
HAL Id: hal-03831661
https://hal.science/hal-03831661

Preprint submitted on 27 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NONNEGATIVE BLOCK-TERM DECOMPOSITION
WITH THE β-DIVERGENCE: JOINT DATA FUSION

AND BLIND SPECTRAL UNMIXING
Clémence Prévost, Valentin Leplat

To cite this version:
Clémence Prévost, Valentin Leplat. NONNEGATIVE BLOCK-TERM DECOMPOSITION WITH
THE β-DIVERGENCE: JOINT DATA FUSION AND BLIND SPECTRAL UNMIXING. 2022. �hal-
03831661�

https://hal.science/hal-03831661
https://hal.archives-ouvertes.fr


NONNEGATIVE BLOCK-TERM DECOMPOSITION WITH THE β-DIVERGENCE:
JOINT DATA FUSION AND BLIND SPECTRAL UNMIXING

C. Prévost∗

University of Lille, CNRS
Centrale Lille, UMR 9189 CRIStAL

F-59000 Lille, France

V. Leplat†

Skoltech
Center for Artificial Intelligence Technology (CAIT)

Moscow, Russia

ABSTRACT
We present a new method for solving simultaneously two
problems:(1) hyperspectral and multispectral image fusion,
and (2) the blind spectral unmixing of the unknown super-
resolution image. The method, dubbed as β-(Lr,Lr,1)-
NBTD, relies on three key elements: (1) the nonnegative
decomposition in rank-(Lr,Lr,1) block-terms of the super-
resolution tensor, (2) the joint factorization of the input
images, and (3) the formulation of a family of optimization
problems including the β-divergences objective functions.
In order to solve the two problems at hand, we propose
multiplicative updates based on majorization-minimization.
We come up with a family of simple, robust and efficient
algorithms, adaptable to various noise statistics. As a by-
product, we propose a new robust initialization for the low-
rank block-term factors. We show on numerical experiments
that β-(Lr,Lr,1)-NBTD competes favorably with State-Of-
The Arts methods for solving the super-resolution problem,
while accurately solving the unmixing problem for various
noise statistics.

Index Terms— Nonnegative tensor factorization, block-
term decomposition, β-divergence, blind spectral unmixing,
hyperspectral super-resolution.

I. INTRODUCTION

Hyperspectral devices are able to sample the electromag-
netic spectrum into hundred of wavelengths, allowing for the
acquisition of hyperspectral images (HSIs) that possess high
spectral resolution. However, the tradeoff between spatial
and spectral resolution forces the HSIs to have a small
number of relatively large pixels [1]. On the other hand,
multispectral sensors produce multispectral images (MSIs)
with high spatial resolution (smaller pixels), at the cost of
a restricted number of spectral bands. The composition of
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each pixel in HSIs and MSIs can be approximated by a sum
of a small number of spectral signatures, or endmembers.
This representation is known as the linear mixing model. It
allows for so-called blind spectral unmixing, that is, identi-
fying materials present within the scenery with limited prior
information, classically by computing the spectral signatures
of these materials, usually referred to as endmembers, and
their abundance maps.

The hyperspectral super-resolution (HSR) problem [2] was
formulated to circumvent the physical limitations of each
device. This problem aims at recovering a super-resolution
image (SRI) that possesses both high spatial and high spec-
tral resolutions from co-registered HSI and MSI of the same
scene. The high spatial and spectral resolutions of the SRI
can then be exploited in traditional unmixing tasks. Hence,
the goal of developing an efficient method for solving both
problems at once can be summarized as follows: identify and
localize with higher accuracy the materials present within
the scenery at hand by combining multiple information of
different resolutions (the MSI and the HSI).

Many approaches have been proposed to solve the HSR
problem. Most matrix approaches [3], [4], [5], [6] are based
on the linear mixing model and perform a coupled low-rank
factorization of the matricized HSI and MSI. Some matrix
approaches are suitable for the HSR and unmixing problem
as well, which consists of recovering the underlying SRI
by means of a physically-informed low-rank approximation.
See for instance [7] and [3].

More recently, tensor-based approaches were proposed for
the HSR problem. The works of [8], [9] formulate the HSR
problem as a coupled canonical polyadic (CP) decomposi-
tion, while a coupled multilinear Tucker decomposition is
used in [10]. See [11] for an overview of tensor methods for
hyperspectral data processing. However, the factors of these
decompositions lack physical interpretation, and thus the
aforementioned methods cannot be used for unmixing. Mo-
tivated by the usefulness of tensor models, approaches based
on block-tensor decomposition [12], [13] were proposed for
solving the HSR problem. Previous works of the authors
[14] used the block-term decomposition for joint fusion and



unmixing in the presence of spectral variability. A recent
work used the block-term decomposition for super-resolution
only [15]. This decomposition was also successfully used to
perform unmixing [16] on the SRI directly. A multiplicative
approach based on majorization-minimization was proposed,
but was not suited to coupled tensor models and hence,
to super-resolution. These approaches did not fully exploit
the flexibility of the block-term decomposition, since they
assumed all ranks to be equal, thus resulting in simpler
algorithms. Furthermore, they were only suited to isotropic
white Gaussian noise.
Contributions: the main contribution of our method is the
adequate combination of three key-ingredients, described
below.
(1) Decomposition in rank-(Lr,Lr,1) terms of the SRI: in
this paper, we fully exploit the flexibility of the chosen
decomposition by considering ranks possibly different from
each other.
(2) Coupled optimization problems along with nonnegativity
constraints: we propose a family of coupled tensor optimiza-
tion problems. While we illustrate those problems with an
example in remote sensing, other fields of applications can
be envisioned for the considered model, such as audio signal
processing [17], biomedical imaging [18] or graph signal
processing [19]. We handle the nonnegativity constraints
using multiplicative updates. To the best of our knowledge,
multiplicative algorithms for coupled tensor low-rank models
has not been addressed yet at the writing time of this paper.
(3) β-divergence family as objective functions: using β-
divergences allows us to take into account various noise
statistics potentially present within the data, see [20] for a
detailed overview of the topic.

Moreover, we develop a family of simple, efficient and
flexible algorithms adapted to solve the proposed optimiza-
tion problems. Compared to previous works, our algorithms
have several advantadges: (i) they are adapted to various
noise statistics, (ii) they are assorted with convergence guar-
antees due to the use of multiplicative updates, and (iii) they
are able to estimate the degradation operators at stake in the
coupled tensor models. While multiplicative matrix-based
algorithm was designed in [21] and was able to estimate
such matrices, this matter has not been considered yet in
the considered application with tensor methods. As a by-
product, we provide a robust way to initialize the low-rank
factors based on multiplicative updates.

We finally demonstrate that our method competes fa-
vorably with the state-of-the-art when applied to solving
both problems of interest for synthetic and semi-real data
sets including three noise statistics: Gaussian noise, Poisson
noise and multiplicative Gamma noise. We also showcase
the good performance of our method in the case where the
degradation operators are partially unknown.
Notation: We follow the notations of [22], [23]. We use
lower (a) or uppercase (A) plain font for scalars, boldface

lowercase (a) for vectors, boldface uppercase (A) for matri-
ces and calligraphic (A) for tensors. The elements of vectors,
matrices and tensors are denoted as ai, Ai,j and Ai1,...,iN ,
respectively. The transpose of a matrix A is denoted by AT .
We use IN for the N ×N identity matrix and 0L×K for the
L × K matrix of zeros. Notation 1L denotes an all-ones
vector of size L × 1. For a matrix X, the notation X ≥ 0
means that X is entry-wise non-negative. Symbols � and �
denote the Kronecker and Khatri-Rao products, respectively.
The Hadamard (element-wise) product is denoted by �. We
use vec for the standard column-major vectorization of a
matrix or a tensor. Each dimension of a tensor is called a
mode, and the number of dimensions is called order. We
restrict the scope of this paper to order-3 tensors.

II. PROBLEM FORMULATION

II-A. Prelimiaries

We introduce in Definition 2.1 the block-term decompo-
sition with ranks (Lr, Lr, 1), that we will use to build our
model. The main advantage of this decomposition is to link
the terms, that we will assume low-rank, to high-resolution
abundance matrices and spectral signatures used in blind
spectral unmixing of the unknown SRI.

Definition 2.1: Block-term decomposition – An order-
3 tensor X ∈ RI×J×K admits a block-term decomposition
(BTD) with ranks (Lr, Lr, 1) (LrLr1-BTD) if

X =

R∑
r=1

(
ArB

T
r

)
⊗ cr, (1)

where ⊗ denotes the outer product, Ar ∈ RI×Lr , Br ∈
RJ×Lr , and cr ∈ RK , for r ∈ {1, . . . , R}. Moreover, we de-
note A = [A1, . . . ,AR] ∈ RI×

∑
r Lr , B = [B1, . . . ,BR] ∈

RJ×
∑

r Lr and C = [c1, . . . , cR] ∈ RK×R.
Now, we recall in Theorem 2.2 sufficient uniqueness

conditions for this decomposition1.
Theorem 2.2 ([14]): Let (A,B,C) denote an LrLr1-

BTD of a tensor X as in (1). Assume that A and B are full
column rank and that C does not have proportional columns.
Then (A,B,C) is essentially unique almost surely for r ∈
{1, . . . , R}.
In real-life applications such as remote sensing, these con-
ditions are easily satisfied. Indeed, R represents the number
of distinct materials in the image and we usually have∑
r Lr < min(I, J,K). Hence the use of this decomposition

for identifying more surely the ground-truth endmembers
and ultimately come up with a well-grounded and powerful
method to tackle our two problems.

Finally, Property 1 recalls the unfolding formulae for the
LrLr1-BTD, that will helpful for building our algorithm:

1The scenario Lr = L for all r ∈ {1, . . . , R} is a special case of this
decomposition and is usually referred to as the LL1-BTD.



Property 1: Tensor unfoldings – Using the above nota-
tion, the unfoldings of a tensor X admitting an LrLr1-BTD
as above can be expressed as

X(1) = A (C�p B)
T
,X(2) = B (C�p A)

T
,

X(3) = C [(A1 �B1) 1L1
, . . . , (AR �BR) 1LR

]
T

where �p denotes the partition-wise Khatri-Rao products
defined as follows: C�p A = [c1 �A1, . . . , cR�AR].
In Section II-B, we introduce the main assumptions, the
models and associated optimization problems to build up our
method for joint HSR and spectral unmixing of the unknown
super-resolution image.

II-B. Assumptions, Models and Optimization problems

Let us consider two tensors Y1 ∈ RI1×J1×K1 and Y2 ∈
RI2×J2×K2 . In the following, we assume I1 < I2, J1 <
J2 et K2 < K1. In order to ease the notation, we assume
that I = I2, J = J2 et K = K1. Tensors Y1, Y2 are
degraded versions of the same tensor Y ∈ RI×J×K . In HSR,
indices I`, J` denote the spatial dimensions whereas K`

denote the spectral ones (` = 1, 2). Tensors Y1 and Y2

respectively denote the HSI and MSI, whereas Y denotes
the unknown SRI we intend to recover. We present now our
main assumptions and models.

Assumption 1: Structure of the SRI – In the noiseless
case, the tensor Y admits a Lr, Lr, 1 block-term decompo-
sition:

Y =

R∑
r=1

(
ArB

T
r

)
⊗ cr, (2)

Under nonnegativity constraints, the terms cr in Equation (2)
can be physically interpreted as the spectral signatures asso-
ciated to the R constitutive materials of Y , while matrices
ArB

T
r = Sr ∈ RI×J represent the corresponding abundance

maps.
Assumption 2: Structure of Sr – Matrices Sr are

assumed to be low-rank, i.e.,

Sr ≈ ArB
T
r ∈ RI×J , (3)

where Ar ∈ RI×L and Br ∈ RJ×L admit rank Lr for all
r ∈ {1, . . . , R}.
The hypothesis of low-rank abundance matrices is reason-
able, since the two spatial dimensions are often correlated
along the rows and columns. In [24], an upper bound on
the reconstruction error of such matrices by (3) is provided
in the general problem. In particular, this error can be as
small as desired if Lr is large enough, which motivates the
Assumption 2.

Let us note S = [vec{S1}, . . . , vec{SR}] ∈ RIJ×R the
matrix containing the vectorized abundance maps of each
material and C = [c1, . . . , cR] ∈ RL×R the matrix whose

columns are the spectral signatures. The transposed third-
mode unfolding of Equation (2) [12], [13] reads

Y(3)T = SCT ∈ RIJ×K , (4)

which can be viewed as the linear mixing model (LMM) for
the SRI Y under nonnegativity constraints. Using Assump-
tion 2, the block-term structure (2) can thus be viewed as
tensor format for the LMM, under low-rank constraints of
the abundance maps.

As done in previous works (see [11]), we consider the
following model providing the links between Y and its two
degradations Y1 and Y2.

Model 1: Tensors Y and (Y1,Y2) are such that
Y1 ≈

R∑
r=1

(
P1Ar (P2Br)

T
)
⊗ cr,

Y2 ≈
R∑
r=1

(
ArB

T
r

)
⊗P3cr,

(5)

which is a coupled LrLr1-BTD. The tensors Y1 and Y2

are obtained using linear downsampling operators P1 ∈
RI1×I , P2 ∈ RJ1×J et P3 ∈ RK2×K , assumed to be
full-rank. In a remote sensing framework, the matrix P3 ∈
RK2×K contains the spectral response functions for each
band of the MSI sensor. The spatial degradation matrices
P1 ∈ RI1×I and P2 ∈ RJ1×J perform Gaussian blurring and
downsampling along each spatial dimension, i.e. we suppose
that the spatial degradation operation is separable, as in the
commonly used Wald’s protocol [25]. The approximately
equal symbols in Equation (5) account for the presence of
noise during the degradation process.

State-of-the-art unmixing algorithms aim at recovering
{Sr = ArB

T
r }Rr=1 and C from the mixed pixels in Y .

Here, since Y is unknown and only Y1 is observed with
high spectral resolution, these algorithms are only able to
recover spatially-degraded versions of the abundance maps
[13], namely

P1SrP
T
2 ∈ RIH×JH for r ∈ {1, . . . , R}. (6)

Differently from those works, fusion of an HSI with an MSI
with high spatial resolution allows us to seek for abundance
maps at a higher spatial resolution.

Thus jointly solving the data fusion and blind unmixing
problems consists in finding the LL1 factors {ArB

T
r }Rr=1,

C, under the assumption of (5), subject to the constraints

{ArB
T
r }Rr=1 ≥ 0,C ≥ 0,Pi ≥ 0 for i ∈ {1, . . . , 3} . (7)

Trying to minimize the approximation errors in (5) leads,
for instance, to minimizing the following cost function:

Φ = Dβ

(
Y1‖

R∑
r=1

(
P1Ar (P2Br)

T
)
⊗ cr

)

+ λDβ

(
Y2‖

R∑
r=1

(
ArB

T
r

)
⊗P3cr

)
,

(8)



where λ is a positive penalty parameter, subject to the
constraints in (7). For a tensor Y ∈ RI×J×K ,

Dβ

(
Y‖

R∑
r=1

(
ArB

T
r

)
⊗ cr

)
=∑

i,j,k

dβ
(
(Y)i,j,k‖

(
(Ar)i,:(Br)

T
:,j

)
⊗ (cr)k

)
,

(9)

with dβ(x‖y) the β-divergence between the two scalars x
and y. For β = 2, this amounts to the standard squared
Euclidean distance since d2(x‖y) = 1

2 (x − y)2. For β = 1
and β = 0, the β-divergence corresponds to the Kullback-
Leibler (KL) divergence and the Itakura-Saito (IS) diver-
gence, respectively. For Nonnegative Matrix Factorization
(NMF) models, the data fitting term should be chosen
depending on the noise statistic assumed in the generative
model of the data, see [26], [27], [28], [21] and references
therein for more details. In Section II-C, we present our
Algorithm to tackle the family of optimization problems
given in Equation (8).

II-C. Algorithms

Most nonnegative tensor decomposition algorithms are
based on an iterative scheme that alternatively update one
factor at the time with the others kept fixed, and we adopt
this approach in this paper. The goal in this section is to
derive an algorithm to solve (8) based on the multiplicative
updates (MU). Let us consider the subproblem in A (with the
others fixed) after unfolding along the first mode following
Property 1:

min
A≥0

Dβ(Y
(1)
1 ‖P1A(C�p P2B)T ) + λDβ(Y

(1)
2 ‖A(P3C�p B)T ).

(10)
To tackle this problem, we follow the standard majorization-
minimization (MM) framework [29] and the results given
by [21, Lemma 2]. Given the current iterate Ã, let us pose
H1 = (C �p P2B)T and H2 = (P3C �p B)T , we obtain
the following update:

A = Ã�


[
PT1

((
P1ÃH1

).(β−2)

�Y
(1)
1

)
HT

1 + λ

((
ÃH2

).(β−2)

�Y
(1)
2

)
HT

2

]
[
PT1

(
P1ÃH1

).(β−1)

HT
1 + λ

(
ÃH2

).(β−1)

HT
2

]

.γ(β)

(11)
where A � B (resp. [A]

[B] ) is the Hadamard product (resp.
division) between A and B, A(.α) is the element-wise α
exponent of A, γ(β) = 1

2−β for β < 1, γ(β) = 1 for
β ∈ [1, 2] and γ(β) = 1

β−1 for β > 2 [30]. The subproblems
in B and C can be solved similarly and their closed form
expressions can be found in Appendix A.

Contrary to the majority of state-of-the-art methods, our
algorithms are also able to estimate the degradation ma-
trices Pi for i ∈ {1, ..., 3}. These updates can be derived
based on the classical MU associated to the matrix model
X = UVT [30]. For P1, we are interested in solving

Dβ(Y
(1)
1 ‖P1A(C �p P2B)T ). By posing VT = A(C �p

P2B)T , we derive:

P1 ← P̃1 �


[(

P̃1V
T
).(β−2)

�Y
(1)
1

]
V[

P̃1VT
].(β−1)

V


.γ(β)

. (12)

Similar rationale has been followed for the updates of P2

and P3, see Appendix B for more details.
Algorithm 1 summarizes our method to tackle (8) which

will be referred to as β-(Lr,Lr,1)-NBTD. It consists in two
optimization loops:
Loop 1: A, B and C only are alternatively updated with
downsampling matrices fixed for a maximum of i1 iter-
ations. Pi for i ∈ {1, ..., 3} kept fixed to obtain good
estimates for A, B and C.
Loop 2: All the factors, including the matrices Pi, are
alternatively updated. The maximum number of iterations
for Loop 2 is i2. For the HSR problem, the operators
Pi for i ∈ {1, ..., 3} are usually known and therefore the
parameter i2 is set to zero. Loop 2 is considered in the
case we have partial knowledge or uncertainties on one of
more downsampling operators, similarly as done in [21] with
a matrix model. This case will be later referred to as “semi-
blind”.

The Algorithm is stopped when the relative change of the
cost function Φ from (8) is below some given threshold κ,
and when the maximum number of iterations is reached.
Initialization: Many options are available to initialize
(A,B,C). Traditionally, MU-based methods are initialized
with random factors. In this work, we propose an efficient
way to initialize the low-rank factors of the LrLr1-BTD.
For C, one can draw independent and identically distributed
entries from absolute continuous joint distributions. In our
experiments, we initialized C by performing VCA [31]
on the HSI Y1, thus extracting high-resolution spectral
information. Then, the matrix S of vectorized abundance
maps is obtained by solving the following inverse problem:

ST = (P3C)
†
Y

(3)
2 . (13)

Initialization of Ar and Br for r ∈ {1, . . . , R} is performed
based on the classical MU [30] with a maximum of j1
iterations, yielding the following updates:

Ar ← Ãr �


[(

ÃrB
T
r

).(β−2)

� Sr

]
Br[

ÃrBT
r

].(β−1)

Br


.γ(β)

,

Br ← B̃r �

AT
r

[(
ArB̃

T
r

).(β−2)

� Sr

]
AT
r

[
ArB̃T

r

].(β−1)


.γ(β)

.

(14)

In the blind case, i.e., when one or several matrices Pi
are unknown, they are initialized similarly using (12) with
a maximum of j2 iterations. The initialization procedure is
summarized in Algorithm 2.



Algorithm 1 MU for β-(Lr,Lr,1)-NBTD
Input: Input nonnnegative tensors Y1 and Y2, nonnega-

tive initializations A, B, C, nonnegative downsampling
operators Pi for i ∈ {1, ..., 3}; R, ranks {Lr}Rr=1,
maximum number of iterations i1 and i2, a threshold
0 < κ� 1, and a weight λ > 0.

Output: An approximate solution to (8) under constraints
(7)

1: % Loop 1
2: i← 0, Φ0 = 1, Φ1 = 0.
3: while i < i1 and

∣∣∣Φi−Φi+1

Φi

∣∣∣ > κ do
4: % Update of matrices A, B and C
5: Update A, B and C sequentially; see Equations

(11)
6: Compute the objective function Φi+1

7: end while
8: % Loop 2
9: i← 0

10: while i < i2 and
∣∣∣Φi−Φi+1

Φi

∣∣∣ > κ do
11: % Update of factors
12: Update A, B, C and Pi for i ∈ {1, ..., 3} sequen-

tially; see Equations (11) and (12)
13: Compute the objective function Φi+1

14: end while
15: return Ŷ =

∑R
r=1

(
ArB

T
r

)
⊗ cr

Algorithm 2 Initialization of Algorithm 1
Input: Input nonnnegative tensors Y1 and Y2, nonnegative

downsampling operators Pi for i ∈ {1, ..., 3}; R, ranks
{Lr}Rr=1, maximum number of iterations j1 and j2, a
threshold 0 < κ� 1.

Output: Initial values A, B, C

1: Initialize C using VCA on Y1;
2: Compute S using (13);
3: % Non-blind case: update of Ar, Br only
4: j ← 0, Φ0 = 1, Φ1 = 0.
5: while j < j1 and

∣∣∣Φj−Φj+1

Φj

∣∣∣ > κ do
6: Update Ar, Br, see (14);
7: Compute the objective function Φj+1

8: end while
9: % Blind case: Update Ar, Br, and Pi for i ∈
{1, . . . , 3}

10: j ← 0

11: while j < j2 and
∣∣∣Φj−Φj+1

Φj

∣∣∣ > κ do
12: % Update of factors
13: Update Ar, Br, and Pi; see Equations (14) and

(12)
14: Compute the objective function Φj+1

15: end while
16: return A = [A1, . . . ,AR], B = [B1, . . . ,BR] and C

Choice of the ranks: Regarding R, intuitively one would
select the real number of materials in the image. In real
applications, reference mixing factors are unknown, thus R
is unknown as well. Therefore, in the absence of reference
endmembers, R is estimated based on e.g., subspace iden-
tification [32], [33] Then, the Lr are chosen to be large
while satisfying the conditions of Theorem 2.2. Several
works considered mixed-norm regularization to estimate
the Lr for various LL1-BTD, but these methods were not
guaranteed to provide a unique solution when applied to the
unmixing problem [13], [15]. Conversely, in [14] were given
guarantees for unique recovery of the SRI and its mixing
factors.
Comments on computational complexity: It can be veri-
fied that the computational complexity of the β-(Lr,Lr,1)-
NBTD is asymptotically equivalent to the standard MU
for β-NMF (after modal unfoldings), that is, it requires
O(IJK ×

∑R
r Lr) operations per iteration.

Parallelization: Some of the most computationally intensive
steps of the proposed algorithm can be easily ran onto a
parallel computation platform. Indeed, the complexity of
our MU given in Equation (11), for instance, is mainly
driven by the matrix products in which matrices A and H
are involved. On Matlab for example, one can easily take
of advantage of a GPU compatible with CUDA libraries
by simply transforming usual arrays into GPU arrays and
significantly speed up the Algorithm.
Comments on convergence guarantees: In practice, for the
updates of factors A, B, C and Pi, we take the element-wise
maximum between the matrix updates, that correspond to the
closed form expression of the minimizer of the majorization
built at the current iterate [21], [30], and a small positive
scalar ε (here we choose the Matlab machine epsilon).
These modified updates aim at establishing convergence
guarantee to stationary points within the Block Successive
Minimization Methods (BSUM) framework [34].

III. NUMERICAL EXPERIMENTS
We now apply our method on synthetic data sets. All tests

are preformed using Matlab R2021a on a laptop Intel CORE
i7-11800H CPU @2.30GHz 16GB RAM with GeForce
RTX3060 GPU. The code is available from ”insert link
here”.

III-A. Test setup
Our method was tested against several tensorial methods

recently and successfully used for solving the HSR problem,
namely STEREO and Blind-STEREO [35], [36], SCOTT
and BSCOTT [37], CT-STAR and CB-STAR [38], and
SCLL1 [13] and CNN-BTD-Var [14]. Among them, SCLL1
and CNN-BTD-Var were based on the LL1-BTD model,
therefore they are able to solve the unmixing problem2. We

2The performance of SCLL1 for blind spectral unmixing was not assessed
in the original work.



also benchmarked several matrix-based approaches: CNMF
[3], FUSE [2] , HySure [5] and SFIM [2]. Being based on
coupled nonnegative matrix factorization, CNMF was able
to perform joint fusion and unmixing. We chose the ranks
and regularization parameters for these algorithms according
to original works.

We initialized our algorithm using Algorithm 2 with a
maximum of 500 iterations and a threshold κ = 10−7. We
ran our method with a maximum of 1000 iterations for each
loop and κ = 10−7.

We compared the groundtruth SRI Y with the estimated
SRI Ŷ obtained by the algorithms. The main performance
metric used in comparisons was the Peak Signal-to-Noise
ratio (PSNR) [39]:

PSNR = 10log10

(
‖Y‖2F

‖Ŷ −Y‖2F

)
. (15)

In addition to PSNR, we considered different metrics [39]
described below:

CC =
1

IJK

(
K∑
k=1

ρ
(
Y :,:,k, Ŷ :,:,k

))
, (16)

where ρ(·, ·) is the Pearson correlation coefficient between
the estimated and original spectral slices;

ERGAS =
100

d

√√√√ 1

IJK

K∑
k=1

‖Ŷ :,:,k −Y :,:,k‖2F
µ2
k

, (17)

where µ2
k is the mean value of Ŷ :,:,k. ERGAS represents the

relative dimensionless global error between the SRI and the
estimate, which is the root mean-square error averaged by
the size of the SRI. We also used Spectral Angle Distance
(SAD):

SAD =
1

R

R∑
r=1

arccos

(
cTr ĉr

‖cr‖2‖ĉr‖2

)
, (18)

which computes the spectral angle distance between original
and estimated spectra, and can be used to assess unmixing
performance as well. Performance for recovery of the abun-
dance maps was assessed using the root mean-squared error
between reference S and estimate Ŝ:

RMSE =
1

R

R∑
r=1

√√√√ 1

IJ

IJ∑
d=1

(
(Sr)d − (Ŝr)d)

)2

. (19)

Finally, we considered the computational time for each
algorithm, given by the tic and toc functions of Matlab.

III-B. Datasets
Degradation model: In our experiments, we considered two
different datasets for which a reference SRI was available.
The HSI was obtained by spatial degradation of Y by P1

and P2 while the MSI was obtained by spectral degradation
of Y by P3 according to model (5).

For spatial degradation, we followed the commonly used
Wald’s protocol [25]. The matrices P1, P2 were computed
with a separable Gaussian blurring kernel of size q. Down-
sampling was performed along each spatial dimension with
a ratio d between the SRI and HSI, as in previous works
[8]–[13]. Refer to Appendix B for more details on the
construction of P1, P2.

For the spectral degradation matrix P3, we used the spec-
tral response functions of the Sentinel-2 instrument3. It spans
the electromagnetic spectrum from 412nm to 2022nm and
produced a 10-band MSI corresponding to the wavelengths
433–453nm (atmospheric correction), 458–522nm (soil, veg-
etation), 543–577nm (green peak), 650–680nm (maximum
chlorophyll absorption), 698–712nm (red edge), 733–747nm
(red edge), 773–793nm (leaf area index, edge of NIR), 785–
900nm (leaf area index), 855–875nm (NIR plateau), 935–
955nm (water vapour absorption). The spectral degradation
matrix P3 was a selection-weighting matrix that selected the
common spectral bands of the SRI and the MSI.

As done in [21], three noise statistics were considered
that are; Gaussian Noise, Poisson noise and Multiplicative
Gamma noise. For the first two, a SNR of 30dB has
been considered while for Gamma noise, we considered a
distribution of mean 1 and variance 0.05. Therefore, in our
experiments, we had λ = 1.

Synthetic dataset: We first assessed the unmixing perfor-
mance in the case where the SRI admits an exact LrLr1-
BTD. Although this dataset did real spectral images, it
allowed us to assess unmixing performance in a case where
the uniqueness conditions for the non-negative matrix fac-
torization model (see [40], [41]) were not fulfilled.

We considered R = 4 spectral signatures cr (r ∈
{1, . . . , R}) obtained from the Jasper Ridge reference data4.
The SRI Y ∈ RI×J×K (I = J = 120, K = 173) was
split into 36 equal blocks in the spatial dimensions. We set
L1 = L2 = 3 and L3 = L4 = 6. Each abundance map
Sr (r ∈ {1, . . . , R}) was a block matrix with Lr blocks
of size I

Lr
× J

Lr
such that the pure pixel assumption was

valid. Thus in each block, at most one material was active, as
indicated by the parcel map shown in Figure 1. Each block
in the parcel map was a patch composed of entries equal
to one. The abundance maps resembled agricultural fields.
This was a case for which unconstrained non-negative matrix
factorization was not unique.

3available for download at https://earth.esa.int/web/sentinel/user-guides/
sentinel-2-msi/document-library/-/assetpublisher/Wk0TKajiISaR/content/
sentinel-2a-spectral-responses.

4Available for download at http://lesun.weebly.com/
hyperspectral-data-set.html.

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/ document-library/-/asset publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses
https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/ document-library/-/asset publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses
https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/ document-library/-/asset publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses
http://lesun.weebly.com/hyperspectral-data-set.html
http://lesun.weebly.com/hyperspectral-data-set.html


Fig. 1. Parcel map for the first dataset

Formally, we computed the reference SRI as

Y =

R∑
r=1

Sr ⊗ cr.

For P1 = P2, we had q = 9 and d = 4 so that IH =
JH = 30. For P3, the spectral response of the Sentinel-2
MS sensor led to KM = 10.
Semi-real datasets: Second, we considered a semi-real
dataset based on the Jasper Ridge reference SRI Y ∈
R100×100×173. This dataset was composed of four materials:
road, soil, water and vegetation. For P1 = P2, we had q = 9
and d = 4, and KM = 10. We chose R = 4, and L1 = 15,
L2 = 8, L3 = 20, L4 = 13.

We also considered a semi-real dataset based on the
Samson reference SRI Y ∈ R95×95×156. This dataset was
composed of three materials: soil, water and vegetation. For
P1 = P2, we had q = 9 and d = 5, and KM = 10. We
chose R = 3, and L1 = 15, L2 = 12, L3 = 10.

III-C. Results
In order to assess the performance of our approach for

data fusion, we reported the quality metrics obtained with
each method over 5 trials in the tables below. The two best
metrics of each columns were shown in bold.

For the unmixing task, we plotted the reference and
estimated spectral signatures and abundance maps obtained
by our algorithm. We computed the SAD and RMSE on the
permuted materials so that they match the reference.
Results on synthetic dataset:

Table I reports the quality metrics obtained for the syn-
thetic dataset. Except for runtimes, one can observe that
our method competes favorably with SOTA methods, in
particular for Gaussian and Gamma noise settings, our
method respectively ranks third and second. Among the
LL1-based methods, our algorithm provided the best results,
thus highlighting the gain in flexibility provided by the
use of Lr different from each other. Other benchmarked
tensor methods also yielded high performance, but they were
not suited for spectral unmixing. Figures 2 and 3 show
the unmixing results obtained with our method, depicting
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Fig. 2. Reference (black dashed line) and estimated (red
dots) spectral signatures with (a) Gaussian noise, (b) Poisson
noise, (c) Gamma noise, synthetic dataset.

a correct estimation of ground-truth spectral signatures and
abundance maps for the various noise statistics.

Method CC SAD RMSE ERGAS PSNR (dB) Time (sec)
Best 1 0 0 0 ∞ 0

Gaussian Noise - 30dB
STEREO 0.997 4.43 9.339e-3 2.699 34.44 1.452

BSTEREO 0.990 8.37 1.876e-2 4.473 29.19 1.338
SCOTT 0.993 6.57 1.614e-2 3.310 32.04 2.047

BSCOTT 0.994 5.40 1.382e-2 3.419 32.11 0.228
SCLL1 0.988 5.79 3.297e-2 5.148 25.15 34.13

CT-STAR 0.999 0.51 1.332e-3 0.919 38.92 0.128
CB-STAR 0.999 2.76 6.399e-3 1.578 38.17 16.36
BTD-Var 0.996 5.33 1.270e-2 2.980 33.75 3.645
CNMF 0.999 2.57 1.238e-2 2.113 31.68 1.930
FUSE 0.995 3.79 1.341e-2 2.826 31.64 0.148

HySure 0.990 8.17 2.025e-2 4.114 28.61 16.75
SFIM 0.981 9.77 3.455e-2 5.384 25.92 0.254

Alg. 1 (β = 2) 0.997 2.16 1.043e-2 2.240 37.72 35.22
Poisson Noise - 30dB

STEREO 0.999 2.82 8.882e-3 1.347 35.31 1.573
BSTEREO 0.995 7.98 2.134e-2 2.809 29.93 1.379

SCOTT 0.999 2.77 1.122e-2 1.518 34.30 2.087
BSCOTT 0.999 1.47 1.146e-2 1.601 34.11 0.204
SCLL1 0.987 5.70 3.609e-2 5.434 24.46 33.57

CT-STAR 0.999 0.25 5.272e-3 0.713 39.71 0.102
CB-STAR 0.999 1.25 6.408e-3 0.991 38.02 20.14

CNN-BTD-Var 0.997 5.30 1.260e-2 2.952 32.76 3.302
CNMF 0.999 1.09 7.313e-3 1.364 36.20 1.872
FUSE 0.994 2.77 1.470e-2 2.813 30.92 0.146

HySure 0.998 3.04 1.375e-2 2.174 32.35 17.48
SFIM 0.990 4.96 2.544e-2 3.817 28.07 0.281

Alg. 1 (β = 1) 0.999 1.19 1.065e-2 0.776 35.69 23.42
Gamma Noise

STEREO 0.996 7.03 1.645e-2 2.249 31.36 1.986
BSTEREO 0.991 11.1 2.739e-2 3.355 28.60 1.677

SCOTT 0.991 8.45 2.935e-2 3.578 31.56 3.306
BSCOTT 0.988 3.88 3.127e-2 4.004 29.69 0.385
SCLL1 0.980 5.76 3.357e-2 6.066 24.58 42.711

CT-STAR 0.999 0.60 2.700e-3 0.501 37.79 0.160
CB-STAR 0.999 2.44 7.975e-3 1.356 37.31 27.326

CNN-BTD-Var 0.995 5.39 1.338e-2 3.357 32.85 4.909
CNMF 0.997 1.31 1.591e-2 2.501 30.33 2.060
FUSE 0.993 3.11 1.690e-2 3.139 29.93 0.175

HySure 0.988 5.96 3.253e-2 4.324 28.37 23.871
SFIM 0.986 5.82 3.195e-2 4.660 26.32 0.368

Alg. 1 (β = 0) 0.999 0.72 8.487e-3 9.736 37.90 64.243

Table I. Reconstruction metrics, synthetic dataset.

Results on semi-real dataset:
Table II reports the quality metrics obtained for the

semi-real dataset. Although amongst the slowest methods,
our algorithm performed relatively well on this dataset. In
particular, it provided the best results amongst the LL1-
based approaches with Gaussian noise and had performance
comparable to that of most approaches. It ranked generally
third best for Poisson noise, and yielded the best metrics
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Fig. 3. Reference (black dashed line) and estimated (red
dots) abundance maps with (a) Gaussian noise, (b) Poisson
noise, (c) Gamma noise, synthetic dataset.

for Gamma noise. In Figures 4 and 5, one can see the high
quality of the unmixing results.

Method CC SAD RMSE ERGAS PSNR (dB) Time (sec)
Best 1 0 0 0 ∞ 0

Gaussian Noise - 30dB
STEREO 0.987 3.19 1.272e-2 2.629 31.59 1.647

BSTEREO 0.987 3.25 1.299e-2 2.598 31.39 1.407
SCOTT 0.982 4.60 1.732e-2 3.250 29.52 0.170

BSCOTT 0.973 4.67 2.078e-2 4.041 28.34 0.197
SCLL1 0.976 5.78 2.957e-2 3.713 25.62 11.98

CT-STAR 0.886 8.66 5.304e-2 6.876 19.43 0.067
CB-STAR 0.990 3.16 1.296e-2 2.240 31.39 10.59

CNN-BTD-Var 0.920 8.44 4.084e-2 5.677 21.47 1.267
CNMF 0.998 1.59 9.373e-3 1.587 33.83 1.338
FUSE 0.983 3.47 1.962e-2 2.933 28.35 0.242

HySure 0.980 6.77 1.964e-2 3.941 28.62 15.08
SFIM 0.975 7.77 2.911e-2 4.013 27.41 0.445

Alg. 1 (β = 2) 0.987 3.11 1.849e-2 2.640 28.79 43.54
Poisson Noise - 30dB

STEREO 0.989 3.01 1.378e-2 2.617 31.10 1.597
BSTEREO 0.989 3.05 1.435e-2 2.479 30.69 1.673

SCOTT 0.991 3.30 1.584e-2 2.361 30.20 0.180
BSCOTT 0.981 3.55 2.282e-2 3.191 28.11 0.213
SCLL1 0.979 5.23 2.983e-2 3.656 25.46 11.387

CT-STAR 0.886 8.63 5.328e-2 7.204 19.53 0.092
CB-STAR 0.992 2.89 1.371e-2 2.269 31.09 7.592

CNN-BTD-Var 0.920 8.63 4.152e-2 6.078 21.45 1.130
CNMF 0.999 0.90 6.000e-3 1.493 27.96 1.302
FUSE 0.984 2.88 2.066e-2 3.227 28.15 0.276

HySure 0.998 2.05 1.196e-2 1.778 33.55 13.734
SFIM 0.989 3.71 2.083e-2 2.832 29.54 0.320

Alg. 1 (β = 1) 0.990 3.16 1.712e-2 2.657 29.58 42.241
Gamma Noise

STEREO 0.986 3.83 1.667e-2 2.973 29.60 1.549
BSTEREO 0.986 4.01 1.720e-2 2.856 29.38 1.391

SCOTT 0.966 8.19 4.495e-2 4.815 27.46 0.147
BSCOTT 0.967 5.62 3.741e-2 4.192 26.32 0.163
SCLL1 0.969 5.77 3.706e-2 4.410 24.17 10.579

CT-STAR 0.885 8.66 5.308e-2 7.292 19.46 0.070
CB-STAR 0.990 3.23 1.475e-2 2.547 30.53 8.243

CNN-BTD-Var 0.917 8.75 4.181e-2 6.241 21.36 1.005
CNMF 0.970 3.57 3.095e-2 4.316 26.20 0.960
FUSE 0.981 3.09 2.191e-2 3.432 27.64 0.217

HySure 0.986 5.01 2.968e-2 3.435 28.99 11.662
SFIM 0.983 4.56 2.764e-2 3.341 27.27 0.299

Alg. 1 (β = 0) 0.996 1.36 1.389e-2 2.058 31.66 59.298

Table II. Reconstruction metrics, semi-real dataset.

Results on semi-real dataset with estimation of P1 and
P2:

We now assess the performance of our method in the
semi-blind case. In this part, we consider the Samson-based
dataset and we consider P1 and P2 to be unknown, while P3

is known, with Gaussian noise. We compare our algorithm
with i2 > 0 to two semi-blind tensor approaches, respec-
tively BSTEREO and BSCOTT. In Table III, we can see that
except for PSNR, our algorithm yielded the best metrics. In

0

0.05

0.1

0.15

0.2

0.25
SAD = 1.24143e-07

(a)

0

0.05

0.1

0.15

0.2

0.25
SAD = 8.99962e-08

(b)

0

0.05

0.1

0.15

0.2

0.25
SAD = 1.05893e-07

(c)

Fig. 4. Reference (black dashed line) and estimated (red
dots) spectral signatures with (a) Gaussian noise, (b) Poisson
noise, (c) Gamma noise, semi-real dataset.
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Fig. 5. Reference (black dashed line) and estimated (red
dots) abundance maps with (a) Gaussian noise, (b) Poisson
noise, (c) Gamma noise, semi-real dataset.

particular, its SAD and RMSE were way lower than those
of the benchmarked algorithms, since our approach is the
only one able to perform unmixing. Our algorithm was also
the only one to be able to estimate the degradation matrices.
In Figure 6, we could see the correct reconstruction of the
spectral signatures. Finally, we computed the relative error
between the reference HSI Y1 and the tensor obtained from
degradation of the SRI with the estimated degradation ma-
trices, namely Ŷ1 = Y •1 P̂1 •2 P̂2. Our approach yielded
an error of 1.6 · 10−3.

Method CC SAD RMSE ERGAS PSNR (dB) Time (sec)
Best 1 0 0 0 ∞ 0

Gaussian Noise - 30dB
Alg. 1 (β = 2) 0.980 3.56 1.930e-2 2.704 27.74 22.315

BSTEREO 0.975 6.84 2.514e-2 3.188 25.72 1.755
BSCOTT [4,4] blocks 0.967 5.94 2.061e-2 3.506 29.03 0.050

Table III. Reconstruction metrics, semi-real dataset, blind
case.

IV. CONCLUSIONS
In this paper, we have shown that nonnegative block-term

decompositions along with coupled optimization problems
using β-divergence can be used meaningfully for jointly
solving the super-resolution and blind spectral unmixing
problems. We have provided a family of simples algorithm
to tackle these problems and have illustrated the behaviour of
the method on synthetic and semi-real datasets with various
noise statistics. Further works will focus on the development
of penalized variants of Problems (8). In particular, we will
investigate the use of minimum-volume constraints as a rank-
estimation strategy. Efficient optimization algorithms will
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Fig. 6. Reference (black dashed line) and estimated (red
dots) spectral signatures with Gaussian noise, semi-real
dataset, blind case.

also be envisioned. A parallelized version of our algorithm
will highly decrease its computation time. Extended test
cases, including almost collinear materials and/or inter-
image variability, will be addressed.

APPENDIX A
DETAILED MU UPDATES

In this appendix, we give the closed-form expressions for
the multiplicative updates of B and C, similarly to (11).

B = B̃�
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(20)
where H1 = (C�p P1A)T and H2 = (P3C�p A)T . For
C, we have
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(21)
with H1 = (P2 �P1) [(A1 �B1) 1L1

, . . . , (AR �BR) 1LR
]
T

and H2 = [(A1 �B1) 1L1
, . . . , (AR �BR) 1LR

]
T .

The updates for P2 (resp. P3) are obtained by substituting
P1 by P2 (resp. P3), Y(1)

1 by Y
(2)
1 (resp. Y(3)

2 ) and defining
VT = B(C�pP1A)T (resp. VT = C(A�vecB)T ) in (12).

APPENDIX B
SPATIAL DEGRADATION MATRICES

Here, we explain in details how the degradation matrices
are constructed. For this appendix, we consider that P1 =
P2. As in previous works, P1 is constructed as P1 = S1T1,

where T1 is a blurring matrix and S1 is a downsampling
matrix.

The blurring matrix is constructed from a Gaussian blur-
ring kernel φ ∈ Rq×1 (in our case, q = 9) with a
standard deviation σ = q

√
2 log 2
4 . For m ∈ {1, . . . , q} and

m′ = m−
⌈
q
2

⌉
, we have

φ(m) =
1√

2πσ2
exp

(
−m′2

2σ2

)
.

Thus, T1 ∈ RI×I can be expressed as

T1 =



φ(d q
2e) ... φ(q) 0 ... 0

...
. . . . . . . . .

...

φ(1)
. . . . . . 0

0
. . . . . . φ(q)

...
. . . . . . . . .

...
0 ... 0 φ(1) ... φ(d q

2e)


.

The downsampling matrix S1 ∈ RIH×I , with downsam-
pling ratio d, is made of IH independant rows such that
for i ∈ {1, . . . , IH}, (S1)i,2+(i−1)d = 1 and the other
coefficients are zeros.
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