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Abstract

Anomaly detection in time series is a complex task that has been widely stud-
ied. In recent years, the ability of unsupervised anomaly detection algorithms
has received much attention. This trend has led researchers to compare only
learning-based methods in their articles, abandoning some more conventional
approaches. As a result, the community in this field has been encouraged to
propose increasingly complex learning-based models mainly based on deep neu-
ral networks. To our knowledge, there are no comparative studies between
conventional, machine learning-based and, deep neural network methods for the
detection of anomalies in multivariate time series. In this work, we study the
anomaly detection performance of sixteen conventional, machine learning-based
and, deep neural network approaches on five real-world open datasets. By ana-
lyzing and comparing the performance of each of the sixteen methods, we show
that no family of methods outperforms the others. Therefore, we encourage
the community to reincorporate the three categories of methods in the anomaly
detection in multivariate time series benchmarks.

Keywords: Anomaly detection, Multivariate time series, Neural Networks

1. Introduction

A multivariate time series is a set of measurements correlated with each
other over time, which models and represents the behavior of a multivariate
process in time. Multivariate time series are used in a large number of fields
such as industrial control systems [1], finance [2], and healthcare [3]. Detecting
unexpected behavior or patterns that do not conform to the expected behavior
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of previously seen data is an active research discipline called anomaly detection
in multivariate time series [4, 5]. Anomalies may indicate a significant problem
in several applications. For example, an anomaly in industrial control systems
may indicate a malfunction, financial anomalies may be the result of a fraud, or
they may indicate diseases in healthcare. Being a critical task, there is a wide
range of methods that have been developed to address it [5].

Over the last decade, there has been an increased enthusiasm around deep
neural networks (DNNs) [6] thanks to a reported number of successes in multi-
ple tasks [2, 3, 7], and their demonstrated ability to infer high-order correlations
in complex data with potentially large volume and dimensionality. Multivariate
time series anomaly detection has been no exception to the trend, leading to
an explosion of DNN-based methods suggesting methodological advances and
improved performance, as presented in [8]. DNN-based methods aim to learn
deep latent representations of the multivariate time series to infer a model of
variability, that is then used for anomaly grading in unseen data. The rationale
behind the increased use of DNN architectures lies in the need of learning poten-
tially complex data patterns underlying the temporal evolution of multivariate
data.

Under the above-mentioned argument and motivated by the good perfor-
mance of DNNs in other fields, researchers have moved away from comparisons
with more traditional methods, i.e. machine learning and conventional/statistical
methods (e.g. [1, 9, 7]). This trend has encouraged the community to develop
even more complex models to improve the performance of DNN-based meth-
ods, without any theoretical or empirical evidence that these are superior to the
more established body of methods in the literature.

DNN-based models are complex to train, involving the estimation of a large
amount of parameters and requiring large training sample sizes and computa-
tional resources. Moreover, their complexity continues to grow as larger models
continue to be developed. Instead, conventional models are simpler, lighter,
easier to interpret, and often better adapted to the constraints of real-world
applications. It is therefore crucial to determine if the complexity brought in
by DNN-based methods is a necessary price to pay for a gain in performance
or if the progress reported in recent years is illusory [10] and the use of conven-
tional methods should be preferred. The lack of a general comparison covering
all families of methods does not allow to answer this question and hinders the
translation and use of DNN-based methods in real-world applications.

In this paper, we aim to close this gap by establishing a thorough comparison
between conventional methods, machine learning-based and more recent DNN-
based approaches. Our work is motivated by different recent works, which have
reported on the limitations and drawbacks of DNN-based methods in different
application fields [11, 12, 13, 14]. While some of this works have focused on
pointing out to the weaknesses of DNN-based methods [11, 12], other works have
been able to demonstrate the superiority of more conventional approaches [13,
14].

The main contributions of this paper are the following:
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• We describe sixteen of the most commonly used methods for anomaly
detection in multivariate time series grouped into three categories: Con-
ventional, machine learning-based and DNN-based.

• We study and analyze the performance of these techniques over five open
real-world data sets.

• Finally, we discuss the need for DNN-based approaches and the impor-
tance of conventional methods in future benchmarks for multivariate time
series anomaly detection.

The rest of this document is organized as follows. Section 2 briefly re-
views other works comparing modern DNN-based methods to previous non-
DNN-based works. Section 3 formalizes the problem of anomaly detection in
multivariate time series. Section 4 presents the methods compared in this study.
Sections 5 describe the experiments and analyze the performance on the data
sets.

2. Related Works

Different studies have raised the question about the real gain of DNN-based
methods in several application fields.

A first study by Jiao et al. [13], showed how conventional linear regression
methods outperform DNN-based techniques in two showcased optical imaging
problems, i.e. an optical cryptosystem attack and blind reconstruction in single
pixel imaging. Autun et al. [11] proposed a stability test to demonstrate how
DNN-based methods for image reconstruction are very sensitive to tiny pertur-
bations in the input images during training, which leads to unstable results.
Furthermore, Heaven [12] showed small changes in a DNN’s input, usually im-
perceptible to humans, can destabilize the best neural networks, thus pointing
to the lack of robustness of DNN-based methods and their dependence on large
amounts of data. Most recently, in the context of medical image segmentation,
Fu et al. [15] showed that simpler DNN configurations have better generaliza-
tion properties than complex state-of-the-art DNN models, thus challenging the
current trend towards continuously increasing the model complexity.

In the specific context of time series analysis, Garget al. [16] raise the fact
that there is no benchmark in the literature between multivariate methods for
anomaly detection in time series. They propose a benchmark of 15 methods out
of which 12 are DNNs methods.

Finally, the results of the M3 challenge on time series forecasting [14] showed
that the accuracy of machine learning and DNN models, in general, was lower
than that one of conventional approaches, while their computational require-
ments were considerably greater than those of conventional statistical methods.
Similarly, one of the main outcomes of the follow-up M4 competition [17] was
that none of the pure ML methods participating was able to outperform the
combination of DNN models and statistical (i.e. conventional) methods. For
instance, only one DNN approach was more accurate than a nave random walk
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model that assumed future values will be the same as those of the last known
observation [14].

3. Definitions

This section is concerned with providing a clear definition of multivariate
time series (Section 3.1), of the types of anomalies that can be found in a
multivariate time series (Section 3.2), and of formalizing the problem of anomaly
detection in multivariate time series (Section 3.3)

3.1. Multivariate Time Series

A multivariate time series is a sequence of data points T = {x1, . . . ,xT },
xt ∈ Rm∀ t, each being an observation measured at a specific time t in a process,
with m the number of time-series. A univariate time series is a special case of
multivariate time series with m = 1. In this paper we focus on the general
context, multivariate time series.

3.2. Types of Anomalies

Anomalies in time series, also called outliers, are points or sequences of
points that do not correspond to normal behavior [4]. The concept of normal
behaviour is difficult to formalize. Therefore, another possible definition for
anomalies could be a pattern in data that is not expected in comparison to
what has been seen before [4]. In fact, an implicit assumption is that anomalies
are rare events.

Chandola et al. [4] propose to classify time series anomalies into three types,
point, contextual and collective anomalies.

• Point anomalies. This is the simplest type of anomaly. It corresponds
to a point that differs from the rest of the data (Figure 1).

• Contextual anomalies. A contextual anomaly can be defined as follows :
A data point is anomalous in a specific context, but is considered normal in
another context, meaning that observing the same point through different
contexts does not always give a sign of abnormal behavior. For example, a
temperature of 30C during summer is normal, while the same temperature
in winter is abnormal. Figure 1 illustrates a contextual anomaly, where
the values of the two time-series are not abnormal taken individually, but,
seen in context, the values of the bottom time-series should be close to 0.

• Collective anomalies A collective anomaly corresponds to a group of
anomaly points. Each individual point might not be an anomaly, but
their appearance together is an anomaly (Figure 1).
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Figure 1: An example of a point anomaly (in purple), a contextual anomaly (in red) and a
collective anomaly (in green)

3.3. Problem Formulation

Let us now consider a problem where T is given, and let us introduce a
binary variable y ∈ {0, 1}. The goal of anomaly detection methods is to learn a
model that assigns to an observation x̂t, t > T , a label yt to indicate a detected
anomaly at time t, i.e. yt = 1, or not (yt = 0).

Supervised anomaly detection assumes that, jointly with T , there are labels
that assign to every xt ∈ T one of two classes, normal or abnormal. During
training, the model is thus expected to learn how to classify anomalies by using
both T and the associated labels.

Unsupervised anomaly detection assumes T contains only normal points.
Therefore, the model is trained to learn the distribution of normal data and
an anomalous point is expected to be one that differs significantly from T .
The difference between the sample x̂t and the normal set T is measured by an
anomaly score, which is then compared to a threshold. If the score is above the
threshold the point is considered as an anomaly.

In practice, it is difficult to obtain sets T with a sufficient number of samples
from both classes, a requirement of supervised techniques. As a result, unsu-
pervised methods are the most common approach found in the literature [4].
Therefore, this study focuses on unsupervised techniques.

4. Anomaly detection methods

In this section, we first present the different categories to classify differ-
ent anomaly detection methods (Section 4.1). Next, we describe the sixteen
multivariate time series anomaly detection methods used in our experiments.
Each method is presented within one of three categories that we propose: con-
ventional (Section 4.2), machine learning-based (Section 4.3) and DNN-based
methods (Section 4.4).
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4.1. Taxonomy

We define a taxonomy consisting of three classes of anomaly detection meth-
ods for multivariate time series. These are: conventional approaches, machine
learning-based and DNN-based methods.

Conventional approaches, rely on the assumption that the observed data
is generated by a stochastic model and their aim is to estimate a model’s pa-
rameters from the data and then use the model for prediction [18]. It is often
the case that the model hypothesis is considered linear.

The boundary between conventional and machine learning-based approaches
is not fully clear. Machine learning-based models produce predictions about
the results of complex mechanisms by mining databases of inputs for a given
problem, without necessarily having an explicit assumption about a model’s
hypothesis. In this setup, a method aims to learn a function that operates an
input data to predict output responses [18].

Finally, DNN-based methods are a subclass of non-linear machine learning-
based methods which use neural networks with multiple layers [6].

4.2. Conventional methods

The methods presented in this section offer many different approaches. We
have classified them into five categories. Control chart, where the objective
is to monitor variations in the statistical characteristics of a process. Predic-
tion methods, where the objective is to predict the next point. Decomposition
techniques, based on the search for unusual patterns in time series using de-
composition and finally similarity-search model based on the search for similar
sub-sequences in the data.

4.2.1. Control Charts methods

Control charts are a statistical process control tool. Their goal is to track
the mean and variance of a time series over time and to detect abrupt changes
in its statistical behaviour. We consider two methods: Multivariate CUmu-
lated SUMs control chart (MCUSUM) and Multivariate Exponential Weighted
Moving Average (MEWMA).

In [19], Woodall and Ncube proposed to monitor the performance of multiple
variables in a manufacturing system using a control chart called Multivariate
CUmulated SUMs control chart (MCUSUM). The MCUSUM uses the
fact that the cumulative sum St of the recursive residuals of a statistic s com-
pared to a normal value (like the mean) : St = s(xt−k+1, . . . ,xt) is stable for
normal data and increasing after the change. Using this property, the MCUSUM
anomaly score gt is based on the comparison of the increase of St with a thresh-
old h: gt = max(0, St− µ+ gt−1) with g0 = 0 and µ the value of St for normal
data. MCUSUM iterates over gt as long as gt < h. If gt ≥ h, an alarm is raised
and the iteration over gt is restarted with g0 = 0 in order to detect another
change point. Due to this sequential restarting of the test, MCUSUM detects
small but persistent structural changes.

6



Multivariate Exponential Weighted Moving Average (MEWMA)
[20] is based, as its name indicates, on the exponential smoothing of data. For a
given constant λ ∈ [0, 1], the successive data are smoothed using: gt = λxt+(1−
λ)gt−1. Unlike MCUSUM, MEWMA gives more importance to recent history
values.

4.2.2. Forecast methods

Control Charts methods are usually based on the hypothesis that the indi-
vidual data in the time-series are independent and identically distributed. This
assumption is rarely satisfied in practice. A generic way to handle this issue
is to built a mathematical model, incorporating the known or assumed sequen-
tial correlations of the time-series. Using this model, the value xt of the data
indicator at t is expressed as xt = zt + et, where zt is accounting for normal
sequential correlations within the data and et (the residual) is the noise. Once
a mathematical model representing time-series evolution is chosen, a usual ap-
proach is to predict at time t the expected value x̂t+1. The anomaly score can
then be expressed as the difference between x̂t+1 and the actual value xt+1.

The most commonly used forecast method in multivariate time series is the
Vector Autoregressive (VAR) method. VAR is a statistical model that
captures the inter-dependencies between several time series. In a VAR model,
variables are treated symmetrically so that each variable is explained by its own
past values and by the past values of the other variables. For example, in [21],
VAR is used to monitor multivariate processes.

4.2.3. Decomposition methods

Methods in this category use basis functions for decomposing the time series.
Given xt, a point of a multivariate time series, it can be expanded in terms of
the eigenfunctions φj as: xt =

∑∞
j=1 αjφjt, where the coefficients αj are given

by the projection of xt on the respective eigenfunctions.
Anomaly detection is then performed by computing the projection of each

new point onto the eigenvectors, and a normalized reconstruction error. The
normalized error is used as the anomaly score. We discuss three methods under
this sub-category: Principal Component Analysis (PCA), Singular Spectrum
Analysis (SSA) and Independent Component Analysis (ICA).

Principal Component Analysis (PCA). The idea of PCA[22] is to group
data points into clusters defined as an ellipsoid in Rm containing the normal
data. The idea is that the length of the principal axes of the ellipsoid represents
the direction of the variability of the data instances.

The (always positive) eigenvalues λi with i = 1, . . . , k corresponding to the
principal component vi characterize the variability in the dataset captured by
the eigenvector vi. A subspace S ⊂ Rm is selected using the r eigenvectors vi
corresponding the r largest eigenvalues.

In [23], the Q-statistic that characterizes the PCA projection residual statis-
tics is used to define the threshold hα, such that the anomaly score is: |x̃t| > hα
then xt is an anomaly with 1 − α confidence where α ∈ [0, 1] is a manually
defined parameter.
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Singular Spectrum Analysis (SSA) considers a time series as a projec-
tion of the trajectory of a dynamical system in a vector space V = Rm where
xt is the position at time t of a state of the system. From dynamical systems
theory, it is known that physically observable states of a dynamical system in
Rm are lying on attractors of the dynamics (i.e. subsets of the Rm capturing
all the long term evolution of the system). Future observable states should nor-
mally continue to be located on these attractors. As such, x̂t are assumed to be
located on (or close to) an attractor of the dynamics. So, the distance between
x̂t and the attractor computed at time t is evaluated and used as anomaly score
[24].

Independent Component Analysis (ICA) [25] assumes that the dif-
ferent physical processes that generate multivariate time series are statistically
independent of each other.

ICA decomposes a multivariate time series into “independent” components
by orthogonal rotation and by maximizing the statistical independence between
the components assuming their non-Gaussianity. In [26], the authors use Kur-
tosis, a classical measure of non-Gaussianity, as an anomaly score. A negative
Kurtosis indicates a uniformly distributed factor, indicating a clustered struc-
ture and a high positive Kurtosis identifies a multivariate anomaly.

4.2.4. Similarity-search approach

Similarity search methods [27] are designed to identify patterns in a multi-
variate time series. These methods compute the distance between all the sub-
sequences of the time series. The minimum distance between a sub-sequence
and all others is used as an anomaly score.

The Matrix-Profile (MP) [28] is a data structure for time series analysis.
It consists of three elements. The first element is the distance profile, which
is a vector of Euclidean distances between a given sub-sequence W and each
sub-sequence in the set A of all sub-sequences of the multivariate time series.
The distance is measured using the z-normalized Euclidean distance between
sub-sequences. The distance profiles are arranged into a data structure denoted
the distance matrix, which corresponds to the second element in MP. The dis-
tance matrix corresponds to all the distance profiles that have been computed
for each reference sub-sequence. At the same time, the matrix profile is the
simplification of the distance matrix by considering only the nearest neighbor
for each sub-sequence allowing a memory complexity of O(|A|). The vector ob-
tained corresponds to the smallest values of each row in the matrix. It is defined
as : MP (i) = min(d(W i,W j)) with W j ∈ A \ {W i}.

A low value in the matrix profile indicates that the sub-sequence has at least
one relatively similar sub-sequence located somewhere in the original series. In
[29], it is shown that a high value indicates that the original series must have an
abnormal sub-sequence. Therefore the matrix profile can be used as an anomaly
score, with a high value indicating an anomaly.
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4.3. Machine learning-based methods

The methods presented in this section fall into three categories : Isolation,
Neighbourhood-based and Domain-based methods, which have been proposed
in the survey by Domingues et al. [5]. Isolation algorithms consider a point as
an anomaly when it is easy to isolate from others. Neighbourhood-based models
look at the neighbourhood of each data point to identify outliers. Domain-based
methods rely on the construction of a boundary separating the nominal data
from the rest of the input space.

A common characteristic of machine learning-based techniques is that they
typically model the dependency between a current time point and previous
ones by transforming the multivariate time series T into a sequence of windows
W = {W1, . . . ,WT }, where Wt is a time window of length K at a given time t :
Wt = {xt−K+1, . . . ,xt−1,xt}. In this setup, learning-based anomaly detection

methods assign to a window Ŵt, t > T , a label yt to indicate a detected anomaly
at time t, i.e. yt = 1, or not (yt = 0) based on the window’s anomaly score. We
will use this notation in the following.

4.3.1. Isolation methods

Isolation methods focus on separating outliers from the rest of the data
points. These methods attempt to isolate the anomalies rather than mapping
the normal points.

The Isolation Forest (IF) algorithm [30] is based on decision trees. IF
calculates, for each time window an anomaly score. To calculate this score, the
algorithm isolates the sample recursively: it chooses a feature and a “cut-off
point” at random, then evaluates whether this isolates the sample; if so, the
algorithm stops, otherwise, it chooses another feature and another cut-off point
at random, and so on until the data is isolated from the rest. The number of
cut-off point defines the anomaly score: a sample with a very short path, i.e.
sample that is easy to isolate, is also likely to be an anomaly since it is very far
from the other samples in the dataset.

4.3.2. Neighbourhood-based methods

Among neighborhood-based methods, which study the neighborhoods of ev-
ery point to identify anomalies, the Local Outlier Factor (LOF) [31] mea-
sures the local deviation of a given data point with respect to its neighbours.
Based on the K-nearest neighbors, the local density of an observation is eval-
uated by considering the closest K observations in its neighbourhood. The
anomaly score is then calculated by contrasting its local density with those of
its k-nearest neighbors. A high score indicates a lower density than its neighbors
and therefore potentially an anomaly. It has been applied to multivariate time
series [32], demonstrating its ability to detect anomalies in long-term data.

Density-based spatial clustering of applications with noise (DB-
SCAN) [33] is a clustering method that groups data points in high density
areas (many nearby neighbors) and marks points in low-density regions (few
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neighbors) as anomalous. To handle multivariate time series, DBSCAN consid-
ers each time window as a point with the anomaly score being the distance from
the point to the nearest cluster.

4.3.3. Domain-based methods

Domain-based methods aim to construct a boundary between normal sam-
ples and the rest of the input space. The distance of a points to this boundary
is used as the anomaly score. Among these, the One-Class Support Vector
Machine (OC-SVM) [34] method learns the smallest hypersphere containing
of all the training data points. The learned model classifies points inside the
hypersphere as normal and labels those in the rest of the space as anomalous.
An anomaly score can also be obtained by taking the signed distance from the
hyper-sphere. The signed distance is positive for a normal value and negative for
an abnormal. As other machine learning methods One-class SVM has been used
for time series anomaly detection by using time windows rather than the raw
series. J.Ma and S.Perkins [35] use this approach, while proposing to combine
the one-class SVM output for different time windows to produce more robust
detection results.

4.4. DNN-based methods

DNN-based methods are a are sub-category of machine learning-based ap-
proaches, which rely on deep neural networks. Given the explosion of DNN-
based methods over the last years, we present them as a separate category.
We selected the five methods that report a good performance in the litera-
ture on the five datasets used in this paper. These are: Auto-Encoder (AE),
UnSupervised Anomaly Detection (USAD), Long Short-Term Memory Vari-
ational Auto-Encoders (LSTM-VAE), Deep Autoencoding Gaussian Mixture
Model (DAGMM) and OmniAnomaly (OA).

An Auto-Encoder (AE) [36] is a neural network architecture consisting
of a combined encoder and decoder. The encoder maps the input windows into
a set of latent variables, while the decoder maps the latent variables back into
the input space as a reconstruction. The difference between the input window
and its reconstruction is the reconstruction error. The AE learns to minimize
this error. The anomaly score of a window is the corresponding reconstruction
error. A window with a high score is considered abnormal.

UnSupervised Anomaly Detection (USAD) [1] extends the AE con-
cept and constructs two AEs sharing the same encoder. The architecture is
driven in two phases. In the first phase, the two AEs learn to reproduce the
normal windows. TIn the second phase, an adversarial training teaches the
first AE to fool the second one, while the second one learns to recognize the
data coming from the input or the reconstructed by the first AE. The anomaly
score is the difference between the input data and the data reconstructed by the
concatenated AEs.

Long Short-Term Memory Variational Auto-Encoders (LSTM-VAE)
[37] uses an LSTM to model temporal dependency, whereas the VAE projects
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the input data and its temporal dependencies into a latent space. During decod-
ing, the latent space representation allows to estimate the output distribution.
An anomaly is detected when the log-likelihood of the current data is below
a threshold. S.Lin et al. [38] have shown LSTM-VAE’s capacity to identify
anomalies that span over multiple time scales.

The Deep Autoencoding Gaussian Mixture Model (DAGMM) [7]
considers a Gaussian Mixture Model (GMM) and a Deep Auto-encoder together
to model the distribution of multidimensional data. The purpose of the Deep
Auto-encoder is to generate a low-dimensional representation and a reconstruc-
tion error for each input data time window. This representation is used as input
of a GMM. The parameters of the Deep Auto-encoder and the mixture model
are optimized simultaneously from end to end, taking advantage of a separate
estimation network to facilitate the learning-based of the parameters of the mix-
ture model. The DAGMM then uses the likelihood to observe the input samples
as an anomaly score.

Finally, OmniAnomaly (OA) [9] is a recurrent neural network that learns
robust representations of time series with a planar normalizing flow and a
stochastic variable connection. Then the reconstruction probabilities are used
to determine anomalies. OmniAnomaly uses the Gated Recurrent Unit (GRU)
to model the time dependencies of multivariate time series. The method also
uses a VAE to learn a mapping of the input data W to a representation in a
latent space. To model time dependencies in the latent space, OmniAnomaly
uses a stochastic variable connection technique. As suggested by [39], the re-
construction can be evaluated by a conditional probability. The anomaly score
used is then the probability of reconstruction. A high score means that the
input can be well reconstructed. If an observation follows normal time series
patterns, it can be reconstructed with high confidence. On the other hand, the
lower the score, the less well the observation can be reconstructed and the more
likely it is to be anomalous.

5. Experiments and results

We present the experimental setup (Sec. 5.1). Then, we study the perfor-
mance of the sixteen methods from the different categories (Sec. 4) on the five
benchmark datasets. We analyze these results by comparing the anomalies de-
tected by the conventional methods, the machine learning and the DNN-based
approaches (Sec. 5.3). We investigate the impact of the size of the training set
(Sec. 5.4). Finally, we summarize the results and discuss them (Sec. 5.5).

5.1. Experimental setup

We first describe the benchmark datasets and the performance metrics used
in our study.
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Table 1: Benchmarked Datasets. (%) is the percentage of anomalous data points in the
dataset.

Dataset Train Test Dimensions Anomalies (%) Anomaly

SWaT 496800 449919 51 11.98 P, C, Col
WADI 1209601 172801 123 5.99 P, C, Col
SMD 708405 708420 28*38 4.16 P, Col
SMAP 135183 427617 55*25 13.13 P, Col
MSL 58317 73729 27*55 10.72 P, Col

P: Point Anomaly, C: Contextual anomaly, Col: Collective anomaly

Benchmark Datasets. Table 1 summarizes the five datasets used in this study
and reports the train and test splits used during the experiments. The SWaT
dataset1 is a scaled down version of a real-world industrial water treatment
plant. The WADI dataset2 is an extension of the SWaT testbed. SMD is a 5-
week-long dataset from an Internet company made publicly available3. SMAP
and MSL are real-world public datasets from NASA4. We highlight the fact
that, while these datasets are among the most common benchmarks for multi-
variate time-series anomaly detection validation, SMD, SMAP and MSL
datasets may contain flaws, as pointed out in [10].

Evaluation Metrics. We use the F1 score (F1) and the average precision (AP)
from anomaly scores to evaluate anomaly detection performance. The F1 is
estimated as F1 = 2 ·P ·R/(P +R), with P = (TP )/(TP +FP ), the precision,
R = TP/(TP + FN), the recall, TP the True Positives window, FP the False
Positives, and FN the False negatives. In our experiments, we consider a window
is labeled as an anomaly as soon as one of the points it contains is detected
as anomalous. For methods that do not use a time window, an anomaly is
considered detected if the detection occurs within the length of sliding window
time points on either side of the anomaly.

The AP summarizes the P-R curve as the weighted mean of precision achieved
at every given anomaly score threshold, with the increase in recall from the pre-
vious threshold used as the weight. As such, it allows to obtain a score that takes
into account the ability of the methods to rank the anomalies without having
to define a threshold, thus providing a complementary information w.r.t. the
F1 score. It is estimated as: AP =

∑
n(Rn − Rn−1)Pn where Pn and Rn are

the precision and recall at the n-th threshold. The AP is particularly sensitive
to the positive class, i.e. the anomalies, so it is well-suited to highly unbalanced
data, as it is the case in anomaly detection.

1https://itrust.sutd.edu.sg/itrust-labs datasets/dataset info/#swat
2https://itrust.sutd.edu.sg/itrust-labs datasets/dataset info/#wadi
3https://github.com/smallcowbaby/OmniAnomaly
4https://s3-us-west-2.amazonaws.com/telemanom/data.zip
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Figure 2: Boxplots of F1 (left) and AP (right) for each category of methods on the five
benchmark dataset.

5.2. Benchmark Performance

We assessed the performance of the sixteen anomaly detection methods
on the five benchmark datasets in terms of F1 score and AP. As not all of
the anomaly detection approaches provide a mechanism for selecting anomaly
thresholds, which are required for F1 estimation, we tested a thousand possible
anomaly thresholds for each model. In particular, we normalized the anomaly
score between 0 and 1 and then tested one thousand thresholds in steps of
0.001. We report the results associated to the highest achieved F1 score among
the thresholds. Figure 2 presents boxplots summarizing the performance of each
family of methods. Table 2 lists the best and worst performing method for each
family of methods.

In terms of F1 score (Fig. 2 left), DNN methods perform best on average
four out of five datasets. In the remaining dataset, SMAP, ML methods obtain
the best average performance. A detailed comparison of the performance of
the different methods in terms of AP (Fig. 2 right), indicated that in terms of
mean values, conventional methods outperform all families of methods in the
MSL dataset and they are the second best ranked after DNN methods for the
remaining datasets. Most importantly, for both F1 and AP the boxplots suggest
that the differences among families of methods are relatively subtle.

To confirm this hypothesis, we performed a KruskalWallis test on both mea-
surements for each group of methods to determine if the medians of the three
groups of methods were equal (null hypothesis). The test was performed on
each dataset. For F1, the null hypothesis was rejected only for SMD (p < 0.05).
This indicated that there are no significant differences among the families of
methods in four of the datasets, which is consistent with what is observed in
Fig. 2 (left).

For AP, the null hypothesis was rejected on SWaT and WADI (p < 0.05),
being consistent with what is observed in Fig. 2 (right) and indicating no signif-
icant differences among the families of methods in three out of the five datasets.
We performed a post hoc analysis using a Dunn’s test on SWaT and WADI every
category pair. The pairwise analysis showed a significant difference (p < 0.05)
between DNN and conventional methods in WADI and provided weak evidence
to reject the null hypothesis in SWaT between DNN and conventional methods
(0.1 < p < 0.05). In all other pairwise tests, no significant differences were
encountered.

13



Table 2: Best and worst performing methods, in terms of F1 and AP, for each family of
methodsF1 and AP per each category of methods.

Conventional ML DNN
Worst Best Worst Best Worst Best

SWaT
AP

VAR/SSA*
PCA

DBscan
SVM

DAGMM USAD
F1 MP LOF

WADI
AP

VAR/SSA/MP*
PCA DBscan LOF

DAGMM USAD
F1 MEWMA SVM IF

SMD
AP

MCUSUM ICA DBscan
SVM

DAGMM OA
F1 IF

SMAP
AP MP MCUSUM

DBscan
SVM

DAGMM
OA

F1 VAR ICA LOF USAD

MSL
AP VAR SSA DBscan SVM LSTM-VAE

USAD
F1 MP ICA SVM IF DAGMM

∗: No convergence after 10 days of execution; SVM: OC-SVM; OA: Omnianomaly

5.3. Analysis of WADI

We perform a more detailed analysis on the performance of each family of
methods. We focus on the WADI dataset, as it is the only dataset where the
post hoc analysis identified significant differences between the performance of
DNN and the other methods. Overall, WADI contains 14 anomalies distributed
over the test set (Figure 3 bottom).

Figure 3 presents the false negatives of all the conventional methods (top),
the ML methods (second row) and the DNN approaches (third row). In other
words, a value of 1.0 represents an anomaly labeled as normal by a given category
of methods. The fourth series (Fig. 3 fourth) presents the false negatives of the
conventional approaches which are true positives for the DNNs methods. In
other words, a value of 1.0 corresponds to an anomaly detected by at least one
DNN algorithm but by no conventional method.

An inspection of Figure 3 shows that four anomalies are not detected by any
of the DNNs approaches, while seven anomalies are not detected by the conven-
tional and ML models. Thus, these three anomalies explain the performance
gap between the DNNs and conventional methods, which are the second best
performing family in terms of AP on this dataset.

Figure 4 presents a detailed view of the first anomaly from the green se-
ries. It is caused by the variate 1 MV 001 increasing its value to 2.0 before the
variate 1 LT 001 has reached its minimal expected value (40). It is a contex-
tual anomaly, as the separate behavior of each variate does not constitute an
anomalous behavior on its own. The remaining two anomalies also shows that
they are contextual anomalies. This suggests that the performance gap between
DNNs and conventional methods comes from a better detection of contextual
anomalies by DNNs approaches.

5.4. Impact of training set size

We use WADI and SWaT datasets to study the impact of the training set
size on the performance of the methods. We reduce the size of the training set
by keeping the most recent points, i.e. the closest to the test set. We keep 10%
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Figure 3: Analysis of WADI. False negatives of conventional methods (top row); false negatives
of ML (second); false negatives of DNNs (third); false negatives of conventional methods that
are predicted by DNN (fourth) and ground truth labels (last row).

Figure 4: Contextual anomaly in red due to the activation of a motorized valve (1 MV 001)
which causes the filling of the tank (1 LT 001) before it reaches the switching threshold,
located at 40.

, 25% , 50% and 75% of the original training points. For every set, we train a
model per method and assess its performance.

Figure 5 presents the AP obtained on the SWaT dataset and the WADI
dataset. We observe that conventional methods globally obtain better results
when the dataset size is less than 50% of the original one. For example, on the
SwaT dataset, MP, PCA and ICA outperform in terms of AP all ML and DNN
methods when the training set is 50% or less. Their performance is matched
by OC-SVM at 50%, and it is outperformed only when three quarters of the
training dataset is retained. We also observe that the performance of conven-
tional approaches remains relatively constant, despite changes in the training
set size, meaning this has little impact in their performance. Instead, ML and
DNN methods perform better when increasing the size of the training dataset,
except for IF on the WADI dataset which performs slightly better when only
50% of the dataset is kept. This can be explained by the fact that the isolation
of anomalous points can be more complex when the training set is larger. In
general, it is only above 50% that DNNs approaches seem to perform better
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Figure 5: Average precision (AP) on SWaT (left) dataset and WADI (right) datasets.

than conventional methods.

5.5. Discussion

The multivariate anomaly detection performance benchmark across conven-
tional, ML-based and DNN methods and the subsequent statistical analysis
of the results (Section 5.2) suggests that the performances across families of
methods do not show significant differences in most of the datasets that were
considered. In particular, the statistical analyses suggest that DNN methods
had a clear superiority in the WADI dataset, which is consistent with our visual
analysis of the obtained results (Figure 2).

Given the properties of WADI, a dataset containing contextual anomalies,
these results suggest that in the particular case of contextual anomalies, DNN-
based methods perform better and may be necessary (Section 5.3). Indeed,
contextual anomalies are by definition difficult to detect visually by experts
since taken alone the series seem normal, which may justify the need of more
complex methods, such as DNNs, capable of extracting and inferring patterns
from complex data. However, it is now well established that DNN techniques
require large amounts of data to achieve good results. For instance, when we
evaluated the performance of the different categories of methods as a function of
the training set size (Section 5.4), we observed that DNN techniques observe an
important drop in performance, even in those datasets where they are expected
to perform best, such as WADI.

In this work we have focused on some aspects of the performance of different
types of methods, while leaving aside a detailed analysis of the computational
times required by each technique. It is now relatively well established that ML
and DNN-based approaches are more computationally demanding than conven-
tional methods. This is mainly due to the fact that training time can be very
expensive, especially for DNN-based methods. Conventional methods have the
advantage of not requiring a training phase, which is where ML and DNN-based
methods consume most of the computational resources. However, at inference
time, DNN-based methods can be much faster. As an example, MP is a fast
conventional approach [40], which, however, requires to compute the distance
of every new sub-sequence w.r.t. previous available time points.

Another important observation from our study regards scalability. Some
conventional methods failed to converge when the data set was too large (Ta-
ble 2). Therefore, the size of the datasets is an important criterion in the choice
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of a methods to use. While DNN-based methods are a more suitable choice for
larger sets of data, despite their overhead in computational time during train-
ing, conventional approaches seem to be a better choice in a small data regime
(Section 5.4).

Finally, an important point to consider is also the difficulty to reproduce
the results of DNN-based methods compared to the other two categories of
methods. Indeed, there is a plethora of open implementations of conventional5

and machine learning based methods6, while some DNN-based approaches can
be difficult to implement, sometimes no implementation is available or it is
difficult to set up.

On the basis of these observations, we consider that it is not currently pos-
sible to conclude that complex DNN methods should be the de facto choice for
multivariate time-series anomaly detection. Instead, we encourage the commu-
nity to reintegrate ML and conventional methods in the benchmarks to ensure
that the new methods proposed improve the performance in the detection of
anomalies in time series. This recommendation is inline with the observations
of similar studies [17].

6. Conclusion

In this study, we provided a comparative analysis of conventional, ML-based
and DNN-based methods. We evaluated the performance of sixteen algorithms
on five publicly available benchmark datasets to understand whether the com-
plexity provided by DNN-based approaches is necessary for anomaly detection
in multivariate time series. The performance analysis did not allow us to observe
a clear and consistent superiority of one category of methods over the others.
The DNN based methods seem to perform better when the dataset contains
contextual anomalies. However, this finding could only be made on one of the
five datasets, so more experimentation is needed to confirm that DNN methods
outperform the other categories in terms of contextual anomaly detection. We
also studied the impact of the training set size on the performance of these
methods. The results show that if the training set is not large enough, the con-
ventional methods outperform the other two categories. Thus, the size of the
training set is an important criterion in the choice of the category of methods to
detect anomalies in multivariate time series. Some conventional methods have
failed to scale on large data sets.

In view of all these results, we have provided the first independent evidence
for the hypothesis that much of the recent progress in time series anomaly
detection may be illusory [10]. In [10], the authors offer “negative” evidence,
noting that most benchmark datasets are unsuitable for making distinctions
between algorithms. Our work offers more “positive” evidence for the claim that
deep learning has yet to prove real outperformance. We therefore encourage the

5PYOD : https://github.com/yzhao062/pyod
6Scikit Learn : https://scikit-learn.org/
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community to reincorporate the three categories of methods in the benchmarks
of anomaly detection in multivariate time series. Moreover, it seems essential
to us to multiply the number of datasets compared in the benchmarks in order
to ensure that all eventualities are covered. For this, the community will have
to obtain new real world datasets containing contextual anomalies. Indeed, the
difficulty for experts to visually label contextual anomalies in multivariate time
series makes it difficult to obtain test sets covering this criterion. It is then
complicated to assert that DNN methods are necessary although it seems that
they are able to outperform conventional approaches when there are contextual
anomalies, as long as the data set is large enough. We hope that this study
will help guide researchers in their choice and the assessment of methods for
detecting anomalies in multivariate time series.
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