of Milgromian
ersus Newtonian clusters can be obtained as follows: the lifetime
f a Newtonian cluster, T diss,N , is given by equation ( 1 ). As noted
n Section 5.1 , open clusters are in the EF-dominated regime such
hat they follow Newtonian dynamics. If T diss,M 

is the lifetime of the
ilgromian cluster, then T diss , M 

/T diss , N = ( G/G eff ) 1 / 2 = 

√ 

μ ≈ 0 . 8
equation 17 ). This estimate thus implies EF-dominated clusters to
ave a lifetime which is about 80 per cent that of the corresponding
ewtonian cases. 
The abo v e estimates thus indicate that the lifetimes of open

lusters in Milgromian gravitation are between 20 to 50 per cent
f those in Newtonian gravitation. It remains to be studied how
tar-cluster populations evolve in a Milgromian galaxy, noting that
bserv ational e vidence suggests that the dissolution rate of star
lusters may be independent of their mass (Fall & Chandar 2012 ;
handar et al. 2017 ). From the results of Section 5.1 , it is tentatively

uggested that t life , M 

/t life , N ≈ 7 . 4 ( M oc / M �) −0 . 25 . While the lifetimes
f Newtonian star clusters in the Solar neighbourhood lengthen
ith increasing M oc due to the increasing two-body relaxation time

pproximately according to T diss ∝ M 

0 . 79 
oc (equation 1 ), this suggests

hat the lifetimes of EF-dominated Milgromian clusters may at the
ame time be reduced due to the larger loss in binding energy per
nit mass loss. The combination of these two effects may lead to
ife-times of EF-dominated star clusters being less-dependent on the
luster mass, t life , M 

∝ ∼ ( M oc ) 0 . 5 . 
The rapidity with which open clusters dissolve is dependent on

ow quickly the orbital energies of the stars in the cluster are
edistributed through weak gravitational encounters. The observation
n Section 5.4 that the Milgromian models spin-up o v er time while
he Newtonian ones do not may indicate another contribution to the

ore rapid dissolution of Milgromian clusters: the rapid precession
f stellar orbits in Milgromian clusters leads to a more rapid depop-
lation of the cluster-centric retro-grade orbits which precess into
ro-grade orbits that are preferentially lost. This process accelerates
ith time (equation 26 ) as the cluster’s mass decreases, leading to

luster suicide. 
For completeness, further results on the richness of the Milgromian

ravitational dynamics of open star clusters, globular clusters, and
warf galaxies can be found in Brada & Milgrom ( 2000 ) who study
he dynamical influence of the EF on orbiting satellite galaxies. Thus
he asymmetry of an ultra-diffuse dwarf galaxy’s potential (see Fig. 3 )
ill affect the morphology of its tidal features with implications for

he interpretation of its dark matter content in Newtonian gravitation
cases in point being the dark-matter-lacking dwarf galaxies NGC
052-DF2/DF4, F amae y, McGaugh & Milgrom 2018 ; Kroupa et al.
018 ; Keim et al. 2022 ; Montes et al. 2021 ). Wu & Kroupa ( 2013 )
nalyse the phase transition a massive star cluster experiences on
 radial orbit when moving from the Newtonian into the outer
ilgromian regime, and Thomas et al. ( 2018 ) demonstrate that the

symmetry of a cluster’s potential leads to asymmetrically long tidal
ails II explaining the unequal lengths of the observed tidal tails of
he globular cluster Palomar 5. 

 SUMMARY  A N D  C O N C L U S I O N  

wenty per cent to a half of all stars in a galaxy pass through a
lassical tidal tail II which is fed through the e v aporation process
NRAS 517, 3613–3639 (2022) 
f their star cluster of origin. The remainder are lost from their
mbedded clusters through gas expulsion forming, together with the
tars from other embedded clusters that formed in the same molecular
loud, dispersing natal cocoons about indi vidual re virialized open
lusters. After ≈200 Myr, the classical tidal tail II becomes the
ominant coe v al population within a fe w hundred pc of the open
luster. In Newtonian dynamics and for a smooth galactic potential,
he stars cross the pr ́ah of their cluster symmetrically at the inner
nd outer Lagrange points leading to symmetrical classical tidal tails
ithin Poisson noise (Pflamm-Altenburg et al., in preparation). But

or all open clusters for which tail data are available the leading
ail contains more stars than the trailing tail within a cluster-centric
istance of d cl ≈ 50 pc (Section 2.2 ). 
With the introduction of the compact convergent point method by

erabkova et al. ( 2021 ), it has now become possible to map-out the
xtended ( d cl > 50 pc ) phase-space distribution of coe v al stars in the
lassical tidal tail II around nearby open clusters using Gaia eDR3.
n the case of the Hyades, the tidal tail is asymmetrical with the
eading tail containing significantly more stars than the trailing tail
Fig. 2 ). This was interpreted by Jerabkova et al. ( 2021 ) to possibly
e due to a recent encounter with a massive perturber, which would
ave damaged the trailing tail, thereby also leading to dynamical
eating of the Hyades which would consequently dissolve within
 few cluster crossing times. This is consistent with the observed
uper-virial state of the real cluster (a factor of four missing in mass
ssuming Newtonian gravitation, R ̈oser et al. 2011 ; Oh & Evans
020 ). A problem with this scenario is that the Sun and Hyades are
n the Local Bubble such that a sufficiently massive molecular cloud
oes not exist nearby to the Hyades and the existence of dark matter
ubhaloes remains to be speculative (Section 2.3 ). Furthermore,
bout three times older open cluster NGC 752 shows a comparable,
lbeit much less significant, asymmetry (Boffin et al. 2022 , Fig. 13 )
equiring a similar encounter, making this explanation unlikely. 

Can the asymmetry in the tidal tails be explained if gravitation
s Milgromian rather than Newtonian? Milgrom ( 1983 ) noted that
he open star clusters would be in the Milgromian regime with their
nternal gravitational forces being dominated by the external field
rom the Galaxy (Section 3.2.2 ). The work of Wu et al. ( 2008 ),

u et al. ( 2010 ) and Wu et al. ( 2017 ) showed the equipotential
urfaces of satellites (dwarf galaxies or star clusters) to be lopsided
n Milgromian gravitation, therewith breaking the symmetry between
he inner and outer Lagrange points. A star moving away from the
entre of its hosting cluster will experience a larger radial backwards
orce when mo ving a way from the galactic centre (Fig. 3 ). This may
e the reason for the number of stars in the leading tidal tail being
arger than in the trailing tail for d cl � 50 pc for all five clusters for
hich tail data exist (Section 2.2 ). But, the older open cluster Coma
erenices has a nearly symmetrical tidal tail in the distance range
0 < d cl /pc < 200 while the Praesepe has slightly fewer stars in the
eading tail in this same distance range from the cluster (Fig. 13 ).
his appears to contradict a Milgromian interpretation of the data
ithout salving the disagreement with Newtonian gravitation for
 cl � 50 pc for all five clusters and for d cl > 50 pc for the Hyades and
GC 752. 
Giv en the non-e xistence of a relaxational Milgromian n -body

ode, the symmetry-problem of tidal tails is here approached by
pplying the existing collision-less adaptive-mesh refinement PoR
ode (Section 5 ) to follow how stellar particles leak across the
r ́ah of their model cluster. The equi v alent Ne wtonian computations
erify that the tails are largely symmetrical, while the Milgromian
alculations demonstrate them to be significantly asymmetrical. This
onfirms the expectation that a Milgromian star cluster orbiting the



Milgrom’s pr ́ah 3635 

G  

t

p
r
t
(  

n
g
a  

t  

t  

a  

a
b  

N
a
v
t  

G

p
5
a
t
p  

t  

o  

i
c
p

 

n  

o  

A
e  

t  

t

h  

c
p
(  

r
 

t  

a
a  

t  

K  

g
a
i
2
t
t
i
c  

t
u
N  

u

1
m
b
t
M  

A  

t  

T  

a
r  

d  

b
t
d
s  

a

D
g
a  

(  

(
g
g  

u
m  

p

 

(  

P  

C

p
f

 

a
t
s

A

W
a
w  

D
a
l
E  

a
(
f
U
n
A  

I
H  

t
 

C  

l  

h  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/517/3/3613/6773470 by C
N

R
S user on 24 M

arch 2023
alaxy on a near-circular orbit in the MW disc looses more stars
hrough the leading tidal tail (Section 5.2 ). 

The calculations show the ratio between the number of stellar 
articles in the leading to the trailing tail to oscillate near-periodically, 
eaching the high-observed values of the Hyades and decreasing to 
he Newtonian symmetry reaching a small but reversed asymmetry 
Fig. 13 ). The maximum asymmetry is reached when the models are
ear peri-galacticon while the asymmetry nearly disappears at apo- 
alacticon. The observed tidal tails of the Hyades, Coma Berenices, 
nd the Praesepe appear to follow the theoretical time evolution of
he asymmetry ratio (Fig. 13 ). While the asymmetry and ages of
he models and real clusters agree, it is not clear if the real Hyades
nd NGC 752 are in periastron, and if Coma Ber and Praesepe
re near apo-galacticon. An interesting problem to consider would 
e to search for a Galactic potential which places the Hyades and
GC 752 near peri-galacticon and Coma Ber and the Praesepe near 

po-galacticon, given the observational constraint on their velocity 
ectors. In future work, the contribution from the Galactic bar needs 
o be taken into account as well as orbital oscillations about the
alactic mid-plane. 
The calculations performed for this e xplorativ e study indicate a 

ossible physical mechanism for the oscillating behaviour of the 
0–200 pc tail asymmetry. While the Newtonian models retain an 
pproximately constant orbital eccentricity, it grows with time for 
he Milgromian models because these loose more stars across their 
r ́ah into the leading tail than the trailing tail. The physical process of
he loss of stars (Section 5.4 ) may be driven by the rapid precession
f stellar orbits within the cluster due to the EF, leading to an
ncreasingly rapid EF-relaxational redistribution of orbits as the 
luster looses mass, therewith growing the orbital eccentricity. This 
rocess, if true, would accelerate cluster death. 
A prediction of this work is that open star clusters that are initially

on-rotating and older than about 200 Myr show a spin which is
pposite to the orbital angular momentum of the cluster (Section 5.4 ).
nother prediction is that in Milgromian gravitation the first K ̈upper 

pic yclic o v erdensity lies further from the cluster in the leading tail
han the trailing tail, both being more distant from the cluster centre
han in Newtonian dynamics (Section 5.1 ). 

The estimates in Section 5.5 suggest Milgromian open clusters to 
ave life times that are 20–50 per cent of those of Newtonian open
lusters of the same initial mass because the two-body relaxation 
rocess is faster. This may have a bearing upon the observation 
Fall & Chandar 2012 ) that open clusters appear to dissolve more
apidly than expected from Newtonian n -body computations. 

In the future, it will be important to verify and better measure
he tidal tails for open star clusters co v ering a larger range of
ges. This will allow an elaboration on the present findings and 
n assessment of the e v aporation rate of stars into the leading and
railing tidal tails as well as the measurement of the locations of the
 ̈upper epic yclic o v erdensities as more refined tests of Milgromian
ravitation. Given the present results based on a collision-less method 
nd the result that two-body relation is much more significant 
n Milgromian systems than in Newtonian ones (Ciotti & Binney 
004 ), and to achieve theoretical advances, it will be necessary 
o develop a collisional n -body code in Milgromian gravitation 
o allow open star clusters to be evolved self-consistently. This 
s a very major mathematical and computational challenge with 
urrently no clear solution in sight. An ansatz could be to discretize
he generalized Poisson equation (Section 3.1 ) and possibly to 
se an iterative procedure to calculate the instantaneous ef fecti ve- 
ewtonian gravitational mass of each star in the cluster, and/or to just
se the original definition of the MONDian force equation (Milgrom 
983 ) with the usual particle summation o v er the particle-distance −2 

ass terms (Pflamm-Altenburg, in preparation). Close encounters 
etween stars and multiple systems and their perturbations will need 
o be treated according to regularization methods (Heggie 1974 ; 

ikkola & Aarseth 1990 , 1993 ; Funato et al. 1996 ; Mikkola &
arseth 1996 ) and stellar -ev olution will need to be implemented

hrough fast look-up tables (Hurley, Pols & Tout 2000 ; Hurley,
out & Pols 2002 ; Banerjee et al. 2020 ). The discs of galaxies
re entirely self-gravitating in MOND, enhancing the star-formation 
ate, as opposed to the Newtonian case where the dark matter halo
ominates the potential (Zonoozi et al. 2021 ). A Milgromian n -
ody simulation code will be mandatory to address the emergence 
hrough gas expulsion of open and globular clusters from their 
eeply-embedded Newtonian state (Section 5.5 ), the rate with which 
tars mass-se gre gate and e v aporate, ho w long open star clusters li ve
nd how their orbits evolve. 

Gravitation remains the least-understood physical phenomenon. 
ifferent interpretations of this phenomenon have been proposed as a 
eometrical distortion of space-time through matter (Einstein 1916 ), 
s an emergent property related to the information content of space
Verlinde 2011 ), or it being related to the wave-nature of particles
Stadtler, Kroupa & Schmid 2021 ). The present contribution sug- 
ests that departures at low accelerations from Newtonian/Einstein 
ravitation might be already evident on the pc-scale. To advance our
nderstanding of this phenomenon, it will be important to achieve 
ore direct tests on the sub-pc scale. Three methods have been

roposed to achieve headway: 

(i) Using very wide binary systems to test the law of gravitation
Hernandez, Jim ́enez & Allen 2012 ; Scarpa et al. 2017 ; Banik,
ittordis & Sutherland 2021 ; Pittordis & Sutherland 2022 , but see
larke 2020 ; Loeb 2022a ). 
(ii) Tracking the orbital motion of Proxima Cen with high- 

recision astrometry to unco v er the expected Milgromian departures 
rom the Newtonian trajectory (Banik & Kroupa 2019a ). 

(iii) Using an ensemble of small space craft to map out the
cceleration field surrounding the Sun which will allow to detect 
he Milgromian departures from the Newtonian force law on the 
cale of the outer Solar System (Banik & Kroupa 2019b ). 
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ith the pr ́ah to a new house. We use this as a general term referring
o the true tidal threshold instead of calling it the ‘Jacobi radius’,
hich is only an approximation for perfectly circular orbits. 

ATA  AVA ILA BILITY  

he results are based on calculated models and the observational
ata are available as described within this manuscript. 
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PPENDIX  A :  ESTIMATION  O F  T H E  O R B I TA L  

CCEN TRIC ITY  F RO M  O N E  SNAPSHOT  

he periods of the oscillation of the Galactocentric distance of
he open star clusters of interest are of the order of 100 Myr.

ithin the current age of the open star clusters ( � 800 Myr ) only
 few apo- and perigalacticon passages occur, and thus only a few
rbital eccentricities can be calculated directly from equation ( 2 ).
n order to better track the evolution of the radial eccentricity in
he simulations, it is desirable to estimate the eccentricity at each
ime-step, given only the actual position � R = (X, Y, Z) and velocity
ector � V = ( V X , V Y , V Z ) of the star cluster centre in the Galactic rest
rame. 

The eccentricity at a certain snapshot of the orbit is defined by 

 snap = 

R aposn − R perisn 

R aposn + R perisn 
, (A1) 

here R perisn is the perigalactic and R aposn the apo-galactic distance
stimated in the following from the snapshot. By having flat rotation
urves, galaxies are observationally inferred to be sourcing a loga-
ithmic potential. The Hamiltonian in polar coordinates of a particle
ith mass m moving in the X - Y -plane of a logarithmic potential with

ircular velocity, v circ , is 

 = 

P 

2 
R 

2 m 

+ 

P 

2 
ϕ 

2 m R 

2 
+ m v 2 circ ln ( R) , (A2) 

here R is the radial distance to the Galactic centre, P R the
adial momentum, and P ϕ the azimuthal momentum. As H is time
ndependent H is conserved. After mass-normalization we get 

H 

m 

= 

( P R /m ) 2 

2 
+ 

( P ϕ /m ) 2 

2 R 

2 
+ v 2 circ ln ( R) = const . (A3) 

ecause P ϕ is cyclic the Z -component of the angular momentum, L z ,
s conserved, 

 ϕ /m = L Z /m = X V Y − Y V X = const . (A4) 

xpressing the radial momentum by 

 R /m = Ṙ = 

� R • � V 

R 

, (A5) 

e obtain for the two turning points R t with Ṙ t = 0 

Ṙ 

2 

2 
+ 

( L Z /m ) 2 

2 R 

2 
+v 2 circ ln ( R) = const. = 

( L Z /m ) 2 

2 R 

2 
t 

+v 2 circ ln ( R t ) . (A6) 
NRAS 517, 3613–3639 (2022) 
he solution of this trancendental equation requires a numerical
ethod. As there are two turning points (except for the case of a

irular orbit), a numerical root finding algorithm requires appropriate
tarting points for the iteration. These points can be obtained by
tting this equation locally up to second order, and can be also used
s approximations of the turning points. 

The Galactocentric distance, R t , of each turning point is expressed
s the sum of the current Galactocentric distance, R , and the radial
istance, δR , from the current position to the Galactocentric distance
f the respective turning point, R t = R + δR along the line Galactic
entre to cluster, where δR is positive in case of the apo-galactic
urning point and ne gativ e in case of the peri-galactic turning point.
fter normalization of the radial distance, x = δR / R , i.e. 

 t = R(1 + x) , (A7) 

e get 

Ṙ 

2 

2 
+ 

( L Z /m ) 2 

2 R 

2 
= 

( L Z /m ) 2 

2 R 

2 
(1 + x) −2 + v 2 circ ln (1 + x) . (A8) 

his yields a solution for x , a positive one for the peri-galactic and a
e gativ e for the apo-galactic turning point. 
Given that | δR | � R , the full solution (equation A8 ) can be

implified: For a star cluster of current interest the Galacticentric
istance is R ≈ 8 . 3 kpc and | δR | is of the order of � few hundred pc.
hus, as | x | � 1, both x -terms can be Taylor expanded, 

1 + x) −2 = 1 − 2 x + 3 x 2 − . . . , for | x| < 1 , (A9) 

nd 

n (1 + x) = x − 1 

2 
x 2 + . . . , for | x| < 1 , (A10) 

nd are truncated after the second order. Introducing the abbrevia-
ions 

= 

Ṙ 

2 

2 
and μ = 

( L Z /m ) 2 

2 R 

2 
, (A11) 

 quadratic equation for x emerges, 

+ μ = μ(1 − 2 x + 3 x 2 ) + v 2 circ 

(
x − 1 

2 
x 2 
)

, (A12) 

ith two solutions 

 1 / 2 = 

−b ±
√ 

b 2 − 4 aη

2 a 
, (A13) 

nd parameters 

 = 

v 2 circ 

2 
− 3 μ and b = 2 μ − v 2 circ . (A14) 

sing equation ( A7 ) the first solution for x having the plus sign
n front of the square root determines the Galactocentric distance
f the apo-galactic turning point, the second solution for x the
alactocentric distance of the peri-galactic turning point. 
We test the accuracy of the approximating method for a logarithmic

otential with a rotational velocity of v circ = 250 km s −1 (this is for
onsistency with the models of Sections 4 and 5 , while the data
n Table 1 assume v circ = 220 km s −1 ) and local radial velocity of
0 km s −1 at a galactocentric distance of 8.5 kpc, which are typical
ata of solar neighbourhood star clusters. Assume the actual position
nd v elocity v ectors in the Galactic rest frame are � R = (8500 , 0 , 0) pc
nd � V = (10 . 23 , 255 . 65 , 0) pc Myr −1 . The complete solution of
quation ( A8 ) leads to peri- and apocentre distances of R aposn =
740 . 4 pc and R perisn = 8259 . 6 pc and an orbital eccentricity e snap =
.0282823. 
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With the approximative solution (equations A4 , A11 , A14 , A13 ,
nd A7 , in this order), we obtain R aposn = 8746 . 2 pc and R perisn =
265 . 1 pc giving an orbital eccentricity of e snap = 0.0282812. In this
ase, the relative error of the eccentricity is 4 × 10 −5 . 

These approximative solutions of the two turning points 

 t 1 = R(1 + x 1 ) , R t 2 = R(1 + x 2 ) (A15) 

an be used as starting points R 1 = R t 1 and R 1 = R t 2 for the Newton–
aphson root finding algorithm with iterative step 

 n + 1 = R n − f ( R n ) 

f ′ ( R n ) 
, (A16) 
here the function, of which the roots are to be found, is 

 ( R n )= 

Ṙ 

2 

2 
+ 

( L Z /m ) 2 

2 R 

2 
+ V 

2 
circ ln ( R) − ( L Z /m ) 2 

2 R 

2 
n 

−V 

2 
circ ln ( R n ) (A17) 

nd its primitive 

 

′ ( R n ) = 

( L Z /m ) 2 

R 

3 
n 

− V circ 

R n 

. (A18) 

t turns out, that two or three steps are sufficient. 
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