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Abstract

Postpositions, which are characterized as mul-
tiple form-function associations and thus pol-
ysemous, pose a challenge to automatic iden-
tification of their usage. Several studies have
used contextualized word-embedding models
to reveal the functions of Korean postpositions.
Despite the superior classification performance
of previous studies, the particular reason how
these models resolve the polysemy of Korean
postpositions is not enough clear. To add more
interpretation, for this reason, we devised a clas-
sification model by employing two transformer-
architecture models—BERT and GPT-2—and
introduces a computational simulation that in-
teractively demonstrates how these transformer-
architecture models simulate human interpreta-
tion of word-level polysemy involving Korean
adverbial postpositions -ey, -eyse, and -(u)lo.
Results reveal that (i) the BERT model per-
forms better than the GPT-2 model to classify
the intended function of postpositions, (ii) there
is an inverse relationship between the classifica-
tion performance and the number of functions
that each postposition manifests, (iii) model
performance is affected by the corpus size of
each function, (iv) the models’ performance
gradually improves as the epoch proceeds, and
(vi) the models are affected by the scarcity of
input and/or semantic closeness between the
items.

1 Introduction

Polysemy, one type of ambiguity, occurs when
one form delivers multiple, and yet related, mean-
ings/functions(Glynn and Robinson, 2014). Tra-
ditional word-embedding models have shown an
unsatisfactory level of performance in polysemy
interpretation(e.g., Bae et al., 2014, 2015; Kim
and Ock, 2016; Lee et al., 2015; Mun and Shin,
2020; Shin et al., 2005). This is mainly due to the
technical nature of these models: they are static
in that a single vector is assigned to each word
(Desagulier, 2019; Ethayarajh, 2019; Liu et al.,

2019a). To overcome this issue, recent studies have
proposed a contextualized word-embedding model
which considers neighborhood information about
a polysemous word on the basis of sequences of
words around the target word (Klafka and Ettinger,
2020; Loureiro and Jorge, 2019; Michalopoulos
et al., 2021). These models have achieved a good
level of performance in many natural language pro-
cessing tasks (Devlin et al., 2018; Radford et al.,
2018a; Liu et al., 2019b; Radford et al., 2018b; Lan
et al., 2019). Among these models, transformer-
architecture models such as Bidirectional Encoder
Representations from Transformer (BERT; Devlin
et al., 2018) and Generative Pre-Training 2 (GPT-2;
Radford et al., 2018b) shows the best performance
for this task of polysemy interpretation (Haber and
Poesio, 2021; Soler and Apidianaki, 2021; Yenice-
lik et al., 2020).

Despite a good deal of research on transformer-
architecture models in English, very few studies
have investigated transformer-architecture-based
polysemy interpretation in languages that are ty-
pologically different from English. We therefore
attend to Korean, a Subject-Object-Verb language
with overt case-marking through a postposition—a
bound morpheme which adds grammatical func-
tions to a content word where it is attached (Sohn,
1999). A Korean postposition normally involves
many-to-many associations between form and func-
tion. As such a postposition is polysemous (Choo
and Kwak, 2008). For example, an adverbial post-
position -(u)lo (-ulo after a consonant) is inter-
preted as six major functions: criterion (CRT), di-
rection (DIR), effector (EFF), final state (FNS),
instrument (INS), and location (LOC) (Shin, 2008).
For instance, the following sentence involving the
postposition -(u)lo as a marker of INS (instrument)
as in (1).

(1) 전선이
censen-i
wire-NOM

연줄로
yencwul-lo
connection.wire-INS
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-ey -eyse -(u)lo
Function Frequency Function Frequency Function Frequency
LOC 1,780 LOC 4,206 FNS 1,681
CRT 1,516 SRC 647 DIR 1,449
THM 448 INS 739
GOL 441 CRT 593
FNS 216 LOC 158
EFF 198 EFF 88
INS 69
AGT 47
Total 4,715 Total 4,853 Total 4,708

Table 1: By-function frequency list of -ey, -eyse, and -(u)lo in cross-validated corpus

Note. Abbreviation: AGT = agent; CRT = criterion; DIR = direction; EFF = effector; FNS = final state;
GOL = goal; INS = instrument; LOC = location; SRC = source; THM = theme

감겼다.
kam-ki-ess-ta.
wind-PSV-PST-DECL
‘The wire wound around with the connec-
tion wire.’

Several studies have used transformer-
architecture models to address the word-level
polysemy of Korean adverbial postpositions (e.g.,
Bae et al., 2020a,b; Hong et al., 2020; Mun,
2021) with the model performance (measured
through a F-score) ranging from 0.776 (Park et al.,
2019) to 0.856 (Bae et al., 2020a). Notably, the
particular reason for the transformer architecture’s
superior performance over the others is some-
what unclear (Puccetti et al., 2021; Yun et al.,
2021). To add more interpretation of the model
performance, we devised a classification model by
employing BERT and GPT-2. In order to further
understand how transformer-architecture models
recognize word-level polysemy, we propose
a transformer-architecture-based visualization
system for polysemy interpretation of three
adverbial postpositions, -ey, -eyse, and -(u)lo,

which are frequently documented in the previous
studies (e.g., Cho and Kim, 1996; Jeong, 2010;
Nam, 1993; Park, 1999; Song, 2014).

2 Methods

2.1 Creating the Input Corpus

The Sejong primary corpus (Sejong corpus is avail-
able at: https://www.korean.go.kr), the representa-
tive corpus in Korean, does not code the informa-
tion about the functions of postpositions directly
in each sentence (which is necessary for model
training). We thus annotated a portion of the origi-
nal corpus data manually. For this purpose, we ex-
tracted sentences involving only one postposition
and predicate. We did this treatment to control for
additional confounding factors which might have
interfered with the performance of our model. We
then extracted 5,000 sentences randomly for each
postposition from the initial dataset.

Three native speakers of Korean annotated each
postposition for its function in this 15,000-sentence
corpus. Fleiss’ kappa scores were 0.948 (-ey), 0.928
(-eyse), and 0.947 (-(u)lo), which are considered

Figure 1: Example sentences used in the training for BERT (left) and GPT-2 (Right)
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‘almost perfect’ according to the Kappa scale. We
further excluded instances which showed disagree-
ment among the human annotators. The final cor-
pus consisted of 4,715 sentences for -ey, 4,853
sentences for -eyse, and 4,708 sentences for -(u)lo.
Table 1 presents the detailed by-function frequency
list of the three postpositions1.

2.2 Creating Training and Test Sets

In order to make the training and test sets, we made
three separate columns: index (the unique number
of each sentence), label (the intended function of
each postposition in each sentence), and sentence.
For the sentence of BERT, we added [CLS] (‘clas-
sification’; indicating the start of a sentence) before
a sentence and [SEP] (‘separation’; indicating the
end of a sentence) after a sentence to indicate where
the sentence starts and ends (Figure 1 left); no such
addition occurred in GPT-2. We then split the cor-
pus into two sub-sets, one with 90 per cent of the
corpus for the training and with the remaining 10
per cent of the corpus for the testing.

2.3 Developing BERT and GPT-2 Models

For the BERT model training, we transformed the
input data into three embedding types—token em-
bedding, position embedding, and segment embed-
ding (c.f., Devlin et al., 2018)—in the following
ways. First, for the token embedding, we used
KoBertTokenizer for the sentence tokenization; the
maximum number of tokens for each sentence was
set to 128. Second, for the position embedding, we
converted each token into numeric values indicat-
ing unique indices of the tokens in the vocabulary
of KoBERT. Third, for the segment embedding, we
converted the number of tokens of each sentence
into 128 numeric values using 0 (i.e., not existed)
or 1 (i.e., existed). The labels of the data indicating
the intended function of each postposition in the
sentence were stored separately.

After the input creation, we set the parameters
related to both of model training such as batch size
(16), epoch (50), seed (42), sequence length (128),
epsilon (0.00000008), and learning rate (0.00002),
as advised by previous studies (e.g., McCormick,
2019; Vázquez et al., 2020; Wu et al., 2019). We
then employed BERT and GPT-2 pre-trained lan-
guage models in order to obtain high performance
of outcomes: KoBERT (Jeon et al., 2019) for BERT

1Our corpus is available at: https://github.com/seongmin-
mun/Corpora/tree/main/APIK

and KoGPT-2-base-v2 (Jeon et al., 2021) for GPT-
2. The BERT model training proceeded as follows.
First, we loaded KoBERT through the function
BertForSequenceClassification from transformers
(Wolf et al., 2019). Second, we fine-tuned the pre-
trained model by using the training set, with a view
to reducing loss values and updating the learning
rate for better classification performance of the
model. Third, we loaded the testing set to eval-
uate whether the fine-tuned model successfully
recognized the intended functions of each post-
position in each sentence. In this part, the rates
of F-score for each function and the total F-score
rate (i.e., F-score) were calculated by comparing
the intended function of each postposition in each
test sentence against the parsed version returned
by the model. Lastly, we employed t-distributed
Stochastic Neighbor Embedding (t-SNE; Maaten
and Hinton, 2008) for dimension reduction of clas-
sification embeddings from the postposition by
each epoch. In addition, to statistically confirm the
changes of sentence-level embedding outcomes by
each epoch, we performed density-based clustering
(Sander et al., 1998). These outcomes were fed into
the visualization system 2.

The input treatment process and the training
process of GPT-2 are almost the same as the
BERT training process. For the input treatment,
first, the BERT model used symbols to mark the
start and the end of each input, but no such addi-
tion occurred in GPT-2 training. Second, BERT
uses wordpiece algorithm for the token embed-
ding (Sennrich et al., 2016), but GPT-2 uses
byte pair encoding algorithm (Gage, 1994). For
the training process, first, BERT operates on the
basis of masked language modeling and next-
sentence prediction for generating a pre-trained
model, whereas GPT-2 uses general language mod-
eling by using a huge size corpus. Second, the
BERT model conducts learning in bi-direction,
while GPT-2 conducts learning in uni-direction.
In addition, GPT-2 loaded KoGPT2 through the
function GPT2ForSequenceClassification and Pre-
TrainedTokenizerFast from transformers (Wolf
et al., 2019).

2.4 Developing the Visualization System

In order to better understand how BERT and GPT-2
recognize the word-level polysemy, we developed

2Code can be found at: https://github.com/seongmin-
mun/Visualization/tree/master/2022/PostTransformers
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Figure 2: The overview interface of the visualization system

a visualization system by using the test set under
the two-dimensional distribution. For the system
interface, we created three areas for the demonstra-
tion of model performance: a distributional map for
sentence-level embeddings, F-score charts relating
to the model, and graphs for the density-based clus-
tering3.

2.4.1 Distributional Map for Sentence-Level
Embeddings

The distributional map as in Figure 2b presents
the relationship between the sentences with the se-
lected postposition (represented as dots) involving
different functions (represented as colors). A slider
at the bottom of the map allows for changing the
epochs; the patterns of clustering change as the
slider moves. Each dot shows the details of the sen-
tence (e.g., an index of the selected sentence, the

3The visualization system available at: https://seongmin-
mun.github.io/Visualization/2022/PostTransformers/index.html

intended function used in the sentence, the orig-
inal sentence) once the mouse pointer is located
on the dot. For the manipulating of visualization
outcomes, Figure 2a provides options to select the
checkboxes to highlight and tracking interesting
sentences according to the function of these post-
positions, the models, and the index number.

2.4.2 F-score Charts
The right side of the system as in Figure 2c provides
users with various information about the model per-
formance: overall F-score and by-function F-score
in the classification task by epoch. This section also
provides F-score rates of each function by hovering
around the mouse pointer onto the specific-colored
lines.

2.4.3 Graphs for the Density-Based Clustering
The bar chart at the bottom right side of the system
presents the number of clusters produced by the

Epoch Classification performance (F-score)
Overall AGT CRT EFF FNS GOL INS LOC THM

1 0.677 0 0.812 0.286 0 0.125 0 0.802 0.472
10 0.739 0.286 0.84 0.37 0.5 0.444 0.222 0.813 0.646
20 0.758 0.25 0.848 0.514 0.474 0.478 0.286 0.827 0.705
30 0.745 0.25 0.823 0.571 0.542 0.448 0.375 0.816 0.688
40 0.73 0.222 0.805 0.537 0.522 0.478 0.3 0.82 0.66
50 0.747 0.25 0.839 0.529 0.5 0.413 0.353 0.817 0.705

Average 0.744 0.217 0.837 0.531 0.499 0.435 0.29 0.823 0.651

Table 2: By-function F-score for the BERT model: -ey
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Epoch Classification performance (F-score)
Overall LOC SRC

1 0.893 0.94 0.509
10 0.88 0.933 0.431
20 0.874 0.93 0.358
30 0.87 0.927 0.376
40 0.878 0.931 0.468
50 0.87 0.928 0.364

Average 0.875 0.93 0.373

Table 3: By-function F-score for the BERT model: -eyse

Epoch Classification performance (F-score)
Overall CRT DIR EFF FNS INS LOC

1 0.681 0.532 0.82 0 0.714 0.396 0
10 0.799 0.644 0.924 0.462 0.805 0.794 0.167
20 0.794 0.595 0.915 0.714 0.807 0.818 0.2
30 0.799 0.598 0.908 0.545 0.808 0.829 0.296
40 0.792 0.612 0.915 0.667 0.797 0.794 0.24
50 0.803 0.627 0.915 0.667 0.812 0.809 0.286

Average 0.795 0.626 0.911 0.604 0.805 0.803 0.233

Table 4: By-function F-score for the BERT model: -(u)lo

Epoch Classification performance (F-score)
Overall AGT CRT EFF FNS GOL INS LOC THM

1 0.514 0 0.579 0 0 0 0 0.617 0
10 0.7 0 0.8 0.5 0.148 0.31 0 0.794 0.591
20 0.675 0 0.793 0.39 0.235 0.222 0 0.768 0.56
30 0.672 0 0.784 0.364 0.421 0.328 0.2 0.771 0.495
40 0.687 0 0.811 0.324 0.41 0.25 0 0.768 0.592
50 0.685 0 0.814 0.333 0.333 0.254 0 0.768 0.582

Average 0.68 0.003 0.796 0.386 0.335 0.24 0.061 0.769 0.546

Table 5: By-function F-score for the GPT-2 model: -ey

Epoch Classification performance (F-score)
Overall LOC SRC

1 0.857 0.923 0
10 0.851 0.918 0.217
20 0.864 0.925 0.214
30 0.849 0.915 0.305
40 0.843 0.912 0.296
50 0.851 0.917 0.28

Average 0.844 0.912 0.272

Table 6: By-function F-score for the GPT-2 model: -eyse

model. This chart also provides a hovering function,
providing the actual number of clusters per epoch.
The particular hovering activity is interlocked with
the density cluster view, located at the bottom left

of the system, by presenting the clustering results
according to the selected epoch.
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Epoch Classification performance (F-score)
Overall CRT DIR EFF FNS INS LOC

1 0.473 0.03 0.549 0 0.575 0.099 0
10 0.675 0.611 0.765 0.471 0.701 0.583 0.207
20 0.664 0.619 0.782 0.429 0.658 0.568 0.273
30 0.696 0.621 0.801 0.5 0.721 0.587 0.222
40 0.683 0.585 0.799 0.462 0.691 0.612 0.24
50 0.694 0.603 0.803 0.5 0.702 0.635 0.222

Average 0.676 0.588 0.782 0.425 0.69 0.591 0.226

Table 7: By-function F-score for the GPT-2 model: -(u)lo

3 Results: Four Case Studies

In order to report the transformer-architecture mod-
els’ performance of classifying the functions of
postpositions and assess how our visualization sys-
tem works, we conducted four case studies.

3.1 Which Model is Better to Resolve the
Polysemy of Korean Postposition?

Tables 2-7 show the classification performance (i.e.,
F-score) of the two models for each postposition.
Results show that the overall F-score was the high-
est in BERT (0.875; for -eyse) and the lowest in
GPT-2 (0.676; for -(u)lo)).

Comparison |F | p

Model 752.97 < .001∗∗∗

Postposition 1240.18 < .001∗∗∗

Model × Postposition 97.14 < .001∗∗∗

Table 8: Results of the two-way ANOVA for the overall
comparison of two models

Note. ∗∗∗ < .001

To construct a global model, we performed a
two-way ANOVA (2 models × 3 postpositions).
As Table 8 shows, there are significant differences
in the F-score across the models and postpositions.
This indicates the classification performance dif-
fered between the BERT model and the GPT-2
model in all postpositions.

Comparison |t| p

BERT vs. GPT-2 (-ey) 14.506 < .001∗∗∗

BERT vs. GPT-2 (-eyse) 9.688 < .001∗∗∗

BERT vs. GPT-2 (-(u)lo)21.337 < .001∗∗∗

Table 9: Statistical comparison between two models by
each postposition: Two-sample t-test

Note. ∗∗∗ < .001

We further conducted post-hoc analyses through
a two-sample t-test. As Table 9 shows, the model
performance of BERT significantly differs from the
GPT-2’ performance. Considering the differences
between two models for model training such as
the different directions or pre-training tasks of two
models (see Section 2.3), this can indicate that the
different training processes of the two models influ-
enced the classification performance by classifying
the functions of the postpositions.

3.2 Does the Number of Functions Involving a
Postposition Affect the Model
Performance?

As shown in Tables 2-7, the BERT model per-
formed better for -eyse, which has only two func-
tions (SRC and LOC), than for the other two post-
positions (-ey and -(u)lo). Similar to the BERT
model, -eyse outperformed the other two postposi-
tions in the GPT-2 model, as Tables 2-7 show. The
overall classification F-score rates for -ey, -eyse
and -(u)lo were around 0.744, 0.875 and 0.795 for
BERT, 0.68, 0.844 and 0.676 for GPT-2.

Comparison |F | p

Postposition 22.941 < .001∗∗∗

Epoch 0.414 0.521
Postposition × Epoch 0.003 0.959

Table 10: Results of the two-way ANOVA for the BERT
model

Note. ∗∗∗ < .001

Table 10 shows the two-way ANOVA for the
comparison of the BERT classification perfor-
mance. The result presents that the overall F-score
levels of the postpositions were significantly dif-
ferent from each other. This indicates there is a
difference in model performance between the three
postposition types which have a different number
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of functions.

Comparison |F | p

Postposition 0.049 0.825
Epoch 1.690 0.196
Postposition × Epoch 0.355 0.552

Table 11: Results of the two-way ANOVA for the GPT-2
model

Unlike the results from the BERT model, the
statistical analysis of two-way ANOVA for GPT-
2 (Table 11) shows that there was no statistical
significance in the performance across the post-
positions/epochs. This indicates that GPT-2 is not
affected by the number of functions of each post-
position.

3.3 Do the Asymmetric Proportions of the
Functions in Each Postposition Affect the
Model Performance?

The answer is they do. For the BERT model, the
overall classification F-score of each function for
-ey was the highest for CRT (0.837) and the lowest
for AGT (0.217); for -eyse, the performance was
the highest in LOC (0.93) and the lowest in SRC
(0.373); for -(u)lo, the classification performance
was the highest in DIR (0.911) and the lowest in
LOC (0.233) (Tables 2-4). Similar to the BERT
model, the overall classification performance of
GPT-2 for -ey was the highest in CRT (0.796) and
the lowest for AGT (0.003); for -eyse, the F-score
was the highest in LOC (0.912) and the lowest

in SRC (0.272); for -(u)lo, the classification per-
formance was the highest in DIR (0.782) and the
lowest in LOC (0.226) (Tables 5-7).

As for the occurrences of individual functions
per postposition, CRT for -ey, LOC for -eyse, and
DIR for -(u)lo account for the larger portion of the
entire corpus than other functions (see Table 1).
This finding thus indicates that the model perfor-
mance was affected by the asymmetric proportions
of the functions comprising the use of each postpo-
sition.

3.4 How do the Transformer-Architecture
Models Classify Sentences for Each
Postposition Based on Function as the
Epoch Proceeds?

Our visualization system showed that the model
was able to recognize the functions of each post-
position as the epoch progressed. Through the out-
comes of the BERT model, for -ey, the number of
clusters was one when the epoch was one, but as the
epoch progressed, the sentences were divided into
four in Epoch 8, five in Epoch 12, and six in Epoch
40. For -eyse, all of the sentences were grouped
into one when the epoch was one, and there were
two clusters since the epoch was two. For -(u)lo,
the number of clusters increased, starting from one
(Epoch 1) to four (Epoch 4), five (Epoch 9), and
six (Epoch 29).

The GPT-2 model also showed a similar ten-
dency with the BERT model. For -ey, all of the
sentences were grouped into one when the epoch

Figure 3: The t-SNE outcome of BERT model for -(u)lo in Epoch 17
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Figure 4: The t-SNE outcome of the GPT-2 model for -(u)lo in Epoch 50 (left: for highlighting the EFF instances;
right: highlighting the LOC instances)

was one, but as the epoch progressed, the sentences
were divided into two in Epoch 8, three in Epoch
23, four in Epoch 42, and five in Epoch 47. For
-eyse, the number of clusters was one when the
epoch was one, and there were two clusters since
the epoch was 20. For -(u)lo, the number of clus-
ters increased, starting from one (Epoch 1) to two
(Epoch 3), three (Epoch 18), and four (Epoch 23).

In particular, by using visualization system, we
found two interesting aspects. First, the BERT
model in Epoch 17 (Figure 3) for -(u)lo, a cluster of
EFF (the function with low-frequency occurrences
in the data) emerged. This finding indicates that the
BERT model can identify functions at a satisfactory
level, even though they are relatively infrequent, as
long as there are sufficient epochs provided. How-
ever, unlike the BERT model, the GPT-2 model did
not recognize EFF as a designated function until
Epoch 50 as shown in Figure 4 (left).

Figure 5: The DIR cluster in the t-SNE outcome of
the BERT model for -(u)lo (Epoch 50) highlighting the
LOC instances

Second, for both models, LOC could not form
a designated cluster in the end. Zooming into the

individual instances of LOC (Figure 4 (right) and
Figure 5), we found that many of the LOC instances
(11 out of 15) belonged to the DIR group. This
may be due to (i) the low frequency of LOC in
the data and (ii) the semantic closeness between
DIR and LOC—they relate to a location and are
often difficult to distinguish one from another. This
finding indicates that there are still some limitations
in regard to the identification of functions given the
above complications.

4 Conclusion

In this study, we made five major findings. First,
BERT performed better than GPT-2 in revealing the
polysemy of Korean postpositions. Second, there
was an inverse relation between the classification
performance and the number of functions of each
postposition. Third, the model was affected by the
corpus size of each function. Fourth, the model was
able to identify the intended functions of a postpo-
sition as the epoch progressed. Fifth, these models
were affected by the rarely occurring input and/or
semantic closeness between the items, limiting the
performance of two models in the given task to
some extent.

The findings of this study should be further veri-
fied by incorporating more postposition types that
have similar degrees of polysemy that three adver-
bial postpositions demonstrate. Future study will
also benefit from considering other contextualized
word-embedding models such as GPT-3 (Brown
et al., 2020) or ELECTRA (Clark et al., 2020)
to better ascertain the advantage of transformer-
architecture models in this kind of task.

We believe our visualization system will con-
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tribute to extending the current understanding of
how transformer-architecture models work for lan-
guage tasks (particularly in non-English settings).
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