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Ferromagnetic spin-valves and tunneling junctions are crucial for spintronics applications and are
one of the most fundamental spintronics devices. Motivated by the potential unique advantages
of antiferromagnets for spintronics, we theoretically study here junctions built out of non-collinear
antiferromagnets. We demonstrate a large and robust magnetoresistance and spin-transfer torque
capable of ultrafast switching between parallel and anti-parallel states of the junction. In addition,
we show that a new type of self-generated torque appears in the non-collinear junctions.

In ferromagnetic (FM) materials the spins of electrons
that carry electrical current are preferentially oriented
along the magnetization direction: the electrical current
is spin-polarized. When this spin-polarized current is in-
jected into a second FM with a misaligned magnetization
orientation, the spin-polarization has to reorient along
this new magnetization direction. Due to angular mo-
mentum conservation, this reorientation exerts a torque
on the FM, known as the spin-transfer torque (STT)
[1, 2]. This torque can be used to switch magnetiza-
tion in a FM or to move magnetic domain walls. It is
typically utilized in nanoscopic devices composed of two
thin ferromagnetic layers separated by a metallic or insu-
lating spacer and whose relative orientation is detected
via the giant or tunneling magnetoresistance (GMR and
TMR). It is at the basis of the magnetic random access
memories (MRAMs) [3].

In recent years, attention has been drawn to magnetic
materials with a local magnetic order but no net mag-
netic moment, referred to as antiferromagnets (AFMs).
AFMs offer significant advantages over FMs for spintron-
ics applications [4–7]. Their magnetic dynamics is several
orders of magnitude faster than FMs, allowing for much
faster switching. The lack of a net magnetic moment
implies no stray field, thus possibly allowing for closer
packing of individual bits. Furthermore, a large variety of
antiferromagnetic materials exists, such as insulators and
semiconductors, multiferroics [8] or superconductors [9]
(see also [10]). FM materials accommodating such exotic
electronic properties are much less common in nature. A
number of theoretical works have shown that the STT, as
well as GMR, can also exist in AFM junctions [7, 11–14].
In contrast to the FM case, however, such effects arise
from quantum-coherent scattering [11] and, as a result,
are very sensitive to the presence of disorder [7, 15–17].
This lack of robustness has a fundamental reason: in the
simple high-symmetry AFMs that were primarily stud-
ied, the electrical current is not spin-polarized and conse-
quently the STT has to vanish in the semiclassical limit
[17]. It was found, however, that in the tunneling case

STT can be more robust [18], although the reasons for
this are not fully understood. Experimentally, no clear
evidence of STT in an AFM junction has been found so
far [7]. Instead, AFM spintronics has mainly focused on
relativistic effects, and in particular on spin-orbit torques
[19], exploiting the large spin-orbit coupling provided by
the presence of heavy metals either in the magnetic unit
cell [20, 21] or as an adjacent layer, the latter acting as
a source of spin Hall effect [22]. Nonetheless, no equiva-
lent to STT in FMs has been realized to date due to the
difficulty to achieve semiclassical spin-polarized current
out of AFMs.

Recently though, it was discovered that in some types
of AFMs, such spin-polarized currents can exist. This
was first found for non-collinear AFMs (AFMs in which
the individual moments are not oriented along a single
axis) such as Mn3Ir or Mn3Sn [23] but later also found
to exist in collinear AFMs such as RuO2 [24–29]. These
spin-polarized currents are directly analogous to the spin-
polarized currents in FMs. As a matter of fact, like in
FMs, these currents are extrinsic, i.e., driven by intra-
band transitions of the Fermi surface electrons, their po-
larization is aligned along a direction set by the rela-
tive orientation of the charge flow and the AFM texture
and, most importantly, they are robust against momen-
tum scattering. These properties suggest that a robust
STT, as well as magnetoresistive effects, could exist in
junctions composed of AFMs in which the spin-polarized
current exists [23, 30].

In this Letter, using tight-binding numerical simula-
tions, we demonstrate that these spin-polarized currents
can drive magnetoresistance and STT in non-collinear
AFM junctions, displaying striking differences compared
to their FM counterparts. We consider a relatively sim-
ple 2D model, which is not meant to quantitatively de-
scribe realistic systems but which covers the most impor-
tant features of non-collinear coplanar antiferromagnets
of interest to experiments (for example Mn3Ir or Mn3Sn).
Importantly, this model allows for a comprehensive study
of the role of disorder, a crucial ingredient that destroys
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FIG. 1. (a) The unit cell of the model. (b) Illustration of
the junction. The left and right leads are periodic and semi-
infinite along the x directions. The junction is finite along
the y direction. In the calculation the width along y is much
wider than illustrated here. When a charge current is injected

through the junction, a spin current J L(R)
s builds up in the

left (right) AFM electrode. The former induces a conventional
STT on the right AFM while the latter is at the origin of the
self-induced STT.

quantum coherence and quenches STT in collinear AFM
junctions [11, 16]. We show that the STT survives in
the presence of point defects, but also structural imper-
fections, which invariably exist in real systems but have
been disregarded till now. Our numerical results show
that the STT in non-collinear AFM junctions originates
from the absorption of the spin-polarized current gener-
ated in both AFM layers, as illustrated in Fig. 1. As
a consequence we find that apart from the conventional
STT a new type of torque appears in the non-collinear
AFMs, which does not exist in FMs. Unlike the conven-
tional STT, this torque does not originate from a spin-
transfer between the two magnetic layers but rather is
local and self-induced. Furthermore, because of the un-
conventional non-collinear magnetic ordering, the torque
is present for any relative orientation of the two AFM lay-
ers. This observation sharply contrasts with what is usu-
ally observed in FM junctions, where the STT vanishes
for the parallel or anti-parallel configurations, which im-
plies that thermal fluctuations are required to assist the
magnetization switching, resulting in stochasticity and
slower reversal time. Our simulations of STT induced dy-
namics in the AFM junctions show deterministic switch-
ing on a ps timescale.

We consider a 2D AFM system, shown in Fig. 1(a).
The system is hexagonal with three atoms in a unit cell;
however, for easy construction of the junctions, we dou-
ble the unit cell, which makes the unit cell rectangular.
Similar magnetic order exists in real materials, such as
the Mn3X AFMs [23, 31, 32]. The model we use consists
of conduction s-electrons coupled to on-site magnetic mo-
ments. This model has been utilized in previous studies
of non-collinear AFMs [33–35]. We do not include spin-
orbit coupling in our model, since the aim is to explore
non-relativistic effects, in analogy to the FM junctions,
where the dominant effects are non-relativistic in origin.
Furthermore, previous calculations of spin-polarized cur-
rents in Mn3X AFMs showed only a weak dependence

on spin-orbit coupling [23]. In absence of disorder the
system is described by the following Hamiltonian:

H = t
∑

<ab>α

c†aαcbα + J
∑
aα,β

(σ ·ma)αβc
†
aαcaβ . (1)

Here, c† and c denotes the creation and annihilation op-
erators respectively, a, b denote the site index, α, β the
spin index. The first term is the nearest neighbor hop-
ping term, with t representing the hopping magnitude.
The second term represents the coupling of the conduc-
tion electrons to the on-site magnetic moments. Here mi

is the magnetic moment direction, J is the exchange pa-
rameter and σ is the vector of Pauli matrices. We always
set t = 1 eV and J = −1.7 eV.

To describe disorder we include for each site on-site en-
ergy chosen randomly from a gaussian distribution cen-
tered at 0 and with a standard deviation D. We describe
the quantum transport using the scattering (Landauer-
Büttiker) formalism as implemented in the Kwant pack-
age [36]. We consider a system composed of two magnetic
layers separated by a non-magnetic spacer (scattering re-
gion) and attach to the system perfectly periodic semi-
infinite leads as illustrated in Fig. 1(b). The transport
properties of the system are described by scattering of
the incoming states from the left lead to the outgoing
states in the left and right leads.

For simplicity, we consider the same magnetic order
in the left and right leads as for the left and right mag-
netic layers respectively, as illustrated in Fig. 1(b). We
note that the leads are perfectly periodic, whereas the
magnetic layers within the scattering region contain dis-
order. For completeness, we also discuss in the Supple-
mental Material [37] calculation with non-magnetic leads,
which physically correspond to thin magnetic layers. In
general, we find that for the FM junctions the results
for non-magnetic leads are very similar, whereas for the
non-collinear AFM there can be significant differences,
but the qualitative behavior is still generally the same.
We always set the width of the magnetic layers and the
spacer along the x direction to 5 unit cells each. The
width of the system along the y direction is set to 50 unit
cells, which ensures that the effect of the top and bottom
interfaces is negligible. To describe interface roughness
we randomly include atomic interfacial steps using a ran-
dom walk along the interfaces between the magnetic leads
and the spacer as described in the Supplemental Mate-
rial [37]. The magnitude of the interfacial disorder is
controlled by the parameter nsteps, which determines the
average number of the interfacial steps.

Within the scattering formalism, the transport is due
to the difference of the chemical potentials of the left and
the right leads δµ. For the case of the electric effects,
this difference is due to applied voltage V : δµ = −eV .
We always assume transport from the left to the right
and also assume that the voltage is small, i.e. we will
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FIG. 2. (a) The decomposition of the torque into in-plane and
Tz components. (b) The dependence of the torque in the right
magnetic layer on the rotation of the right magnetic layer in
the x− y plane for the AFM and FM junctions. For the FM
junction we show the total torque; for the AFM junction we
show a sublattice projected torque. Since sublattice B is very
similar to sublattice A, we only show the sublattice A here
and give sublattice B in the Supplemental Material [37]. Here
θ = 0◦, 90◦, 180◦ correspond to the parallel, perpendicular
and anti-parallel configurations of the junctions, respectively
(see Fig. 3). The in-plane component of the torque is fitted
by the combination of TSI and TAD. Here EF = −1.25 eV,
D = 0.2 eV and nsteps = 25. The torque has units of eV as is
given per the applied bias, which is also given in units of eV.

assume that the response to the electric field is linear.
The current induced by the voltage is given by I = GV ,

where G = e2

h

∑
nm |tnm|2 and tnm is the transmission

amplitude from incoming state n in the left lead to out-
going state m in the right lead. Using the scattering
wavefunctions ψn inside the lead associated with the n-
the incoming states of the left lead at energy EF we
can evaluate response of any quantity. For an observ-
able A represented by operator Â we have δA = χAδµ,
where χA =

∑
n ⟨ψn| Â |ψn⟩. Note that we assume here

a zero temperature Fermi-Dirac distribution. We are
primarily interested in the torque. The torque acting
on a site a can be calculated using the torque operator
T̂a = −J

∑
αβ(ma × σ)αβc

†
aαcaβ . As we discuss in the

Supplemental Material [37], the torque can also be eval-
uated from the non-equilibrium spin accumulation and,
since we do not consider spin-orbit coupling the torque
is also directly related to spin current: the torque on a
site is given by the spin source at this site. We note that
although the spin of the conduction electrons is strongly
non-conserved in the non-collinear systems, spin current
is nevertheless well defined in the non-relativistic limit
since there is no conversion of the spin angular momen-
tum to orbital angular momentum.

In Fig. 2(b) we give the calculated torque in the right
magnetic layer for FM and AFM junctions as a func-
tion of the rotation of the right magnetic layer in the
x − y plane. Here we set D = 0.2 eV and nsteps = 25.
In the FM case, the torque at the right magnetic layer
originates from the absorption of the spin-polarized cur-
rent from the left magnetic layer. In the FMs, only the
component of the spin perpendicular to the magnetiza-

tion is efficiently absorbed. Since the torque is directly
given by the absorbed spin current, we have, assum-
ing a full absorption of the perpendicular component:
TR ∼ mL − (mL ·mR) ·mR = mR × (mL ×mR). This
is the well-known anti-damping torque. As shown in Fig.
2(b) the anti-damping torque is the dominant term in
our calculations.
In FMs the right magnetic layer also generates a spin-

polarized current, however, this spin current does not
create a torque in the right magnetic layer since it is po-
larized along its magnetization. Thus the torque in the
right magnetic layer is due to a spin-polarized current
from the left magnetic layer and vice versa. In the non-
collinear AFMs the situation is different. Because of the
non-collinearity the spin-polarized current from the right
magnetic layer can also be absorbed in the right magnetic
layer (and analogously for the left) since some sublattices
will always have magnetization misaligned with the spin-
polarization. As a consequence a torque is present even
in a junction containing only one magnetic layer, as il-
lustrated in Fig. 3(a). The torque in the non-collinear
AFMs thus has two sources: a spin-transfer torque due to
the other magnetic layer and a local, self-induced torque
due to spin-polarized current from the layer itself. For
the configuration given in Fig. 1, the spin-polarization of
the spin current is constrained by symmetry to lie along
the y direction [23], which also happens to be the direc-
tion of the C sublattice. In the non-relativistic limit,
any rotation of the magnetic order will result in the
same rotation of the spin-polarization and thus the spin-
polarization will always be oriented along the mC direc-
tion. Assuming absorption of the perpendicular compo-
nent on each sublattice will thus lead to torques in the
right magnetic layer: TAD

R,a ∼ mR,a × (mL,C × mR,a)

and TSI
R,a ∼ mR,a × (mR,C ×mR,a) (here a denotes the

sublattice). As shown in Fig. 2(b) we find that our cal-
culations are indeed well described by the combination of
the anti-damping torque and the self-induced torque (see
Supplemetal Material [37] for calculations with different
parameters).
In addition to the in-plane torque, which is well de-

scribed by the combination of TAD and TSI, we also find
a Tz component of the torque. In FMs this torque typ-
ically has a field-like character, which we also find here.
This torque occurs because the spin current that is re-
flected from the right magnetic layer contains a z polar-
ized component when the two magnetic layers are mis-
aligned. In the AFM junctions this torque also appears.
As shown in the Supplemental Material [37], we find that
it can be very large on individual sublattices, but when
summed up tends to be smaller than the in-plane com-
ponent.
The connection between the spin-polarized current and

the torque is illustrated in Fig. 3, where we show the
spin current and the total torque within the junction as
a function of the x coordinate. We see that for all the
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configurations of the junction the torque is directly con-
nected to absorption or generation of the spin-polarized
current. In the FM case no torque or, equivalently, no
spin source can be present in the parallel or anti-parallel
configurations of the junction or in a junction contain-
ing only one FM layer since in such a case spin is con-
served. In contrast, in the non-collinear case, we find
a non-vanishing torque in any configuration because in
the non-collinear AFM spin is never conserved. In the
parallel and anti-parallel cases both TSI and TAD con-
tribute since in the non-collinear system TAD is non-zero
for some sublattices for any orientation of the junction
and will always sum up to non-zero total torque. We
note that in addition to the torque due to a global spin
current illustrated in Fig. 3, also a torque due to local
spin currents can occur. This is the case of the large Tz
torque for the A sublattice illustrated in Fig. 2(b).

We use the calculated torque to simulate switching of
the AFM junction. As discussed in the Supplemental
Material [37], we find that both the in-plane torque char-
acterized by a combination of TSI and TAD, as well as
the Tz torque can deterministically switch the junction
between parallel and anti-parallel states using current
pulses with opposite directions. Crucially, the switching
is ultrafast (on a ps timescale) since in AFMs the dynam-
ics is enhanced by the exchange interaction. This comes
into play since the torque initially slightly cants the mag-
netic moments, which results in a large exchange torque.
Unlike in the FM case, where thermal activation is nec-
essary to activate the switching since no torque exists
in the parallel state or anti-parallel states, we find that
in the AFM case switching is possible directly from the
parallel or anti-parallel states since the torque is always
present. We note that TSI, which is typically the dom-
inant term in our calculations cannot by itself be used
for deterministic switching. This is because this torque
is non-relativistic and internally generated which means
that when the magnetic order is rotated the torque is
rotated in the same way and can thus never vanish. As
a result, the other magnetic layer is crucial here. Our
simulations show that when TSI is combined with TAD,
deterministic switching is possible and that the TSI can
reduce the TAD necessary for switching. The TSI torque
could also be used for spin-torque oscillators.

In Fig. 4(a) we show the dependence of the torque
magnitude on the on-site and interfacial disorder for the
FM and AFM junctions. For simplicity we give here the
dependence for the total torque; however, the conclusions
are generally the same when the sublattice torque is con-
sidered. We give the results here for two values of the
Fermi level and we also scale the torque by the conduc-
tance since the torque magnitude per current density is
the main quantity for practical utilization of the torque.
Overall, we find that the torque in the AFM junctions
has a similar magnitude and robustness against disor-
der as in the FM junctions. In agreement with previous
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dence on magnitude as Tx. For Tz we set θ = 90◦; for Tx

θ = 135◦ for the FM and θ = 90◦ for the AFM.

considerations, we find that the interfacial steps reduce
strongly the Tz component of the torque, however, the
Tx and Ty components are more robust and survive even
with significant interfacial disorder present. We also find
no strong reduction of the torque magnitude with the dis-
order parameter D. We note that the case of FM with
EF = 1.5 eV is somewhat an exception as we find that
in this case the torque is more sensitive to disorder than
in the other cases. As shown in the Supplemental Ma-
terial [37], the angular dependence of the torque is also
generally unchanged with the disorder. In the Supple-
mental Material [37], we show the dependence of GMR
on disorder for the FM and AFM junctions. We find that
in both cases the GMR is strongly reduced by disorder,
but non-negligible GMR is present even in the presence
of significant disorder. Crucially the robustness of the
GMR is similar in the AFM as in the FM.
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M. J. Grzybowski, A. W. Rushforth, K. W. Edmonds,
B. L. Gallagher, and T. Jungwirth, Electrical switching
of an antiferromagnet, Science 351, 587 (2016).

[22] X. Z. Chen, R. Zarzuela, J. Zhang, C. Song, X. F. Zhou,
G. Y. Shi, F. Li, H. A. Zhou, W. J. Jiang, F. Pan, and
Y. Tserkovnyak, Antidamping-torque-induced switching
in biaxial antiferromagnetic insulators, Phys. Rev. Lett.
120, 207204 (2018).
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