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INTRODUCTION AND RELATED WORKS

Label-free cell imaging is the acquisition of cell images without the use of any staining, using for example fluorescentbased reagents, to locate the cell or its components of interest. One technique to acheive these acquisitions is coherent anti-Stokes Raman scattering (CARS), a vibrational spectroscopic method [START_REF] Gj Rosasco | Measurement of resonant and nonresonant third-order nonlinear susceptibilities by coherent raman spectroscopy[END_REF] based on a third-order non-linear optical phenomenum. Thanks to it, one can use specific frequencies to construct an image or acquire complete spectra [START_REF] Krafft | Raman and coherent anti-stokes raman scattering microspectroscopy for biomedical applications[END_REF][START_REF] Ben | Multiplex coherent antistokes raman scattering highlights state of chromatin condensation in ch region[END_REF] allowing spectral analysis in addition to image analysis. A CARS signal intensity is composed of a resonant part and a non-resonant one. Thus, spectra are commonly processed by methods aiming to remove the non-resonant information but this can lead to introduce numerical errors. For this reason, we adress the problem of raw CARS spectra analysis.

A frequent interrogation when images composed of spectra are acquired is what are the main components in the image and what are their spectral signatures. This problem has been adressed in both chemometrics and hyperspectral imaging (HSI) communities. In chemometrics, this operation is called multivariate curve resolution (MCR) while in HSI, it is known as unmixing. As our application is CARS microspectroscopy, we use the chemometrics terminology in the remainder of this article. MCR aims to find, from a data matrix D ∈ R M ×N with M acquisitions and N spectral channels, the K main components by computing their spectra S ∈ R N ×K and concentrations C ∈ R M ×K . The problem is formulated in a linear form as follows:

D = CS T + E, (1) 
with E ∈ R M ×N the error matrix that contains noise and irrevelant data. MCR can be used for the analysis of microspectroscopy by unfolding the spatial dimension. As Eq. 1 has many solutions, it is usual to apply constraints to C and S to fit to physical properties. The two most common constraints are the non-negativity and the sum-toone ones. The first one ensures to have only positive values while the last one ensures all elements along a dimension to sum to one.

In the last years, deep learning and more particulary autoencoders (AE) became an active research field to accomplish unmixing for HSI. The flexibility of neural networks in the architecture allows a wide range of models adapted to specific of data. Hence, autoencoders cascade [START_REF] Guo | Hyperspectral image unmixing using autoencoder cascade[END_REF] and noise injection [START_REF] Burkni Palsson | Hyperspectral unmixing using a neural network autoencoder[END_REF] have been used for denoising and stacked autoencoders for outliers detection [START_REF] Su | Stacked nonnegative sparse autoencoders for robust hyperspectral unmixing[END_REF]. Also, convolutional autoencoders [START_REF] Burkni Palsson | Convolutional autoencoder for spectralspatial hyperspectral unmixing[END_REF] and multilayer decoder [START_REF] Wang | Nonlinear unmixing of hyperspectral data via deep autoencoder networks[END_REF] have been used to reformulate the linear unmixing problem in a nonlinear formulation. Although several architectures have been implemented, the problem is still open. Especially since, at our knowledge, AE abilities for unmixing have never been tested in microspectroscopy.

In addition to the model structure, the choice of the loss function is a major matter as a wrong loss function will lead to incorrect components spectra. Another element to consider is the variability of the results. Indeed, as AE can have a complex structure, it is usual to initialize weights with random values. However, this can lead the training to fall in different local minima between different trainings. Moreover, this effect can be amplified by the non-resonant part of raw spectra. Therefore, studying the results variability is essential. In this article, we introduce the use of AE for MCR in the context of CARS microspectroscopy, applied to raw CARS spectra of a cell, and we study the components spectra and concentrations variabilities along multiple trainings. First, we present the implemeted model, the training process and the hyperparametrization. Second, we introduce the dataset that will be used to evaluate our models. Third, we show the results, compare to the state of the art method and finish with studying the results variability.

OUR METHOD

Spectral-spatial autoencoder

Fig. 1 shows our MCR process workflow based on a spectralspatial autoencoder (MCR-SSAE). The first block in Fig. 1 is the encoder made of several convolutional layers with nonlinear activation functions. This structure allows to compute the latent space, i.e. the concentrations C with nonlinear operations and to use the spatial information in the dataset by applying spatial convolutions to every spectral channel. The second block is the decoder, a single dense layer without activation function. Hence, the decoder weights correspond to the spectra matrix S as stated in Eq. 1. We apply batch normalization (BN) between each convolution and activation function in the encoding block to smooth loss function and avoid We present the implemented MCR-SSAE in Tab. 1. The encoding block is made of three layers with different kernel sizes and use replication padding. The two first layers use ReLU as activation functions and the last layer uses Softmax to implement sum-to-one and non-negativity constraints. Indeed, it is usual to apply constraints on C and S matrices to ensure results consistent with their physical or numerical properties. Softmax ensures to have positive concentrations that sums to one to obtain a ratio of each component for every pixel. As both input spectra and concentrations are positive and the decoder is only a dense layer, S will also be positive.

Block

Use spatial information requires a sufficient amount of pixels to learn spatial features but CARS acquisition are often small images. To solve this issue and increase the dataset size, we compute overlaping small patches that will be used for the training while the complete dataset is used for the inference.

Hyperparametrization

We train our model with the spectral angle distance (SAD):

SAD(d, d) = acos d • d ∥d∥ 2 ∥ d∥ 2 . ( 2 
)
SAD computes similarity between spectra by computing the angle between them. We choose this function for its ability to measure the difference between the shapes of two spectra and as it already shown its efficiency in the HSI context [START_REF] Burkni Palsson | Hyperspectral unmixing using a neural network autoencoder[END_REF].

We compute SAD between each output spectrum and its corresponding input and average it along both patches with M pixels and batches of size L :

arg min D L i=1 M j=1 SAD(d i,j , d i,j ) L × M . (3) 
To minimize Eq. 3, we use the Adam algorithm with the initial learning rate α = 1×10 -3 and train for 50 epochs. These parameters have been chosen after several tests of different learning rates and number of epochs. As SAD is not magnitude sensitive, input spectra are normalized to sum to one to keep spectra with the same order of magnitude.

Decoder initialization

Finding a first guess for the component spectra is a complex operation. This first estimation can be made using spectra in the dataset that are the most subject to be composed of only one component [START_REF] Wang | Nonlinear unmixing of hyperspectral data via deep autoencoder networks[END_REF][START_REF] De | Multivariate curve resolution (mcr). solving the mixture analysis problem[END_REF][START_REF] Qu | udas: An untied denoising autoencoder with sparsity for spectral unmixing[END_REF]. In chemometrics, the simpleto-use self-modeling analysis (SIMPLISMA) method [START_REF] Windig | Interactive selfmodeling mixture analysis[END_REF] is commonly used to initialize S [START_REF] De | Multivariate curve resolution (mcr). solving the mixture analysis problem[END_REF]. It defines the "purity" p i of a spectrum as p i = µ i /σ i . The first component spectrum is the spectrum with the highest p i . The determinant of the correlation around the origin matrix is then used to correct the purity and find next spectra.

RESULTS

To study the ability of autoencoders to process MCR on complex dataset, we apply MCR-SSAE on coherent anti-Stokes Raman scattering (CARS) data obtained with a human embryonic kidney 293 cell (HEK293 pared to the state of the art method in chemometrics: multivariate curve analysis -alternating least squares (MCR-ALS) [START_REF] De | Multivariate curve resolution (mcr). solving the mixture analysis problem[END_REF] that uses least squares regression to compute C and S.

Both methods use SIMPLISMA to initialize S matrix.

To study the variability of the results, we repeat 50 trainings. As we cannot be sure about the order of the found components, SAD is used to categorize found components spectra between trainings before computing any statistic.

Our implementation (available at https://gitlab.xlim.fr/ boildieu1/mcr-ssae) is made in Python using PyTorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF], MCR-ALS is implemented using pyMCR package [START_REF] Jr | Pymcr: A python library for multivariatecurve resolution analysis with alternating regression (mcr-ar)[END_REF].

Dataset

As explained above, the dataset is the cartography of a fixed HEK-293 cell in interphase [START_REF] Ben | Multiplex coherent antistokes raman scattering highlights state of chromatin condensation in ch region[END_REF] with 85 × 80 pixels and 916 spectral samples from 2500 to 3200 cm -1 acquired with a multiplex CARS (M-CARS) setup [START_REF] Capitaine | Fast epi-detected broadband multiplex cars and shg imaging of mouse skull cells[END_REF]. M-CARS being a method to acquire a complete spectrum in a short time. The lateral and axial resolutions are ∼300 nm and 2 µm and the spectral resolution is 0.8 cm -1 .

In the range 2500-3200 cm -1 , several vibrational bands are known in Raman spectroscopy and can be associated to molecular compounds [START_REF] Kano | Ultra-multiplex cars spectroscopic imaging with 1millisecond pixel dwell time[END_REF] and, taking into account the spectral shift between Raman and CARS spectroscopy [START_REF] Capitaine | Fast epi-detected broadband multiplex cars and shg imaging of mouse skull cells[END_REF], can be used for CARS spectroscopy. These vibrational bands are listed in Tab. 2.

We use patches of size 30 × 30 pixels with a pixel overlapping of 15 pixels on both rows and columns. This size of patch allows to keep spatial details and the overlapping increase the amount of patches from 4 to 16. We chose a minibatch approach with batches of size 3. According to our tests, the batch size is not a sensitive parameter as long as it remains low compared to the dataset size.

To select the number of components K, a pre-study based on the application of the MCR-ALS has been done. K = 5 was found to be appropriate. vibrational information is not directly the peak but the slope of the peak, so the focus of the analysis has to be on it.

Extracted Spectra

The first remark about the results is the presence of a baseline. As it is present in the input spectra and no preprocessing step is applied, it remains on the components. If we compare MCR-SSAE results to MCR-ALS ones, spectra (a) and (c) from Fig. 3 can be associated to spectrum (a) from Fig. 2 and spectrum (b) to (d). Spectra (d) and (e) extracted by MCR-SSAE correspond to spectrum (a) from MCR-ALS. Spectrum (c) in Fig. 2 does not have its equivalent in Fig. 3. Spectra (a), (b) and (c) share vibrational information at 3007 cm -1 and 2844 cm -1 highlighting lipids. Spectrum (b) differs from the other two in having no slope at 2920 cm -1 and spectrum (c) has a much weaker signal than spectra (a) and (b) at 3008 cm -1 . Spectra (d) and (e) highlight informations at 3056 cm -1 and have far more signifiant slopes at 2920 and 2844 cm -1 than spectra (a), (b) and (c).

Regarding the components spectra variability, we can see that the standard deviation is high and relatively constant along spectra. This high variation indicates that spectra highly differ along trainings.

Concentrations

In Fig. 5, we show the average concentrations obtained with the MCR-SSAE. Correspondences with the MCR-ALS results shown in Fig. 4 are not as clear as those for spectra. MCR-SSAE results are blurrier than MCR-ALS ones. As for spectra, components is stronger in the nucleus. An important element to note is that component (d) shows slightly parts of the cytoplasm that diffuse in the environment. This information cannot be seen in the MCR-ALS results and shows the potential of convolutional encoders to extract new informations from CARS images.

Regarding the variability, MCR-SSAE has a standard deviation that can reach 0.28, i.e. 28% of the maximum intensity. Depending of the components, this variability can be seen in the environment or the nucleus. These results indicate that found components can be more specific to a region in many trainings. This problem of variability can be attributed to 2 problems: a lack of constraint on the AE weights and a lack of spatial information to learn suitable filters.

To summarize our observations, AE are a promising tool to apply MCR on CARS spectra, allowing to extract revelant information. However, a study of results variability exhibits their present limit to deal with complex data as multiple trainings often fall into different results.
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 1 Fig. 1. Our MCR-SSAE process.
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 2 Fig. 2. Spectra obtained by the MCR-ALS. Red bands correspond to lipids, green ones to proteins and blue to water.
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 3 Fig. 3. Components spectra obtained by the MCR-SSAE after 50 epochs and 50 trainings. Best epoch is kept for each training. The curve is the mean and the area around the curve is the standard deviation. Red bands correspond to lipids, green ones to proteins and blue to water.

Fig. 2 Fig. 4 .

 24 Fig.2 and 3show the components spectra found by MCR-ALS and MCR-SSAE respectively. An essential information to keep in mind when we analyze CARS spectra is that the
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 5 Fig. 5. Average concentrations obtained by the MCR-SSAE after 50 epochs and 50 trainings. Best epoch is kept for each training.Figure (f) corresponds to the transmitted light image of the cell and the DAPI fluorescence in blue.
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Table 1 .

 1 Summary

		Layer	Outputs BN Activation
		Conv5@5	16	✓	ReLU
	Encoder	Conv3@3	8	✓	ReLU
		Conv1@1	5	✓	Softmax
	Decoder	Dense	N	×	×

of the implemented MCR-SSAE. N is the number of spectral channels in the dataset.

Table 2 .

 2 Known vibrational bands and their associated molecular compound. s. stands for symmetrical, stretch. for stretching and aroma. for aromatic.

		Assignment	Compound
	2844	CH 2 s. stretch.	Lipids
	2920	CH 3 s. stretch.	Proteins
	3007	=C-H stretch.	Lipids
	3056	aroma. C-H stretch.	Proteins
	3165	O-H s. stretch.	Water

). Results are then com-CARS peaks (cm -1 )