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Revealing the internal workings of a robot can help a human better understand the robot's behaviors. How to reveal such workings, e.g., via explanation generation, remains a significant challenge. This gets even more complex when these explanations are targeted towards children. Therefore, we propose a search-based approach to generate contrastive explanations using optimal and sub-optimal plans and implement it in a scenario for children. In the application scenario, the child and the robot learn together how to play a zero-sum game that requires logical and mathematical thinking. We report results around our explanation generation system that was successfully deployed among seven-year-old children. Our results show trends that the generated explanations were able to positively affect the children's perceived difficulty in learning the zero-sum game.

Introduction

Conveying task knowledge through demonstrations alone is challenging. Adding explanations, in particular, contrastive explanations that compare two demonstrations can reduce the complexity of this problem. A natural context to study these problems is within educational scenarios, because the explanations can guide the attention of the learner to specific aspects of the demonstration [START_REF] Lombrozo | Explanation and inference: mechanistic and functional explanations guide property generalization[END_REF][START_REF] Keil | Explanation and understanding[END_REF]. Without explanations sub-optimal demonstrations can be easily misconstrued as optimal. Therefore, it is important to understand how to build systems capable of such explanations.

So far, the work that has been done to generate contrastive explanations focused on human inputs, and, to the best of our knowledge, compares alternative plans but does not account for the optimality of the action. Furthermore, few examples in the existing literature of autonomous and explainable robots are tested in a child-robot interaction scenario.

The focus on the human inputs for providing explanations could be explained by the assumption that outside of the educational context, the robot performs optimally with respect to its own understanding of the environment. At the same time, the deployment of explainable robots that are robust enough to work with children is non-trivial.

We address the first challenge by developing an algorithm that returns contrastive explanations comparing optimal and sub-optimal actions. To validate our approach, we deployed our system in a child-robot game scenarios. We compute the robot's explanation using a search-based approach and investigate the effect of the explanation on the child's perceived difficulty of the task, game-play efficiency, and perception of the robot.

As a consequence of our approach we show that it is possible to build a system that informs and explains the reason why its action was sub-optimal. Thanks to our successful deployment in a child-robot educational scenario, our approach is likely robust enough to be applicable to a large range of sequential planning tasks.

Related Work

Contrastive Explanations for Explainable Planning. There exist a number of literature reviews addressing the topics of explainable agency [START_REF] Anjomshoae | Explainable agents and robots: Results from a systematic literature review[END_REF][START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF][START_REF] Kambhampati | Challenges of human-aware ai systems[END_REF] and, more specifically, plan explainability [START_REF] Chakraborti | Plan explanations as model reconciliation: Moving beyond explanation as soliloquy[END_REF][START_REF] Fox | Explainable planning[END_REF]. In this context, providing contrastive explanation has received a lot of attention [START_REF] Miller | Contrastive explanation: A structural-model approach[END_REF][START_REF] Madumal | Explainable reinforcement learning through a causal lens[END_REF][START_REF] Kean | A characterization of contrastive explanations computation[END_REF]. A contrastive explanation is an explanation that is able to differentiate properties of two competing hypotheses [START_REF] Kambhampati | Challenges of human-aware ai systems[END_REF][START_REF] Hoffmann | Explainable ai planning (xaip): Overview and the case of contrastive explanation (extended abstract)[END_REF][START_REF] Rathi | Generating counterfactual and contrastive explanations using shap[END_REF]. This is often realized by either generating and comparing alternative plans, or by human inquiry through why and why not questions.

To generate and compare alternative plans several computational approaches have been proposed. Borgo et al. [START_REF] Borgo | Towards providing explanations for ai planner decisions[END_REF] investigated this aspect by developing a methodology for comparing the cost of the robot's plans and allowing the user to investigate alternative actions within them. Cashmore et al. [START_REF] Cashmore | Towards explainable ai planning as a service[END_REF] showed how to incorporate human suggested action by adding, changing or removing actions from the planner's original plan. They also compared the cost of both plans.

Other works in explainable planning enable humans to inquire about the possible causes of the planning results. The majority of the work retrieves information about previous states and actions and uses these to answer questions about the robot's plan, e.g., [START_REF] Perera | Interpretability of a service robot: Enabling user questions and checkable answers[END_REF][START_REF] Krarup | Model-based contrastive explanations for explainable planning[END_REF][START_REF] Lindsay | Towards exploiting generic problem structures in explanations for automated planning[END_REF]. Recently this approach has been extended to using future actions as well [START_REF] Sengupta | Radar -a proactive decision support system for human-in-the-loop planning[END_REF][START_REF] Topin | Generation of policy-level explanations for reinforcement learning[END_REF].

Following this idea of contrastive explanation, our work also compares alternative plans and focused on instances where the planner performs sub-optimal actions. Contrary to existing work, we do not compare against a human's provided plan or query, but an optimal plan that is contextually computed. This approach takes into account that a human might not be a domain expert and may be incapable to provide reasonable contrast plans, which is particularly true in educational contexts. Our planner accounts for that by deciding itself when to give an explanation, thus being pro-active.

Application Scenario for Explainability. Using explainability in robotic applications can provide numerous benefits in a variety of areas. It can aid in debugging the system [START_REF] Ehsan | Automated rationale generation: a technique for explainable ai and its effects on human perceptions[END_REF], foster trust and social acceptance of the robot [START_REF] Wang | Trust calibration within a human-robot team: Comparing automatically generated explanations[END_REF], help establish shared mental models [START_REF] Lemaignan | Mutual modelling in robotics: Inspirations for the next steps[END_REF][START_REF] Hayes | Improving robot controller transparency through autonomous policy explanation[END_REF], aid collaboration [START_REF] Chakraborti | Plan explanations as model reconciliation: Moving beyond explanation as soliloquy[END_REF][START_REF] Tabrez | Improving human-robot interaction through explainable reinforcement learning[END_REF][START_REF] Akash | Improving human-machine collaboration through transparency-based feedback -part i: Human trust and workload model[END_REF][START_REF] Hayes | Challenges in shared-environment human-robot collaboration[END_REF], communicate reasoning [START_REF] Langley | Explainable agency for intelligent autonomous systems[END_REF], or aid decision making [START_REF] Montani | Artificial intelligence in clinical decision support : a focused literature survey[END_REF][START_REF] Holstein | Towards teacher-ai hybrid systems[END_REF].

In particular, Tabrez et al. show that explainable agency not only benefits human-robot collaboration, but also improves human performance on a task [START_REF] Tabrez | Explanation-based reward coaching to improve human performance via reinforcement learning[END_REF]. They achieve this by estimating the human's belief about the task's reward, infer the cause of inaccuracies -if any -, and provide explanations if the human behaves sub-optimally. However, all the experiments above use adults as participants. Looking at the work with children, on the other hand, not as much work has been done to investigate the benefits of explainable agency.

Kaptein et al. [START_REF] Kaptein | Personalised selfexplanation by robots: The role of goals versus beliefs in robot-action explanation for children and adults[END_REF] tested personalised explanations in a human-robot interaction scenario and compared the preferences of children and adults regarding the type of explanation provided by a robot. They found that the type of explanation (goal vs belief based) matters for both children and adults. Hitron et al. [START_REF] Hitron | Can children understand machine learning concepts? the effect of uncovering black boxes[END_REF] investigated if children can understand machine learning concepts through a gesture recognition platform. They showed that the concepts were successfully understood and later applied by children in everyday life.

In sum, there is clear evidence about the benefits of explainable agency in scenarios with adults; however, there is only initial evidence for benefits in scenarios with children. It is, hence, not yet clear if the benefits that apply to adults also apply to children to the same extent. Therefore, we decided to test the robustness of our system in a child-robot scenario.

Methods

Game Scenario. As a running example throughout the paper we choose a child-robot interaction scenario based on a two-player zero-sum game called Minicomputer Tug of War. The scenario is based on the Papi's Minicomputer, a non-verbal language to introduce children to mechanical and mental arithmetic through decimal notation with binary positional rules 7 .

The game comprises of three 2 × 2 square boards. Each of the 12 cells has an associated value as depicted in (Fig. 1a). Each player has 2 checkers available, and each checker is worth the value associated with the cell where it stands. One player (the robot) starts with the checkers in the cells 800 and 200 (corresponding to a score of 1000), and tries to minimize its score. The other player (the child) starts with the checkers in the cells 4 and 1 (corresponding to a score of 5), and tries to maximize it's score. The players alternate in moving their checkers; the (a) Scores associated with each square and the starting position. Note that the scores are not visible to the child.

(b) A visualization of the tree search. The current state is shown at the top. Each state is expanded for all possible actions following the minmax algorithm.

Fig. 1: Representation of the Minicomputer Tug of War Game game ends when the child obtains a higher or equal score of the robot or vice versa. The winner is the player whos turn it is when the game ends. Given the above rules, a state in the game is a configuration of the four checkers. The set of possible states corresponds to all possible configurations of checkers in the 12 cells. At each turn a player is allowed to move one checker to one of the contiguous squares (e.g., it is not possible to move from 1 to 10 or from 8 to 400, while moving from 8 to 40 is legal). The applicable actions for each checker are along the cardinal directions and the diagonals. A player is not allowed to have two of her checkers in one square.

This scenario is useful for our experiment because it has been previously used in the educational context, which means that we can focus on the explainable agency instead of scenario design. As the game scenario is deterministic and adversarial we represent the planning problem as a tree and use minmax for plan generation, as shown in (Fig. 1b).

Search-Based Explanation Generation. We propose a pro-active system to generate explanations to inform the human, about a sub-optimal plan. By proactive we mean that the system chooses by itself when to give an explanation. The way we achieve this is by planning from the previous state for all possible actions in order to find the optimal plan. To balance the real-time constraints of the system with the high computational cost of planning multiple plans in parallel, we approximate the utility of each plan. We then compare the estimated utility of the current plan with the estimate of the best plan and generate an explanation if the optimal and current action differ. As we have a utility estimate for both plans, the explanation also provides an indicator of the degree of suboptimality of the performed action.

Consider an adversarial planning problem

I = (P, s 0 , A, U, T ), (1) 
where -P is the set of players. In this paper, we consider only two players, denoted as minimizermin (robot) and maximizermax (child opponent). s 0 is the initial state.

-A is the finite set of actions available to the players. We write A(s, p) to denote the actions available in state s when it is player p's turn to act. -U is the utility function. We write U (s, p) to represent the value/payoff if the game ends in terminal state s. Player max wishes to maximize U (s, p), while player min wishes to minimize it. -T denotes the transition model. Given a state s and an action a, the transition model returns the subsequent state s such that s = T (s, a).

and the set of possible states, S, that is defined by all states reachable from s 0 . Further, suppose the agent performs a sub-optimal action a s in state s.

To generate an explanation and inform the human we start a new planning problem in the previous state by choosing s 0 = s, and, for each action a i compute the maximum utility v(T (s 0 , a i )) in the scenario using the minmax formalism

v(s) =      U (s, p) if s is terminal; max a∈A(s,max) v(T (s, a)) if p = max acts in s; min a∈A(s,min) v(T (s, a)) if p = min acts in s.
as proposed by Russell and Norvig [START_REF] Russell | Artificial Intelligence: A Modern Approach[END_REF]. Knowing the utility of all actions, we compute the optimal action a * of the previous state, compare it to the executed one, and provide a contrastive explanation.

In order to compute v(T (s 0 , a i )) we use a minmax planner which we limit to a depth bound of m = 3 to account for the real-time constraint of our scenario, and then approximate the utility using U (s, p).

To evaluate the above approach, we designed a game scenario in which the robot alternates between choosing optimal and sub-optimal actions. Whenever the robot acts sub-optimally, an explanation is generated. Following the assumption that humans focus on the on abnormal causes to explain events [START_REF] Kahneman | Prospect Theory: An Analysis of Decision under Risk[END_REF], each explanation is introduced as a justification of a mistake. System Architecture. To enable the robot to play the game and give explanations, we develop a distributed system (Fig. 2) with three major components: the Game component, which provides the interface for the user to interact with, the Robot component, that controls the embodied platform and the naturallanguage interface, and the Explanation System.

The Explanation System, implemented using the ROS framework, is responsible for planning the agent's actions autonomously and generating the explanation. The system can be decomposed into 5 different modules. The Game Interface and Explanation Module serve as communication modules between the system and the game: the Game Interface receives and updates the players state, while the Explanation Module manages the robot communication and animations, generating human-readable sentences. The Planning Manager performs a complete depth-limited exploration of the game tree. The module returns the policy of agent, the action a ∈ A(s) and the result of each action. The Decision Module selects the agent's policy (optimal or sub-optimal). Finally, the Game Manager links all the above modules: it establishes the starting of Fig. 2: A topological overview of the system's architecture.

the game and the turn-taking events. Moreover, the Game Manager also recalls information from the Decision Module to communicate with the Explanation Module whether the robot action is optimal or not, and consequently, when the explanation is needed. To ease reproducibility, we shared the source code of the system on Github 8 .

Experiment

Hypotheses. The hypotheses are that children (H1) will perceive the task as less difficult, (H2) play more efficiently, and (H3) will perceive the robot as more intelligent and animated when it explains its decisions versus when it does not. Design. To investigate the hypotheses, we asked children to play the Minicomputer Tug of War game (sec 3) three times with the robot. To avoid game play loops, we limited children's possible actions to the actions that increase their score. This decision was informed by the result of a pilot study. Moreover, we assigned the role of maximizer to the child, since subtractions appear later in the curriculum, and introduced the robot as a peer to make mistakes seem natural.

Within the game, we manipulated the robot's explainable agency between participants based on two conditions: (1) the robot does not explain anything (non-explainable), or (2) the robot explains its sub-optimal action in comparison to the optimal contrast case (explainable). To give explanations, we used templates such as:

"I made a mistake. I moved the ball + [checker] + to + [action] + and I'm going to obtain [score] + points in the next + [number of turns] + turns, but moving the ball [best checker] + to + [best action] + I could have gotten + [score] + points in the next + [number of turns] + turns. Now it is your turn."

We recorded a variety of dependent variables to assess our hypotheses. To measure the perceived difficulty (H1), we asked children to solve six exercises validated by their teachers and related to the abacus system, due to the strong similarity with the game, and compared the scores in a pre-and post-test. We also asked children to report the perceived difficulty on performing the tests. To measure efficiency (H2) we recorded the number of moves until completion of the game, the score obtained after each move, and how often the child won. To measure the perception of the robot (H3) we provided a revised version of the Godspeed questionnaire [START_REF] Bartneck | Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots[END_REF] 9 .

Finally, we asked five exploratory questions to learn more about children's perception of explainable agency.

To comply with local regulation, the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans; informed consent has been obtained for experimentation with human subjects. The privacy rights of human subjects has been always considered. We informed both the parents and the children about the confidentiality of the data, the voluntary participation and the authorization for sharing the results with the purpose of analysis, research and dissemination.

Participants. Participants were 33 children from a school that integrates the Papi's Minicomputer (abacus system) in their curriculum. All participants attended 2nd grade and were randomly assigned to one of the two conditions. One child was excluded, because of technical difficulties, and we analyzed the data from the remaining 32 (age M = 7.03; SD = .18, gender [non-explainable: 10 Male, 6 Female, explainable: 7 Male, 9 Female]).

Materials.

Children played the game and interacted with the proposed system (Fig. 3). NAO sat on the table in a crouching position opposite a Wacom Cintiq Pro 13 Tablet with pen. The trial took place in a separate room of the school, and was conducted in the local language (portuguese).

Procedure. The experiment began by randomly assigning a child to one of two conditions. Children entered the room, and were asked to sit in front of the robot (Fig. 3). The researcher explained that before talking to the robot they were going to answer a few simple questions (pre-test). Once the pre-test was done the robot introduced itself and asked for the child's name. Once the child answered, the robot asked if the child knew Papi's Minicomputer (abacus system), and if they ever used it to play Minicomputer Tug of War (the game) and proceeded explaining the game rules. Once the robot finished, the researcher made sure that the child understood the instructions and the game began. The child and robot took turns playing three games; after the games the researcher told the child that the game was over, and they had to answer more questions (post-test). Once the child completed the questionnaires the researcher asked if they had any questions and thanked them for their help. The sessions were individual and took approximately 20 minutes to complete. Results. To assess perceived difficulty (H1) we scored the pre-and post-test assigning 1 point for correct answers and 0.5 points when they mirrored the abacus system. We then summed up the values to obtain a final score. A Wilcoxon's t-test between pre-(M = 4.18; SE = .21) and post-test (M = 4.82; SE = .13) revealed a significant difference (Z = -2.6; p = .008) for the explainable group (Fig. 4). No difference was found for the non-explainable group (p ≥ .05). Here higher scores indicate that the task was perceived as easier.

Regarding efficiency (H2), a multivariate analysis of variance on the the number of moves until completion of the game, the score obtained after each move, and how often the child won, was not significant (Pillai Trace = .12068, F(3, 30) = 1.2809, p = .3002). There was also no main effect for the explainable group in the score obtained after each of the three initial turns of the game play (Pillai Trace = .24946, F(9, 27) = 0.70169, p = .7002; nor on the number of wins (F(1, 30) = 0.039, p = 0.845). We then compared the proportion of games won, by condition. This analysis yield no significant results (U = 114.5; W = 234.5; p = .621).

To investigate the perception of the robot (H3) we firstly analyzed the reliability of the Godspeed. The reliability analysis revealed low internal consistency among items (GODSPEED: α = 0.61), for perceived intelligence (α = 0.53), and for animacy (α = 0.36). No differences were found in both groups, for the different dimensions of the questionnaire (all p ≥ .05). We calculated the correlation between perceived intelligence and the proportion of wins (ρ = -.33; p=.068). Although it is only marginally significant it shows that children that win more games, perceive the robot as less intelligent than children who win less games.

Looking at the exploratory questions. We divided the children's answers to the open ended questions in four categories depending on what they reported to be helpful. In the explainable condition, the majority of the answers affirmed that the robot's explanations during the game play and its way of playing were supportive, while the 15% of the children stated that they were aided by the robot's explanation of the rules (explainable: robot's speech = 50%, robot's way of playing = 35%, robot's explanation of the game = 14%; non-explainable condition: robot's speech = 10%, robot's way of playing = 50%, robot's explanation of the game = 30%, robot's gesture = 10%). The 10% of the children in the non-explainable condition reported that the robot gaze was useful. 

Discussion

Throughout this research, we have deployed our approach and demonstrated its applicability to a real-world scenario. This shows that our system is robust enough for interaction with children in the wild, even though is autonomous.

In (H1) we predicted that the robot's explanations would affect the children's perception of the task difficulty. Indeed we found a significant positive effect of explainable agency on the perceived difficulty of the pre-and post-test. Hence, we can follow that explainable agency has a positive impact in those scenarios.

Our results are in line with the idea of self-efficacy by Bandura [START_REF] Bandura | Self-efficacy: The exercise of control[END_REF]. Selfefficacy relates to people's beliefs about their own capabilities and it is intimately connected to agency (e.g. Pastorelli et al. [START_REF] Pastorelli | The structure of children's perceived self-efficacy: A cross-national study[END_REF]). The information provided by the robot in the explainable condition may have served as feedback about children's efficacy in using the abacus system which in turn made them feel more confident about their capabilities (higher self-efficacy).

According to (H2), we expected the robot's explanations to improve the children's efficiency during game-play. However, the data did not confirm this hypothesis. This lack of significance may be explained by the limited set of actions available to the child. This may have influenced the variability of the data collected, and consequently the observable differences between the two conditions. Further investigation is needed to support this claim.

Regarding (H3), we have hypothesized that the robot's explanation influences the child's perception of the robot's intelligence and animacy. Overall, we did not find significant effect of the explainable agency. We assume that the effect of explainable agency is less strong than other social factors, such as gestures. Future work should consider these effects for example by exploiting multimodal non-verbal behaviors to support a more clear explanation.

Nevertheless, the answers to the open question about the robot's explanation provide interesting cues. In the explainable condition, the children reported that the robot helped them by showing the best action or mentioning possible alternative actions (e.g., "Showed me the best I could do and how to play","The robot told me how it could get more points", "The robot told me that if it moved differently it would have gotten more points"). What we considered explainable agency -the robot's speech during the game -might have been perceived differently by the children. Some children appeared to consider that the robot was making mistakes to help them play (e.g. "The robot helped by playing badly", "Doing mistakes"), which seems to take the focus away from the speech and into its actions. Another tendency was the children referring to the robot explaining the rules of the game as being helpful and not referring to the robot's speech during the game.

Future Work. Recent approaches about plan explanation stress the importance of moving beyond the explanation as soliloquy and framed the explanation, or model update, as a model reconciliation problem [START_REF] Chakraborti | Plan explanations as model reconciliation: Moving beyond explanation as soliloquy[END_REF][START_REF] Tabrez | Explanation-based reward coaching to improve human performance via reinforcement learning[END_REF]. Future work should consider the adaptation of the explanation to the learner mental model [START_REF] Conati | Ai in education needs interpretable machine learning: Lessons from open learner modelling[END_REF]. An example for the current scenario would be taking into account the level of expertise of the children for generating appropriate explanations. The robot would provide less or different types of information to the children that play better (e.g. less number of moves for solving the game). For those that encounter problems, the robot would explain details and alternatives about possible solutions using hierarchical terms at different levels of abstraction.

Another challenging future direction is represented by using questions to implicitly explain the robot's knowledge. This would be achieved by building an interactive task learning scenario in which the robot learns from the child. In the context of our game scenario, the robot should query the child about the rules, the goal, or the optimal policy to play the game. The explainable robot could improve the learning experience by revealing to the child, teacher, or peer what is known and what is unclear [START_REF] Chao | Transparent active learning for robots[END_REF]. By phrasing the questions the robot could provide information about the learning task, and foster the children to learn while trying to demonstrate or explain possible solutions to the planning problem. Furthermore, to emphasize the transferability of this approach to other similar sequential planning tasks, we want to evaluate its effectiveness in both simulation and real-world scenarios across different domains.

Conclusion

In this work, we strove to explore the topic of explaining the suboptimality of actions in a child-robot learning scenario. We adapted a search-based approach for generating contrastive explanations. Finally, we evaluated the validity of our approach in an experiment. We could not find an effect of explainable agency on neither children's efficiency of playing the game, nor children's perception of the robot. However, we showed that the children in the explainable condition reported a significantly lower perceived difficulty in performing the post-test in respect to the pre-test. We argue that this is a first step towards building the explainable agency of a robot that accounts for the optimality of its actions, and a first step towards improving the learning process of children though reflection upon the robot's explanable agency.
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