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Abstract
Vectorial programming, the combination of SIMD instructions with usual processor instructions, is
known to speed-up many standard algorithms. Simple regular languages have benefited from this
technology. This paper is a first step towards pushing these benefits further. We take advantage of
the inner algebraic structure of regular languages and produce high level representations of efficient
vectorial programs that recognize certain classes of regular languages.

As a technical ingredient, we establish equivalences between classes of vectorial circuits and logical
formalisms, namely unary temporal logic and first order logic. The main result is the construction
of compilation procedures that turns syntactic semigroups into vectorial circuits. The circuits we
obtain are small in that they improve known upper-bounds on representations of automata within
the logical formalisms. The gain is mostly due to a careful sharing of sub-formulas based on algebraic
tools.
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1 Introduction

Finite state machines abstract the simplest class of programs. They are used everywhere:
basic string manipulation functions of the C standard library like memchr, strlen or strstr
are based on simple finite state automata, but also text-processing related tasks; checking the
validity of encodings; text-mining; etc. As finite state machines are pervasive, implementing
them efficiently is key in many softwares. The string related functions of the C standard
library we mentioned earlier have greatly benefited from SIMD instructions built into modern
CPUs. These functions can now process several characters per CPU cycle.

Single Instruction, Multiple Data (SIMD) executes an operation on several data in
parallel, offering a form of low-level parallelism akin to Lamport’s [12]. A function like
memchr searches the first occurrence of a character in a string. SIMD instructions can check
whether this character appears among several consecutive characters of the string in one
go: each individual character is compared in parallel with the others. Other vectorized
algorithms (see [10] for examples) benefit from these instructions. In the context of text-
processing, impressive handcrafted SIMD based implementations have been proposed for
string pattern matching [11], classical regular expression matching [29], Json parsing [13],
checking correctness UTF-8 encoding [9], or DNA alignement in bioinformatics [5].

Though many efforts have been put into compilers to solve the problem of auto-
verctorization [17, 28, 18, 19, 7], these optimization methods rarely succeed in accelerating
text algorithms with SIMD instructions. Finding auto-vectorization methods that deal with
text algorithms would have a high impact. The challenge would be to produce, among others,
the clever handcrafted code in the C standard library from the description of its underlying
regular expression. Text processing, however, requires some form of sequentiality simply
because, in many cases, information needs to be passed sideways. In this paper we consider
two of them: prefix-or and addition.

The unreasonable power of binary addition. For sideways information passing, addition
is very interesting: carry propagation can be used to compute long distance relations words.
Moreover, Big Int instructions of modern processors compute it efficiently over large vectors.

Several papers already explored the use of addition in relation to regular languages:
Myers [16] uses it to solve approximate string matching; Bergeron and Hamel [2, 1] show
that counter-free automata can also benefit from addition; Serre [24] then characterizes
counter-free languages in terms of addition; on the practical side, Cameron et al. [3] use
explicitly addition when compiling parts of regular expressions of the form B∗ when B is a
set of letters.

This work starts with the definition of a notion of vectorial circuit that abstracts away
from the details of CPU operations. Circuits make clear which operations are independent
from one another and are objects of choice when it comes to introduce parallelism in some
computation. We are confident that vectorial circuits can be compiled to obtain efficient
programs that use SIMD instructions. As a first step in that direction, the main focus of the
paper is then to construct small vectorial circuits from various presentations of counter-free
regular languages.

The results of [2, 1] heavily rely on Krohn-Rhodes’ Theorem. In this paper, the con-
struction goes through Past-LTL logic and uses the equivalence between the Yesterday-Since
operation and binary addition. The relation between these two operations is actually formal-
ized in coq [20] (for technical reasons, in this formalization, we consider Forward-LTL and
Next-Until instead of Past-LTL and Yesterday-Since). A consequence is that we can obtain
concise vectorial circuits from Past-LTL formulae in the sense that they have the same size
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as the initial formula.
We also consider how to obtain concise vectorial circuits directly from automata. With

Serre’s result, it is theoretically possible to produce vectorial circuits for counter-free automata.
However, only a double exponential upper bound in the size of the automaton is known
on the size of Past-LTL formulas. This would make circuits far too large in practice. This
upperbound comes from a construction of Wilke [31, Corollary 1] that builds formulas by
induction over the structure of the syntactic monoids of the input automata. On other classes
of automata, such as FO2[<] [4, 27], known transformations of automata into formulas are
indirect and not constructive. They are of no use to actually compile automata into formulas
or circuits.

Main contributions. We study the notion of vectorial circuits as an abstraction of SIMD
programs. Vectorial circuits describe the shape of actual circuits for arbitrary size of inputs.
In particular they are circuits of constant depth (a uniform fragment of AC0). As for circuits,
their expressivity depends on the set of authorized gates. Our main goal is to produce
small vectorial circuits for particular classes of regular languages: the class of counter-free
or FO[<]-languages and the class DA or FO2[<]-languages. We measure the size of output
circuits with respect to the size of the syntactic monoids. Were we to consider automata
as inputs that we would need to exponentiate our bounds (e.g. the languages of the form
AkaA∗ have syntactic monoids of size 2k with minimal automata of size O(k)).

Concerning counter-free languages, we revisit Serre’s result. We propose an algorithm
that produces vectorial circuits (using bitwise boolean operations and addition) that are
polynomial in the size of the input aperiodic monoid. Serre’s result ensures here that the class
of vectorial programs expressed with addition and bitwise boolean operations are equivalent
to counter-free languages.

For the class DA, we replace addition with prefix-or and obtain a class of circuits that
capture exactly that class. When transforming syntactic monoids of DA into vectorial
circuits, the use of prefix-or makes circuit larger than they would be with addition. The
transformation that we propose gives vectorial circuits which have exponential size in the
J -depth (see 3.1 for the definition of J -depth) of the syntactic monoid.

We begin by presenting vectorial circuits in Section 2. We also show the links between
vectorial circuits and fragments of logic. In Section 3, we introduce general strategies of
evaluation of words. Then, in Section 4, we construct small programs that compute our
strategies of evaluation. All proofs can be found in the appendices.

2 Compiling regular languages into vectorial circuits

2.1 Algebraic preliminaries
We write [n] for the set {0, . . . , n − 1}. Given a set E, we denote by |E| its cardinality.

Given some finite set Σ, the alphabet, words on Σ are finite sequences of elements of Σ. We
write |x| for the length of the word x. We denote Σ∗ the set of words on Σ.

Semigroups. A semigroup is a pair consisting of a set S and an associative binary operation
·S on S, called the inner operation of S. We usually write that the set S is a semigroup. A
monoid is a triple (M, ·M , 1), where (M, ·M ) is a semigroup and 1 ∈ M is an identity (or a
neutral element) of M . We usually write that the set M is a monoid. We only work with
finite semigroups and monoids. We thus designate finite semigroups (resp. finite monoids)
when we mention semigroups (resp. monoids). Given a semigroup S, any element e of S

satisfying e ·S e = e is called an idempotent. In a finite semigroup S, any element s of S
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admits an idempotent power, which is an element sn (where n > 0 is an integer) that is
idempotent, where sn denotes the iterated product of s by itself n times. We use the usual
notation sω to denote the idempotent power of s (ω is the minimum integer such that, for any
element s, sω is the idempotent power of s). Given a semigroup S, we define S1 = S ∪ {1}
as the monoid formed by the semigroup to which an identity is added if necessary. For any
subsets X and Y of S, we denote by X ·S Y the set {x ·S y | x ∈ X, y ∈ Y }. Similarly, for any
x ∈ S and Y ⊆ S, we write x ·S Y and Y ·S x respectively for {x} ·S Y and Y ·S {x}. Given a
finite set Σ, we call Σ+ the free semigroup over Σ with the concatenation as the associative
binary operation. This is the only infinite semigroup that we consider. Given a semigroup S,
we will denote by S+ the free semigroup with the underlying set of S as alphabet.

Canonical morphism. We denote concatenation implicitly: given two words u, v, their
concatenation is written uv. For instance, taking two elements x, y of S, xy denotes a
word of S+ of length 2. This notation must not be confused with x ·S y that denotes the
element of S obtained by multiplying x and y with the inner operation of S. We never use
concatenation to mark the product within S. However, we relate words of the free semigroup
S+ to their value in S by means of the canonical morphism: πS : S+ → S. It is the unique
associative morphism verifying both the following properties: for every x ∈ S, πS(x) = x

and, for every u, v ∈ S+, πS(uv) = πS(u) ·S πS(v).

Languages and semigroups. A link can be established between logics and semigoups by
taking the syntactic semigroup of a language. This semigroup is defined as follows: given a
language L on an alphabet Σ, the syntactic congruence of L in Σ∗ is the relation ∼L defined
on Σ∗ such that, for any words u, v ∈ Σ∗, u ∼L v if and only if, for all words x, y ∈ Σ∗,
xuy ∈ L ⇔ xvy ∈ L. The syntactic semigroup of L is the quotient Σ+/ ∼L, and the syntactic
monoid of L is the quotient Σ∗/ ∼L.

The link between logic and semigroups has already been well studied and gave birth
to very nice algebraic characterizations of some well-known classes of languages. Notably,
the class of starfree languages is equivalent to the variety of aperiodic semigroups, the
semigroups satisfying an equation of the form πS(xω+1) = πS(xω), for any x ∈ S. We can
also mention the class FO2[<], which is equivalent to the variety DA of semigroups, the
semigoups satisfying an equation of the form πS((xy)ωx(xy)ω) = πS((xy)ω), for any x, y ∈ S.
We refer to [26] for a complete exposition of this class and its relationship to various logics.

2.2 Vectorial circuits
We call vectors the words on the alphabet {0, 1}. For a vector x, we may use the term

dimension to refer to its length |x|. We refer to vectors of dimension n as n-vectors. We
let 1n and 0n respectively denote a sequence of n 1’s and a sequence of n 0’s. When n is
irrelevant or obvious for the context, we may write 1 and 0.

Vectorial circuits and their semantics. Vectorial circuits are labeled directed acyclic
graphs. The nodes that have no input edge are called input nodes. The nodes with incoming
edges are called gates and are labeled with commutative operations. The in-degree of a gate
should be equal to the arity of its labeling operation while the out-degree can be arbitrary.
We usually write nodes in bold-face fonts: v, v1, . . . Output nodes are distinguished nodes of
the circuit. Generally they include the nodes that have no output edge. The size of a circuit
is the number of its nodes.

Vectorial circuits can be seen as circuit templates that, for each n, instantiate a concrete
circuit working on vectors of dimension n. Once the dimension is fixed to n, associating
n-vectors to the input nodes and flowing the values through the gates (where the right
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function operating on n-vectors is used) yields output values in the output nodes. Take
a circuit C with input nodes i1, . . . , ip and output nodes o1, . . . , or, given p n-vectors x1,
. . . , xp, we write C(x1, . . . , xp) for the tuple of n-vectors y1, . . . , yr that are respectively
yielded in the output nodes o1, . . . , or when evaluating the C with the vector x1, . . . , xp
respectively associated to the input nodes i1, . . . , ip.

Operations for labeling gates. We use bitwise Boolean operations: the unary negation
¬ and the binary operations ∧ and ∨, respectively the bitwise conjunction and disjunction.

Given a function f : {0, 1}+ → {0, 1}, we define the unary operation pref-f (resp. suf-f):
given a n-vector x = b0 . . . bn−1, with b0, . . . , bn−1 in {0, 1}, pref-f(x) (resp. suf-f(x)) is
the n-vector z = c0 . . . cn−1 where for each i ∈ [n], ci = f(b0 · · · bi) (resp. ci = f(bi · · · bn−1)).
In this paper, we use the unary operations pref-∨, suf-∨, pref-∧ and suf-∧.

Binary vectors x of dimension n naturally represent numbers in [2n − 1]. We write nb(x)
for the number represented by x with the convention that its least significant bit is the
left-most occurrence of 1. For a natural number k, we write binn(k) to denote the vector of
dimension n that represents k modulo 2n.

The unary operations LSB (Least Significant Bit) and MSB (Most Significant Bit) replace
by 0 respectively the left-most 1 or right-most 1 of their argument vector. For these two
operations, when the argument vector is 0n, the resulting vector is also 0n. The binary
operation + is defined by the family (plusn)n∈N so that for any two vectors of dimension n,
denoted by x and y, plusn(x, y) = binn(nb(x) + nb(y)).

We study two families of vectorial circuits:
Sweeping-vectorial circuits, circuits built only with the operations, ∧, ∨, ¬, pref-∨, pref-∧,
suf-∨, suf-∧, LSB, MSB,
and ADD-vectorial circuits, circuits built only with the operations +, ∧, ∨, ¬, pref-∨,
pref-∧, suf-∨, suf-∧, LSB, MSB.

Term notation for vectorial circuits. Trees are a particular kind of directed acyclic
graphs. Circuits that are tree shaped are those where nodes have at most one out-going
edge and exactly one output node. These particular circuits can be advantageously denoted
by terms built with operations (respecting their arity) and input nodes. The term (v1 ∧
¬v2) ∨ (¬v3 ∧ v4) represents the circuit of Figure 1. Allowing input nodes to have several
occurrences in terms gives access to some limited kind of sharing. This is exemplified with
Figure 1. So as to fully capture such sharing capabilities with the term notation, we use
equations: a term t that is to be shared is associated to a node v with the equation v = t

and, when v is used in another term, this refers to the shared circuit t. For example, we
write v = pref-∨(suf-∨(v1)), (¬v ∧ v2) ∨ (v ∧ v3) to denote the third circuit in Figure 1.

∨

∧

v1

¬

v2

∧

¬

v3 v4

∨

∧

v1

¬

v2

∧

¬

∨

∧

¬

pref-∨

suf-∨

v1 v2

∧

v3

Figure 1 Graph representation of terms: (v1 ∧ ¬v2) ∨ (¬v3 ∧ v4); (v1 ∧ ¬v2) ∨ (¬v1 ∧ v2); and
v = pref-∨(suf-∨(v1)), (¬v ∧ v2) ∨ (v ∧ v3)

Terms also offer a convenient way for reusing certain circuits in several places: it suffices
to change the input nodes at their leaves. We adopt a notation that denotes parametrized
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circuits: c(v1, . . . , vn) := t where t is a term built with the nodes v1, . . . , vn. For circuits
t1, . . . , tn we write c(t1, . . . , tn) the circuit described by the term obtained by replacing
v1, . . . , vn respectively with t1, . . . , tn in t. For example, we define the bitwise exclusive-or
as v1 ⊕ v2 := (v1 ∧ ¬v2) ∨ (¬v1 ∧ v2). We can compose parametrized circuits to define
others et construct complex circuits.

The addition Lemma. We say that a vector x is contained in a vector y if for any position
i, xi = 1 implies yi = 1. Let x, y be two disjoint vectors of dimension n and z a vector of
dimension n that contains both x and y. We denote by v = Successor (x, y, z) the vector
such that for all i < n, vi = 1 if and only if xi = 1, there exists j < i such that yj = 1 and,
for all k ∈ N such that j < k < i, zk = 0. In other words, Successor (x, y, z) indicates the
positions marked in x that follow a marked position of y, with no other position marked by
z in-between.

I Lemma 1 (Addition lemma). Let x, y be two disjoint vectors of dimension n and z a vector of
dimension n that contains both x and y. Then, we have Successor (x, y, z) := (y+(y∨¬ z))∧x

This lemma has a rather tedious proof. So as to relieve the reader from checking its
details, we provide a formalization and a proof this Addition Lemma in Coq [20].

Vectorial circuits as language recognizers and functions from words to finite sets.
Given a fixed alphabet Σ, we say that a vectorial circuit C recognizes a set of words in Σ+

when it has a unique output node and there is a bijection between the letters a1, . . . , ap

of Σ and its input nodes a1, . . . , ap. We consider a particular bijection: given a word u of
length n, we write 1a(u) for the n-vector x so that xi = 1 if and only if ui = a for every i in
[n−1]. We say that u is accepted or recognized by the circuit when C(1a1(u), . . . ,1ap

(u)) 6= 0.
As a shorthand, we write enc(u) for the tuple (1a1(u), . . . ,1ap

(u)) and thus C(enc(u)) for
C(1a1(u), . . . ,1ap

(u)).
Vectorial circuits can also represent functions f from Σ+ to a finite domain E. It suffices

to consider circuits C which have a bijection between their input nodes and the letters of Σ,
but also a bijection between the elements e1, . . . , er of E and their output nodes e1, . . . , er.
We say that C represents f when for every u, the output (z1, . . . , zr) = C(enc(u)) is such
that, for every i in {1, . . . , r}, zi 6= 0 if and only if f(u) = ei.

Example. Consider the alphabet Σ = {a, b, c}. The language c∗aΣ∗ is recognized by the
Sweeping-vectorial circuit C = ¬(suf-∨(pref-∨(suf-∨(Fa) ∧ b))), where the circuit Fa =
LSB(a) ⊕ a gives the position of the first occurrence of a.

The language Σ∗ac∗aΣ∗ is recognized by the ADD-vectorial circuit C = (a + ¬b) ∧ a,
which is equal to (a + (a ∨ ¬(a ∨ b))) ∧ a (the circuit that corresponds to the definition
of Successor (a, a, a ∨ b)). An example is showed in Table 1; note that every 1 in the last
vector indicates, as we want, each letter a such that there is no letter b between this position
and the previous letter a, and no other letter is indicated.

1b 0 0 1 0 0 0 0
1a 0 1 0 1 0 1 1

1a + ¬1b 1 0 1 0 0 1 1
(1a + ¬1b) ∧ 1a 0 0 0 0 0 1 1

Table 1 Example of application of the operation (1a + ¬1b) ∧ 1a
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2.3 Going through first-order logic
The computational model we propose is actually very close to some classical fragments

of logic over words. For a full exposition of this subject, we refer to [4]. Informally, we can
describe some regular languages with the help of first-order formulas. In those formulas,
quantifications range over positions of the word and atomic predicates can check either
numeric constraints between positions (typically their order) or the label of the position. For
instance, the formula ∃x, y∀z, x < z ∧ z < y ∧ a(x) ∧ a(y) ⇒ c(z) describes the language over
the alphabet Σ = {a, b, c} which words belong to D = Σ∗ac∗aΣ∗.

In this context, linear temporal logic (LTL for short) has an interesting role that we will
rely on. LTL, even restricted to future or past operators, allows to define the same languages
as full first-order logic [8]. For instance, the language D can be described with the following
LTL formula: F(a ∧ X(cUa)).

This class of languages has many equivalent characterizations. In [23], Schützenberger
proved for regular languages the equivalence between First-Order/LTL-describable regular
languages and star-free languages. Later, McNaughton and Papert proved that star-free
languages are equivalent with LTL and first-order logic [14, 4]. In a similar fashion to
McNaughton and Papert, we can prove that languages computed by ADD-vectorial circuits
are exactly the starfree languages. Both directions of the equivalence have been proved by
Serre [24, Theorem 1.] by relying on a syntactic logical rewriting of LTL formulas.

I Proposition 2. Let L be a regular language. The following propositions are equivalent.
1. L is computed by an ADD-vectorial circuit.
2. L is starfree.
3. L is definable in Forward-LTL.

Another fragment of interest is the class of languages definable by two-variable first-order
logic, or equivalently by LTL without the Until operation but with neXt and Yesterday
operations. This fragment has been studied a lot and is well understood [8, 4, 30, 32].

In the proof of the next result, we rely on the known equivalence between FO2[<] and
a logic called TL[Xa, Ya]. More formally, the languages describable in FO2[<] are exactly
the languages describable by the logic TL[Xa, Ya] presented in [4]. This logic uses only two
kinds of operators: Xa, for a any letter, verifies that there exists a position greater than the
current one which holds an a, and if so, it sets the new current position at the position of
the closest a. If no occurrence of a is found, the word is not recognized. The operator Ya,
for any letter a, is the symmetrical operator: it operates the same way except for the fact
that it searches for the closest occurrence of a before the current position.

I Proposition 3. A language is recognized by a Sweeping-vectorial circuit if and only if it is
definable in TL[Xa, Ya].

I Remark 4. We can always build a vectorial circuit of size linear in the size of the equivalent
formula. Conversely, if we consider formulas with sharing of sub-formulas, we can also build
an equivalent circuit of size linear in the size of the formula.

2.4 Direct compilation scheme
In the previous section, we have seen the relationship between vectorial circuit classes

and LTL logic formulas. However, the proofs of those results do not give satifying algorithms
for building a vectorial circuit recognizing a given formula. Indeed, the proofs going from
the automata to the formulas are either indirect and not constructive, and they do not give
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any upperbound on the sizes of the formulas, or they are constructive but give formulas (and
thus circuits) of too large sizes.

Our goal is to reduce the size of the formulas we obtain through semigroups, so that
we can obtain tractable algorithms for the languages that have a small syntactic monoid.
Because of this point of view, all complexity measures of our circuits are provided in terms
of the semigroup size.

I Theorem 5. Let S be a semigroup in DA of J -depth d. We can construct a Sweeping-vectorial
circuit of size O(2d|S|3) that computes the operation πS.

Moving from Sweeping-vectorial circuits to Unary-LTL could cost an exponential blowup,
which in total gives a doubly-exponential blowup for constructing a Unary-LTL formula from
a semigroup in DA. Remark that the classical constructions do not provide upperbounds on
the minimum size of a Unary-LTL formula equivalent to a given semigroup in DA. However,
these constructions already have considerable sizes of formulas.

We conjecture that no Sweeping-vectorial circuit of polynomial size exists and believe
that it is an interesting open question to provide lowerbounds for those circuit models.

I Theorem 6. Let S be an aperiodic semigroup of J -depth d. We can construct an
ADD-vectorial circuit of size O(d|S|3) that computes the operation πS.

Proofs’ organisation.
We chose to separate the proofs into two main parts. In the first one, we introduce the

notion of evaluation program, which is a very generic tool allowing to replace a sub-word by
a single letter equal to its product, and we define two generic evaluation strategies which
are evaluation programs. These strategies were chosen accordingly to the properties of the
classes of semigroup that will be considered later but, supposing that we can provide an
efficient encoding of those strategies, they are valid on any semigroup. Then, in the second
part, we provide vectorial circuits encoding the two evaluation strategies on the classes of
semigroups that we are interested in.

3 Semigroups evaluation strategies

3.1 Green’s relations
We refer the reader to [22, 21] for a complete exposition of algebraic automata theory.

We remind here some more basic notations and definitions about semigroups.
Consider a function F : S → P(S), where P(S) denotes the power set of S. We write

x F y when F (x) = F (y); x ≤F y when F (x) ⊆ F (y); and x <F y when x ≤F y and
F (x) 6= F (y). The relation F is an equivalence relation and ≤F is a partial pre-order. We
also write F(x) = {y | y F x}, the F-class of x. We say that a semigroup is F-trivial when
F(x) is a singleton for any element x ∈ S. Green’s relations are defined with the following
functions: R : x 7→ x ·S S1, L : x 7→ S1 ·S x, J : x 7→ S1 ·S x ·S S1, H : x 7→ R(x) ∩ L(x). Note
that the respective relations obtained from R, L, J and H are denoted by R, ≤R, <R, L,
≤L, <L, J , ≤J , <J ,H, ≤H and <H. For a complete introduction to Green’s relations, we
refer to [22, 21].

The J -depth of a semigroup. Let S be a semigroup. The J -depth of a J -class is
the length of a maximal strictly decreasing sequence of J -classes to it. Formally, given
a semigroup S and a J -class J , we say that J is of J -depth i if there exist i J -classes
J1 >J J2 . . . >J Ji such that Ji = J and J1 is maximal, but there exists no decreasing
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sequence J ′
1 >J J ′

2 . . . >J J ′
i+1 such that J ′

i+1 = J and J ′
1 is maximal. The J -depth of a

semigroup is the maximum J -depth of its J -classes. By definition of a J -class, for any
semigroup, there exists a unique J -class of maximum J -depth. Given d the J -depth of S,
for each integer i such that 1 ≤ i ≤ d, we denote by Di(S) the union of all the J -classes of
depth i and we denote by Si the sub-semigroup composed exactly of all the elements of S of
J -depth at least i.

J -constant words. Let S be a semigroup. A word s0 · · · sk in S+ is left J -constant if, for
any index i such that 0 ≤ i ≤ k, we have πS(s0 · · · si)J s0. Symetrically, s0 · · · sk is right
J -constant if, for any index i such that 0 ≤ i ≤ k, πS(si · · · sk)J sk. Finally, a word in S+

is J -constant if it is both left and right J -constant. The latter property is equivalent to
having a left J -constant word such that s0J sk.

3.2 Evaluation programs
In this paper, we consider words over some semigroup S. Our goal is to compute the

product in S of the letters composing these words. For any word u ∈ S+, this amounts to
compute πS(u). This computation can be performed by vectorial circuits. Instead of directly
building these circuits, we first pay attention to evaluation strategies that we call evaluation
programs. These strategies form an overlay of abstraction over the intricacy of circuits. They
are meant to modularize the construction of vectorial circuits.

Given a semigroup S, an evaluation program over S transforms words in S+ by replacing
some of the factors by their values (through the canonical morphism) in S. In this section,
we consider a fixed semigroup S.

I Definition 7 (Partial evaluation). A partial evaluation step over S is a relation over S+

denoted by →S and defined as uvw →S uπS(v)w for any v in S+ and u, w ∈ S∗. We denote
by →+

S the transitive closure of →S. We say that v is a partial evaluation of u when u →+
S v.

Remark that if v is a partial evaluation of u over S, then πS(u) = πS(v). Usually, the
context makes it clear which semigroup is considered. Thus, we generally leave the semigroup
implicit and only say that v is a partial evaluation of u. Remark that each word u is a partial
evaluation of itself.

I Definition 8 (Partial evaluation programs). A partial evaluation program over S is a partial
function P : S+ → S+ such that, for any word u ∈ S+ that is in the domain of P , P (u) is a
partial evaluation of u. If the domain of P is S+, then we say that P is total.

The function πS is an example of a partial evaluation (which is, in this case, total).
Another example is the function LProdS : S+ → S+ that performs the product of the first
two elements of the input, if there are at least two elements, and otherwise returns the
input word. In symbols, it is defined by LProdS(s0 · · · sn) = πS(s0s1)s2 · · · sn for any word
u = s0 · · · sn of length at least two, and LProdS(s0) = s0 for any element s0 ∈ S. Similarly,
we define RProdS as the partial evaluation program which performs the product of the
two last elements, if there are at least two elements, and otherwise returns the input word.
Evaluation programs are closed under composition.

3.3 Waterfall evaluation programs
In this section, we are designing a first set of specific evaluation programs. These programs

work by evaluating the semigroup in a top-down fashion (with respect to the J -order). We
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first detect each maximal subword which product is maximal for the J -order, evaluate those
subwords and multiply the results with the letters that immediately follow.

I Definition 9 (J -maximal falling words). A word u in S+ is J -maximal falling whenever
for every p, s ∈ S∗ and v, w ∈ S+ so that u = pvws, we have πS(vw) ∈ S2.

Remark that when u is J -maximal falling and |u| > 1, πS(u) ∈ S2.

I Definition 10 (Collapsing evalution). A total evaluation program is collapsing when, for
any input word u in S+, it produces a J-maximal falling word.

I Definition 11 (J -maximal decomposition). Consider a word u ∈ S+. If u 6∈ S+
2 , let

t ∈ N and some words w0, . . . , wt+1 ∈ S∗, v0, . . . , vt ∈ S+, that define a decomposition
u = w0v0w1 · · · vtwt+1. This decomposition is called J -maximal if we have

for any integer i such that 0 ≤ i ≤ t + 1, wi is a word in S∗
2

for any integer i such that 1 ≤ i ≤ t, vi is a maximal subword of u verifying πS(vi) ∈
D1(S). More formally, if we consider the decomposition u = pavibs, with p, s ∈ S∗, and
a, b ∈ S ∪ ε (a is the letter preceding vi, if it exists, and b is the letter following vi, if it
exists) then, if a 6= ε, πS(avi) <J πS(vi) and, if b 6= ε, πS(vib) <J πS(vi)

We call t + 1 the size of the decomposition.
If u ∈ S+

2 , the J -maximal decomposition of u is composed of only one element equal to u

itself. In this case, the decomposition is unique and by convention of size 0.

I Remark 12. The property of the (vi)’s implies that each vi is a word of D1(S)+. Indeed,
the product of a word is at most J -equivalent to the letter of greatest J -depth, so all the
letters must be of J -depth 1 for the product to be in D1(S).

We are now proving the existence and uniqueness of J -maximal decomposition. The proof
works by considering a variant of J -maximal decomposition by enforcing the maximality
constraint only at the right and showing that the two variants are actually equivalent.

I Lemma 13. Let S be a semigroup. For any finite word u ∈ S+, there exists a unique
J -maximal decomposition of u.

Now, we need to refine the J -maximal decompostion. Keeping the same notation for u,
and its J -maximal decomposition u = w0v0 · · · vtwt+1, we set, for any 0 ≤ i ≤ t, vi = xiv

′
i

(xi ∈ S is the first letter of vi), w′
i = wixi and w′

i = yiw
′′
i (yi ∈ S is the first letter of w′

i).
The evaluation program CollapseS takes a word u ∈ S+ and perfoms at once all the products
πs(v′

iyi+1), the operation πS(v′
t) if wt+1 = ε, or πS(v′

tyt+1) otherwise, with w′
t+1 = yt+1wt+1

(yt+1 ∈ S is the first letter of wt+1). In symbols:
CollapseS(u) = w′

0πS(v′
0y1)w′′

1 · · · πS(v′
ix

′
i+1)w′′

i+1 · · · w′′
t z, where z denotes either πS(v′

t)
if wt+1 is the empty word, or πS(v′

tyt+1)w′
t+1. The image of any word u ∈ S+ by CollapseS

is a J -maximal falling word.
Given an element s ∈ D1(S), we also define the partial evaluation program FallingS(s)

which takes a word u ∈ S+ which is a J -maximal falling word such that the last letter of u is
in S2, and returns a partial evaluation of u in which there is no occurrence of s. Given a word
u, we call s-decomposition of u the decomposition of the form u = w0sk0x0w1 · · · sktxtwt+1
where the ki’s are positive integers, the xi’s are non-s elements of S, except for xt which
can also be equal to ε if wt+1 = ε, and the wi’s are words without any occurrence of s. The
s-decomposition of a word always exists and is unique. Given the s-decomposition of some
word u ∈ S+, keeping the same notation, we define

FallingS(s)(u) = w0πS(sk1x1) · · · πS(sktxt)wt
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I Lemma 14. Let S be a semigroup of J -depth d. The evaluation program πS is equal to
the composition of O(|S|) evaluation programs among RProdS, CollapseSi

and FallingSi
(s)

for all 1 ≤ i ≤ d and s ∈ D1(Si).

3.4 Sweeping evaluation programs

We introduce an evaluation program which processes words in a more lateral fashion –
from left to right or right to left. In the following section, S is a semigroup of J -depth d.

In the proofs of Section 4, we will perform evaluations that produce left (resp. right)
J -constant prefixes (resp. suffixes). We define those programs depending on the J -depth of
the semigroup that is considered. First, we introduce a left splitting higher order operation
that applies an evaluation program over a prefix of the input word defined by some constraints
over Green’s relations. Formally, for any integer i ≤ d, we define the operation LSplitS,i as
follows. Consider a word u = s0 · · · sk ∈ S+ and an evaluation program P defined at least
on all left J -constant words of depth i. If s0 is not of J -depth i, we set LSplitS,i〈P 〉(u) = u.
Otherwise, there exist two uniquely defined words p ∈ S+, s ∈ S∗ such that u = ps, where
p is left J -constant and either s is nonempty or, if we denote by x ∈ S its first letter,
πS(px) <J πS(p). In this case, LSplitS,i〈P 〉(u) = P (p)s. We define similarly the symmetric
operation RSplitS,i. Finally, we define the partial function JProdS , that is the restriction of
πS over words that are J -constant. Formally, JProdS is defined only on J -constant words
and, given u ∈ S+ such a word, JProdS(u) = πS(u).

A sweeping evaluation program is an evaluation program built with the following op-
erations: LProdS , RProdS , the partial function JProdS , and the higher order operations
LSplitS,i and RSplitS,i for any integer i such that 1 ≤ i ≤ d.

I Lemma 15 (Sweeping evaluation programs). Let S be a semigroup. There exists a sweeping
evaluation program computing πS. Moreover, there exists such a program that is equal to the
composition of O(2d) operations.

4 Proof of the main results

We recall the proof strategy. Given a regular language which is aperiodic (resp. in DA),
we prove that we can compute πS with a ADD- (resp. Sweeping-) vectorial circuit. To build
such circuits, we rely on respectively waterfall and sweeping evaluations programs. As the
considered vectorial circuit classes are closed under functional composition, it is sufficient to
prove that every basic operation in our evaluation programs is computable with the desired
vectorial circuit class. We provide those arguments in this section.

Vectorial encoding of partial evaluation. Our sweeping and waterfall evaluation pro-
grams perform operations on partial evaluations of a word, so we need to provide an
explanation on how we encode these partial evaluations. Informally, a vectorial represent-
ation of a partial evaluation is a set of vectors, each vector corresponding to a semigroup
element. Each bit set to one denotes the presence of the element in the partial evaluation,
and the order of the bits set to one determines the order of the letters in the word. As
in the case of characteristic functions of letters, in the vector encoding of a word, vectors
in an encoding do not overlap, however their union may not cover all the positions. More
formally, a vectorial encoding of a partial evaluation is a mapping c : S → {0, 1}n, for some
integer n ≥ 1, such that we have the following constraint: for any s, t ∈ S such that s 6= t,
we have c(s) ∧ c(t) = 0. Note that, by definition, a word is a partial encoding of itself, so
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enc(u) is a vectorial encoding of a partial evaluation, with the additionnal property that∨
a∈S 1a(u) = 1.

Given such a function c outputting vectors of dimension n, we can interpret it as a
word of length at most n by respecting the order of apparition of the bits. Formally, a
word s0 · · · sk ∈ S≤n is represented by a vectorial encoding c of dimension n if, for every
index j ≤ k, there exists some integer i < n such that c(sj)i = 1 and |{t ∈ N | t <

i and
∨

s∈S c(s)t = 1}| = j − 1.
In this section, we use only circuits of the following form: the input is a vectorial encoding

of a partial evaluation c : S → {0, 1}n (for some n ∈ N+) representing some word u ∈ S≤n,
and the output is a vectorial encoding out : S → {0, 1}n representing the partial evaluation
of u obtained by applying the operation corresponding to the circuit. To prove our theorems,
we construct vectorial circuits using this encoding that implement the partial evaluation
functions we presented earlier.

Sketch of proof of Theorem 6. To prove Theorem 6, we consider a fixed aperiodic
semigroup S, and we denote by d its J -depth. Thanks to Lemma 14, it is sufficient to
provide ADD-vectorial circuits computing the operations CollapseS , RProdS and FallingS(s)
(for any aperiodic semigroup S and s ∈ D1(S)) over some vectorial encoding of any partial
evaluation of a word. Once we have those, we proceed as in Lemma 14, in which we prove
that, for any integer i such that 1 ≤ i ≤ d, πSi is equal to the composition of πSi+1 and
O(|S|) operations among CollapseSi

, RProdS and FallingS(s) (for any s ∈ Di(S)). More
precisely, the evaluation program for πS uses |S| operations of the form FallingS′(s) (where
s ∈ S), d operations of the form RProdS and d operations of the form CollapseSi

(recall that
d is the J -depth of S). Now, we can obtain the result by using the following Lemmas:

I Lemma 16. For any aperiodic semigroup S, we can compute CollapseS over any vectorial
encoding of a partial evaluation with an ADD-vectorial circuit of size O(|S|3).

I Lemma 17. For any aperiodic semigroup S, we can compute RProdS on any vectorial
encoding of a partial evaluation of a word over S with an ADD-vectorial circuit of size
O(|S|2).

I Lemma 18. Let S be an aperiodic semigroup of J -depth d. For any element s ∈ D1(S),
we can compute FallingS(s) over any vectorial encoding of a partial evaluation in its domain
with an ADD-vectorial circuit of size O(d|S|).

With this, we can conclude that πS can be computed with an ADD-vectorial circuit of
size O(d|S|3).

Sketch of proof of Theorem 5. To prove Theorem 5, we consider a fixed semigroup
S ∈ DA, and we denote by d its J -depth. Thanks to Lemma 15, it is sufficient to provide
Sweeping-vectorial circuits computing the base operations over some vectorial encoding of
any partial evaluation of a word. Those operations are LProdS , RProdS , JProdS and, for
each integer i such that 1 ≤ i ≤ d, the operations LSplitS,i and RSplitS,i. Once we have
those, we proceed as in Lemma 15, in which we prove that πS is equal to the composition
of O(2d) operations among JProdS , LProdS , RProdS and LSplitS,i〈E〉 (for any integer i

such that 1 < i ≤ d and some sweeping program E composed of the same operations, that
are taken into account in the O(2d)). To prove this, we have πS = Pd,l = Pd,r where, for
each integer i such that 1 ≤ i ≤ d, the program Pi,l computes πS on the maximal prefix
of J -depth at most i (included), and the symmetric program Pi,r which acts on suffixes
instead of prefixes. Our proof constructs Sweeping-vectorial circuits for those programs, by
induction on the depth i. Now, we can obtain the result by using the following Lemmas:
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I Lemma 19. For any semigroup S ∈ DA, we can compute JProdS over any vectorial
encoding of a partial evaluation in its domain with a Sweeping-vectorial circuit of size O(|S|2).

I Lemma 20. For any semigroup S ∈ DA, we can compute LProdS and RProdS over any
vectorial encoding of a partial evaluation in their domains with Sweeping-vectorial circuits of
size O(|S|2).

I Lemma 21. Let S be a semigroup in DA of J -depth d, i be an integer such that 1 ≤ i ≤ d,
let P be a sweeping evaluation program defined at least on all left J -constant words of
depth i, and suppose that we have a Sweeping-vectorial circuit of size sP that computes P

over any vectorial encoding of a partial evaluation. Then we can compute LSplitS,i〈P 〉 and
RSplitS,i〈P 〉 over any vectorial encoding of a partial evaluation in their respective domains
with Sweeping-vectorial circuits of size O(|S|3 + sP ).

Thus, following the construction in the proof of Lemma 15, for each integer i such
that 1 ≤ i < d, we have a Sweeping-vectorial circuit computing Pi+1,l (or Pi+1,r, these are
symmetrical operations) given some circuits computing Pi,l and Pi,r, and its size is equal
to O(|S|3 + 2ci), where ci is the size of the circuits computing Pi,l and Pi,r. Since, by the
construction of Lemma 15, we also have c1 = O(|S|3), we then have ci = (2i − 1)|S|3 for each
integer i such that 1 < i ≤ d. Thus, the circuit computing πS = Pd,l is of size O(2d|S|3).

5 Conclusion

We introduce vectorial circuits as abstractions of low level hardware architectures. As
circuits, they put forward dependencies between steps of computation and thus opportunities
of parallelism. Taking stock on previous work [15, Theorem 1], the next step is then to adapt
these circuits to a streaming context. This streaming setting is closer to text processing
problems as only small chunks of input data can hold at the level of CPUs. We shall then
study how to take advantage of SIMD instructions to implement these machines. The
vast number of SIMD instructions give many possibilities to compile vectorial circuits for
streaming text. The challenge is then to find the right set of instructions, combine them
sufficiently well together and obtain efficient programs. Here again, we hope that algebra
can back our efforts up.

Concerning the circuits themselves, we can consider extensions with operations that have
natural correspondence in CPU instructions such as shifts, prefix-xor, etc. The question
is then to understand what classes of regular languages we can describe. Hopefully, the
combinations of particular sets of operations could correspond to well-studied algebraic
operations [25]. Instead of operations, we can also consider the use of arbitrary constants,
(i.e. particular vectors that can be used as gates inputs). We think that using constants in
circuits can be related to that of arbitrary monadic advices [6].

In the paper, we limit ourselves to consider vectorial circuits as recognizers. As these
circuits produce outputs, they should be more adequately viewed as transducers. On the
theoretical side, there is a need to explore their expressivity. This requires an adaptation of
the algebraic tools we use, i.e. an understanding of classes of logical transducers. On the
practical side, in the context of streaming, this point of view calls for composing stream
processing programs. This probably requires to explore ideas from synchrone programming
in combination with vectorial circuits.

This paper also calls for more foundational work concerning circuit complexity. In
particular we conjecture that the bounds provided in Theorem 5 are tight. However, finding
an adequate lower bound is a challenging open problem.
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A Proofs for Section 2 (Compiling regular languages into vectorial
circuits)

Parameterized circuits. We can compose parametrized circuits to define others:
NotZero(v) := pref-∨(suf-∨(v))
IsZero(v) := ¬NotZero(v)
IfThenElse(v1, v2, v3) := v = NotZero(v), (¬v ∧ v1) ∨ (v ∧ v2)
Thr2(v) := NotZero(LSB(v))

The parametrized circuits NotZero(v), IsZero(v), Thr2(v) perform tests on their input: on
an n-vector, they return 1n when the test succeeds and 0n when it fails. NotZero(v) tests
whether its input vector contains an occurrence of 1, IsZero(v) tests whether its input vector
is 0 and Thr2(v) tests whether its input vector contains at least two occurrences of 1. The
parametrized circuit IfThenElse(v1, v2, v3), tests whether v1 is 0 and in this case outputs
v2. Otherwise, it outputs v3. With parameterized circuits, we can construct complex circuits.
An example is the circuit IfThenElse(v1 ⊕ v2, v2 ⊕ v3, v1) which is depicted Figure 2.

v1v2 v3

¬ ¬ ¬ ¬

∧ ∧ ∧ ∧

∨ ∨

∨

∧

∧¬

pref-∨

suf-∨

Figure 2 Circuit represented by IfThenElse(v1 ⊕ v2, v2 ⊕ v3, v1) .

I Proposition 2. Let L be a regular language. The following propositions are equivalent.
1. L is computed by an ADD-vectorial circuit.
2. L is starfree.
3. L is definable in Forward-LTL.

Proof. The equivalence between 1 and 2 is from [24], Corollary 1. In this paper, the vectorial
computational model consists of straight-line expressions over a basis which includes addition,
Boolean operations and right shift. This basis is equivalent to ADD-vectorial circuits. The
equivalence between 2 and 3 is standard. It can be proved by combining theorems proved
by Kamp [8] and McNaughton and Papert [14]. The former proves the equivalence between
being definable in Forward-LTL and First-Order logic for regular languages and the later the
equivalence between First-Order logic and star-free languages. J

I Proposition 3. A language is recognized by a Sweeping-vectorial circuit if and only if it is
definable in TL[Xa, Ya].
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Proof. We rely on the equivalence between FO2[<] and TL[Xa, Ya], to prove the result.
First, we show that TL[Xa, Ya] is captured by Sweeping-vectorial circuits, i.e. that the
formulas of FO2[<] define the very same functions from words to Boolean vectors as these
circuits; here we interpret a formula of FO2[<] as a function from words to Boolean vectors, by
considering the truth vector of a formula on every position of the input word. Clearly, Boolean
operations are equivalent in both models. Now, suppose that we have a Sweeping-vectorial
circuit Cα that is equivalent to a TL[Xa, Ya] formula α, i.e. given a word u ∈ Σ+ and
a vector pos (of the same dimension as u) that has a unique 1 in some position x, we
have Cα(pos, enc(u)) 6= 0 if and only if u, x |= α. Then, for any letter a ∈ Σ, the formula
β = Xaα can be modeled by the circuit Cβ defined as follows: for any word u ∈ Σ∗ and
any vector pos having a unique 1, we begin by finding the first letter a strictly after the
position marked by pos, by sequentially computing the following vectors authorizedPos =
LSB(pref-∨(pos)), next = authorizedPos ∧ 1a(u), nextPos = next ⊕ LSB(next) This
gives us the new position vector to give as parameter to the new circuit. Then we can define
Cβ(pos, enc(u)) := Cα(nextPos, enc(u)), which is equivalent to β. Finally, we can model
the formula γ = Yaα using the same formulas, except for the vector authorizedPos, which
is computed as authorizedPos = MSB(suf-∨(pos)), in order to get the positions situated
strictly before the position x marqued by pos.

Now, we prove that Sweeping-vectorial circuits are captured by formulas in FO2[<]. Since
Sweeping-vectorial circuits output a truth vector indicating if some property is true for each
position in the input word, we must consider FO2[<] formulas which can take into account
a starting position. Thus, we consider only FO2[<] formulas with one free variable, which
represents the position in which we begin to evaluate the formula in the input word.

Clearly, Boolean operations are equivalent in both models. We can also interpret pref-∨
as an FO2[<] formula: consider an FO2[<] formula ϕ with one free variable and suppose that
it is computed by a circuit Cϕ. Then, the formula ϕpref-∨ with one free variable defined by
ϕpref-∨(y) := ∃x ≤ y, ϕ(x) has its truth vector equal to the output of pref-∨(Cϕ). The other
prefix and suffix operations can be dealt with in a similar way. Finally, we can interpret LSB
and MSB as FO2[<] formulas. Indeed, consider an FO2[<] formula ϕ with one free variable
and suppose that it is computed by a circuit Cϕ. Then, the formula ϕLSB with one free
variable defined by ϕLSB(y) := ϕ(y) ∧ ∃x < y, ϕ(x) has its truth vector equal to the output
of LSB(Cϕ). MSB is equivalent to the same formula where x < y is replaced by x > y. J

B Proofs for Section 3 (Semigroups evaluation strategies)

Every word in S+ admits a unique J -maximal decomposition of a word. This property
hinges on the Localisation Theorem of Clifford and Miller [22, Proposition 1.6, page 48].

I Lemma 22 (Localisation Theorem). Let S be a semigroup and x, y be in S. We have xyJ x

if and only if there exists an idempotent e in R(y) ∩ L(x).

We will use the following useful technical lemma.

I Lemma 23. Let S be a semigroup. Let x, y be J -equivalent elements of S and z another
element of S.

If πS(xy)J x and πS(zxy) <J x, then πS(zx) <J x.
If πS(xy)J x and πS(xyz) <J x, then πS(yz) <J x.

Proof. Both cases are symmetric, so we only prove the first one. Suppose that πS(zx)J x,
πS(xy)J x and πS(zxy) <J x. Lemma 22 implies that there is no idempotent in R(y)∩L(zx).
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But, as πS(zx)J x, by definition of L, we have L(zx) = L(x). Therefore R(y) ∩ L(x) does
not contain an idempotent. Finally Lemma 22 entails xy <J x, a contradiction. J

I Lemma 13. Let S be a semigroup. For any finite word u ∈ S+, there exists a unique
J -maximal decomposition of u.

Proof. We focus on proving the existence of such a decomposition. Unicity follows from the
proof of existence. First, remark that S = D1(S) ] S2. Thus, for each any word u ∈ S+,
there necessarily exists a unique decomposition of u of the form u = w0v0w1 · · · wtvtwt+1
such that

w0, wt+1 ∈ S∗
2

for each integer i such that 1 ≤ i ≤ t, wi ∈ S+
2

for each i ∈ [t + 1], vi ∈ D1(S)+

Informally, this is a decomposition of u based only on the J -depth of each letter. Thanks to
Remark 12, we know that the words wi that are not empty in any J -maximal decomposition
of u correspond exactly to the words wi of this decomposition. Thus, we only need to prove
that any word over D1(S) can be decomposed into a uniq sequence of maximal subwords
which product is in D1(S).

Consider a fixed word u ∈ D1(S)+. We prove that there exists a decomposition of u of
the form u = v0 · · · vs, where each word vi is maximal in u such that πS(vi) ∈ D1(S).

If πS(u) ∈ D1(S), then both existence and unicity follow from the definition.
Suppose now that πS(u) ∈ S2. Then we define a decomposition of u with weaker properties

than the J -maximal decompositions, and we prove that it is a J -maximal decomposition of
u (with empty words as the (wi)’s). This decomposition is of the form u = v0v1 · · · vt for
some integer t ∈ N and is defined from left to right such that, for each integer i ∈ [t + 1],
πS(vi) ∈ D1(S) and, for each integer i ∈ [t], πS(vixi+1) ∈ S2, where xi+1 is the first letter
of vi+1. By construction, this decomposition exists and is unique. We prove that this
decomposition satisfies the properties of the (vi)’s given in Definition 11, that is, we prove
that each word vi is maximal such that πS(vi) ∈ D1(S). To do that, we only need to prove
that, for each integer i such that 1 ≤ i ≤ t, πS(yi−1vi) ∈ S2, where yi−1 is the last letter of
the word vi−1.

Thus, consider some integer i ∈ [t]. We focus on the subword vivi+1 in order to prove that
πS(yivi+1) ∈ S2, where yi is the last letter of vi. This fact is a consequence of Lemma 23. Since
we know that πS(vixi+1) ∈ S2, where xi+1 is the first letter of vi+1, and that πS(vi) ∈ D1(S),
Lemma 23 implies that πS(yixi+1) ∈ S2. Thus, πS(yivi+1) ∈ S2. Thus, this decomposition
is the unique J -maximal decomposition of u. J

I Lemma 14. Let S be a semigroup of J -depth d. The evaluation program πS is equal to
the composition of O(|S|) evaluation programs among RProdS, CollapseSi

and FallingSi
(s)

for all 1 ≤ i ≤ d and s ∈ D1(Si).

Proof. For any integer i such that 1 ≤ i ≤ d, we define Oi = (s1, . . . , sk) to be any
enumeration of D1(Si). Given such an enumeration, we define as follows the operation
FallingSi

[Oi]:

FallingSi
[Oi] = FallingSi

(sk) ◦ · · · ◦ FallingS(s1)

We define an intermediate partial evaluation program fi which is a restriction of πS over the
domain S+

i ∪ S. In symbols, for any word u ∈ S+
i ∪ S, fi(u) = πS(u). Remark that f1 is
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equal to πS on any word of S+. We prove by induction over j = d − i with i ranging from 0
to d − 1 that

fj = fj+1 ◦ FallingSj
[Oj ] ◦ RProdS ◦ CollapseSj

with the convention that fd+1 is the identity. The base case (fd+1) being fixed, we only need
to prove the result by induction on i for 0 ≤ i ≤ d−1. We remark that the image of CollapseSj

produces a J -maximal falling word, and then the application of RProdS guarantees that
the last element is not in D1(S). Finally, the application of FallingSi

(si) on the resulting
elements produces new elements that are only in Si+1 and removes all occurrences of the
element si. Hence by applying FallingSi

[Oi] we obtain a word in Si+1, which concludes the
proof. J

To prove Lemma 15, we introduce an intermediate operation. Let i be an integer such that
1 ≤ i ≤ d. We denote by Pi,l the left sweeping evaluation program of J -depth i, which
computes πS on the maximal prefix of J -depth at most i (included). Formally, given a word
u = s0 · · · sk ∈ S+, Pi,l(u) is equal to u if s0 is of J -depth strictly greater than i. Otherwise,
there exist p ∈ S+, q ∈ S∗ such that u = pq, where either q is empty, or x ∈ S is its first
letter and then πS(p) is of J -depth at most i and πS(px) is of J -depth strictly greater than
i. In this case, Pi,l(u) = πS(p)q. We define symmetrically Pi,r, the right sweeping evaluation
program of J -depth i.

The next lemma allows to conclude the proof of Lemma 15 since πS = Pd,l = Pd,r.

I Lemma 24. For any integer i such that 1 ≤ i ≤ d, there exist sweeping evaluation programs
computing Pi,l and Pi,r.

Proof of Lemma 24. We will prove by induction on the J -depth i that we can implement
a left (resp. right) sweeping evaluation program Pi,l (resp. Pi,r). In this proof, we consider a
word u = s0 · · · sk−1 over S. For the base case, we first suppose that i = 1, i.e. we consider
maximal J -classes. Thus, if s0 is of J -depth 1, we will compute the product of the unique
prefix s0 · · · sp of u such that πS(s0 · · · sp)J s0 and πS(s0 · · · sp+1) <J s0. If sp+1 does not
exist, we want to compute πS(u). Remark that s0 · · · sp is J -constant, hence we can apply
JProdS to it. Thus, we can compute the base case P1,l using the program LSplitS,1〈JProdS〉.
Note that this program is well defined since JProdS is in particular defined on all J -constant
words of depth 1, which are exactly the left J -constant words of depth 1. Symmetrically,
P1,r = RSplitS,1〈JProdS〉. To prove the induction case, we will rely on the following fact:

I Fact. For any left J -constant word v ∈ S+ of J -depth i, the word RProdS ◦ Pi−1,r(v) is
J -constant.

Proof. The result is obtained from the fact that the last element of w = RProdS ◦ Pi−1,r(v)
is necessarily of J -depth i. Indeed, by definition, the word x = Pi−1,r(v) is such that the
product of its last two elements (if there are at least two elements) is at least of J -depth i.
Since we supposed that v is left J -constant of J -depth i, it is garanteed that this product
is defined and is exactly of J -depth i. Thus, both the first and last elements of w are of
J -depth i, as well as πS(w). Thus the product of any prefix or suffix of w will be of J -depth
i, and in the same J -class as the first and last elements of w, which corresponds to the
definition of J -constant. J

For the induction step, we assume to have sweeping evaluation programs Pi,r and Pi,l

for any integer i < d. We prove the result for Pi+1,r and Pi+1,l. These two cases being
symmetrical, we only show the result for Pi+1,l. Let v = LProdS ◦ Pi,l(u). If |Pi,l(u)| 6= 1,
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we have necessary that the first letter of v is of J -depth strictly greater than i. Otherwise
v = Pi,l(u) = πS(u). We are going to split v with respect to the J -depth i and apply the
program E = JProdS ◦ RProdS ◦ Pi,r to the prefix. Indeed, after the split, and thanks
to the previous Fact, we can apply JProdS over the factor RProdS ◦ Pi,r(p), where p

is the prefix obtained after the split. Indeed, this factor is J -constant. To conclude,
Pi+1,l = LSplitS,i+1〈E〉 ◦ LProdS ◦ Pi,l.

Thus, each Pi is defined using O(2i) operations. J

C Proofs for Section 4 (Proof of the main results)

A vectorial encoding of a partial evaluation is a mapping c : S → {0, 1}n, for some
integer n ≥ 1, such that we have the following constraint: for any s, t ∈ S such that s 6= t,
we have c(s) ∧ c(t) = 0. Note that, by definition, a word is a partial encoding of itself,
so enc(u) is a vectorial encoding of a partial evaluation, with the additionnal property
that

∨
a∈S 1a(u) = 1. Given such a function c outputting vectors of dimension n, we can

interpret it as a word of length at most n by respecting the order of apparition of the
bits. Formally, a word s0 · · · sk ∈ S≤n is represented by a vectorial encoding c of dimension
n if, for every index j ≤ k, there exists some integer i < n such that c(sj)i = 1 and
|{t ∈ N | t < i and

∨
s∈S c(s)t = 1}| = j − 1.

We introduce two vectors that we will use extensively in our circuits: given S a semigroup
and c a vectorial encoding of a partial evaluation, we define the universe vector U =

∨
s∈S c(s)

We also define the vector marking the end of the vectors: End = ¬MSB(1).
We use only circuits of the following form: the input is a vectorial encoding of a partial

evaluation c : S → {0, 1}n (for some n ∈ N+) representing some word u ∈ S≤n, and the
output is a vectorial encoding out : S → {0, 1}n representing the partial evaluation of u

obtained by applying the operation corresponding to the circuit. To prove our theorems,
we construct vectorial circuits using this encoding that implement the partial evaluation
functions we need.

Proofs for Theorem 6. In our proofs involving aperiodic semigroups, we will rely on some
classical equivalent characterizations of this variety of semigroups.

I Proposition 25 ([23]). Let S be a semigroup. The following conditions are equivalent:
S is aperiodic
there exists an integer ω such that for all s ∈ S, πS(sω) = πS(sω+1)
All H-classes of S are trivial

Thanks to this property, when considering an aperiodic semigroup, we only need to know
the H-class of an element to precisely characterize it. This fact will be extensively used in
the proofs of our main results.

In the remaining of this section, S is an aperiodic semigroup of J -depth d. Now, here is
a technical property of the aperiodic semigroups that will be useful in the proofs.

I Lemma 26. Let S be an aperiodic semigroup. Suppose that u = s0 · · · sk ∈ S+ is a
J -constant word. Then, πS(u) is the unique element of R(s0) ∩ L(sk). If k > 0, this also
implies that πS(u) = πS(s0 · sk).

Proof. Since S is aperiodic, and thanks to Proposition 25, we know that πS(u) is the unique
element of R(u) ∩ L(u), so we only have to find R(πS(u)) and L(πS(u)). By hypothesis, u

is J -constant, so J (πS(u)) = J (s0) = J (sk). By definition of R and L, this implies that
R(πS(u)) = R(s0) and L(πS(u)) = L(sk). Thus we have that πS(u) is the unique element
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of R(s0) ∩ L(sk). If k > 1, then s0 and sk are separate occurrences of elements of S, so
πS(u) = πS(s0 · sk), which is the unique element of R(s0) ∩ L(sk). J

I Lemma 16. For any aperiodic semigroup S, we can compute CollapseS over any vectorial
encoding of a partial evaluation with an ADD-vectorial circuit of size O(|S|3).

Proof. Consider a word u ∈ S+ and its J -maximal decomposition u = w0v1x1 · · · vtxtwtvt+1.
Let (c(s))s∈S be a vectorial encoding of u. Our goal is to compute a vectorial encoding
(out(s))s∈S of the partial evaluation u′ = w0πS(v1x1)w1 · · · wi−1πS(vixi)wi · · · wtπS(vt+1)
from the encoding (c(s))s∈S . To do that, we begin by finding all the letters that belong
to the subwords vi. By definition, for each index i ≤ t + 1, πS(vi) ∈ D1(S) and, if the
prefix w0 · · · wi−1 is not empty, then πS(vi)J πS(yi−1vi), where yi−1 denotes the last letter
of the prefix. Similarily, for each index i ≤ t, πS(vixi) <J πS(vi). We can deduce that
each vi is exactly a maximal block which product is J -maximal minus its first letter (since
πS(vi)J πS(yi−1vi)). Thus, we will now mark the elements of those blocks.

For each pair (s, t) of J -maximal elements such that πS(st) is J -maximal, we compute
the vector marking each occurrence of t that is preceded by an s:

Stays(s, t) = Successor (c(t), c(s), U)

We then agregate those vectors to obtain, for each J -maximal element t, the vector marking
the occurrences of t which product with the previous letter in the word u is J -maximal: we
define the set Et = {s ∈ D1(S) | πS(st) ∈ D1(S)}, with which we can compute the desired
vector:

Stays(t) =
∨

s∈Et

Stays(s, t)

We also compute the union of all those vectors: we define the set R = {t ∈ S | ∃s ∈
D1(S), πS(st) ∈ D1(S)}, with which we can compute the desired vector:

Stays =
∨

s∈R

Stays(s)

With this, we can find the limits of the maximal subwords which product is J -maximal,
without counting the first element, which does not belong to the same vi by definition of
the J -maximal decomposition. This is due to the fact that this first letter could be used to
make the product of the previous subword fall in S2. Thus, the vector Stays marks exactly
the elements that belong to any of the subwords vi. Then, we mark the first letter of each
vi. These letters are exactly the elements of S that are marked by Stays and such that the
previous element marked by U is not marked by Stays. Thus, for each element s ∈ D1(S),
we compute the vector which labels the first letter of each vi with its value if it is an s:

SecondEl(s) = Successor (Stays(s), U ∧ ¬Stays, U)

We aggregate those vectors:

SecondEl =
∨

s∈D1(S)

SecondEl(s)

Then we mark the letters xi, which are the elements just after the end of a maximal subword
that is J -maximal, and we label them by the last element of the corresponding vi. For each
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element s ∈ D1(S), we compute the vector marking each xi if and only if the last letter of vi

is an s:

BlockFall(s) = Successor (U ∧ ¬Stays, Stays(s), U)

We aggregate those results:

BlockFall =
∨

s∈D1(S)

BlockFall(s)

With with, we can compute the vector which marks the limits of the subwords vixi:

Limits = SecondEl ∨ BlockFall

Note that this vector also marks the first letter of vt+1 (if it exists), but not its last letter.
With these vectors, we can compute all the products πS(vixi). To this end, for each

element p ∈ S2, we want to define the set of triplets (s, t, x) ∈ (D1(S))2 × S such that, for
any word v ∈ S+ such that v begins by s, ends by t and is J -constant, the product of the
word vx is p. Thus, for any element p ∈ S2, we define the set

Fp = {(s, t, x) ∈ (D1(S))2 × S | πS(α · x) = p, where α = R(s) ∩ L(t)}

This set is exactly what we need since, thanks to Lemma 23, we know that the product of
the subword v is only determined by s and t. Moreover, that product is not always equal to
πS(st). Indeed, the subword v can be of size 1, in which case s = t and there is only one
occurrence to consider. In the case where πS(ss) 6= s, the product of v is equal to s and not
to πS(ss). However, since S is aperiodic, we know thanks to Proposition 25 that the element
πS(st) is uniquely characterized by its H-class, which is equal to R(s) ∩ L(t). Thus, the set
Fp defines exactly the triplets that we need. Note that each triplet (s, t, x) ∈ (D1(S))2 × S

can only appear in at most one set Fp, so the size of the union of all these sets is only
O(|D1(S)|2 ∗ |S|) ≤ O(|S|3).

Then we use this to compute the products of the subwords. For each element p ∈ S2, we
label each xi by p if and only if there exists a triplet (s, t, xi) ∈ Fp such that the first letter
of vi is an s (which can be determined using Stays(s)) and the last letter of vi is a t (and
thus xi is marked by the vector BlockFall(t)):

Prod(p) =
∨

(s,t,x)∈Fp

Successor (BlockFall(t), SecondEl(s), Limits) ∧ c(x)

Note that the union of all the vectors Prod(p) contains exactly all the elements obtained
with the products πS(vixi). With these vectors, we will be able to compute a vectorial
encoding of the word w0πS(v1x1) · · · wiπS(vixi) · · · wtvt+1. Before computing the output
vectors, we consider the potential suffix vt+1 which product is J -maximal. This case has
not been treated yet since there is no letter after vt+1 which makes the product fall in S2,
however the first letter of vt+1 has been marked in SecondEl (if vt+1 is not empty). Thus,
we only need to mark the last letter of the word vt+1. For each element s ∈ D1(S), we label
by s the last element of u if and only if vt+1 is not empty and begins with an s:

FirstLeftover(s) = Successor (End, SecondEl(s), Limits ∨ End)

Then we compute the product of that suffix (πS(vt+1)). For each element p ∈ D1(S), we
define the set Gp = {(s, t) ∈ (D1(S))2 | πS(α) = p, where α = R(s) ∩ L(t)} and we compute
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the vector Prod(p) which is equal to End if and only if vt+1 is not empty, starts with some
s and ends with some t such that (s, t) is in Gp:

Prod(p) =
∨

(s,t)∈Gp

FirstLeftover(s) ∧ c(t)

Now we have everything we need to compute the output vectors. To do this, we remove
every element marked by Stays (the letters of every vi) and BlockFall (every xi), and we
add the elements computed in the vectors Prod(s) (the elements πS(vixi) and πS(vt+1)).
For each element s ∈ S:

out(s) = Prod(s) ∨ (c(s) ∧ ¬(Stays ∨ BlockFall))

J

I Lemma 17. For any aperiodic semigroup S, we can compute RProdS on any vectorial
encoding of a partial evaluation of a word over S with an ADD-vectorial circuit of size
O(|S|2).

Proof. Let u ∈ S+ be a partial evaluation such that u is a J -maximal falling word. Let
(c(s))s∈S be a vectorial encoding of u. We want to multiply the last two elements of u (if
|u| = 1, we return u) and to obtain a vectorial encoding (out(s))s∈S of the new word. We
begin by computing a mask which unmarks the last two elements of the word:

RemoveLastTwo = MSB(MSB(U))

This will allow us to remove these elements after the multiplication. However, we need
to verify that there are at least two elements to multiply. For this, we will use the vector
Thr2(U) defined is Section 2.2, which is equal to 1 if and only if u ∈ S≥2 (else it is equal to
0). Now we perform the multiplication itself: for every t ∈ S, we label the last element by t

if and only if the last letter of u is a t:

LastEl(t) = c(t) ∧ End

Now we can update the vectors accordingly. We begin by removing the last two elements:
for each element s ∈ S, we set

Others(s) = IfThenElse(Thr2(U), c(s) ∧ RemoveLastTwo, c(s))

Note that, if |u| = 1, we have Others(s) = c(s) since we do not want to change u in this
case. Now we can add the product of the last two elements. For every p ∈ S2, we define the
set Mp = {(s, t) ∈ S2 | πS(st) = p}, and with we define the following vector:

out(p) = Others(p) ∨
∨

(s,t)∈Mp

Successor (LastEl(t), c(s), U)

If |u| = 1, all the applications of Successor will yield the vector 0, so in this case we will
have out(p) = c(p). Note that, during the computation of the vectors out(p), each pair
(s, t) ∈ S2 can only be used once, so the complexity of the whole operation is only O(|S|2).

Finally, we consider all the J -maximal elements and we keep every letter marked by
some vector Others: for each element p ∈ D1(S), we set

out(p) = c(p) ∧
∨
s∈S

Others(s)

And thus we computed a vectorial encoding of the word obtained by multiplying the last
two elements. J
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Before proving Lemma 18, we prove the following technical lemma.

I Lemma 27. Let S be an aperiodic semigroup. Let u ∈ S+ be a word over S. Sup-
pose that the last letter of u is not an element of D1(S) and that u is a J -maximal
falling word. Consider a fixed element s ∈ D1(S) and write u as its s-decomposition
w0sk1x1w1 · · · wk−1sik xkwk. Then, we can use an ADD-vectorial circuit of size O(|S|)
which take the vectorial encoding as input and produces a vectorial encoding of the word
w0sk1−1πS(sx1) · · · skt−1πS(sxt)wt.

Proof. Let (c(t))t∈S be a vectorial encoding of u. We begin by marking the elements that
are preceded by an occurrence of s and are not occurrences of s.

Last = Successor (U ∧ ¬c(s), c(s), U))

We separate these elements depending on their value: for each element t ∈ S \ {s}, we set

Last(t) = Last ∧ c(t)

In order to remove the occurrences of s that will be used, we also mark the occurrences of s

that are not preceded by another occurrence of s.

First = Successor (c(s), U ∧ ¬c(s), U)

These are not exactly the occurrences that should be removed, but each one belongs to the
same block of occurrences of s as an occurrence that is used in one of the products we will
perform, so removing them is sufficient to obtain the result we want. Moreover, by definition,
we will still obtain a valid vectorial encoding of the partial evaluation of u that we want to
obtain.

Now we can remove the occurrences of s that have been used:

rm(s) = c(s) ∧ ¬First

Then we can remove the elements that are preceded by an occurrence of s: for each element
t ∈ S \ {s}, we set

rm(t) = c(t) ∧ ¬Last(t)

Finally, we perform the products: for each element p ∈ S2, we define the set Pp = {t ∈
S \ {s} | πS(st) = p} of elements t such that p is equal to πS(st). With this, we can produce
the vectors out(p):

out(p) = rm(p) ∨
∨

t∈Pp

Last(t)

Note that each element t ∈ S \ {s} appears in at most one set Pp, and that consequently the
computation of all the vectors out(p) is only of complexity O(|S|).

This gives us a vectorial encoding of the partial evaluation we wanted. J

I Lemma 18. Let S be an aperiodic semigroup of J -depth d. For any element s ∈ D1(S),
we can compute FallingS(s) over any vectorial encoding of a partial evaluation in its domain
with an ADD-vectorial circuit of size O(d|S|).
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Proof. Let u be a word of S+ and the set (c(t))t∈S be a vectorial encoding of u. Using
Lemma 27, we can prove the result quite easily by repeating the Lemma a fixed number of
times.

Since we are sure that the last element of u is not in D1(S), we know that each block of
occurrences of s is followed by at least one element. By applying Lemma 27, we can reduce by
1 the size of each of these blocks. Moreover, the semigroup S is aperiodic, so by Proposition 25
there necessarily exists an integer ωs such that πS(sωs+1) = πS(sωs) (sωs is the idempotent
power of s). Thus, if we apply Lemma 27 ωs times, the only occurrences of s that will be
left will be any letter s that was originally followed by at least ωs other occurrences of s.
Since πS(sωs+1) = πS(sωs), we can just forget those occurrences without changing anything
else. We denote by (omega(t))t∈S the vectorial encoding of the decomposition of u obtained
after applying Lemma 27 sequentially ωs times. Since the products that we could compute
from now on will only remove occurrences of s without changing the other elements, we can
now remove all the occurrences of s that are left in the new partial evaluation of u. Thus,
we can set

out(s) = 0

and, for each element t 6= s,

out(t) = omega(t)

then we obtain a vectorial encoding of the partial evaluation that we wanted.
Note that, for any t ∈ S, we have ωt ≤ d, where d in the J -depth of S, so we apply

Lemma 27 at most d times. J

Proofs for Theorem 5. In our proofs involving semigroups in DA, we will rely on some
classical equivalent characterizations of the variety DA.

I Proposition 28. [26, Theorem 2.] Let M be a monoid. The following conditions are
equivalent:

M is in the variety DA
if J is a regular J -class of M , then J is an aperiodic semigroup
∀x, y, z ∈ M, (xyz)ωy(xyz)ω = (xyz)ω (we will refer to this as the algebraic characteriza-
tion of DA)

By definition, any semigroup in DA is aperiodic, so we will also be able to use the
characterizations presented in Proposition 25. Moreover, the class DA admits the following
nice property that we will rely on in the proofs.

I Lemma 29. Let S be a semigroup in DA and R an R-class of S. Then there exist two
sets T, K ⊆ S such that S = T ] K and, for all x ∈ R, we have

∀s ∈ T, xsRx

∀s ∈ K, xs <J x

Moreover, both T and K are sub-semigroups of S such that, if we denote by J is the J -class
containing R, J ⊆ T if R is regular and J ⊆ K otherwise. It follows that if S is a monoid,
then T is also a monoid.

Proof. First, we prove that the sets T and K exist and are well defined. Consider s ∈ S and
x, y ∈ R. We need to prove that xsRx ⇔ ysRy. Note that, since xRy, there exist p, q ∈ S

such that xp = y and yq = x. Suppose that xsRx. Then, we want to prove that ysRy. By
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definition, ys ≤R y, so we only need to find some element z ∈ S such that ysz = y. Since
xsRx, ∃r ∈ S, xsr = x. Thus, yqsrp = y and y(qsrp)ω = y. Since S is in DA, we then
have y(qsrp)ωs(qsrp)ω = y, so ys(qsrp)ω = y, which proves that ysRy. Since x and y have
symmetric roles, the converse follows directly. Thus, the sets T and K exist and are well
defined.

Now, we prove that T is a sub-semigroup of S: let a and b be two elements of T .
By definition of T , for any x ∈ R, xaRx and xbRx; thus there exist p, q ∈ S such that
xap = x and xbq = x. So, xapbq = x and x(apbq)ω = x. Since S is in DA, it is
aperiodic, so x(apbq)ω = x(apbq)ω+1. Then, we can get one letter a out of the parentheses
as follows: x(apbq)ω+1 = xa(pbqa)ωpbq. Now, we can isolate a letter b: since S is in DA,
we have xa(pbqa)ωpbq = xa(pbqa)ωb(pbqa)ωpbq. To summarize our results so far, we have
x = xa(pbqa)ωb(pbqa)ωpbq. Now, remember that xapbq = x. Thus, xapbqa = xa, and
xa(pbqa)ω = xa. This way, we can get rid of the leftmost factor (pbqa)ω in our result and
obtain the following equality: x = xab(pbqa)ωpbq. This proves that xabRx. Consequently, ab

is also in T and T is a semigroup. Moreover, the set K is an ideal of S since, for any elements
x ∈ R, s ∈ K and t ∈ S, we have πS(xst) ≤J πS(xs) <J x. Thus, K is a sub-semigroup of
S.

Consequently, if we consider any element u ∈ S such that, for some element r of R,
πS(ru) <J r, this property applies to all elements of R, which means that for any element
r ∈ R, πS(ru) <J r. Finally, thanks to Proposition 28, we know that if R is regular, then
all the elements of its J -class are idempotent, so J ⊆ T . On the contrary, if R is not regular,
then no element of J can be idempotent, so J ⊆ K. J

Before proving the Lemmas necessary for Theorem 5, we define some intermediary
operations that will allow us to decompose the functions that we want to compute. These
intermediary operations will all be of the same form: for any integer i ∈ N, we define
the operation Valuei,S that identifies the ith semigroup element that occurs in the word
represented by the input vectors. Formally, we define this operation as follows:

I Definition 30. Let S be a semigroup in DA and let (c(s))s∈S be a vectorial encoding
of some word u ∈ S+. For each element s ∈ S and integer i ∈ N, we define the vecteur
Valuei,S(s) as follows:

Valuei,S(s) = 1 if and only if there exists an integer j such that the jth element of c(s)
is a 1 and the position j is the ith position of the vector U to hold a 1.
Otherwise, Valuei,S(s) = 0.

I Lemma 31. For any integer i ≥ 1, we can compute the function Valuei,S over any vectorial
encoding of a partial evaluation with a Sweeping-vectorial circuit of size O(i + |S|).

Proof. Given a set of input vectors I = (c(s))s∈S , Valuei,S(I) is a set of vectors (out(s))s∈S

such that, for each element s ∈ S, out(s) is computed as follows. We begin by removing the
first i − 1 bits set to 1 in the union of the inputs by defining the following vectors:

U0 = U

∀j < i − 1, Uj+1 = LSB(Uj)

Then, for each x ∈ S, we set to 0, in c(x), the i − 1 first bits set to 1 in the union of the
inputs:

rm(x) = c(x) ∧ Ui−1
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Now, to detect the element associated to the ith bit set to 1 in U, we only need to detect the
value associated to the first bit set to 1 in

∨
x∈S

rmx, which is done as follows: for any s ∈ S,

we compute the vector out(s) that is full of ones if and only if the position of the first bit
set to 1 in Ui−1 (that is the union of the vectors rm(x)) is set to 1 in the vector rm(s).

out(s) = Eq(pref-∨(rm(s)), pref-∨(Ui−1))

J

I Lemma 19. For any semigroup S ∈ DA, we can compute JProdS over any vectorial
encoding of a partial evaluation in its domain with a Sweeping-vectorial circuit of size O(|S|2).

Proof. Let u = u0 · · · uk be a word of S+ and the set (c(s))s∈S be a vectorial encoding of u.
To compute JProdS(u), we want to detect the first and last bits set to 1 in U in order to
compute the vectors corresponding to the word composed only of the element u0 ·S uk. The
first element is directly indicated by the vectors Value1,S(s) for each element s ∈ S. Now we
detect the last element by computing the similar vectors Last(s) for each s ∈ S:

Last(s) = Eq(suf-∨(c(s)), suf-∨(U))

To complete the product we need to set to 1 the bit at the end of the word in the right vector.
To do this, we detect the position of the last bit set to 1 in the union of the inputs and store
it in the vector PosLast, which then has a unique bit set to 1.

PosLast = U ∧ ¬MSB(U)

Now we can perform the multiplication. To do this, we define, for each element s ∈ S, the
set Ms = {(t, p) ∈ S2 | R(t) ∩ L(p) = {s}}. Now, we compute the vectors out(s) for each
element s ∈ S. These vectors contain only the product of the first and last elements, or the
first element if u contains only one element. With our definition of Ms, for the same reasons
as in the proof of Lemma 16, we do not need to verify that there were two elements to
multiply, since if there is only one element s, it is equal to the unique element of R(s) ∩ L(s)
and thus will stay unchanged.

out(s) = PosLast ∧
∨

(t,p)∈Ms

Value1,S(t) ∧ Last(p)

Note that, since a given pair of elements (t, p) can only belong to one set Ms, this computation
has a complexity of O(|S|2). J

I Lemma 20. For any semigroup S ∈ DA, we can compute LProdS and RProdS over any
vectorial encoding of a partial evaluation in their domains with Sweeping-vectorial circuits of
size O(|S|2).

Proof. The two operations are symmetrical, so we will just present the circuit for LProdS .
Let u = u0 · · · uk be a word of S+ and (c(s))s∈S be a vectorial encoding of u. We want to
detect the first and last bits set to 1 in U in order to compute the vectors corresponding
to the word composed only of the element u0 ·S u1. We can use Value1,S and Value2,S to
compute vectors that give the values of the first and second elements.

If the word u is composed of only one element, we cannot detect a second element, so
the vector Thr2((c(s))s∈S) can be used as a way to know if the vectors obtained after using
Value1,S and Value2,S have a meaning. If that vector is not null, we want to compute the
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product of the elements u0 and u1. To complete the product, we need to set to 1 the bit at
the position of the second element in the vector corresponding to the value of the product.
To do this, we detect the position of the second element and store it in the vector PosSec,
which has a unique 1 in the position of the second element.

AfterSec = pref-∨(LSB(U))

PosSec = AfterSec ∧ ¬LSB(AfterSec)

Now we start to prepare the multiplication. We compute the vectors rm(x) (for each element
x ∈ S), in which we set to 0 the bits of the first two elements of the word.

Other = LSB(LSB(U))

rm(x) = c(x) ∧ Other

Now we only have to add the product of the two first elements in the right vector. So, for each
element s ∈ S, we compute the vector Prod(s), in which we add the position of the second
element if that second element is an s. To do that, for each element s ∈ S, we define Ms to
be the set of pairs (t, p) such that s = πS(tp). In symbols, Ms = {(t, p) ∈ S2 | s = πS(tp)}.

Prod(s) = rm(s) ∨
∨

(t,p)∈Ms

Value1,S(t) ∧ Value2,S(p) ∧ PosSec

Note that, since a given pair of elements (t, p) can only belong to one set Ms, this computation
has a complexity of O(|S|2). Finally, the vectors Prod(s) only have meaning if there was
two elements to multiply in the first place, so the vectors out(s) are computed as follows:

out(s) = IfThenElse(Thr2((c(s))s∈S), Prod(s), c(s))

J

I Lemma 21. Let S be a semigroup in DA of J -depth d, i be an integer such that 1 ≤ i ≤ d,
let P be a sweeping evaluation program defined at least on all left J -constant words of
depth i, and suppose that we have a Sweeping-vectorial circuit of size sP that computes P

over any vectorial encoding of a partial evaluation. Then we can compute LSplitS,i〈P 〉 and
RSplitS,i〈P 〉 over any vectorial encoding of a partial evaluation in their respective domains
with Sweeping-vectorial circuits of size O(|S|3 + sP ).

Proof. The two operations are symmetrical, so we will only present the circuit for LSplitS,i〈P 〉.
Let u = u0 · · · uk be a word of S+ and the set (c(s))s∈S be a vectorial encoding of u. If u0 is
of J -depth i, we want to detect the first element ui such that πS(u0 · · · ui) is of J -depth at
least i + 1 in order to replace the prefix of u0 · · · ui−1 by its image through P . To do that,
we begin by checking if the first element of the word is of J -depth i. We want to have an
output different from the input if and only if u0 is of J -depth i, i.e. if u0 ∈ Di(S):

DoSmth =
∨

s∈Di(S)

Value1,S(s)

For now, suppose that DoSmth 6= 0. We can now determine the R-class of the first element.
For each R-class R of J -depth i, we compute the vector RClass(R) that is full of ones if
and only if the first element is in R:

RClass(R) =
∨

s∈R

Value1,S(s)
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Now, we want to find the first position such that the product of the prefix is of J -depth
at least i + 1. To find that position, we use Lemma 29, which tells us that the set of
elements that make that product fall in a J -class of greater J -depth depends only on
the R-class of the prefix, which is uniquely determined by the first element, since that
element is necessarily of J -depth i. We already have the vectors indicating what R-class
should be considered. Now, for each R-class, let FR be the set of elements of S such that
for any pair (r, s) ∈ R × FR, πS(rs) 6∈ R (the set K defined in Lemma 29). In symbols,
FR = {s ∈ S | ∀r ∈ R, πS(rs) 6∈ R}. We want to consider only the set FR corresponding to
the R-class of the first element and to search for the first element of that set that is not the
first element of the factorization. To do this, we begin by computing, for any element a ∈ S,
the vector Next(a) which allows us to know where the first element a after the first element
is:

Next(a) = pref-∨(c(a) ∧ LSB(U))

Then we assemble those results depending on the set FR each element a belongs to. For each
R-class R of J -depth i, we compute the following vector:

BeforeFall(R) = ¬
∨

a∈FR

Next(a)

Each vector BeforeFall(R) indicates all the positions strictly before the first element s ∈ FR

that is at least the second element of the word. With this, we know that the prefix indicated
by BeforeFall(R), where R is the R-class of the first element, is the unique maximal prefix
which product belongs to R. Thus, we want to apply the circuit corresponding to the
program P to the prefix that is indicated by BeforeFall(R), where R is the R-class of the
first element. Now, we need to introduce a mask which will indicate the prefix considered in
the rest of the split operation. This mask is constructed from the vectors BeforeFall(R) for
each R-class R that belongs to the set Ri of R-classes of J -depth i, and it is equal to the
vector BeforeFall(R) corresponding to the unique vector RClass(R) that is not null:

mask =
∨

R∈Ri

RClass(R) ∧ BeforeFall(R)

Now we can use the circuit CP on the set of vectors (c(s) ∧ ¬mask)s∈S . That call returns a
set of vectors (r(s))s∈S corresponding to the application of P to the prefix. Now we only
have to add back the rest of the word. For each element s ∈ S, the vector out(s) is computed
as follows:

out(s) = IfThenElse(DoSmth, r(s) ∨ (c(s) ∧ ¬mask), c(s))

J
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