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Artificial neural networks (ANNs) incur huge costs in terms

of processing power, memory performance, and energy con-

sumption, where in comparison an average human brain op-

erates within a power budget of nearly 20 W. Brain-inspired

computing such as Spiking Neural Networks (SNNs) are thus

expected to improve efficiency to an unprecedented extent.

But apart from the spike coding aspects currently addressed

by numerous investigations, research also needs to find so-

lutions for the practical design of future neuromorphic hard-

ware ensuring very low power processing. This paper inves-

tigates these questions with a pragmatic comparison of deep

Convolutional Neural Networks (CNNs) and their equivalent

SNNs based on the implementation and measurement of a set

of CNN image classification benchmarks on FPGA devices.

Results show that SNNs are clearly less energy efficient than

their equivalent CNNs in the general case, further indicating

that, on top of ongoing progress in spike modeling theory

(e.g. spike encoding, learning), neuromorphic accelerators

also have to address important issues in the reality of RTL

development and silicon implementation, among which spar-

sity versus static and idle power consumption, ability to sup-

port large levels of parallelism, memory performance, scala-

bility, spiking convolutions.

1. INTRODUCTION

Artificial Intelligence (AI) has grown in popularity for a num-
ber of embedded applications ranging from speech and image
processing to autonomous navigation, robotics, or IoT. But pro-
cessing AI algorithms with limited hardware resources raises a
number of challenges in terms of complexity, memory, latency,
and even more concerns with energy efficiency. The resulting
Edge computing effort, i.e. the ability to process data at the
edge locally rather than in the cloud, meets the still unavoid-
able problem of power efficiency of SoCs, with the deepening

environmental impact of digital technologies and their grow-
ing share of greenhouse gas emissions (5G, Video on Demand,
Cloud services, blockchain, AI, . . . ) [1].

In the more specific context of Deep Neural Networks
(DNNs), FPGA technology has long been regarded as a very
promising acceleration device for embedded computing plat-
forms because it combines good power/performance trade-off
with flexibility. In addition, Spiking Neural Networks (SNNs)
constitute a great hope over classical formal deep learning meth-
ods (Convolutional Neural Networks, CNNs) in terms of pro-
cessing efficiency. However, it is still unclear if SNN hardware
is truly better due to difficulty and lack of actual implementa-
tions and therefore comparison. To address this fundamental
efficiency issue, the following study investigates a practical com-
parison of CNN and SNN implementations on FPGAs based on
High-Level Synthesis (HLS).

The outline of the paper is as follows. We first review exist-
ing works in the field of DNNs, AI processors, and accelerators,
pointing out a variety of energy-efficient hardware/software
contributions that can lead to pertinent proposals for further
efficiency. In section 3, we introduce the proposed methodol-
ogy to develop, implement and compare properly CNN and
SNN accelerators on FPGA devices. Detailed results using dif-
ferent network topologies and datasets are then analyzed and
discussed in section 4. Finally, we present our principal conclu-
sions from the detailed case studies and future directions for
research and applications.

2. STATE OF THE ART

Artificial Intelligence (AI) is investigating various directions
as more computing is moving to the Edge. Offloading AI to
resource-limited devices requires not only to complete more
computations per second but also to perform at much less power.
The extent of this challenge is not limited to a classical hardware
design issue, but rather encompasses both hardware and soft-
ware innovative solutions in a power-smart approach for higher
levels of processing and energy efficiency.

At the algorithmic level, Convolutional Neural Networks
(CNNs) have set the standard in deep learning architectures
through unmatched performances in image and speech recog-
nition tasks. However, their compute complexity is impaired
by an enormous amount of Multiply-Accumulate (MAC) opera-
tions and memory accesses. Binarized Neural Networks (BNNs)
have therefore been developed on the idea of converting floating-
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point weights to binary weights. Simplifying MACs to simple
XNOR and Pop-Count operations this way proved to achieve
comparable accuracy to CNNs [2], additionally saving storage,
calculation, power, and energy consumption. Another promis-
ing direction at the algorithmic level is the exploration of "brain-
like" biorealistic computational models that more closely mimic
natural neural networks. Spiking Neural Networks (SNNs) con-
sider time information, that is, not all neurons are activated in
each propagation iteration, but only when their membrane po-
tential reaches a certain value. When a neuron is activated, it
generates a signal, which is transmitted to connected neurons,
raising or lowering their membrane potential. In SNNs, infor-
mation processing is event-driven which means that as long as
there is little or no recorded information, the SNN should not
compute too much and lead to an energy-efficient calculation
process. In this regard, SNNs have great promise to improve the
performance and efficiency of neural network processing [3].

On the hardware side, AI chip technology is still in its in-
fancy. There is a challenge around the technology hardware
that can lead to the best effective trade-off between acceleration,
efficiency, scalability, and flexibility for rapidly changing and
different types of Machine Learning (ML) algorithms. AI pro-
cessors rely usually on parallel computing elements sometimes
associated with (a) generic CPU(s) to deliver the performance
ML requires. This is often the approach adopted by mainstream
CPU manufacturers. The Ethos microarchitecture solution pro-
posed by Arm for instance [4] [5] is based on a ML processor
that can be configured with up to sixteen Compute Engines (CE).
Each CE is composed of a MAC Compute Engine (MCE), a Pro-
grammable Layer Engine (PLE), and a configurable amount of
SRAM (64 KiB or 256 KiB). The MCE contains the high-efficiency
fixed-function MAC units while the PLE contains the flexible
programmable vector engine (consisting of a Cortex-M proces-
sor). IBM Research [6] proposed a multicore chip made of four
AI cores optimized for low precision training (8-bit) and infer-
ence (4-bit) with improved data communications. The chip is
designed in a state-of-the-art silicon technology node (7 nm EUV-
based chip) and is notably one of the first AI chips to include
power management.

Regarding SNN processors, the University of Manchester
started to work early on a massively parallel computer called
SpiNNaker [7]. The basic building block of the architecture is
the SpiNNaker Chip Multiprocessor (CMP) which is a custom-
designed globally asynchronous locally synchronous (GALS)
system with 18 ARM968 processor nodes residing in syn-
chronous islands, surrounded by a lightweight, packet-switched
asynchronous communications infrastructure. Every neuron
is represented by a discrete core and constitutes a truly event-
driven system. Because neurons are emulated by ARM cores,
this platform is more intended for human brain simulation
and research, rather than for overall power reduction. IBM
TrueNorth [8] is more relevant in terms of low power design
with a manycore processor network on a chip of 4096 neurosy-
naptic cores tiled in a 2-D array, each implementing 256 neurons
and 64k synapses. A neurosynaptic core is an extremely low
power processing unit emulating a neuron that can further con-
nect to any axon of any other neurosynaptic core (including
itself). The system is, therefore, able to address large complex
network topologies, is natively event-driven, doesn’t have a
clock, and is very energy-efficient, operating at lower tempera-
tures and power. Another reference example is given by Intel
who developed Loihi [9], another event-based computing archi-
tecture for SNN computational models. This processor is made

of 128 neuromorphic cores, three embedded x86 processor cores,
and off-chip communication interfaces. Each neuromorphic core
implements 1024 primitive spiking neural units grouped into
sets of trees constituting neurons, so it is capable of simulating
around 130000 neurons and 130 million synapses in total.

However, the computing nature and power associated with
energy constraints for AI processing at the Edge requires highly
specialized hardware to be really efficient. This has also led to
the development of important research on hardware acceleration
for neural networks. AI accelerators have many optimizations
that make them suitable for their use-case, such as parallelism,
low-precision arithmetic, advanced low-level architecture, etc.
Graphic Processing Units (GPUs) were the first acceleration
devices used to improve the execution of Deep Learning models.
The mathematical basis of neural network and image processing
is similar, and parallel tasks involving matrices are suitable for
GPU to complete. GPUs can provide high memory bandwidth
and throughput, and they are very efficient in floating-point
matrix-based operations. In addition, compared with hardware
development related to FPGAs or ASICs, GPU programming is
a lot easier to manage for AI developers. However, GPU power
consumption will also set out continued challenges to assure
their effective use in embedded systems [10].

Dedicated AI acceleration is the most promising alternative
regarding the processing efficiency of neural networks. Many
companies such as Facebook, Amazon, and Google are all de-
signing their own AI ASICs, and there is also much academic
research. Eyeriss [11] for example is an accelerator for state-of-
the-art deep convolutional neural networks (CNNs) developed
by MIT. Like dedicated hardware does for the implementation
of any given processing task, Eyeriss exploits specialization and
parallelism to achieve drastic latency and energy reductions for
deep CNNs. It further optimizes the processing efficiency of the
entire system for various CNN shapes by reconfiguring the ar-
chitecture based on a spatial array of 12x14 processing elements,
with a NoC and memory hierarchy designed specifically to re-
duce expensive data movement such as DRAM accesses. A chip
was implemented in 65-nm CMOS, processing the convolutional
layers at 35 frames/s for AlexNet at 278 mW, and 0.7 frames/s
for VGG-16 at 236 mW with a 200-MHz core clock.

Regarding dedicated accelerators, FPGA technology is also
a very attractive option to deal with power issues [12], at an
efficiency level slightly below ASICs. However reconfigurable
hardware provides additional flexibility allowing to adjust a
variety of design parameters (type, topology, parallelism, etc.)
together with the reconfiguration ability. Among the two leading
FPGA vendors, Xilinx comes up with a Deep Learning Processor
Unit (DPU) [13] which is a configurable IP block supporting
all CNN topologies, tightly coupled with the main CPU of a
Zynq processing system and using a specific DPU instruction
set. Intel FPGAs for AI rather consider the architecture aspect
with AI Tensor Blocks [14] which are AI optimized blocks tuned
for common matrix-matrix and vector-matrix multiplications
and INT8 inferencing. In terms of development, it should be
noted that FPGAs are becoming of growing interest against other
programmable solutions (AI processors, GPUs) with the recent
maturity of High-Level Synthesis approaches to automate the
mapping of CNNs onto reconfigurable FPGA-based platforms,
such as in [15].

Other directions are additionally explored to allow further
AI energy efficiency. A promising processor-related area is het-
erogeneity adaptation and management. For example, Conti
et al. [16] addressed a solution for IoT based on a combination
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of a low power microcontroller unit (MCU) and heterogeneous
programmable accelerator, reaching up to 60x gains in perfor-
mance and energy efficiency on a diverse set of applications. In
this regard, power management is also an important issue that
starts to be tackled. For example, Höppner et al. [17] developed
a dynamic power management solution for SpiNNaker based
on fast dynamic voltage and frequency scaling (DVFS) allowing
to reduce the total PE power consumption by 75%, paving the
way for further saving potential and new power management
strategies specific to AI.

Neural networks are highly constrained by the need of mov-
ing large amounts of data (weights and input) from/to mem-
ory. This has led to a variety of efforts, on a more technical
level, addressing questions related to near-memory comput-
ing, in-memory computing, non-volatile memories, and silicon
technology. Near-Memory computing wishes to incorporate
memory and logic chips in an advanced IC package to bring
them closer to the processing cores, achieving high-bandwidth
data communication through 2.5D / 3D stacking or increasing
the number of cache levels, high-density on-chip storage, and
other near-data storage to alleviate memory access latency and
high power consumption. For example, [18] designed an effi-
cient near-memory acceleration engine reaching 2.7 times energy
efficiency improvement over contemporary GPUs at 4.4 times
less silicon area. In-Memory computing seeks to run computer
calculations entirely in computer memory, thereby reducing the
frequency of processor access to memory. The current realiza-
tion of in-memory computing mainly focuses on two types of
memory: volatile SRAM or DRAM, non-volatile phase-change
memory (PCM), resistive random access memory/memristor,
magnetic random access memory, and floating gate device /
Flash construction. IBM designed a PCM-based analog AI core
that reduces power consumption by 10,000 - 2,000,000 times com-
pared with conventional computers [19]. Finally, advances in
silicon technology are also affecting the improvement of energy
efficiency. The latest 2nm chip announced by IBM, compared
with modern 7nm processors, improves performance by 45%
at the same power level and energy by 75% at the same perfor-
mance level [20].

This great variety of existing approaches for AI processing
efficiency calls for additional reflection on further improvements
and possible combinations at a more global level. In the follow-
ing, we aim to address these questions, first at the algorithmic
level to better characterize different processing models (CNN,
SNN), and second at the NN deployment and execution levels
to improve efficiency even more. This approach will be based
therefore on experimental investigations focusing on FPGA pro-
totyping, measurement, and analysis. It will address firstly a
comparison study of CNNs and SNNs, a fundamental issue to
address since, despite a broad consensus on the potential of
SNNs, it is still unclear to what extent this is realistic to assume.
This effort is made easier thanks to using High-Level Synthesis
to generate fully operational CNNs and SNNs on FPGAs. Op-
portunities for the use of other contributions such as power and
heterogeneity management will be also envisaged.

3. COMPARISON METHODOLOGY

A. Benchmarking DNN accelerators

In the following, we introduce the set of CNN and SNN IPs
that will be used for comparison and analysis, principally in
terms of processing and energy efficiency. High-Level Synthesis

(HLS) is thus very beneficial to help to prototype and explore
various hardware implementation opportunities (parallelism,
memory allocation, FPGA device, etc.). Several network topolo-
gies and image classification datasets are also used (MNIST,
GTSRB, CIFAR-10) to increase the relevance of the measurement
campaigns. The main goal is to compare real CNN accelerators
with their spike-coding equivalents on the same deep neural
network benchmarks.

HLS is used to produce quickly and more easily various fully
functional accelerators on FPGA devices that can operate under
the control of an embedded CPU core. A physical SNN IP devel-
oped manually in VHDL is also used to assess the quality of HLS
results (both in terms of logic resources and latency), especially
for spiking accelerators. Therefore, three types of DNN accel-
erators are used: CNN hardware generated using HLS (CNN
HLS), SNN hardware generated with HLS (SNN HLS), and SNN
RTL hardware developed in VHDL manually (SNN VHDL). All
three globally share the same layer-based architecture of figure
1, which may help to completely design any network topol-
ogy combining convolution (CONV), max-pooling (POOL), and
fully connected (FC) layers. For all HLS implementations (CNN,
SNN), intra-layer parallelism is broadly addressed by exploring
the potential of loop level optimization and array partitioning
in a way to ensure the best level of performance. Thereafter,
different measurements are carried out where logic resources,
latency, and power characterizations are determined for i) the
most sequential (ZedBoard) and ii) the most parallel (ZCU102)
implementation of HLS generated accelerators.

B. CNN inference design with HLS

A plain C code was written specifically to allow fast simulation
of ConvNets supporting HLS and full hardware/software exe-
cution on FPGA platforms. This code is a layer-based implemen-
tation allowing the acceleration of 2D convolutions, ReLU, max
pooling, and fully connected layers. Other processing functions
such as file reading, pre-processing (image) and post-processing
(activation functions) are less suited to hardware execution and
remain in software. This allows for unlimited combinations of
layers to simulate easily most network topologies while keeping
them entirely HLS compliant. The approach allows to set up
a CNN model with Keras, where the weights and bias values
learned are then used for inference in the C code.

The resulting C model can be used further to produce RTL
IP blocks that can be synthesized targeting any ASIC or FPGA
technology. For each CNN implementation, loop parallelism
is addressed manually with the use of HLS pragmas (unroll,
pipeline, array partition) in a way to get the best possible per-
formance. For our needs, these accelerators are then integrated
with a CPU core and system bus to be quickly executed on pro-
grammable SoC FPGAs following Xilinx Vivado, Vivado HLS,
and SDSoC methodologies. This approach allows for complete
system integration including operating system, graphical dis-
play, file system, drivers, and therefore realistic measurements,
powerful demos, or application releases that are implemented
in the following on ZedBoard and ZCU102 platforms.

C. Spiking accelerators

HLS-generated accelerators for SNNs are developed and used
for experimentation and measurement in the first place because
they are easier to design and fully prototype on FPGA platforms.
A manually designed accelerator in VHDL is used though for
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the purpose of assessing the relevance of the HLS IPs on one
single SNN topology (MNIST, section 4.2).

However, there is no means in practice to develop SNN accel-
erators in HLS compliant C or C++ due to the event-based nature
of spike processing. Nevertheless, they can be fully specified and
simulated with SystemC, and using the Synthesizable Subset
defined by the Accellera System Initiative adds full RTL syn-
thesis capability to the simulable models. The resulting simula-
tion/synthesis approach greatly facilitates the full development
of SNN IPs by simply aggregating the layers of a NN topology,
training the equivalent neural network with Keras, simulating
in SystemC, and synthesizing quickly the RTL automatically to
finally create a functional hardware/software system controlled
by a FPGA processor core [21].

Both manual and HLS SNN accelerators are designed so that
each layer of the neural network (convolution, pooling, fully
connected) is implemented in the spiking domain. One layer is
made of a single neuronal unit following a classical Integrate-
and-Fire (IF) model (Fig. 1). This approach, in comparison with
the instantiation of a very large number of neurons in parallel
within a layer, allows to limit hardware resources and to simplify
the architecture. This implies a sequential multiplexed execution
of one physical neuron (per layer) where no more than one spike
can be processed at a time.

The full spiking accelerators additionally include transcod-
ing (Spike Gen) and classification (Terminate Delta) modules to
respectively generate spike trains from the pixels of an input
image and finish execution when the winning class is found.
Further details and descriptions of these design related con-
cerns, which relates exactly to the hardware architecture model
of (Fig. 1), are available in [22]. In the end, both manual and
automated SNN IPs are truly event-based neuromorphic pro-
cessing accelerators, completely synthesizable and functional on
FPGA platforms. Adaptations have been made to the original
Xilinx integration flow to support designs including SystemC IP
blocks. It is therefore possible to run the HLS SNN IPs on Zynq
platforms controlled by an ARM CPU, possibly under Linux.
This makes it possible to i) further derive the actual inference
times from real execution on different platforms and ii) analyze
in depth the complete architecture, in particular, to let Xilinx
synthesis tools compute low-level power estimates.

4. COMPARISON STUDY

For the sake of comparison, we implement, execute, monitor,
and report the execution of four typical deep learning models
for both CNN and SNN accelerators. Three different datasets are
used for the measurement: MNIST (Modified National Institute
of Standards and Technology database, 28x28 black and white
handwritten digital numbers), GTSRB (German Traffic Sign
Recognition Benchmark, 32x32 color traffic sign pictures), and
CIFAR-10 (Canadian Institute For Advanced Research, 32x32
color objects or animal pictures). These datasets are used in four
topologies that are defined and trained with Keras to serve as
a reference basis and provide weights and biases for CNN and
SNN inference.

SNN training is based on CNN supervised learning using
back-propagation, i.e. neural network conversion. A CNN
model with the same topology is used. The only difference
is the use of a linear activation function in the last output layer
since SNNs do not need to employ elaborated differentiable
neurons (rectified linear or sigmoid) like for CNNs. It should
be noted that SNN accuracy is affected by the systematic use of
a linear activation instead of a softmax function in the output
layer of the corresponding CNN used for training. Because of
this, SNN accuracy is actually less than that of the equivalent
CNN and the difference tends to grow with the complexity of
the topology (GTSRB: 85.20% vs. 91.99%, CIFAR10: 79.20% vs.
88,3%).

For each topology, we implement a CNN and its equiva-
lent SNN on ZedBoard (sequential version) and ZCU102 (par-
allel version). In the following comparison analysis, we refer
primarily to the parallel versions of accelerators (on ZCU102)
for performance-related reasons. Sequential implementations
(on ZedBoard) will be helpful to analyze performance and
parallelism-related issues (section 4.5).

A. Multilayer perceptron

The first topology considered is a multilayer perceptron (MLP)
composed of two fully connected layers (784x400, 400x10) used
for classification on the MNIST dataset with a recognition rate
of 97.71% for the SNN model (96.63% for the equivalent CNN).

In terms of spiking benefits over ANN, FPGA implementa-
tion results on ZCU102 (Fig. 2) confirm the fact that SNN allows
drastic DSP block reduction. It also uses less BRAM (for this
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Table 1. Execution time (1 frame) for MLP sequential and par-
allel accelerators (100MHz)

MLP ZedBoard (SEQ) ZCU102 (PAR)

Tex (ms) Tmin Tavg Tmax Tmin Tavg Tmax

mlp_cnn_hls – – – 3.29 3.30 7.67

mlp_snn_hls 2.27 8.97 77.83 0.59 2.32 20.12

particular topology composed exclusively of fully connected
layers) than the CNN which, indeed, does not fit in ZedBoard
due to memory resources.

The actual measurement of inference times reveals that the
SNN is somewhat faster than the ANN (respectively 2.3 ms and
3.3 ms per frame). However, there are very large variations in
execution time for the SNN reaching almost a factor of 100 (Table
1). These variations are nearly negligible in comparison to MLP
CNN showing much less fluctuation in execution time.

Concerning power, the benefits of FPGA logic reduction re-
flect well with an improvement of 19% (654 mW for SNN vs. 804
mW for CNN). In the end, the average energy cost is 53% less
for the SNN (1517 uJ) compared to the equivalent CNN (2643 uJ)
in the results of Table 5. Finally, if we compare these values to a
pure software execution of the MLP CNN on ARM Cortex-A53
(ZCU102), the SNN consumes 15% less (1.5 mJ against 1.8 mJ).
CNN ARM is rather effective in this particular case because the
Cortex-A53 (1.2 GHz) is well suited to the processing of typical
high-speed MAC operations found in fully connected layers.

B. MNIST

The second benchmark is a five layer CNN similar to LeNet5
applied to the MNIST dataset, composed of two convolutional
layers (24x24x20, 8x8x40), two max-pooling layers (12x12x20,
4x4x40) and two fully connected layers (640x400, 400x10). The

Table 2. Execution time (1 frame) for MNIST sequential and
parallel accelerators (100MHz)

MNIST ZedBoard (SEQ) ZCU102 (PAR)

Tex (ms) Tmin Tavg Tmax Tmin Tavg Tmax

mnist_cnn_hls 66.30 66.32 72.42 2.40 2.41 6.74

mnist_snn_hls 23.35 81.98 686.3 6.01 21.10 176.7

mnist_snn_vhdl – – – 2.50 5.70 52.80

corresponding classification accuracy is 99.05% for SNN (97.92%
for the equivalent CNN).

Comparing SNN against ANN implementation, SNN HLS
outperforms its CNN equivalent with substantial savings of
DSP blocks but also fewer LUTs. Like previously for MLP, the
SNN consumes globally less FPGA logic but it does need a little
more memory resources (BRAM, LUTRAM) for the proper man-
agement of membrane potential data (in particular additional
storage is needed for complex spiking convolutions).

Unlike MLP, SNN HLS is significantly slower than the CNN
(8.8 times) with respectively 21.1 ms and 2.4 ms per frame. As
with the MLP model, inference time variations are very large
for the SNN compared with that of the CNN, reaching almost a
factor of 30. These problems originate from spike encoding and
parallelism, and will be further addressed in section 4.5.

As for power, the SNN saves up to 42% over the CNN (respec-
tively 669 mW and 1153 mW) but this does not result in actual
energy savings due to high inference latency as mentioned pre-
viously. In the end, SNN HLS consumes 5.1 times more energy
than CNN HLS (14 mJ vs. 2.7 mJ), and consumes even a bit more
than CNN on ARM Cortex-A53 (14 mJ vs 13.7 mJ).

The topology used with the GTSRB dataset consists of three
convolutional layers (28x28x6, 10x10x16, 1x1x120), two max-
pooling layers (14x14x6, 10x10x16), and two fully connected
layers (120x84, 84x43). Classification accuracy is 85.20% for
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Fig. 3. FPGA logic occupation, average power and energy per frame for MNIST benchmark

this benchmark with the SNN model (91.99% for the equivalent
CNN).

Regarding GTSRB, the actual implementation results of Fig.
4 report a significant decrease in FPGA logic for the SNN. This
actually comes from the fact that i) the SNN achieves a relatively
low level of parallelization and ii) the CNN is able to exploit
much more parallelism than the SNN (Cf. usage of LUTs in
Figure 4), especially for convolutions and max pooling. This, in
turn, reflects logically in an execution time difference of nearly a
factor of 100 advocating for the CNN (1.248 ms vs. 103.9 ms for
SNN, Table 3).

C. GTSRB

A direct consequence is that, despite a significant decrease in
logic resources and the associated power (2.113 W and 0,672 W
respectively for CNN and SNN), energy cost ends up 26 times
higher for the SNN (2.6 mJ vs. 70 mJ) due to execution times,
and even exceeds greatly (8.9 times) the energy of the CNN on
ARM Cortex-A53 (Table 5).

Table 3. Execution time (1 frame) for GTSRB sequential and
parallel accelerators (100MHz)

GTSRB ZedBoard (SEQ) ZCU102 (PAR)

Tex (ms) Tmin Tavg Tmax Tmin Tavg Tmax

gtsrb_cnn_hls 24.17 24.20 30.24 1.25 1.25 6.07

gtsrb_snn_hls 31.86 308.6 2710 10.73 103.9 912.2

D. CIFAR-10

The last benchmark, which is also the biggest topology, con-
sists of six convolutional layers (32x32x32, 32x32x32, 16x16x64,
16x16x64, 8x8x128, 8x8x128), three max-pooling layers (16x16x32,
8x8x64, 4x4x128) and one fully connected layer (2048x10). It is

applied to the CIFAR-10 dataset with a classification accuracy of
79.2% for SNN (88.31% for the equivalent CNN). For this topol-
ogy, both CNN and SNN designs exceed the resource capacity
of a ZedBoard platform, so the following measurement results
are reported for ZCU102 only.

The CIFAR-10 benchmark confirms again a global decrease of
FPGA logic to the benefit of the SNN, greatly due to the complete
absence of DSP blocks (Figure 5). This logically translates into a
power reduction of 75% (742 mW for SNN and 3 W for CNN).

Table 4. Execution time (1 frame) for CIFAR-10 parallel acceler-
ators (100MHz)

CIFAR-10 ZCU102 (PAR)

Tex (ms) Tmin Tavg Tmax

cifar_cnn_hls 17.96 17.96 23.70

cifar_snn_hls 79.83 462.8 2315

However, as observed previously for the SNN, inference
times are greatly impaired (463 ms against 18 ms for CNN, Table
4). This takes the preponderance over previous power savings
and the SNN ends up consuming 6 times more in the final energy
balance (343 mJ for SNN and 54 mJ for CNN), which remains
however two times less than that of CNN on ARM Cortex-A53
(690 mJ, Table 5).

E. Efficiency analysis

In light of previous implementation results on FPGA, a first
outcome is that SNNs may likely be less efficient than CNNs,
or at best, they may approach the same efficiency level, even
considering that the quality of HLS results is behind those of
manual RTL. The only exception in our measurements is for
MLP which is the smallest example composed exclusively of
fully connected layers, but whenever the topology includes more
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Fig. 4. FPGA logic occupation, average power and energy per frame for GTSRB benchmark

Table 5. Efficiency comparison of CNN and SNN implementa-
tions.

ZedBoard ZCU102

Tavg (ms) Pavg (W) E1 f rame (mJ) Tavg (ms) Pavg (W) E1 f rame (mJ)

mlp_cnn_arm 2,85 1,67 4,76 0,51 3,49 1,78

mlp_cnn_hls – – – 1 3,29 0,80 2,65

mlp_snn_hls 8,97 0,17 1,52 2,32 0,65 1,52

mnist_cnn_arm 10,86 1,67 18,14 3,93 3,49 13,72

mnist_cnn_hls 66,32 0,17 11,54 2,41 1,15 2,78

mnist_snn_hls 81,98 0,20 16,40 21,10 0,67 14,12

mnist_snn_vhdl – – – 5,70 0.69 3,93

gtsrb_cnn_arm 4,04 1,67 6,75 2,26 3,49 7,89

gtsrb_cnn_hls 24,20 0,17 4,16 1,25 2,11 2,64

gtsrb_snn_hls 308,6 0,18 56,17 103,9 0,67 69,82

cifar_cnn_arm – – – 197,8 3,49 690,2

cifar_cnn_hls – – – 17,96 3,00 53,95

cifar_snn_hls – – – 462,8 0,74 343,4
1 Empty entries mean that the networks are too large for the FPGA device.
2 The average energy is obtained by multiplying Tavg with Pavg .

complex convolution layers the gap is growing to the benefit
of CNNs and this is likely to increase with complex topologies
(cf. Figure 5). The SNNs used in this study are greatly impaired
by their execution times and this is for two main reasons: spike
encoding and parallelism.

First, the coding scheme used, i.e. the inherent encoding of
spike trains, is based on rate coding where the frequency of spike
trains depends on the signal information (high signal intensity
results in a high spike frequency, low-intensity results in low
spike frequency). Rate (or frequency) coding infers relatively
larger spike trains and higher activity, which reflects in execution
times (and variations).

Another factor in the inference latency problem is related
to the inner data processing and parallelism of SNNs. Effec-
tive spike processing requires numerous parallel and random
accesses to large data memories, especially for the membrane
potential of neurons. Parallelism is hindered by the fact that

non-trivial memory partitioning and loop scheduling schemes
are not always well identified by HLS tools. For instance, it
works very well for MLP because fully connected layers are
based on typical MAC operations very similar to digital filtering.
However, it fails for convolutions, where accumulation opera-
tions occur irregularly at any location and any time depending
on input firing spike events. HLS struggles to extract enough
loop parallelism in these conditions and the problem quickly
grows when scaling to bigger topologies. This is stressed when
comparing HLS against manual implementations (MNIST) or
sequential versus parallel performances for SNN HLS in Table 5.

And lastly, sparsity, a key feature of theoretical spike effi-
ciency, turns out to be an issue for practical implementation in
current silicon technology. Sparse, event-driven computations
mean less and lighter activity which also comes out with large
amounts of idling time. This is a problem for standard CMOS
technology, especially for FPGAs. For instance, the level of static
power is 623 mW for ZCU102 which represents around 80% -
90% of the total power budget on large SNNs like GTSRB or
CIFAR-10. DNNs are generally big designs resulting in large
amounts of static power resulting from leakage current in CMOS
circuits and further amplified in FPGAs by the programmable
interconnect network. With such levels of overconsumption, it is
probable that the actual integration in silicon (and even more in
FPGAs) limits greatly if not loses completely, the entire potential
benefits of SNNs, and this problem is likely to be relevant even
if a better spike encoding scheme than rate coding is used.

F. Comparison with other works

In a way to assess the relevance of SNN accelerators designed
by HLS against existing works, we address in the following a
comparison with other acceleration platforms. As most SNN
related studies are evaluated on the MNIST dataset using MLP
or smaller CNN networks such as LeNet, Table 6 compares with
recent SNN FPGA platforms on close topologies, we include a
few CNN GPU implementations as well.

First, the accuracy level is about 97% for MLP and 99% for
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Fig. 5. FPGA logic occupation, average power and energy per frame for CIFAR-10 benchmark

LeNet like topologies in all implementations, enabling functional
validation of the SNN accelerators developed using HLS.

In terms of performance, for MLP topologies the SNN HLS
platform (line 2 of Table 6) and other implementations are at
similar level (2.32ms vs. 6.21ms). Concerning spiking CNN
topologies, the SNN HLS platform (last line of Table 6) is sensi-
tively less effective than other FPGA implementations. It should
be noted here that these accelerators run at higher frequencies
(150 or 200 MHz). If we compare more specifically SNN HLS
with [22], which is based on the same architectural model but
designed manually, it is 3.7 times slower (at 100 MHz both). As
stated in the efficiency analysis (section 4.5), HLS struggles to
address efficiently the parallelism potential within spike process-
ing layers and this reflects in the inference time. Aside from this,
the level of performances is inline with those of state of the art
implementations (including equivalent embedded CNN GPU
acceleration, line 4 of Table 6).

5. CONCLUSION AND PERSPECTIVES

Other studies also started to appear recently pointing out an
unanticipated inefficiency of SNN implementations against their
equivalent ANN [26]. A first direction for improvements con-
cerns alternative spike encoding methods in a way to ensure
a reduced spiking activity, shorter inference times, and fewer
variations. This can be based for instance on late research inves-
tigating other (temporal) spike coding schemes and associated
learning methods ensuring lower firing rates [27]. Neverthe-
less, it also seems unavoidable to limit static and idle power
consumption to really benefit from the high sparsity of com-
putations in SNNs. Further work will check the efficiency of
SNNs for ASIC implementation and also seek how to determine
adapted power saving and management solutions (clock gat-
ing, power gating, DVFS, partial reconfiguration/blanking, ...)
to address this sparsity / idle consumption issue. Concerning
parallelism, future works will investigate the use of different
synthesis tools and try to extend the level of loop parallelization
efficiency when processing characteristic non-trivial accesses to

large multidimensional arrays in spike processing. Since the
actual state of this research on SNN efficiency is limited by these
different questions, we will also continue to address ANNs and
explore the use of partial reconfiguration techniques (partition-
ing, scheduling, DVFS, blanking, ...) to improve significantly
their energy efficiency in FPGA implementations [28].
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