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Simple Summary: Understanding drawing features is a complex task, particularly concerning non-
human primates, where the relevant features may not be the same as those for humans. Here, we
propose a methodology for objectively analyzing drawings. To do so, we used deep learning, which
allows for automated feature selection and extraction, to classify a female orangutan’s drawings
according to the seasons they were produced. We found evidence of seasonal variation in her drawing
behavior according to the extracted features, and our results support previous findings that features
linked to colors can partly explain seasonal variation. Using grayscale images, we demonstrate that
not only do colors contain relevant information but also the shape of the drawings. In addition, this
study demonstrates that both the style and content of drawings partly explain seasonal variations.

Abstract: Drawings have been widely used as a window to the mind; as such, they can reveal some
aspects of the cognitive and emotional worlds of other animals that can produce them. The study of
non-human drawings, however, is limited by human perception, which can bias the methodology and
interpretation of the results. Artificial intelligence can circumvent this issue by allowing automated,
objective selection of features used to analyze drawings. In this study, we use artificial intelligence
to investigate seasonal variations in drawings made by Molly, a female orangutan who produced
more than 1299 drawings between 2006 and 2011 at the Tama Zoological Park in Japan. We train
the VGG19 model to first classify the drawings according to the season in which they are produced.
The results show that deep learning is able to identify subtle but significant seasonal variations in
Molly’s drawings, with a classification accuracy of 41.6%. We use VGG19 to investigate the features
that influence this seasonal variation. We analyze separate features, both simple and complex, related
to color and patterning, and to drawing content and style. Content and style classification show
maximum performance for moderately complex, highly complex, and holistic features, respectively.
We also show that both color and patterning drive seasonal variation, with the latter being more
important than the former. This study demonstrates how deep learning can be used to objectively
analyze non-figurative drawings and calls for applications to non-primate species and scribbles made
by human toddlers.

Keywords: primates; deep learning; drawing behavior; artificial intelligence; cognition

1. Introduction

Anthropocentric bias can arise when interpreting the meaning of what is depicted
in drawings. Most studies on figurative drawings; nevertheless, non-figurative drawings
can also have meanings, as found in young children’s drawings [1]. Moreover, drawings
contain a large amount of information, and using a predefined set of handcrafted features
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limits the amount of information that can be extracted. This is particularly true when
studying drawings made by non-human primates, as there may be an anthropocentric bias
in choosing those features that are expected to be meaningful to us, even though they may
be totally irrelevant to other species. Thus, predefined handcrafted features do not fully
exploit the information content of drawings. In humans, a possible way to mitigate this
issue is to ask the drawer what he or she intends to represent [2]. However, the drawer
may not be directly aware of the deep meaning of the produced drawing. For example,
the method cannot be applied to scribbles drawn by very young children who are not able
to communicate verbally or to children who cannot communicate because of pathologies.
Obviously, verbal communication about intentions is also not applicable to non-human
animals that can draw, such as other primate species [3].

In the present study, we used artificial intelligence to analyze the drawings of a female
orangutan named Molly († in 2011), who produced 1299 drawings in her last five years as
part of a behavioral enrichment program [4] at the Tama Zoo in Japan. Previous investiga-
tions of Molly’s drawings have already demonstrated that her drawings were influenced
by her keeper’s identity and daily external events, such as the birth of conspecifics [4].
The authors of [3] investigated the differences among Molly’s drawings using traditional
ethological methodologies (i.e., by selecting features and manually extracting them). These
authors demonstrated the evolution of Molly’s drawings over time and the influence of
seasons. For instance, Molly used green color mostly during the summer and winter
seasons and pink color in spring and autumn. How she drew lines also differed according
to the season. However, because of the time required to extract features manually, these
analyses were conducted on only 749 of the 1299 available drawings. Moreover, the authors
focused on features typically used to study children’s drawings [5], such as loops, circles,
and fan patterns, which may have a different meaning for orangutans and humans or may
even be totally irrelevant.

Deep learning can overcome these limitations. Deep learning is a set of artificial
intelligence methods based on artificial neural networks [6,7] and is now widely used
in computer vision. Deep learning is an efficient way to replace or complement human
expertise in images analyzed in complex tasks, such as classifying microscopy images [8]
and diagnosing pathologies [9]. Deep learning does not require handcrafted features; it only
requires labeled images. Convolutional neural networks (CNNs), the most common class
of deep learning algorithms in image analysis, automatically learn and extract features that
are most relevant for a given task (e.g., classification of images based on their labels). CNNs
are composed of multiple layers, each containing filters, which are matrices that learn
feature representations. The filters are initially randomly initialized and then optimized
during the training. The complexity of the features increases with the depth of the layers,
from low-level features (e.g., edges, circles) in shallow layers (i.e., close to the input) to
high-level features (e.g., a nose, eyes) and entire objects (e.g., a face) in deeper layers (i.e.,
close to the output). Convoluting a filter with an image results in a new matrix, called a
feature map. A feature map, also known as an activation map, represents the activation
of the filter in different parts of the image. A high activation indicates the occurrence of a
feature encoded by the filter in this part of the image. CNNs allow for high accuracy but
have notoriously low interpretability. Nevertheless, multiple methods have recently been
developed to better understand deep learning models, such as visualizing which parts of
an image are important for its classification [10].

Despite the power of artificial intelligence to analyze images, this method has rarely
been applied to understand drawing behavior [11]. Thus far, most applications have
exploited the high performance of deep learning in classification, for example, to recognize
stroke representations [12] or to classify entire drawings according to the depicted object
category [13]. However, the use of deep learning to investigate ontogeny or phylogeny has
received little attention.

Here, we investigate multiple methods of using deep learning to decipher Molly’s
drawings. We first tested whether season could explain the variation among Molly’s
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drawings by training a deep learning model to classify each drawing into one of the four
seasons during which it was created. The results confirm the seasonal effect revealed in
a previous study using handcrafted features [3]. To further understand this effect, we
analyze how the information spreads within the network from shallow to deep layers.
More precisely, we investigated the impact of feature complexity on classification accuracy.
Finally, we leverage a particular type of artificial intelligence technique named ‘style
transfer’ to dissociate features associated with drawing style from those describing the
representational content, and to analyze the relative importance of these two types of
features in explaining seasonal variation in the predictions of the model.

2. Materials and Methods
2.1. Dataset

The data consist of 1299 drawings realized between 2006 and 2011 by Molly, who
started drawing at approximately the age of 50 years and rarely had contact with con-
specifics. She spent the morning in an enclosure (that could be inside or outside), and the
afternoon in a restroom, where a crayon bucket was at her disposal so she could draw
freely and whenever she wanted to. She spent approximately from 2 to 3 h every day, at
the rate of 1–2 drawings per day. To end a session, Molly placed the drawing supplies on
the floor. For more details on Molly and her drawings, please refer to [3,4]. During this
period, she was provided a piece of paperboard and colored crayons daily. As this activity
was not specifically meant to investigate her drawing behavior, no rigorous protocol was
applied. Thus, only few metadata were collected. To the best of our knowledge, the date of
the production of the drawings is the only external source of information available. Each
drawing was then categorized into one of the following four seasons based on the date:
autumn, summer, spring, and winter (374, 284, 269, and 372 drawings, respectively). To
fit the model discussed below, the drawings were reshaped to squares and resized to (224,
224, and 3). The dataset was split into a training set and a validation set with 907 and 392
images, respectively. For each set and season, the drawings were distributed as follows:
28.8% in autumn, 20.7% in spring, 21.9% in summer, and 28.6% in winter. Examples of
drawings for each season are shown in Figure 1.
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Figure 1. Examples of Molly’s drawings. The season of each drawing, from the left to the right, is 
autumn, spring, summer, and winter. Credits goes to the Tama Zoological Park. 

Apart from Molly’s drawings, we considered two other datasets of animal drawings 
that should be easy to classify. We used these datasets to perform a sanity check on the 
performance of our artificial intelligence model. Pigcasso’s dataset [14] includes 170 
drawings of a male pig (Sus scrofa) living in South Africa who paints on a canvas by 
holding a brush in his snout. Pigcasso’s drawing behavior was enhanced by positive 
reinforcement. The Pockets Warhol dataset [15] consists of 170 drawings made by a 
capuchin monkey (Cebus capucinus), who draws in a sanctuary in Canada by putting paint 
on his fingers and applying it to a canvas. Pockets Warhol started drawing as he was given 
children’s paints to occupy himself. 

Figure 1. Examples of Molly’s drawings. The season of each drawing, from the left to the right, is
autumn, spring, summer, and winter. Credits goes to the Tama Zoological Park.

Apart from Molly’s drawings, we considered two other datasets of animal drawings
that should be easy to classify. We used these datasets to perform a sanity check on the per-
formance of our artificial intelligence model. Pigcasso’s dataset [14] includes 170 drawings
of a male pig (Sus scrofa) living in South Africa who paints on a canvas by holding a brush
in his snout. Pigcasso’s drawing behavior was enhanced by positive reinforcement. The
Pockets Warhol dataset [15] consists of 170 drawings made by a capuchin monkey (Cebus
capucinus), who draws in a sanctuary in Canada by putting paint on his fingers and ap-
plying it to a canvas. Pockets Warhol started drawing as he was given children’s paints to
occupy himself.

2.2. Convolutional Neural Network (CNN)

As features pre-selected by humans may not grasp all the relevant information in
drawings, we focused on deep learning, and more precisely, on CNN. The first CNN
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was trained on Molly’s drawings to predict the season. We used the transfer learning
method [16] to circumvent the limitations of our relatively small dataset. Transfer learning
consists of using an existing model that has already been trained on a particular task to
perform another task. Following previous studies on drawings [17,18], we used the VGG19
architecture with ImageNet weights. VGG19 consists of 16 convolutional layers followed
by 3 fully connected (FC) layers. We transferred the weights of the convolutional layers
and randomly initialized the weights of the FC layers. The number of channels starts from
64 in the early layers, which captures simple elements such as lines, curves, and blobs [19],
and grows to 512 in the deepest convolutional layers, allowing the network to learn a
representation of complex objects. All convolution kernels were 3 × 3. We tested different
parameters and hyperparameters (e.g., learning rate and length of FC layers) to find the
best model, the architecture of which is described as follows. The last convolutional layer
from VGG19 is followed by an average pooling layer and a batch normalization layer. Then,
a first FC layer of size 2048 with L2 regularization (strength of regularization of 0.1) is
added, as well as a dropout layer with a rate of 0.2. The last layer is an FC layer of size 4,
and each neuron corresponds to a season with softmax activation. We use a categorical
cross-entropy loss function. To train the model, we used a stochastic gradient descent (SGD)
optimizer with a learning rate of 0.1, and a batch size of 16. The best model was determined
through early stopping by monitoring the validation set accuracy, and the training was
stopped after three epochs with no improvement. As VGG19 is not specifically trained
on drawings or paintings, we froze all convolutional blocks. To increase model accuracy,
we also used data augmentation (horizontal and vertical flips). Illustration of the VGG19
architecture and examples of feature maps are shown in Figure 2.
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Figure 2. VGG19 model architecture and examples of feature maps (on the bottom) for a drawing.
From left to right, each 2 × 2 square of feature maps are extracted from block1_conv1, block3_conv1,
block5_conv1, respectively. The early blocks are in a high resolution, as the filters capture fine details,
compared to deeper blocks, where the filters detect more general concepts.

2.3. Activations Classification

The previous classification of drawings according to season based on transfer learning
was used as a baseline to compare other classification approaches intended to explore the
role of different features in seasonal variation. Here, we focus on the features described
by activations [20]. As shallow layers encode local information represented by simple
features, and deeper layers encode global and more complex information, we first compared
the ability of these different layers to classify seasons. For this purpose, each drawing
was encoded using VGG19 (pretrained with ImageNet weights [21]), and for each layer
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separately, its activations were extracted, reduced, and used for classification. For the first
convolutional layer, for example, one image is represented by 64 matrices f1, . . . , f64 of size
224 × 224, corresponding to the 64 feature maps fi of this layer. The maps are then flattened
and concatenated into a single activation vector f. Then, principal component analysis is
applied to the matrix containing the activation vector of every image, and only the first
principal components (PCs) explaining a total of 80% of the variance are retained. The
new vectors containing the retained PCs scores are then fed to a support vector machine
(SVM) to classify images according to season. The same procedure is repeated for each
convolutional layer, and for the first two fully connected layers, except that the activations
were already vectorized, and thus did not require flattening. Accuracy was calculated
through 10-fold cross-validation. Cross-validation consists of splitting the data into k-folds
(here, k = 10) as follows: one-fold is used as the evaluation set and the k-1 other folds are
used to train the SVM. This process is repeated for k folds; thus, each fold is used once for
evaluation. For a given layer, the classification accuracy was calculated as the average of
k scores.

For a given image, the length of f decreases with the depth of the layer. Thus, activation
extraction does not require a significant amount of memory in deep layers. However,
extracting the activations of every image requires a large amount of memory for early
convolutional layers. In the first convolutional layer, f contains 3,211,264 activations. This
became an issue when computing PCA for the first two convolutional layers. To address
this issue, we reduce the size of f by randomly sampling 50% of its activation. To check
whether this reduction preserved the information originally contained in the layers, we
repeated the f reduction 50 times and compared the 50 means of the reduced f to the
mean of the original f using a one-sample t-test. This test, performed for both the first and
second convolutional layers, was not significant, demonstrating that sampling 50% of the
activations did not change their mean. Thus, for the first two convolutional layers, we
considered half of the activations to compute PCA.

To understand the importance of colors in the seasonal variation of drawings, the
previous SVM-based classification procedure was repeated using either RGB or grayscale
images as inputs. The grayscale images were obtained using RGB channels and the
National Television System Committee (NTSC) standard. To fit the VGG19 input shape,
the new grayscale channel was repeated 3 times. For each layer, the RGB model was first
compared to a dummy classifier to assess whether the RGB model was better than random
classification. The RGB model was then compared with the grayscale model. To do so,
we performed a 5 × 2 cv paired t-test [22]. This test consists of comparing the accuracy
of two models A and B by proceeding to five 2-fold cross-validations in a row, with the
null hypothesis that both models have equal performance. The first accuracy is calculated
using 50% of the data as training and 50% as testing, before reversing the roles. This was
repeated five times for models A and B.

2.4. Gram Matrices Classification

Activation maps are often thought to encode information regarding the content of
an image. To analyze whether Molly’s drawing style varied across seasons, we repeated
the classification procedures using Gram matrices of activations instead of the activations
themselves [23]. For a given layer, the feature maps fi are flattened and concatenated
vertically to produce matrix F. The Gram matrix was then calculated as G = FTF. Each
value of G can be interpreted as the correlation between the two feature maps of the image.
G was computed for every image before flattening. Each resulting vector represents a
drawing, and these vectors are fed to an SVM to classify the style of the images according
to the season through a 10-fold cross-validation. The classification is repeated for every
convolutional layer because the Gram matrices cannot be computed for the FC layers.

All the analyses were performed using Python.
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3. Results
3.1. Classification through Transfer Learning

The model trained to classify drawings according to seasons achieved 41.6% accuracy
on the test set. This accuracy is higher than that expected by random (approximately
29%, by always classifying drawings as the most common class). Drawings produced in
the autumn (resp. spring) are often predicted to be produced in winter (resp. summer),
and inversely, as shown by the confusion matrix (Figure 3). To assess the extent to which
these two possible subgroups (autumn and winter vs. spring and summer) may differ, we
retrained a model to classify these two subgroups, which achieved an accuracy of 66%.
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Figure 3. Confusion matrix of classification between seasons. For a given element, the value
corresponds to the number of drawings predicted as the label matching with the column but belonging
to the label matching with the row.

For comparison, the same model that achieved 41.6% accuracy was trained to distin-
guish between Molly’s drawings, Pigcasso’s drawings, and Pockets Warhol’s drawings.
The model achieved 93.6% accuracy in the 3-category classification task. As an additional
comparison, the same model trained to classify Molly’s drawings according to drawing
coverage (binary classification: low coverage vs. high coverage) achieved 94.8% accuracy.
These results show that our model is effectively able to classify drawings when the differ-
ences are large; thus, the significant but relatively low accuracy of the seasonal classification
model is due to only subtle differences between seasons in Molly’s drawings.

3.2. Layer-Wise Activation-Based and Gram Matrix-Based Classifications

The mean accuracy of the 10-fold cross-validation SVM at each layer for the RGB
and grayscale images is shown in Figure 4. The accuracy of classification models based
on activations of RGB images was compared to the accuracy of dummy models (always
classifying images as belonging to the most frequent class) by conducting a 5 × 2 cv paired
t-test. For every convolutional and fully connected layer, the model accuracy was different
(p < 0.05) from the accuracy of the dummy models, showing that every layer encoded
sufficient discriminative information to classify Molly’s drawings according to the season
better than random. The slope of the linear regression model predicting the accuracy as a
function of layer depth was not significantly different from zero (p = 0.11), showing that
the accuracy did not improve through layers. Considering grayscale images, the accuracy
of the models differed (p < 0.05) from that of the dummy model, except for convolutional
layers 1, 2, and 11. The slope for the grayscale images was positive and significantly
different from zero (p < 0.01), indicating that the discriminative information contained in
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high-level features is not linked to colors only. The same test was performed to compare the
accuracy between RGB and grayscale images (rather than the accuracy of dummy models)
and revealed statistical differences only for layer FC2.
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The results of the Gram matrix-based classifications computed on RGB images are
shown in Figure 5. Classification accuracy increased with layer depth (p < 0.001), indicating
that complex-style features vary across seasons.
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4. Discussion

The analysis of drawings is usually based on a limited number of features, which may
fail to capture all the relevant information conveyed by this rich and generally meaningful
communication and artistic medium. Moreover, the study of drawings is also limited by
our subjective, human-based interpretation and understanding of what is represented,
particularly for non-representative drawings, such as those produced by non-human
primates. In this study, we proposed the use of deep learning models to overcome the
limitations of traditional drawing analyses, as feature selection and extraction are not
performed manually. Here, we focused on the classification of drawings of one female
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orangutan according to the season in which they were drawn. Previous analyses have
shown differences based on the main color, where the main color is green in summer
and winter, and pink in spring and autumn [3]. Thus, this study aimed to use deep
learning to analyze these drawings and interpret the differences found in seasons and
compare our results with previous findings. To do so, we focused on convolutional neural
networks (CNNs), the most common class of deep-learning models. By comparing the
model accuracy with random predictions, we showed that the trained model was able
to correctly classify drawings according to the season of production. Then, by exploring
the information encoded by different levels of deep learning models, we could reveal
how color, representational content, drawing style, and feature complexity contribute to
seasonal variation in drawings.

Our general finding that deep learning methods can successfully encode visual infor-
mation and detect variations among drawings is consistent with that of previous studies
on abstract paintings. For example, [24] used a neural network to detect the correct orien-
tation in such paintings, and [25] used deep learning to recognize art styles in paintings,
notably, abstract art. Our results extend these reports by showing that deep learning can
discover structured variations that have often been considered scribbles with unpredictable
variations in the literature [26].

Although the CNN model classification was better than random classification, the
achieved accuracy remained relatively low (41.6%). This result could be explained by
multiple reasons. The first interpretation comes from the confusion matrix, which shows
that drawings produced in autumn are mostly misclassified as winter; conversely, drawings
produced in winter are mostly misclassified as autumn. The same pattern was observed in
spring and summer. These results are inconsistent with those of [3], in which the suggested
subgroups were summer and winter in autumn and spring. This may be because the
CNN analyzes more complex features that were not considered in [3]. The relatively low
accuracy of 41.6% may also be explained by the lack of a protocol when the drawings were
realized, but also by external events that occurred at Tama Zoological Park. For example, [4]
observed that the drawing produced by Molly on the day another orangutan gave birth
was particularly red. They also observed that when elementary school students visited the
zoo, the drawings were particularly rich in color and lines. It has also been demonstrated
that the behavior of captive orangutans is directly linked to their familiarity with the
keeper [27]. The sex of the keeper and the people Molly has met could also influence her
behavior, as was found for a female Japanese monkey [28], whose arterial blood pressure
was different in the presence of men and women, and of strangers and caretakers. All these
environmental factors likely added heterogeneity to Molly’s drawings, which contributed
to blurring the seasonal variation.

To further explore this seasonal variation, we considered that an image can be seen
as an association of the following two components: content and style, and that these
two components can be analyzed separately. Feature maps are commonly associated
with the content of the image, where the content is ‘the things represented or suggested
in something written or created as art, or the ideas it communicates’, according to the
Cambridge Dictionary [29]. For a given image, the content will be encoded through all
the layers and can be analyzed by extracting activations. The complexity of the content
grasped in the activations increases with layer depth. The classification of the extracted
activations at each layer was significantly better than random classification, showing the
latent complexity of Molly’s drawings, in which activations (i.e., content features) from
low to high levels can be discriminated to a certain extent. The accuracy of activation
extractions tends to increase from shallow layers to mid-layers, demonstrating the need
for more complex and global content features than simple edges. However, the slope of
the accuracy as a function of layer depth was not significantly positive, demonstrating that
high-level features linked to the content, describing the drawing as a whole, do not contain
more relevant information for prediction than mid-level content features. However, this
was not the case for grayscale images, where the slope was significantly different from
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zero. This difference between the analyses of color and grayscale versions of the drawings
demonstrates that color information on seasonal variation in Molly’s drawings is encoded
more in the early layers than in the deeper layers. This is not surprising, considering that
traditional analyses provide evidence for a difference in main colors depending on the
season [3]. Indeed, the main color is a low-level feature, which should be captured in the
early layers, which could partly explain the importance of colors in the early layers. It
is important to note that, even if not significant, the accuracy of the RGB models seems
higher than that of the grayscale models. This slight difference may be explained by the
features linked to colors that contain information to predict the season of the drawings.
Moreover, [30] demonstrated that shallow layers in VGG models encode information on
the average hue and other low-level features, saturation, and other variables, whereas
high-level features (i.e., deeper layers) can be linked to the concreteness and dynamics of
the drawing. It is a complex task to disentangle high-level features that could have played
a role in the predictions, but the average hue could be a proxy for the main color that
was already analyzed in Molly’s drawings [3]. The accuracies of the RGB and grayscale
models were significantly different only for layer FC2. With our analyses, it is not possible
to determine whether the relevant features for the RGB and grayscale models are the same.
Moreover, differences between seasons are not only related to colors, as grayscale models
are better than random models. As RGB models are not significantly better than grayscale
models (except for FC2), adding colors only slightly refines these differences, showing that
the seasonal variation lies more in the shape of the strokes than their colors.

To complement the study of Molly’s drawings, which describes what is depicted, we
further investigated Molly’s drawing style. To do so, we extracted Gram matrices that
have been widely used in deep learning. However, how Gram matrices and styles are
linked is not self-explanatory. Gram matrices in neural networks were first proposed to
analyze the texture of images [23]. Here, the word ’style also refers to the ‘texture’. No
consensus has been established on the meaning of these two words; however, according
to [31], the region in an image has a constant texture if a set of local statistics or other
local properties of the picture function are constant, slowly varying, or approximately
periodic. The introduction of Gram matrices can be applied to analyze the style of an
image dating back to [32]. In their study, the authors proposed decomposing artistic images
into content and style, with the goal of transferring the style of an image onto another
image whose content is kept unchanged. Our results suggest that the content represented
by neuronal activation is not sufficient to extract all the latent information conveyed by
Molly’s drawings. First, the accuracy based on Gram matrices was higher than random for
every layer, showing that Molly’s drawing style varied across seasons. More importantly,
style-based classification became more accurate when information from deeper layers was
considered. This demonstrates that the layout of the drawings, that is, their global stylistic
aspect, prevails over the local stylistic features. While the peak accuracy is reached in the
intermediate layers in content analyses, it is reached in the deepest layers for style, which
highlights the importance of considering aspects, content, and style in drawing analysis.

The PCA applied to the Gram matrices showed that 80% of the variation could be
retained with only two principal components for the first two convolutional layers. The
corresponding scatter plots of PC1 versus PC2 revealed two possible clusters that did not
appear to be season-dependent (Figure 6). With current data, it is difficult to identify the
factors that explain these two clusters. They may be linked to the identity of the keeper or to
various events that occurred at the Tama Zoological Park [4]. However, the corresponding
scatter plots obtained from the activation vector (i.e., for content-based classification) also
exhibited two clusters. These clusters become less distinct and less marked when looking
at deeper layers and completely vanish in the deepest layers, suggesting that they are
primarily rooted in low-level features such as edges (orientation and width).
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The approach of this study is based on the fact that biases can arise in analyses that
require manual feature selection and extraction. However, deep learning reproduces biases
such as race biases [33]. Because we used transfer learning through the VGG19 architecture
pretrained on a global classification task (the ImageNet dataset), the features learned by
the model are generic. The choice of architecture is not crucial, as it has been shown that
features from ImageNet pretrained VGG19 are shared when using other architectures [34].

Analyzing activations and Gram matrices does not require feature selection and
extraction, thus being an objective methodology. Of course, the approach proposed here
is still slightly anthropocentric when interpreting the results. Indeed, the concepts of
content and style are human ones, and Molly may not perceive these concepts the same
way as humans do. Deep learning and feature extraction partially allow for getting rid of
anthropocentric biases as no feature selection or extraction involves humans. The authors
of [3] extracted 12 simple and objective features from orangutan drawings (e.g., coverage
rate, distance to the center, number of loops, number of triangles), including Molly’s
ones, before performing a PCA, and the features the most correlated with the first axis
were also highly linked to the content of the drawings whilst variables in the second
correspond more to the style, demonstrating that even objective features will be linked to
subjective ones. Whatever the approach, some anthropocentric bias linked to the production
of the drawings will always remain. For example, the perceived affordance of a white
canvas will be different for a human and a chimpanzee, and there will also be variability
between individuals [35]. Regardless of these biases linked to the models or data collection
procedures, the interpretation of the results will be performed by humans, making it
impossible to completely erase these anthropocentric biases. As Nagel wrote [36], a human
could never be able to know what it is to be another animal, but we think that artificial
intelligence can help to decrease the number of biases.

5. Conclusions

Deep learning has great potential for improving our understanding of drawing behav-
ior, both ontogenetically and phylogenetically. Such models can grasp the latent features
present in abstract drawings, which is a time-consuming, laborious, and complex task for
traditional analyses. The present case study on Molly’s drawings demonstrates how the
complexity of content and style, which is directly linked to Molly’s drawing behavior, can
be studied through a CNN, from shallow to deep layers. The layers of a CNN can be seen
as the layers of a painting as follows: each layer contains partial information about the
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art at different levels of detail (such as colors, shapes, and contrast), and to understand a
painting, one needs to combine these layers.

This study brings new advances in the understanding of drawings in non-human
primates and can give highlights both on fundamental and more applied research. As
regards non-verbal drawers, applying the current deep learning methodology to several
ape species may lead to discoveries in the domain of evolutionary anthropology and
comparative psychology. Moreover, analyzing drawings thanks to deep learning may help
to assess neurodegenerative diseases in apes and enhance animal welfare. In humans,
problems with languages (forgetting words, persons, etc.) allow targeting such problems
but this cannot be performed with apes. Changes identified by AI in drawings with the age
of individuals may help to identify such diseases.
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