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Abstract—In the Video Coding for Machines (VCM) context
where visual content is compressed before being transmitted to
a vision task algorithm, appropriate trade-off between the com-
pression level and the vision task performance must be chosen.
In this paper, a Deep Neural Networks (DNN) based semantic
segmentation algorithm robustness to compression artifacts is
evaluated with a total of 1486 different coding configurations.
Results indicate the importance of using an appropriate image
resolution to overcome the block-partitioning limitations in ex-
isting compression algorithms, allowing 58.3%, 49.8%, 33.5%
and 24.3% bitrate savings at equivalent prediction accuracy for
JPEG, JM, x265 and VVenC, respectively. Surprisingly, JPEG
can achieve 73.41% bitrate reduction with the inclusion of
compressed images at training time over VVC Test Model (VTM)
with a DNN trained on pristine data, which implies that DNN
generalization ability must not be overlooked.

Index Terms—Video Coding for Machines, Machine-to-
Machine communication, Semantic Segmentation

I. INTRODUCTION

Conventional image and video coding aims at achieving
an optimal trade-off between bitrate and perceived quality
by human observers. Many compression standards have been
proposed to fulfill this purpose, such as Joint Photographic
Experts Group (JPEG), Advanced Video Coding (AVC), High
Efficiency Video Coding (HEVC) or Versatile Video Coding
(VVC). However, with the emergence of Machine-to-Machine
(M2M) communications, the receiver of visual content is no
longer necessarily human. According to Cisco [6], the total
amount of M2M connections increased exponentially from
1 to 3.9 billions in the last five years. Furthermore, nearly
80% of the world’s total bandwidth is used for image and
video transmission. In 2019, a bitstream standardization group
called Video Coding for Machines (VCM) was created by the
Motion Picture Expert Group (MPEG) in order to address
M2M transmissions of multimedia contents [35], where the
main objective is to achieve greater trade-offs between bitrate
and vision task performance compared to the VVC Test Model
(VTM).

In order to address a M2M communication scenario, one
could use an encoder expressly designed for a machine
receiver, or a conventional encoder originally designed for

transmission to a human receiver. While older compression
standards such as JPEG or AVC are still wide-spread in
embedded systems nowadays, it is reasonable to evaluate
their relevance in a M2M communication context. In this
paper, we propose to assess the suitability of conventional
encoder in a VCM context. Specifically, the robustness to
compression artifacts of a Deep Neural Networks (DNN) se-
mantic segmentation algorithm is evaluated on 1486 different
coding configurations. Coding configurations include multiple
encoders, image quality and resolution, with and without
grayscale conversion. The evaluation is performed using a
novel progressive training strategy to enhance DNN robustness
to various artifacts.

Our work is presented as follows. Section II reviews existing
works in the literature. The considered evaluation protocol is
detailed in Section III. Experimental results are introduced and
discussed in Section IV, followed by a conclusion.

II. RELATED WORK

In order to reduce the amount of information to transmit
over a M2M connection, redundant information in visual con-
tent must be discarded. Therefore, evaluating DNN robustness
to artifacts is crucial in the context of VCM. It has been shown
that DNN solving vision tasks such as classification, object
detection or segmentation are highly affected by distortion in
visual data [13], [19], [23].

Many papers in the literature propose to evaluate DNN
robustness to compression artifacts. In order to evaluate which
information is relevant in a VCM scenario, related works can
be organised in accordance to the following criteria: (I) DNN
are re-trained on compressed data to achieve optimal trade-offs
between bitrate and vision task performance. (II) Multiple
encoders are evaluated. (III) Images are encoded at multiple
resolutions. (IV) Experiments are conducted on grayscale
images. (V) A high number of coding configurations are
considered, which implies to take into account a wide range
of image quality.

Table I compares related works in the literature according
to the aforementioned criteria. Note that most related works
do not attempt to perform a large-scale evaluation of DNN
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TABLE I
RELATED WORK. (I) COMPRESSED DATA AT TRAINING TIME. (II) MULTIPLE CODECS. (III) MULTIPLE IMAGE RESOLUTIONS. (IV) CHROMINANCE

DEGRADATION. (V) TOTAL NUMBER OF CODING CONFIGURATION.

[12] [10] [25] [30] [22] [20] [21] [27] [1] [3] [14] [34] [16] [31] [18] [26] [24] [15] [17] [19] [28] Ours
(I) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
(II) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
(III) ✓ ✓ ✓ ✓ ✓ ✓
(IV) ✓ ✓ ✓
(V) 21 432 19 8 8 16 10 69 12 25 20 8 4 24 46 28 14 6 4 12 9 1486

Grayscale
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Encode Decode
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Fig. 1. Pipeline used to evaluate DNN resilience to compression artifacts. An image I , with or without chrominance channels is first downsampled by a
factor δ and encoded with a codec using quality Q . Compressed image Î is obtained by decoding bitstream B and upsampling reconstructed image by a
factor 1/δ. It is then given to the semantic segmentation algorithm to obtain the prediction.

resilience to compression artifacts, but were included because
of their proximity to this study. To the best of our knowledge,
there is no related work that meet simultaneously all the
mentioned requirements.

Regarding (V) the number of considered distortions, exist-
ing studies consider at most 50 coding configurations, at the
exception of Dejean-servieres et al. [10]. This is because some
studies only compare themselves to HEVC test Model (HM)
or VVC Test Model (VTM) with few Quantization Parameter
(QP) after proposing a new method to reach better trade-
offs between vision task performance and bitrate [14]–[17],
[19], [25], [26]. Some papers also evaluate DNN resilience to
JPEG/JPEG2000 compression [10], [12], [15], [18], [21], [24],
[27], [28], [30], AVC [1], [31] or auto-encoders [18], [26],
[27], but no paper consider all mentioned image and video
codec generations in a unified framework (II). Note that older
codecs such as JPEG or AVC achieve lower trade-offs between
bitrate and vision task performance, but their low-complexity
compared to modern codecs makes them more suitable to some
applications using low-power devices [31], especially when
hardware implementation of AVC encoders is still widespread
nowadays. Very few papers consider other hyper-parameters
than QP such as (III) lowering image resolution [3], [10], [22],
[26] or (IV) removing color information [10], [31].

The use of large-scale datasets is also criteria of major
importance. A great amount of studies include experiments on
large-scale datasets such as ImageNet [11] or Cityscapes [8],
allowing general conclusion to be drawn with higher confi-
dence. Note that Dejean-servieres et al. [10] did not address
this point, since a subset of 55 images of the original ImageNet
dataset were used, while the original database contains over
50000 validations images.

Few papers attempted to (I) use compressed data at training
time in order to improve DNN resilience to compression
artifacts [15], [20], [22], [24], [27], [28], [34]. All studies
converge to show that adding compressed data at training

time allows to reach much higher trade-offs between bitrate
and vision task performance. While training and evaluation
with the same encoding configuration allows to reach the best
trade-offs, training and evaluating with different codec is still
beneficial for DNN resilience [15], [27], [28].

Note that considering (I) compressed data at training time
while using (V) a large range of coding configurations im-
plies tremendous increase of computational resources. In Sec-
tion III-B, we define explicitly the used training procedure
to reduce training complexity, which allows us to consider
more coding configurations, while achieving better trade-offs
between bitrate and vision task performance.

III. BENCHMARK METHODOLOGY

A. Considered Coding Configurations

In this section, the method used to evaluate DNN robustness
to compression artifacts is defined explicitly. Figure 1 illus-
trates the pipeline used to perform the benchmark that fulfill
criteria presented in Section II. An image I is first captured
by a camera. Depending on the coding configuration, criteria
(IV) is considered by discarding or not image I chrominance
channels according to the ITU-R BT.601 standard. Resulted
image is then downsampled by a factor δ and compressed
with one of the considered codecs, using quality Q . Bitstream
B can then be sent to the vision task side using minimal
bitrate since most of the irrelevant information was discarded.
Reconstructed image Î is obtained after decoding bitstream
B and applying an upsampling by a factor 1/δ. Finally,
reconstructed image Î can be fed to a vision task algorithm.
Note that artifacts may have been introduced in Î because
of grayscale conversion, downsampling and encoding steps.
Therefore, in order to fulfill criteria (I), the used DNN was
trained with images containing such artifacts, as explained in
Section III-B.

Criteria (II) is met by considering a total of 5 compres-
sion algorithms, namely JPEG, JPEG2000, JM, x265 and



TABLE II
NUMBER OF CONSIDERED CODING CONFIGURATIONS PER CODEC.

JPG JPG2K JM x265 VVenC Total
672 352 154 154 154 1486

VVenC [4]. JPEG and JPEG2000 are two of the most widely
used lossy image codecs. JM [32], x265 and VVenC are
AVC, HEVC and VVC based video codecs, respectively. Since
mentioned datasets are composed of still images, ALL-Intra
configuration is used for these three video codecs. Note that
HM [33] and VTM [2] are not used in this study, since they
are not meant to be used in a real world scenario due to
their extreme complexity. Therefore, lower complexity codecs
such as x265 and VVenC were used instead. JM-19.0 and
VideoLAN organisation implementation for x265 [29] are
used. Slow and fast preset are selected for x265 and VVenC,
respectively. For JPEG2000, a single tile is considered for
the whole image. Because JPEG2000 do not employ any
block-partitioning within a tile, image downsampling is not
considered with JPEG2000 as it would not bring any gains in
terms of rate-distortion trade-off.

Criteria (III) is also satisfied by taking into account a wide
range of downsampling factor δ, where δ refers to the factor by
which the width and height of the image are multiplied. A total
of #δ = 7 image resolutions using bicubic interpolation are
evaluated, with δ ∈ {0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0}.
A report of considered coding configurations is summarized
in Table II. With a total number of 1486 distortions, the last
criteria (V) is fulfilled.

B. Progressive Training Procedure

DNN are not inherently resilient to degradation in visual
content, including compression artifacts. In order to achieve
optimal trade-off between bitrate and vision task performance,
the inclusion of compressed data at training time must be
considered (criterion (I)).

For this purpose, we propose to use a progressive training,
behind which the key idea is to train one DNN on a large
amount of distortion at once, ranging from undistorted to
highly distorted. This is done by increasing at training time the
distortion strength progressively, where the distortion strength
parameter start at p0 and end at p∞. The distortion strength
can be characterised by the downsampling factor δ, or by the
parameter allowing to control the amount of quantification in
each codec, such as QP for AVC, HEVC or VVC based codecs.
At each epoch e, the distortion strength parameter p is equal
to f (e), which is determined by the following equation:

f (e) = p∞ +∆p⌊ 1

∆p
(p0 − p∞) exp(−se)⌉ (1)

where s ∈ R+∗ controls the speed at which the distortion
level p converges towards p∞, and where ∆p ∈ R+∗ refers
to the step size between two consecutive distortion level p.
The intuition behind our progressive training is that achieving
high accuracy on images with distortion strength f (e) is easier
if the DNN is already robust to images of slightly higher

TABLE III
PROGRESSIVE TRAINING HYPER-PARAMETERS USED FOR EXPERIMENTS.

p0 p∞ ∆p s #e
JPG 100 1 1 0.05 65

JPG2K 0 500 1 0.015 200
JM 0 50 5 0.04 70

x265 0 50 5 0.04 70
VVenC 0 60 5 0.025 72

qualities f (e − 1), and so on. Given that converging to a
minima of the DNN loss function is increasingly harder as
the distortion level p increases, an exponential decay function
is used to decrease the pace at which image quality is reduced
as the training progresses. In order to obtain model weights for
adaptive training initialization, note that the DNN is trained
on uncompressed pristine images before.

Listed coding configurations in Table II vary across dis-
tortions introduced by different types of processing, such as
grayscale conversion, image downsampling or compression ar-
tifacts. Therefore, multiple progressive training are interlaced
together to train the DNN on all considered coding configura-
tions. First, a progressive training with varying downsampling
factor δ is done. This training allows us to obtain model
weights θδi for each considered δi by taking DNN model
weights at last epoch e where f (e) = δi. Afterwards, model
weights θδi can be used at initialization for other progressive
training with varying compression strength, where each images
are downsampled by a factor θδi . Such training with varying
compression strength is done for every image resolution on
JPEG, JM, x265 and VVenC codecs, resulting in a total of
4×#δ = 28 progressive trainings.

The described training strategy can be done both on color
and grayscale images. For color images, DNN weights trained
on pristine data are used as initialization for the progressive
training with varying image resolutions. For grayscale, the
same model is first fine-tuned on grayscale images before
being used for initialization. At the end, a total of 2×(1+1+
4×#δ) = 60 progressive trainings are done to cover the 1486
coding configurations described in Table II. Hyper-parameters
p0, p∞, ∆p, s and the number of epochs #e used by each
progressive training are given in Table III.

C. Used Dataset and Architecture

In the context of this study, the Cityscapes [8] dataset
is considered. Cityscapes is composed of urban landscapes
represented with losslessly compressed images of resolution
2048 × 1024. The lowest image resolution considered in this
study is therefore 512 × 256 with the downsampling factor
δ = 0.25.

DeepLabV3+ [5] with a ResNet50 backbone, a state-of-
the-art semantic segmentation algorithm is used to evaluate
DNN robustness to compression artifacts. MMSegmentation
library [7] was used for DeepLabV3+ implementation, train-
ing, evaluation and model weights. For all training depicted
in Section III-B, SGD optimizer with mini-batch size of 4, a
learning rate of 104 and a polynomial decay of 0.9 are used.
Note that the learning rate is resetted to 104 at each epoch



2 5 10 20 50 100 200
Average image size in KiloBytes (kB)

0.4

0.5

0.6

0.7

0.8
m

Io
U

Color
Grayscale

2 5 10 20 50 100 200
Average image size in KiloBytes (kB)

0.4

0.5

0.6

0.7

0.8

m
Io

U

Color
Grayscale

2 5 10 20 50 100 200
Average image size in KiloBytes (kB)

0.4

0.5

0.6

0.7

0.8

m
Io

U

Color
Grayscale

2 5 10 20 50 100 200
Average image size in KiloBytes (kB)

0.4

0.5

0.6

0.7

0.8

m
Io

U

Color
Grayscale

2 5 10 20 50 100 200
Average image size in KiloBytes (kB)

0.4

0.5

0.6

0.7

0.8

m
Io

U

Color
Grayscale

Fig. 2. Trade-offs between bitrate and mIoU with and without chrominance channels. From left to right, each plot correspond to JPEG, JPEG2000, JM, x265
and VVenC. Criteria (I) and (III) defined in Section II are considered for each curve.

TABLE IV
TRAINING COMPLEXITY AND BDR RELATIVE TO SEPARATE TRAINING
(ST). LOWER BDR VALUES MEANS LOWER BITRATE AT EQUIVALENT

SEMANTIC SEGMENTATION ACCURACY IN TERMS OF MIOU.

Complexity↓ BDR↓
Baseline — 486.57%
ST 100.00% 0.00%
DA 46.99% 21.92%
ours, s = 0.085 26.51% 16.44%
ours, s = 0.045 48.19% 9.51%
ours, s = 0.025 86.75% −2.62%

ei as long as f (ei − 1) ̸= f (ei), based on Eq. 1. The vision
task performance is measured with the mean Intersection over
Union (mIoU) metric.

IV. EXPERIMENTS

A. Progressive training evaluation

Firstly, we briefly evaluate the effectiveness of the progres-
sive training procedure by comparing training complexity and
reached accuracy on a small subset of coding configurations.
11 VVenC coding configurations are used for this experiment,
with QP Q ∈ {5n|n ∈ Z, 0 ≤ n ≤ 10}, with chrominance
channels and no image downsampling. Multiple convergence
speed s from Eq. (1) are considered, namely 0.085, 0.045 and
0.025. We compare our method to a Separate Training (ST)
approach that perform one training per coding configuration.
Final complexity of ST strategy is obtained by adding up
the number of epochs required until converge for each cod-
ing configuration. In addition, Data Augmentation (DA) [15]
training procedure is considered, which consists of training a
single model on all coding configurations at once by selecting
a coding configuration randomly for each image during the
training. Progressive training, ST and DA uses model weights
trained on raw images I at the initialization. Baseline refers
to the model trained on undistorted data, which thus does not
validate criteria (I) from Section II.

Results are presented in Table IV, where Bjøntegaard-Delta
Rate (BDR) metric represents the average bitrate savings at
equivalent DNN accuracy in term of mIoU. ST achieve good
rate-mIoU trade-offs by considering criteria (I). However,
it is at the cost of training complexity since one training
has to be done for each coding configuration. DA training
procedure mitigate this issue by training one model on multiple
coding configurations at once, but it is at the cost of BDR,
especially when a very diverse set of coding configurations is
considered. Note that DA and ST could achieve comparable

rate-mIoU trade-offs on a set of similar coding configurations.
The proposed progressive training procedure allows optimal
rate-accuracy trade-offs to be reached with a lower training
complexity. Tuning the convergence speed s parameter from
Eq. (1) allows to find a suitable balance between BDR
values and training complexity. With a convergence speed of
s = 0.025, we are able to reduce the training complexity over
the ST procedure approach with better BDR values.

Based on selected parameters given in Table III, note than a
total of 4278 epochs are required to cover the 1478 considered
coding configurations using the proposed progressive training
strategy. Therefore, to be comparable in terms of training
complexity, the use of ST strategy instead of the proposed
progressive training would have required less than 3 epochs
per coding configuration on average, which is not enough to
converge.

B. Coding Configuration Comparison

In this subsection, all considered coding configurations are
compared together as depicted in Section III.

Table V presents BDR values with mIoU as the quality
metric between every codec, either with or without the con-
sideration of (III) all image resolutions with the convex hull.
Note that image downsampling is not considered along with
JPEG2000, as explained in Section III-A.

It can be noted that using appropriate image resolution
is of major importance, saving 58.3%, 49.8%, 33.5% and
24.3% bitrate at equivalent prediction accuracy for JPEG, JM,
x265 and VVenC, respectively. Block-partitioning is the main
limitation of older codecs such as JPEG or JM to obtain
better rate-accuracy trade-offs. As an example, the fixed 8×8
bloc size of JPEG may be unsuited to areas with low spatial
information such as sky or road, especially on high resolutions
images. If a downsampling is applied on the same image, a
8×8 bloc will correspond to a larger area, which could be more
suited depending on the image content. Even from codecs such
as x265 or VVenC that allows larger blocs to be selected at
encoding, BDR savings can be obtained with the use of convex
hull.

We suggest that using (III) appropriate image resolution
is of greater importance compared to using a more complex
codec in terms of rate-accuracy trade-off. When appropriate
image resolution is used, it can be noted that JPEG, JM and
x265 achieve 43.1%, 14.2% and 19.9% bitrate savings over
JM, x265 and VVenC, respectively. Note that this observation
cannot be extrapolated to datasets containing smaller images



TABLE V
BDR WITH MIOU METRIC COMPARISON. NEGATIVE VALUES REPRESENT BITRATE REDUCTION AT EQUIVALENT PREDICTION ACCURACY IN TERMS OF

MIOU. SYMBOL ∗ DENOTES THE USE OF (III) CONVEX HULL CURVES ACROSS CONSIDERED IMAGE RESOLUTIONS.

JPG JPG∗ JPG2K JPG2K∗ JM JM∗ x265 x265∗ VVenC VVenC∗

JPG 0.0 139.6 52.9 — 53.3 125.7 123.3 178.6 193.8 224.1
JPG∗ −58.3 0.0 −35.1 — −43.1 27.6 −2.7 68.6 26.8 73.0
JPG2K −34.6 54.1 0.0 — −13.1 32.8 29.6 62.2 72.0 88.4
JPG2K∗ — — — — — — — — — —
JM −34.8 75.9 15.0 — 0.0 99.1 71.8 157.5 115.3 179.6
JM∗ −55.7 −21.6 −24.7 — −49.8 0.0 −14.2 34.6 4.3 37.1
x265 −55.2 2.7 −22.9 — −41.8 16.5 0.0 50.3 24.7 63.0
x265∗ −64.1 −40.7 −38.4 — −61.2 −25.7 −33.5 0.0 −19.9 2.0
VVenC −66.0 −21.1 −41.9 — −53.5 −4.2 −19.8 24.9 0.0 32.1
VVenC∗ −69.1 −42.2 −46.9 — −64.2 −27.1 −38.7 −2.0 −24.3 0.0

TABLE VI
BEST ACHIEVABLE COMPRESSION RATIO WITH RESPECT TO A MINIMAL

MIOU CONSTRAINT. CONSIDERED DNN ACHIEVE 0.8027 MIOU ON RAW
IMAGES.

t0 mIoU JPG JPG2K JM x265 VVenC
97.5% 0.783 15.9 5.6 N.A. N.A. N.A.
95.0% 0.763 33.2 18.8 30.2 39.9 43.4
90.0% 0.723 52.6 56.4 66.4 96.6 107.3
80.0% 0.642 172.0 188.9 182.3 231.9 273.9
70.0% 0.562 358.3 N.A. 313.0 507.7 529.3

or with higher spatial information, since larger bloc size may
not be desirable in such contexts.

Figure 2 compares rate-mIoU trade-offs with and with-
out chrominance information. Using grayscale images al-
lows JPEG and JPEG2000 to achieve greater compromise
at lower bitrates, while the same does not apply for JM,
x265 and VVenC video codecs. Note that an accuracy drop
is observable at high bitrate for video codecs. As shown by
Fischer et al. [14], artifacts generated by in-loop filtering tend
to worsen DNN performance, even with near lossless image
quality.

Achievable compression ratio with respect to a minimal
mIoU constraint is provided in Table VI. Multiple threshold
t0 are used to define the minimal acceptable mIoU score.
Among all coding configurations that have greater mIoU than
the constraint, the one with the lowest bitrate is selected
to compute the highest achievable compression ratio with
respect to the mIoU constraint. The average bitrate using
PNG compression of 2362.90 kB per image in the original
Cityscapes dataset is used as the anchor to compute the
compression ratio.

C. Comparison with CTC

In order to assess the importance of using (I) compressed
data at training time, (III) multiple image resolution and (IV)
chrominance degradation, a comparison with VTM is provided
as recommended by Common Test Conditions (CTC) from
the VCM MPEG standardization group [9]. Convex hull of
VTM-12.0 with ALL-Intra configuration is used as an anchor,
where QP ∈ 22, 27, 32, 37, 42, 47 and downsampling factor
δ ∈ {0.25, 0.5, 0.75, 1.0} are considered.

Table VII highlights JPEG BDR gains using mIoU metric
compared to VTM anchor. As expected, JPEG performs poorly

TABLE VII
BDR VALUES USING MIOU COMPARED TO VTM ANCHOR USING JPEG

ENCODER UNDER VARIOUS CODING CONFIGURATIONS. (I) COMPRESSED
DATA AT TRAINING TIME. (III) MULTIPLE IMAGE RESOLUTIONS. (IV)

CHROMINANCE DEGRADATION.

(I) (III) (IV) BDR
644.68%

✓ −4.06%
✓ ✓ −73.41%
✓ ✓ −25.65%
✓ ✓ ✓ −76.13%

compared to VTM when criteria (I), (III) and (V) are not
considered, which results in a bitrate increase of 644.68% at
equivalent DNN performance in terms of mIoU. Surprisingly
enough, the use (I) compressed images Î at training time
allows JPEG to outperform the VTM anchor with a bitrate
reduction of 4.06%. Bitrate savings can be further increased
to 73.41% if criteria (I) and (III) are satisfied jointly, which
emphasizes the importance of criteria (III) for JPEG codec
because of the fixed 8×8 bloc size. JPEG achieving BDR gains
compared to the VTM anchor highlight the lack of resilience
to compression artifacts that DNN can have if criteria (I) is
overlooked. Note that this experiment was performed with a
DNN model trained on Cityscapes dataset, which does not
contain any compression artifacts. Less extreme results would
be obtained with a dataset that includes compression artifacts,
since artifacts created by different compression algorithms
share similarities on which DNN are able to generalize [15],
[28]. As shown by Figure 2, removing (IV) chrominance
information is beneficial for JPEG at lower bitrates. Therefore,
higher bitrate gains can be achieved by being able to remove
colors. Nevertheless, criteria (IV) appears less detrimental
compared to criteria (I) or criteria (III).

V. CONCLUSION

In this paper, we evaluate in the VCM context the impact
of compression artifacts on deep based semantic segmentation
algorithms at an unprecedented scale. A wide range of image
degradations are considered in order to measure which dis-
tortions allows to maximize DNN performance at equivalent
bitrate. Experiments showed that using appropriate image
resolution is the most crucial parameter to achieve optimal
rate-accuracy trade-off, achieving 58.3%, 49.8%, 33.5% and
24.3% bitrate savings at equivalent prediction accuracy for



JPEG, JM, x265 and VVenC, respectively. Significant bitrate
reductions can also be obtained with newer codecs, but at the
cost of encoding complexity. Surprisingly, VVenC achieve a
very low bitrate saving over x265 of 2.00% with optimal image
resolution, suggesting that the main limitation of older codecs
is their limited block partitioning. Removing chrominance
channels appears as an unsuitable strategy, as it can worsen
DNN performance even at very low bitrates. At high bitrates,
the poor generalization ability of DNN models to video codecs
artifacts, such as in-loop filtering, makes them inferior to
simpler codecs like JPEG in terms of rate-accuracy trade-off.

REFERENCES

[1] Miloud Aqqa, Pranav Mantini, and Shishir K Shah. Understanding How
Video Quality Affects Object Detection Algorithms. In VISIGRAPP (5:
VISAPP), pages 96–104, 2019.

[2] Frank Bossen. H.266/VVC Software Coordination and VTM Reference
Software, 2020.

[3] Imene Bouderbal, Abdenour Amamra, and Mohamed Akrem Benatia.
How Would Image Down-Sampling and Compression Impact Object
Detection in the Context of Self-driving Vehicles? In CSA, pages 25–
37, 2020.

[4] Jens Brandenburg, Adam Wieckowski, Tobias Hinz, and Benjamin
Bross. VVenC Fraunhofer versatile video encoder. cit. on, page 3,
2020.

[5] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and
Hartwig Adam. Encoder-Decoder with Atrous Separable Convolution
for Semantic Image Segmentation. In Proceedings of the European
Conference on Computer Vision (ECCV), September 2018.

[6] V Cisco. Cisco visual networking index: Forecast and trends,
2017–2022. White Paper, 1(1), 2018.

[7] MMSegmentation Contributors. MMSegmentation: OpenMMLab Se-
mantic Segmentation Toolbox and Benchmark, 2020.

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,
Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and
Bernt Schiele. The Cityscapes Dataset for Semantic Urban Scene
Understanding. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[9] Igor Curcio. Common Test Conditions and Evaluation Methodology
for Video Coding for Machines. ISO/IEC JTC 1/SC 29/WG 2, MPEG
Technical requirements, Finland, 2022.

[10] Mathieu Dejean-Servières, Karol Desnos, Kamel Abdelouahab, Wassim
Hamidouche, Luce Morin, and Maxime Pelcat. Study of the impact
of standard image compression techniques on performance of image
classification with a convolutional neural network. PhD Thesis, INSA
Rennes; Univ Rennes; IETR; Institut Pascal, 2017.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
ImageNet: A large-scale hierarchical image database. In 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pages 248–
255, 2009.

[12] S. Dodge and L. Karam. Understanding how image quality affects deep
neural networks. In 2016 Eighth International Conference on Quality
of Multimedia Experience (QoMEX), pages 1–6, 2016.

[13] Samuel Dodge and Lina Karam. Human and DNN classification
performance on images with quality distortions: A comparative study.
ACM Transactions on Applied Perception (TAP), 16(2):1–17, 2019.
Publisher: ACM New York, NY, USA.

[14] K. Fischer, C. Herglotz, and A. Kaup. On Intra Video Coding And In-
Loop Filtering For Neural Object Detection Networks. In 2020 IEEE
International Conference on Image Processing (ICIP), pages 1147–
1151, 2020.

[15] Kristian Fischer, Christian Blum, Christian Herglotz, and André Kaup.
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