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ABSTRACT

Coherent anti-Stokes Raman scattering (CARS) microspec-
troscopy is a powerful tool for label-free cell imaging thanks
to its ability to acquire a rich amount of information. An im-
portant family of operations applied to such data is multivari-
ate curve resolution (MCR). It aims to find main components
of a dataset and compute their spectra and concentrations in
each pixel. Recently, autoencoders began to be studied to ac-
complish MCR with dense and convolutional models. How-
ever, many questions, like the results variability or the recon-
struction metric, remain open and applications are limited to
hyperspectral imaging. In this article, we present a nonlinear
convolutional encoder combined with a linear decoder to ap-
ply MCR to CARS microspectroscopy. We conclude with a
study of the results variability induced by the encoder initial-
ization.

Index Terms— Multivariate curve resolution, Unmixing,
CARS microspectroscopy, Autoencoders, Cell imaging

1. INTRODUCTION AND RELATED WORKS

Label-free cell imaging is the acquisition of cell images with-
out the use of any staining, using for example fluorescent-
based reagents, to locate the cell or its components of inter-
est. One technique to acheive these acquisitions is coherent
anti-Stokes Raman scattering (CARS), a vibrational spectro-
scopic method [1] based on a third-order non-linear optical
phenomenum. Thanks to it, one can use specific frequen-
cies to construct an image or acquire complete spectra [2, 3]
allowing spectral analysis in addition to image analysis. A
CARS signal intensity is composed of a resonant part and a
non-resonant one. Thus, spectra are commonly processed by
methods aiming to remove the non-resonant information but
this can lead to introduce numerical errors. For this reason,
we adress the problem of raw CARS spectra analysis.

A frequent interrogation when images composed of spec-
tra are acquired is what are the main components in the im-
age and what are their spectral signatures. This problem has
been adressed in both chemometrics and hyperspectral imag-
ing (HSI) communities. In chemometrics, this operation is

called multivariate curve resolution (MCR) while in HSI, it is
known as unmixing. As our application is CARS microspec-
troscopy, we use the chemometrics terminology in the re-
mainder of this article. MCR aims to find, from a data ma-
trix D ∈ RM×N with M acquisitions and N spectral chan-
nels, the K main components by computing their spectra S ∈
RN×K and concentrations C ∈ RM×K . The problem is for-
mulated in a linear form as follows:

D = CST + E, (1)

with E ∈ RM×N the error matrix that contains noise and ir-
revelant data. MCR can be used for the analysis of microspec-
troscopy by unfolding the spatial dimension.

As Eq. 1 has many solutions, it is usual to apply con-
straints to C and S to fit to physical properties. The two most
common constraints are the non-negativity and the sum-to-
one ones. The first one ensures to have only positive values
while the last one ensures all elements along a dimension to
sum to one.

In the last years, deep learning and more particulary au-
toencoders (AE) became an active research field to accom-
plish unmixing for HSI. The flexibility of neural networks
in the architecture allows a wide range of models adapted to
specific of data. Hence, autoencoders cascade [4] and noise
injection [5] have been used for denoising and stacked au-
toencoders for outliers detection [6]. Also, convolutional au-
toencoders [7] and multilayer decoder [8] have been used to
reformulate the linear unmixing problem in a nonlinear for-
mulation. Although several architectures have been imple-
mented, the problem is still open. Especially since, at our
knowledge, AE abilities for unmixing have never been tested
in microspectroscopy.

In addition to the model structure, the choice of the loss
function is a major matter as a wrong loss function will lead to
incorrect components spectra. Another element to consider is
the variability of the results. Indeed, as AE can have a com-
plex structure, it is usual to initialize weights with random
values. However, this can lead the training to fall in different
local minima between different trainings. Moreover, this ef-
fect can be amplified by the non-resonant part of raw spectra.
Therefore, studying the results variability is essential.



Fig. 1. Our MCR-SSAE process.

In this article, we introduce the use of AE for MCR in the
context of CARS microspectroscopy, applied to raw CARS
spectra of a cell, and we study the components spectra and
concentrations variabilities along multiple trainings. First, we
present the implemeted model, the training process and the
hyperparametrization. Second, we introduce the dataset that
will be used to evaluate our models. Third, we show the re-
sults, compare to the state of the art method and finish with
studying the results variability.

2. OUR METHOD

2.1. Spectral-spatial autoencoder

Fig. 1 shows our MCR process workflow based on a spectral-
spatial autoencoder (MCR-SSAE). The first block in Fig. 1
is the encoder made of several convolutional layers with non-
linear activation functions. This structure allows to compute
the latent space, i.e. the concentrations C with nonlinear op-
erations and to use the spatial information in the dataset by
applying spatial convolutions to every spectral channel. The
second block is the decoder, a single dense layer without acti-
vation function. Hence, the decoder weights correspond to the
spectra matrix S as stated in Eq. 1. We apply batch normal-
ization (BN) between each convolution and activation func-
tion in the encoding block to smooth loss function and avoid

Block Layer Outputs BN Activation

Encoder
Conv5@5 16 ✓ ReLU
Conv3@3 8 ✓ ReLU
Conv1@1 5 ✓ Softmax

Decoder Dense N × ×

Table 1. Summary of the implemented MCR-SSAE. N is the
number of spectral channels in the dataset.

(a) (b) (c)

(d) (e)

Fig. 2. Spectra obtained by the MCR-ALS. Red bands corre-
spond to lipids, green ones to proteins and blue to water.

some local minima [9], behavior that have been noticed on
our data when we does not apply batch normalization. Batch
normalization parameters are computed with data used for the
training.

We present the implemented MCR-SSAE in Tab. 1. The
encoding block is made of three layers with different kernel
sizes and use replication padding. The two first layers use
ReLU as activation functions and the last layer uses Softmax
to implement sum-to-one and non-negativity constraints. In-
deed, it is usual to apply constraints on C and S matrices
to ensure results consistent with their physical or numerical
properties. Softmax ensures to have positive concentrations
that sums to one to obtain a ratio of each component for every
pixel. As both input spectra and concentrations are positive
and the decoder is only a dense layer, S will also be positive.

Use spatial information requires a sufficient amount of
pixels to learn spatial features but CARS acquisition are often
small images. To solve this issue and increase the dataset size,
we compute overlaping small patches that will be used for the
training while the complete dataset is used for the inference.

2.2. Hyperparametrization

We train our model with the spectral angle distance (SAD):

SAD(d, d̂) = acos

(
d · d̂

∥d∥2∥d̂∥2

)
. (2)

SAD computes similarity between spectra by computing the
angle between them. We choose this function for its ability
to measure the difference between the shapes of two spectra
and as it already shown its efficiency in the HSI context [5].
We compute SAD between each output spectrum and its cor-
responding input and average it along both patches with M
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Fig. 3. Components spectra obtained by the MCR-SSAE after
50 epochs and 50 trainings. Best epoch is kept for each train-
ing. The curve is the mean and the area around the curve is
the standard deviation. Red bands correspond to lipids, green
ones to proteins and blue to water.

pixels and batches of size L :

argmin
D̂

L∑
i=1

M∑
j=1

SAD(di,j , d̂i,j)

L×M
. (3)

To minimize Eq. 3, we use the Adam algorithm with the ini-
tial learning rate α = 1×10−3 and train for 50 epochs. These
parameters have been chosen after several tests of different
learning rates and number of epochs. As SAD is not magni-
tude sensitive, input spectra are normalized to sum to one to
keep spectra with the same order of magnitude.

2.3. Decoder initialization

Finding a first guess for the component spectra is a complex
operation. This first estimation can be made using spectra
in the dataset that are the most subject to be composed of
only one component [8, 10, 11]. In chemometrics, the simple-
to-use self-modeling analysis (SIMPLISMA) method [12] is
commonly used to initialize S [10]. It defines the “purity” pi
of a spectrum as pi = µi/σi. The first component spectrum
is the spectrum with the highest pi. The determinant of the
correlation around the origin matrix is then used to correct
the purity and find next spectra.

3. RESULTS

To study the ability of autoencoders to process MCR on com-
plex dataset, we apply MCR-SSAE on coherent anti-Stokes
Raman scattering (CARS) data obtained with a human em-
bryonic kidney 293 cell (HEK293). Results are then com-

CARS peaks (cm−1) Assignment Compound
2844 CH2 s. stretch. Lipids
2920 CH3 s. stretch. Proteins
3007 =C-H stretch. Lipids
3056 aroma. C-H stretch. Proteins
3165 O-H s. stretch. Water

Table 2. Known vibrational bands and their associated
molecular compound. s. stands for symmetrical, stretch. for
stretching and aroma. for aromatic.

pared to the state of the art method in chemometrics: multi-
variate curve analysis - alternating least squares (MCR-ALS)
[10] that uses least squares regression to compute C and S.
Both methods use SIMPLISMA to initialize S matrix.

To study the variability of the results, we repeat 50 train-
ings. As we cannot be sure about the order of the found com-
ponents, SAD is used to categorize found components spectra
between trainings before computing any statistic.

Our implementation (available at https://gitlab.xlim.fr/
boildieu1/mcr-ssae) is made in Python using PyTorch [13],
MCR-ALS is implemented using pyMCR package [14].

3.1. Dataset

As explained above, the dataset is the cartography of a fixed
HEK-293 cell in interphase [3] with 85 × 80 pixels and 916
spectral samples from 2500 to 3200 cm−1 acquired with a
multiplex CARS (M-CARS) setup [15]. M-CARS being a
method to acquire a complete spectrum in a short time. The
lateral and axial resolutions are ∼300 nm and 2 µm and the
spectral resolution is 0.8 cm−1.

In the range 2500-3200 cm−1, several vibrational bands
are known in Raman spectroscopy and can be associated to
molecular compounds [16] and, taking into account the spec-
tral shift between Raman and CARS spectroscopy [15], can
be used for CARS spectroscopy. These vibrational bands are
listed in Tab. 2.

We use patches of size 30 × 30 pixels with a pixel over-
lapping of 15 pixels on both rows and columns. This size of
patch allows to keep spatial details and the overlapping in-
crease the amount of patches from 4 to 16. We chose a mini-
batch approach with batches of size 3. According to our tests,
the batch size is not a sensitive parameter as long as it remains
low compared to the dataset size.

To select the number of components K, a pre-study based
on the application of the MCR-ALS has been done. K = 5
was found to be appropriate.

3.2. Extracted Spectra

Fig. 2 and 3 show the components spectra found by MCR-
ALS and MCR-SSAE respectively. An essential information
to keep in mind when we analyze CARS spectra is that the

https://gitlab.xlim.fr/boildieu1/mcr-ssae
https://gitlab.xlim.fr/boildieu1/mcr-ssae
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Fig. 4. Concentrations obtained by the MCR-ALS. Figure (f)
corresponds to the transmitted light image of the cell and the
DAPI fluorescence in blue.

vibrational information is not directly the peak but the slope
of the peak, so the focus of the analysis has to be on it.

The first remark about the results is the presence of a base-
line. As it is present in the input spectra and no preprocessing
step is applied, it remains on the components. If we compare
MCR-SSAE results to MCR-ALS ones, spectra (a) and (c)
from Fig. 3 can be associated to spectrum (a) from Fig. 2 and
spectrum (b) to (d). Spectra (d) and (e) extracted by MCR-
SSAE correspond to spectrum (a) from MCR-ALS. Spectrum
(c) in Fig. 2 does not have its equivalent in Fig. 3. Spectra (a),
(b) and (c) share vibrational information at 3007 cm−1 and
2844 cm−1 highlighting lipids. Spectrum (b) differs from the
other two in having no slope at 2920 cm−1 and spectrum (c)
has a much weaker signal than spectra (a) and (b) at 3008
cm−1. Spectra (d) and (e) highlight informations at 3056
cm−1 and have far more signifiant slopes at 2920 and 2844
cm−1 than spectra (a), (b) and (c).

Regarding the components spectra variability, we can
see that the standard deviation is high and relatively con-
stant along spectra. This high variation indicates that spectra
highly differ along trainings.

3.3. Concentrations

In Fig. 5, we show the average concentrations obtained with
the MCR-SSAE. Correspondences with the MCR-ALS re-
sults shown in Fig. 4 are not as clear as those for spectra.
MCR-SSAE results are blurrier than MCR-ALS ones. As for
spectra, components (a), (b) and (c) share similarities while
components (d) and (e) share others. We can see components
(a), (b) and (c) show th extracellular environment but gradu-
ally include elements inside the cell until component (c) that
is stronger inside the cell but does not include elements inside
the nucleus. Components (d) and (e) show the cell content
but component (d) includes the interface while component (e)

(a) (b) (c)

(d) (e) (f)

Fig. 5. Average concentrations obtained by the MCR-SSAE
after 50 epochs and 50 trainings. Best epoch is kept for each
training. Figure (f) corresponds to the transmitted light image
of the cell and the DAPI fluorescence in blue.

is stronger in the nucleus. An important element to note is
that component (d) shows slightly parts of the cytoplasm that
diffuse in the environment. This information cannot be seen
in the MCR-ALS results and shows the potential of convolu-
tional encoders to extract new informations from CARS im-
ages.

Regarding the variability, MCR-SSAE has a standard de-
viation that can reach 0.28, i.e. 28% of the maximum inten-
sity. Depending of the components, this variability can be
seen in the environment or the nucleus. These results indicate
that found components can be more specific to a region in
many trainings. This problem of variability can be attributed
to 2 problems: a lack of constraint on the AE weights and a
lack of spatial information to learn suitable filters.

To summarize our observations, AE are a promising tool
to apply MCR on CARS spectra, allowing to extract revelant
information. However, a study of results variability exhibits
their present limit to deal with complex data as multiple train-
ings often fall into different results.
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