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Controlled defects to link wetting properties to surface
heterogeneity†

Romain Lhermerouta and Kristina Davitt∗a

Small-scale heterogeneities have long been understood to give rise to contact angle hysteresis.
More recently, the question of how they influence contact line dynamics has generated interest.
Models that express the hysteresis or dynamics in terms of defect properties exist but have yet to
be conclusively tested by experiment. Here we produce heterogeneous surfaces and thoroughly
characterize individual defects. Precise dynamical measurements allow us to conclude that there
is no evidence of a thermally-activated dynamics due to their presence, but that the hysteresis
scales with their concentration and the square of their height, as predicted by some simple models.

1 Introduction
Defects or inhomogeneities on a solid surface affect how a liquid
front moves over the surface. This is most readily seen in the con-
tact angle hysteresis: the angle that the edge of a drop makes with
the underlying surface depends on the direction in which the drop
is moving. This arises from the ability of defects to pin the three-
phase contact line, thus necessitating a minimum force to over-
come the pinning and for the drop to move. In their pioneering
work, Joanny and de Gennes developed a simple model to express
the balance between the pinning force of a individual chemical
or topographical defect and the elastic restoring force of the de-
formed contact line and then related it to the macroscopic contact
angle hysteresis in the case of non-interacting defects1. Although
originally formulated for scales beyond that where van der Waals
interactions are important, this model has recently been shown2

to describe the pinning on nano-defects with pinning energies of
the order of kBT . Further models and numerical studies3 have in-
vestigated collective effects arising from the interaction between
defects. Although hysteresis is readily observed, only a few exper-
imental studies have attempted to show that model predictions
are consistent with properties of the individual, microscopic or
nanoscopic defects2,4–8, or exploited its variation with concentra-
tion to investigate collective effects9,10. Systematic experiments
to determine the scaling on defect parameters are lacking and
which, if any, models are applicable to any given real surface re-
mains therefore to be fully tested.

Contact angle hysteresis is easily observed in everyday phe-
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nomena, such as the asymmetry of a drop slowly sliding down
a vertical wall or stuck inside a straw. How defects affect the
full dynamics of the contact line is less evident to the naked eye.
This can be characterized by measuring the variation of the con-
tact angle with the velocity of the contact line. A few experi-
ments11–14 have attempted to quantify how measurable surface
properties affect the obtained dynamics. The task is not simple
as the motion of the contact line on the background reference
surface (i.e. without additional defects) exhibits its own dynam-
ics, and in addition, experiments may access multiple dynami-
cal regimes, each of which may be influenced differently by the
presence of defects. For example, at high capillary number one
expects viscous effects to be important, whereas at low veloci-
ties the motion may be dominated by thermally activated pinning
and depinning on molecular or nanoscale imperfections. Indeed,
even without explicitly added defects, it is an outstanding ques-
tion of how to describe the full range of dynamics. Some attempts
have been made to account for both viscous dissipation and ac-
tivated dynamics8,15,16, including by ourselves17,18, where we
propose a unified description of these regimes and extend the
static model of Joanny and de Gennes to account for thermal ac-
tivation. Although the situation is not yet clear, consensus is that
—provided the energy barriers to motion created by defects are
small enough— the slope of the dynamics in the activated regime
will reflect characteristics of the defects. To answer the question
of how defects affect the dynamics, it is therefore necessary to
have an understanding of the dynamics on the reference surface,
and then to compare the regime at lowest capillary numbers to
that on surfaces containing well-characterized defects.

In this paper we produce and characterize purely topographi-
cal defects with continuously varying size, shape and density and
measure the dynamics for each with several different liquids. We
use a reference surface that presents a minuscule background hys-
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teresis and whose dynamics has been understood19. We find that
the presence of defects has no effect on the slopes of the dynam-
ics, even for defects with estimated energy barriers of the order
of 100 kBT . The presence of defects only separates the advancing
(A) and receding (R) branches of the dynamics, i.e. controls the
hysteresis, which we define here as

H = γ (cosθR− cosθA) , (1)

where γ is the liquid-vapor interfacial tension and the angles are
measured at a low enough velocity such that viscous effects are
negligible. We find that H varies linearly with the density of de-
fects for all cases studied, from which an energy dissipated per
defect can be determined; here ranging from 100 to 105 kBT . Fur-
ther, for the spherical cap and Gaussian-shaped defects used here,
H is found to scale as the square of the defect height. First we fol-
low previous studies in comparing to the original model based
on strong independent defects1 and find that experimental re-
sults agree well with the simple scaling derived from this model,
even in the case of weak and dense defects, that is, outside of
the range of validity of the model. We suggest that the physical
mechanism responsible for the observed hysteresis has therefore
not been fully understood and call for further numerical work to
simulate the hysteresis on surfaces covered with defects of known
properties (such as the defect shape and concentrations measured
herein) to evaluate the importance of other mechanisms such as
collective effects or the existence of a force threshold even for
independent weak defects.

2 Experiment

2.1 Obtaining defects

The purpose of this study is to link macroscopic wetting proper-
ties —the dynamics and hysteresis— to the heterogeneity of the
underlying solid surface at microscopic scales. It is therefore nec-
essary to have control over individual defects. They should be
large enough that they are easily characterized by standard mi-
croscopy tools, but small enough that their associated energy bar-
riers are comparable to thermal energy such that it is conceivable
to measure a regime of thermally-activated motion, if it is indeed
present. This is a question of resolution in the measurement of
the dynamics.

Activated motion is the contact line moving from one local en-
ergy minimum to another by thermal fluctuations and can be
modeled by an Arrhenius process. In the simplest form, it yields
a velocity v (or capillary number Ca) that depends exponentially
on the distance of the cosine of the dynamic angle from the equi-
librium one:

|Ca|=
∣∣∣∣ηv

γ

∣∣∣∣= Ca0 exp
[

γλ 2

2kBT

∣∣cosθ − cosθeq
∣∣] , (2)

where η is the liquid viscosity, γ the liquid-vapor interfacial ten-
sion, kB is Boltzmann’s constant and T is the temperature. Here
λ is referred to as the activation length and Ca0 as the transition
capillary number18, which has also sometimes been related to the
thermal attempt frequency20. If the dynamics is truly activated,
then the activation length can be found from the slopes of exper-

imental curves plotted on a semi-logarithmic scale (for example,
see Fig. 2): ∣∣∣∣dlog |Ca|

dcosθ

∣∣∣∣= γλ 2

2kBT ln10
. (3)

In the experiments we describe below, a variation of about 0.01◦

over one decade in velocity can be detected. A typical equilibrium
contact angle in this study is θeq ≈ 15◦. Assuming that the energy
barrier to motion created by a single defect is of order γλ 2, then
eqn 3 gives a maximum energy barrier of Eb ≈ 5.104 kBT in or-
der for an activated regime to be detectable. For simple liquids
and assuming that λ is of the order of the defect dimension this
implies that defects should be of the order of 100nm or smaller.

We have achieved this by sintering silica nanospheres at dif-
ferent temperatures to obtain topographical bumps with differ-
ent heights and slopes. The procedure has been borrowed from
Ref.[ 21] and is only briefly outlined here. A piece of silicon
wafer is cleaned in piranha solution then activated in oxygen
plasma (30W, Harrick Plasma PDC-002) for 3 min. It is then im-
mediately placed in a 1 mgml−1 solution containing PEI polymer
(polyethylenimine, Sigma-Aldrich) and left for 1 h. The adsorbed
PEI layer is charged oppositely to the spheres; it adheres the
spheres to the surface and minimizes the clustering of particles
that occurs when a particle-containing liquid is dip-coated on a
surface. After rinsing under deionized water, the sample is then
stirred in a diluted solution of silica nanospheres. Although the
stirring time and concentration of the nanosphere solution con-
trol the number density of spheres that are deposited in a pre-
dictable way22, we nonetheless measure the density of beads on
each sample by counting them under AFM. We count sufficiently
many to ensure that the counting error is typically less than 3%.
Unless otherwise stated, the nanospheres used in this study have a
nominal diameter of 80 nm (Klebosol 30HB50K, AZ Electronic Ma-
terials, France). Samples are then placed in an oven (Nabertherm
L5/13/B180) that ramps the temperature up in 2 h and holds it
for another 2 h at final temperatures between 1080◦C and 1180◦C.
This destroys the PEI layer, causes a thick silicon oxide to form on
the bare parts of the wafer, and sinters the silica nanospheres,
as illustrated in Fig. 1. The final height h0 and shape profiles of
the sintered beads are obtained by AFM. The resulting surface is
thus chemically homogeneous (silicon oxide) but has topograph-
ical bumps of known shape and density. Figure 1 shows a typi-
cal distribution and example shapes of the obtained defects. We
have verified that the molecular coating described below has a
negligible effect on the size and shape of the defects formed from
sintered 80 nm nanospheres23.

2.2 The reference surface

A reference surface that exhibits hysteresis indicates that there
are heterogeneities present even in absence of explicitly added
nanospheres. This raises the specter of competition or of col-
lective behavior between the two classes of defects and compli-
cates the interpretation of which microscopic parameters control
the hysteresis and dynamics. To minimize this possibility, we aim
to use a reference surface with minimal intrinsic hysteresis. We
have therefore deposited a PDMS pseudo-brush on the silicon ox-
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Fig. 1 (a) Schematic illustration of the procedure to fabricate controlled defects. (b) SEM images of the produced surfaces illustrating (left, scale bar
1µm) the homogeneity in coverage even for high concentrations (here n = 35µm−2) and the shapes (right, scale bars 100nm) with little (1080◦C) or
considerable (1164◦C) sintering. (c) Example height profiles of sintered defects obtained by AFM. Red and blue lines are fits to eqn 5 for sintering
temperatures of 1144◦C and 1164◦C respectively. The former curve has been shifted upwards for clarity.

ide surface, as illustrated in Fig. 1. PDMS pseudo-brushes have
been reported to show exceptionally low hysteresis and they are
very easily produced24,25. We have recently shown19 that the
contact line dynamics of good solvents, such as alkanes, on such
surfaces is dominated by a visco-elastic dissipation that depends
on the polymerization index of PDMS used to create the brush,
with hydrodynamic dissipation kicking in at capillary numbers
above roughly Ca ≈ 10−7. In the work reported here, we exclu-
sively use PDMS with a polymerization index of N=126, which
yield pseudo-brush layers about 4nm thick. For decane on such a
reference surface we find a contact angle hysteresis of the order
of 0.1◦ for velocities below 10µms−1 (red curve in Fig. 2), which
is better than the hysteresis observed on other molecular-scale
coatings such as carefully produced self-assembled monolayers of
thiols or silanes, while being much easier to obtain reproducibly.
The hysteresis with water is roughly 10◦ at 10µms−1 or nearly 2◦

at the minimum velocities we can attain.

2.3 Wetting measurements

We use a custom-built dip-coating apparatus to measure contact
line dynamics. The principle is straightforward, and exhaustive
details have been published elsewhere26. As illustrated in the in-
set of Fig. 2, the sample is plunged into, or retracted from, a liquid
bath at a velocity controlled by either a motorized or piezo-driven
stage. The dynamic contact angle θ is obtained by examining the
capillary rise zcap under microscope and from the following rela-
tion:

zcap =

√
γ

ρg

√
1− sinθ (4)

where ρ is the liquid density and g is the standard acceleration
due to gravity. Here we report measurements made with decane,
hexadecane or water. The liquid properties used in this study are
given in Table 1. Since one aim of this work is to examine the
possible existence of thermally-activated motion, it is necessary

to measure the dynamics down to the lowest possible velocities.
Care has been taken to minimize vibrations, temperature varia-
tion and evaporation, which are key to obtaining reliable dynam-
ics at velocities down to as low as 1nms−1. We are able to reach
a precision of 0.01◦ in relative variations of the contact angle and
about 1◦ in the absolute angle.

The contact angle hysteresis, defined in eqn 1, is determined
here from the dynamic advancing and receding angles measured
at a velocity of 10µms−1.

Table 1 Liquid properties at 20◦C

liquid γ (mN/m) ρ
(
103kgm−3) η (mPas) θ(◦)

decane 23.83 [27] 0.7300 [28] 0.92 [28] 15
hexadecane 27.47 [27] 0.7733 [28] 3.34 [28] 33
water 72.88 [27] 0.9982 [29] 1.0016 [29] 106

3 Results and analysis

3.1 Dynamics

Figure 2 shows the contact line dynamics measured on the ref-
erence surface in the absence of any additional defects and the
dynamics on a surface with nearly 1 nanosphere/µm2. Here the
defects are barely sintered (1080◦C, h0 = 74.1nm) and the liquid is
decane. The dynamics are shown on a logarithmic scale, empha-
sizing the lowest velocities, where thermal activation may play a
role.

Fits over the lowest four decades in velocity to eqn 3 yield ac-
tivation lengths λ of order 100nm for both the reference and the
surface with defects. However, in the case of the former curve,
in a previous study19 we showed that the contribution coming
from hydrodynamic dissipation is negligible below approximately
100 µms−1 and that the remaining dynamics can be entirely at-
tributed to a visco-elastic dissipation in the thin PDMS layer. In
other words, there is no evidence of thermal activation on the ref-
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Fig. 2 Contact line dynamics measured on the reference surface (red symbols) and on a surface covered with defects (blue symbols) using decane.
The defects were sintered at 1080◦C and have a concentration of n = 0.8µm−2. Error bars shown on the data point taken at 10 µms−1 correspond to the
uncertainty in the absolute angle. This is also the velocity at which the hysteresis is defined. Inset illustrates the capillary rise near a solid surface and
the quantities defined in eqn 4.

erence surface. There is no detectable difference in slope when
defects are added, from which we conclude that there is no evi-
dence for activation over the defects either. One may ask if the de-
fects and their energy barrier to motion are indeed small enough
to generate a detectable thermal activation. As described in sec-
tion 3.3 below, much shallower defects have also been produced,
which, consequently, have a much lower energy barrier. Dynamics
obtained in this case† show a much smaller hysteresis such that
the two dynamical curves nearly overlap on the scale of Fig. 2.
There is still no detectable change in the low-velocity slope.

3.2 Hysteresis and defect concentration

We prepared a series of samples with different defect concen-
trations for nanospheres sintered at two different temperatures.
Three liquids were used for each: decane, hexadecane and wa-
ter. Figures 3a and b show the hysteresis obtained from the sep-
aration of the advancing and receding branches of the dynam-
ics at 10µms−1. There is a fundamental question of where the
usual quasi-static definition of the hysteresis is located on an ex-
perimental dynamical curve, a notion that we have recently at-
tempted to clarify18. Here, however, since the slope of the dy-
namics does not change with the presence of defects, the precise
choice of the velocity at which the hysteresis is defined is of little
consequence: it can potentially add an constant offset to the ab-
solute H but does not change the variation of H (from sample to
sample), which is what we will use in the following.

Highly sintered spheres result in nearly Gaussian-shaped de-
fects with a width of 2d = 130nm, as seen in the AFM profiles in
Fig. 1c. Figure 3a shows that the hysteresis scales linearly with
the defect concentration n for the two alcanes, up to the highest
concentrations tested. This corresponds to very dense coverage
since the defects are separated by about 200nm, a distance com-
parable to their width. The data for water is not shown as it was

too noisy to extract a reliable slope. Indeed, it should be noted
that the full range of hysteresis here corresponds to less than 1.5◦

and that the ability to measure such small variations due to the
defects is in part due to the small and reproducible intrinsic hys-
teresis of the background surface, particularly when used with
good solvents such as alkanes. The hysteresis measured with wa-
ter is shown for barely sintered spheres in Fig. 3b, and still found
to scale with n up to the highest concentrations. In this case,
the detailed profile cannot be obtained by AFM due to tip effects
and undercut, but we can approximate it by a spherical cap. This
shape of defect pins the contact line more strongly and thus the
hysteresis is significantly larger. The hysteresis also scales with
n for the two alcanes (not shown in Fig. 3b but included in the
summary Fig. 6), but the maximum concentrations tested were
lower since the surfaces became perfectly wetting at concentra-
tions below 10µm−2. Figure 3b shows that the advancing and
receding angles both move away from the intermediate, equilib-
rium contact angle as the concentration increases. This has been
observed in other studies with topographic defects4–6 and can be
interpreted by the fact that such defects have a bipolar force that
is more wettable on one half and less wettable on the other (see
Fig. 5 and Appendix A). In the case where the more and less wet-
table halves are nearly symmetric, then the force averaged over
the surface is roughly null. This is in contrast to chemical de-
fects, which usually have either a positive or negative force and
therefore on average make the surface more or less wettable30.

A hysteresis that scales with the concentration has been inter-
preted as defects acting independently to pin the contact line. If
this is the case, the slopes in Fig. 3 give the energy dissipated as
the contact line jumps over a single defect. The values of H/n are
given in each figure. For the case of barely sintered spheres and
decane, the slope is ≈ 4.104 kBT , which is of the same order as the
energy barrier estimated in Section 2.1. The slopes are at least an
order of magnitude smaller in the case of the sintered spheres and
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still no change in the dynamics is observed.

3.3 Hysteresis and defect shape

Next, we prepared a series of samples with nominally the same
defect concentration, but sintered at 10 different temperatures.
Defect profiles were obtained by AFM for each sample. Fig-
ure 1c shows 2 examples. A mean defect height ranging from
h0 = 4.2± 0.6nm to 74.1± 1.0nm was determined from the de-
tailed image analysis of typically 20 defects per sintering temper-
ature. AFM yields accurate height data, but profile information
can require interpretation due to possible tip-convolution effects
and the inability to image undercut structures such as the bottom
half of a sphere. These effects are most important for barely sin-
tered defects. For final defect heights below 30nm, the measured
profiles are well described by a Gaussian

z = h0 exp
[
−x2 + y2

2d2

]
, (5)

where we refer to 2d as the width and h0 as the height. The
maximum slopes are less than 20◦ and the convolution with the
AFM tip of radius order 5nm introduces only a small error in the
overall defect width, which ranges from 80 to 200nm.

The hysteresis was measured on each surface using two al-
canes, as before. Knowing that H ∝ n from the experiments de-
scribed above, an energy dissipated per defect was found for each
shape by subtracting the reference substrate hysteresis and nor-
malizing by the concentration n = 5.9±0.2µm−2. Figure 4 shows
the dissipated energy as a function of the defect height. It ranges
from 105 kBT down to 250 kBT . In order to interpret the depen-
dence on the shape, we first briefly recall the ideas that lead to
the scaling expression for the hysteresis that is often quoted in
experimental papers.

In a static picture, the shape that a contact line takes in the
vicinity of a single defect depends on the balance between the
pinning force of the defect and the elastic restoring force of the
contact line. In the picture of Joanny and de Gennes, hysteresis
arises because the force balance is multistable: there are multi-
ple, locally stable energy minima and the specific configuration
that the contact line adopts depends on the direction in which
it is moving. They developed expressions for both forces appli-
cable to a single defect and propose a graphical solution to the
balance, like that shown in Fig. 5a. Figure 5b shows the sequence
of solutions for an advancing and for a receding contact line, and
the shaded area is the total energy dissipated as the contact line
moves back and forth over one defect. Assuming that defects act
independently, this area is H/n. They introduced the notion of
weak and strong defects to refer to defects that are monostable
and those that are multistable. Here we use the terminology very
strong to signify that the defect force is at some points much much
steeper than the elastic restoring force (in the coordinates plotted
in Fig. 5). In this limit the shaded areas are nearly triangular, and
consequently the hysteresis scales as

H = n

(
Fmax

d
)2

k
, (6)

where Fd is the defect force and k is the Hookean spring constant
of the contact line. The spring constant can be written1

k =
γ sin2

θeq

ln(L/d)
, (7)

where d is of order of the size of the defect and L is a large
scale cutoff often taken as the capillary length or the size of a
drop. Equation 6 has often been used to interpret experimen-
tal data2,4–6,8,31. In the case of Gaussian defects, the maximum
defect force can be written (see Appendix A)

Fmax
d =

√
2πγe−1/2 sinθeqh0. (8)

According to eqn 6 the hysteresis therefore scales as

H = 2πe−1 ln(L/d)γh0
2n. (9)

The same dependence, with a different numerical prefactor, can
be found for spherical-cap shaped defects.

For these shapes, the defect width does not enter into the esti-
mate for H when assuming very strong defects. So, tip convolution
errors do not enter. Returning to Fig. 4, a hysteresis that scales as
the square of the defect height agrees with the experimental data.
The full range of defect sizes are shown here, spanning nearly 3
orders of magnitude in H/n, with the most sintered spheres yield-
ing 250 kBT .

3.4 Hysteresis summary

Equation 9 also gives a prediction for the scaling with the other
parameters: the concentration of defects and the liquid. Figure
6 shows the experimental hysteresis (rescaled by the surface ten-
sion and with the hysteresis of the reference surface subtracted)
as a function of nh0

2 for all liquids, defect shapes and concentra-
tions used in this study.

In the case of the defect concentration, in addition to the direct
proportionality to n, the large-scale cutoff L can depend on the
average spacing between defects1. Since we find H ∝ n for any
given shape, we may argue that we are not sensitive to this varia-
tion, which appears as a logarithmic factor. It would nonetheless
be perilous to attempt to extract the ln(L/d) from Fig. 6 since it
depends highly on the prefactor of the scaling relation.

In the case of varying the liquid, both γ and θeq are changed.
For strong defects, the angle dependence of the defect force and
of the elastic force cancel, leaving a hysteresis proportional to the
surface tension. It is already clear in Fig. 3a —which shows the
normalized hysteresis— that there subsists a weak dependence
on the contact angle, which is roughly 15◦ in the case of decane
and 33◦ for hexadecane. This is seen again in Fig. 6 where hex-
acane data lies consistently above decane data. Such a liquid-
dependence has been observed by others6, who proposed the pos-
sibility of the emergence of a correlation length along the contact
line and collective effects. We return to collective effects below,
but here we note that an alternative possibility valid even for de-
fects acting independently: as can be seen from geometrical ar-
guments, for defects that are multistable but are not very strong
according to the terminology introduced in the previous section,
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Fig. 3 Hysteresis as a function of the defect concentration (a) for heavily sintered defects with the profile shown in Fig. 1 (1164◦C, h0 = 6.3nm) and
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(a)

(b)

Fig. 5 Graphical method of solving the force balance according to Ref.[1] for a defect force Fd corresponding to a topographical bump and a Hookean
elastic force corresponding to the line with slope k. (a) For some position of the contact line far from the defect (y∞) there are two stable solutions (and
one unstable) when the effective spring constant k of the contact line is not too stiff. (b) The grey areas represent the hysteresis energy over a single
defect.

the shaded areas in Fig. 5 cannot be approximated by triangles
and therefore depend on the details of the defect force Fd and not
just on Fmax

d as is assumed in eqn 6. In this case, the hysteresis
still scales with γ but its dependence on θeq is not trivial and cases
where it is not monotone can be found.

4 Discussion
The original aim of this study was to examine the relationship
between the individual defects on a solid and the wetting prop-
erties on that surface. Despite having chosen the size range of
defects with the explicit aim to measure thermal activation, we
found no measurable effect on the slope of the low-velocity dy-
namics with any of the defects tested here. We propose two
possible explanations. First, the visco-elastic dynamics on the
PDMS surface treatment might dominate the dynamics and hide
a regime of thermal activation. This idea can be tested by repeat-
ing this study with a different reference surface, one that still has
a small intrinsic hysteresis. We have tried liquid-phase deposited
organosilanes32, and initial measurements have not found any
difference in low-velocity slopes with or without defects of the
same size as used in this study. A similar question arises how-
ever: do the thermally-activated dynamics already present on the
silane dominate any possible thermal activation over additional
defects? In other words, which scale is selected when there are
multiple scales to the disorder? Another possibility is that the en-
ergy barriers to motion are much larger than estimated here, for
example, if defects act collectively to pin the contact line and in-
cremental motion thus requires overcoming a number of defects
at a time.

We found that H scales linearly with n, which we have thus far
discussed in the context of independent defects. Given the close

proximity of defects for the high surfaces coverages used in this
study, it is reasonable to expect that the range of action of neigh-
boring defects should overlap. It has long been understood that
collective effects can play a role in the hysteresis and one can ask
if this linearity necessarily implies that defects act independently
or if it can also be found for interacting defects.

In their simulation, Crassous and Charlaix focused on random,
strong defects and found a sub-linear dependence3, which had
been observed by others9. There is no evidence of sub-linearity
in our present study. The data in Crassous and Charlaix also
crosses into the regime of weak defects, but no scaling is explic-
itly given. By definition, a single weak defect does not pin the
contact line, however, a collection of random defects that are in-
dividually weak can also act collectively. The contact line exhibits
a coherence length (or Larkin length) over which a number of de-
fects act cooperatively to pin the line and multi-stability emerges
where there was none for a single defect. Provided that the co-
herence length does not exceed the capillary length, Robbins and
Joanny showed that there is always a hysteresis, even for vanish-
ingly weak defects33. Their expression reduces to a linear depen-
dence on defect concentration34, and in particular gives the same
scaling as eqn 9 for the case of Gaussian defects (see Appendix B).
Therefore, Fig. 6 shows that experimental data follows this scal-
ing, but this scaling does not discriminate which regime applies
to the present study, ie. strong independent or weak collective
pinning.

An advantage of the work presented here is that we have ac-
cess to detailed defect information and can modify it to access
a wide range of shapes, and, potentially, regimes. For example,
we can attempt to answer the question whether individual de-
fects are weak or strong by using the shape information to esti-
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Fig. 6 Measured increase in rescaled hysteresis due to the presence of defects as a function of the scaling of eqn 9 for all of the combinations of defect
density and shape tested here (nearly unsintered (circles), varying degrees of sintering (stars) and the very sintered shape already shown in Fig. 3a
(triangles)) and three different liquids (decane (red), hexadecane (green) and water (blue)).

mate the defect force (see eqn 12) and compare it to the effective
spring constant (eqn 7). For the smaller defects used (such as
the blue curve in Fig. 1c) the defects are not very strong. Given
the plausible range of the ln(L/d) factor it is not certain that they
are even strong at all, but may indeed be at the limit of being
weak. Measuring a contact angle hysteresis on individually weak
defects raises the question of the physical origin of this hystere-
sis: is it due to a multistability that emerges due to collective
pinning, as outlined above, or is the problem still monostable and
the hysteresis is evidence of a force-threshold that is present in
a force-driven situation, as we recently found in the case of an
effective energy landscape18?

5 Conclusions
Wetting hysteresis —and more recently dynamics— in the pres-
ence of disorder or defects has been studied for some decades
now. However, experiments linking the measurable surface prop-
erties and the wetting properties were lacking. By controlling the
shape and concentration of defects and using a reference surface
with well-characterized dynamics, we have made a step along
this path. We find a simple scaling of the hysteresis but argue
that it does not allow discrimination between models, thus illus-
trating that there is still considerable room to improve our un-
derstanding of which limits or physical conditions drive hystere-
sis for a given real actualization of the disorder. For example,
are the individual defects weak or strong, do they pin the line
independently or collectively, and is the problem monostable or
multistable? In the case of dynamics, we show that there is no
evidence of thermal activation on added defects, which we sug-
gest may be due to another length scale emerging to determine
the activation length. Numerical simulations that match the ex-
perimental defect properties are needed to further address these
questions. One could thus control the transition of weak to strong
pinning, investigate the passage from a single defect to a density
of randomly-spaced defects and look for signatures of collective

behavior such as the dependence on n and avalanches, in addition
to simulating thermal-activation.

Appendix A
Here we justify the expression for the defect force in eqn 8. We be-
gin by recalling that the local force on the contact line arises from
the fluctuating part of the spreading parameter. For topographical
defects and in the case of small slopes, this can be approximated
as1

h(x,y) =−γ sinθeq
∂ z
∂y

, (10)

where z(x,y) is the surface profile, y is the direction of motion and
x is transverse to this (parallel to the unperturbed contact line).
We are interested in the total force integrated along the contact
line, which can be approximated as1

Fd =−
∫

∞

−∞

γ sinθeq
dz
dy

∣∣∣
y=ψ(x)

dx. (11)

Here ψ (x) indicates that the y coordinate is to be evaluated at
the distorted contact line position. In other words, the problem
is recursive since the force depends on the precise position of the
contact line and the position of the contact line depends on the
force. Following Joanny and de Gennes, we assume that the inte-
gral is dominated by the maximum force, when the deformation
is near its maximum and the y coordinate is denoted ym. For the
Gaussian shape defined in eqn 5 the force can then be written

Fd =
√

2πγ sinθeq

(
h0

d

)
ym exp

(
−ym

2

2d2

)
. (12)

This gives the bimodal defect force illustrated in Fig. 5. The max-
imum force occurs at ym = d and yields eqn 8.

Appendix B
Here we recall the results of Ref. 33 for the hysteresis due to
collective pinning of a contact line over a randomly disordered
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solid and show that in our case it gives the same scaling as eqn 9.
They find that the threshold force for depinning the contact line
is

H ∼ h2

γ sin2
θeq

, (13)

where h is the r.m.s. of the fluctuating part of the spreading pa-
rameter, given in eqn 10 for topographical defects. For Gaussian
defects, and provided that the defects are not overlapping, this
can be written as h =

√
π/2γ sinθeqh0

√
n, yielding

H ∼ γh0
2n. (14)
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