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Abstract

Objective. To evaluate the impact of image harmonization on outcome prediction models using
radiomics. Approach. 234 patients from the Brain Tumor Image Segmentation Benchmark (BRATS)
dataset with T1 MRIwere enrolled in this study. Images were harmonized through a reference image
using histogram matching (Hyyy) and a generative adversarial network (GAN)-based method (Hgan).
88 radiomics features were extracted on Hyyyy, Hgan and original (Hyong) images. Wilcoxon paired
test was used to identify features significantly impacted by the harmonization protocol used. Radiomic
prediction models were built using feature selection with the Least Absolute Shrinkage and Selection
Operator (LASSO) and Kaplan—Meier analysis. Main results. More than 50% of the features (49,/88)
were statistically modified by the harmonization with Hyyy and 55 with Hgan (adjusted p-

value < 0.05). The contribution of histogram and texture features selected by the LASSO, in
comparison to shape features that were not impacted by harmonization, was higher in harmonized
datasets (47% for Hy,opne, 62% for Hyyy and 71% for Hgan). Both image-based harmonization
methods allowed to split patients into two groups with significantly different survival (p<0.05). With
the Hian images, we were also able to build and validate a model using only features impacted by the
harmonization (median survivals of 189 versus 437 days, p = 0.006) Significance. Data harmonization
in a multi-institutional cohort allows to recover the predictive value of some radiomics features that
was lost due to differences in the image properties across centers. In terms of ability to build survival
prediction models in the BRATS dataset, the loss of power from impacted histogram and
heterogeneity features was compensated by the selection of additional shape features. The
harmonization using a GAN-based approach outperformed the histogram matching technique,
supporting the interest for the development of new advanced harmonization techniques for radiomic
analysis purposes.

Introduction

The extraction of biomarkers from medical images, commonly known today as radiomics, has been shown in
numerous studies to be a promising tool in oncology for patient management including diagnosis, follow-up,
outcome prediction and therapy response (El Naqa et al 2009, Gillies et al 2015, Hatt et al 2017). Radiomics allow
to quantify different image characteristics using intensity, textural and shape descriptors that provide useful
information to characterize multiple diseases (Lambin et al 2012, Zwanenburg et al 2016). Then, radiomics
features can be combined using machine learning approaches to build predictive and/or prognostic models
(Parmar et al 2015, Desseroit et al 2016, Leger et al 2017, Lucia et al 2017).

One of the main limitations of these models comes from the reproducibility of the radiomics features
impacted by the acquisition and reconstruction protocols, making it difficult to fully exploit the derived models
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in a multi-institutional setting (Um et al 2019, Da-ano et al 2020a). This is particularly true for radiomics on MR
images where voxels intensity does not reflect physical characteristics such as electron density in computed
tomography (CT) or glucose metabolism in 18F-FDG positron emission tomography images (Kumar et al 2012).

For this reason, several strategies have been proposed in order to normalize radiomics features extracted
from images acquired with different protocols (Da-ano et al 2020a). These strategies can be divided into two
main categories consisting in either standardizing radiomics features after their extraction (Orlhac et al 2018,
Da-ano et al 2020b) or image harmonization prior to feature extraction (Hognon et al 2019, Um et al 2019). The
first option is the solution of choice when images are not available (for instance in multi-institutional studies
where the transfer of full images can be restricted due to protection of personal health information data).
Alternatively, when images are available, working in the image space offers several advantages over the extracted
features harmonization strategy. Such advantages include the possibility of single patient data harmonization,
otherwise impossible in the case of radiomics features normalization which requires the availability of a center
specific cohort for the construction of a harmonization model. In addition, harmonization in the image space
allows other steps beyond the radiomics feature extraction to benefit from of harmonization such as for example
in the necessary segmentation step which could be biased by the variability of the image quality.

Avery limited number of studies have made use of image harmonization to date within the context of
radiomics analysis, showing that histogram matching can contribute to reducing radiomics feature variability
(Um et al 2019). However, the impact on the predictive power of radiomics features obtained from harmonized
images remains unclear. In addition, new harmonization methods based on generative adversarial networks
(GAN) seem very promising (Goodfellow et al 2014, Modanwal et al 2020, Zhong et al 2020) but their interest in
radiomics studies have not been fully investigated yet.

For this reason, this study aimed at comparing predictive models built with radiomics features extracted from
images after harmonization using two image-based harmonization techniques, namely histogram matching
harmonization and GAN based harmonization) on the Brain Tumor Image Segmentation Benchmark (BRATS)
dataset, which is a multi-institutional dataset of brain tumor images (Menze et al 2015, Bakas et al 2017, 2018).

Patients and methods

Patients

234 patients from the BRATS 2020 dataset (Menze et al 2015, Bakas et al 2017, 2018) with the available overall
survival (OS) information were included in this study. The cohort was randomly divided into a training (187
patients) and a testing (47 patients) dataset. Patients were acquired with different clinical protocols and various
scanners from 19 different institutions. This dataset is publicly available through the annual Medical Image
Computing and Computer Assisted Intervention (MICCAT) Society brain tumor segmentation challenge and
consequently ethical committee approval was not required for the study.

Images and segmentation

All the patients from this dataset had skull-stripped and co-registered T1, post-contrast T1-weighted, T2-
weighted and T2 Fluid Attenuated Inversion Recovery images interpolated to a resolution of 1 mm3. Image
segmentations used are the ones that are provided in the BRATS dataset, corresponding to manual delineation of
the tumors using the same annotation protocol by experienced neuro-radiologists including the Gadolinium
(Gd)-enhancing tumor, the peritumoral edema and the necrotic and non-enhancing tumor core (Menze et al
2015). In this paper we focused on the analysis of tumor core (Gd-enhancing tumor + necrotic and non-
enhancing tumor core) in T1 images.

Image harmonization approaches

We studied two different image harmonization strategies based on (1) histogram matching (HM) (Gonzalez and
Woods 2006) and (2) on a previously proposed two-step image harmonization method based on cycleGAN and
pix2pix image-to-image translation GAN (Hognon et al 2019). The rationale behind the two-step learning
process is to reduce overfitting to the target image by first performing a data augmentation step using a short
cycleGAN training (20 epochs) between the source and target domains followed by a longer pix2pix training
between the source and augmented dataset. Both HM and the GAN-based approach require the identification of
a target reference image towards which all source images are matched. The same reference was used for both
approaches (reference named STD_2013_29 in the BRATS dataset). HM was implemented in C++- using the
ITK library using 256 histogram levels and seven control points. The neural network model was implemented in
python using the Keras framework. The generator was a 7-layer U-Net generative architecture starting at
resolution 256 x 256 with dropout rate of 0.2 and batch normalization.
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234 patients from 19
centers
(MRI with segmentations)
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Figure 1. Methodological workflow of the study

Radiomics features extraction
Radiomics features were computed directly from images in the BRATS dataset without harmonization (Hop.) and
from harmonized images after histogram matching harmonization (Hyy;) and GAN based harmonization (Hgan)-
A set of 88 radiomics features were extracted from the most common features categories using an in-house
IBSI compliant software (Zwanenburg et al 2016): 11 intensity histogram features, 25 grey-level cooccurrence
matrix (GLCM) features, 16 grey level run length matrix (GLRLM) features, 16 grey level size zone matrix
(GLSZM) features, 5 neighborhood grey tone difference matrix (NGTDM) features and 15 shape features.
Features were extracted in 3D using a fixed bin number of 64 and features from GLCM and GLRLM were
computed from a single matrix after merging all 3D directional matrices. No harmonization in the features’
space was considered in this study.

Radiomics features selection
Feature selection was performed on the training set using the Least Absolute Shrinkage and Selection Operator
(LASSO) (Tibshirani 1996) regression model with a survival time above or below the median survival time as a
binary response variable. A 5-fold cross validation was used for the tuning parameter lambda and features were
centered and scaled by subtracting the mean and divided by the standard deviation. The selected features by the
model were associated with weights reflecting their significances. Feature selection was done on features
obtained from Hy,ne, Hin and Hgan images.

A radiomics score was computed using the weights of the 10 best selected features from the LASSO using the
following formula:

Radiomic score = > wi.fis

i € selected features
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Figure 2. Example of synthesis results from Hyqy (on the left) and Hgan (on the right).

where w;, is the weight of the selected feature i ( f;). Weights were normalized to assign a weight of 1 to the feature
with the highest contribution. The percentage contribution of a feature /feature’s category (Cg) in a model was
assessed by the following formula (100 x Cp)/ W, where Wis the weight of the model (i.e. the sum of all feature
weights after normalization in the model).

Radiomics OS prediction model and statistical analysis

In order to compare the performance H,,, .., Hiy and Hg an images to build prediction models we firstly
analyzed the percentage of contribution of histogram and texture (GLCM, GLRLM, GLSZM and NGTDM)
features versus shape features amongst the ones selected using the H, o e, Hang and Hgan images: indeed, shape
descriptors are morphological descriptors solely related to the segmentation mask, therefore are not considering
the intensity values of the voxels. By consequence, they cannot be impacted by the harmonization step.

4
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Table 1. p-values of Wilcoxon test (adjusted with the Benjamini—-Hochberg procedure) of features computed on non-standardized data
versus standardized data with histogram matching and GAN. Feature with non-significant difference are bolded and features selected by
LASSO are highlighted in blue.

I With Hum With Hean I With Hum With Hean
Min <0.0001 <0.0001 Coarseness 1 1
Max <0.0001 <0.0001 % Contrast <0.0001 <0.0001
Mean <0.0001 <0.0001 = Busyness 1 1
é Variance <0.0001 <0.0001 < Complexity <0.0001 <0.0001
S Standard_Deviation <0.0001 <0.0001 Strength 1 1
% Skewness 1 1 SRE 0.0044 <0.0001
< Kurtosis 0.0021 <0.0001 LRE 0.3337 0.0002
Energy 1 <0.0001 GLNU 1 0.1860
Entropy 1 <0.0001 RLNU 1 1
AUC <0.0001 <0.0001 RP 0.0605 <0.0001
Max 1 <0.0001 LGRE 0.1210 1
Average <0.0001 <0.0001 HGRE <0.0001 <0.0001
Variance <0.0001 <0.0001 g LGSRE 0.3355 1
Entropy <0.0001 <0.0001 E HGSRE <0.0001 <0.0001
DAVE <0.0001 <0.0001 LGHRE 0.0090 1
DVAR <0.0001 <0.0001 HGLRE <0.0001 <0.0001
DENT <0.0001 <0.0001 GLNU norm <0.0001 <0.0001
SAVE <0.0001 <0.0001 RLNU norm 0.0033 <0.0001
SVAR <0.0001 <0.0001 GLVAR <0.0001 <0.0001
SENT <0.0001 <0.0001 RLVAR 1 0.0042
ASM <0.0001 <0.0001 Entropy <0.0001 <0.0001
o Contrast <0.0001 <0.0001 SZSE <0.0001 <0.0001
B Dissimilarity <0.0001 <0.0001 LZSE 0.6077 0.0034
= Inv diff 0.0004 <0.0001 LGLZE 0.0103 1
Inv diff norm <0.0001 <0.0001 HGLZE <0.0001 <0.0001
IDM 0.0009 <0.0001 SZLGE 0.3340 1
IDM norm <0.0001 <0.0001 SZHGE <0.0001 <0.0001
Inv var <0.0001 <0.0001 LZLGE 0.0009 0.0490
Correlation 1 1 2  izHGE 1 1
Autocorrelation <0.0001 <0.0001 E GLNU 1 1
Tendency <0.0001 <0.0001 ZSNU 0.0022 <0.0001
Shade 1 1 ZSP 0.0023 <0.0001
Prominence <0.0001 <0.0001 GLNU norm <0.0001 <0.0001
IC1 1 0.4654 ZSNU norm <0.0001 <0.0001
1C2 1 1 GLVAR <0.0001 <0.0001
ZSVAR 1 0.0223
Entropy 1 1

Therefore, methods showing the highest percentages from the histogram and texture features could reflect the
ability of harmonization techniques to improve prediction power of predictive models.

The correlation of the selected histogram and texture features with tumor core volume and selected shape
features was investigated using the Pearson’s correlation coefficient. This test was performed to assess if
histogram and texture features selected were strongly correlated with the selected shape features and therefore
used as a substitute in the model, which could potentially influence the impact of image harmonization. Also, in
order to quantify the degree of influence of image harmonization on different radiomics features (histogram and
texture based), a Wilcoxon paired test was carried out (p-values were adjusted with the Benjamini-Hochberg
procedure to balance out the false discovery rate). This test was performed to verify if selected features on Hygy,
and Hgan images were impacted by the harmonization.

Models were built from Hy,,,e, Hive and Hgan images using the features selection by the LASSO with (1)
only the features impacted by the harmonization (this set of features also exclude shape and shape-correlated
features that are not impacted by harmonization) in order to show how harmonization can improve the models
and (2) all the considered radiomics features allowing to investigate if there are stable features that can substitute
features impacted by the harmonization, allowing an assessment of the global performance of the models.
Figure 1 shows the methodology we followed.

The ability of radiomics score to dichotomize patients into two risk groups was evaluated using the Youden J
index (Youden 1950) from ROC curves and Kaplan—Meier analysis. The independent testing set was used to
validate the results obtained from the training set using the thresholds found on the training set. All statistical
analyses were performed using R software (v3.6.3) with caret, survival and pROC packages. P-values <0.05 were
considered significant.
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Figure 3. Correlation between shape features retrained by the Hy,, model and histogram and textural features retained on the
models with the three harmonization methods.

Table 2. List of selected features by LASSO on training set with the 3 harmonization methods. Blue lines correspond of shape features (that
are not impacted by the harmonization). Features weights were represented with their absolute values and normalized to assign a weight of 1
for the top ranked feature in each harmonization.

Huone

Him

Hoan

Features

GLRLM - Entropy
HISTOGRAM - Skewness

NGTDM - Strength
GLSZM - LZLGE

HISTOGRAM - Kurtosis

Ranking Weight

Correlation with volume

Ranking

Weight

Correlation with volume

HISTOGRAM - Entropy 2 0.47 6 0.22 0.13
GLCM Average 4 0.31 0.006 - - -
GLRLM - LGHRE 5 0.20 0.08 -

GLRLM - GLVAR 6 0.18 -0.39 - - -
HISTOGRAM - AUC 7 0.11 -0.09 4 0.70 -0.32
HISTOGRAM - Variance 2 0.90 0.21
GLSZM - HGLZE 9 0.13 0.20
NGTDM - Complexity - 11 0.05 -0.38
GLSZM - GLVAR 12 0.004 -0.14
GLSZM — GLNU norm 13 0.003 -0.006

Ranking  Weight

GLRLM - LGSRE - - 2 0.90 -0.09
GLRLM - RLVAR 3 0.73 0.13 3 0.86 0.26
HISTOGRAM - Standard deviation - - - 4 0.86 0.29
HISTOGRAM - Mean 6 0.74 0.17
GLSZM - SZLGE 7 0.63 -0.25
NGTDM - Busyness - 8 0.43 0.84
GLCM — IDM norm 10 0.36 0.45

- - 1 0.36 0.23

12 0.30

0.15
0.14

17 0.02

Correlation with volume

-0.13

-0.49
0.15

-0.01

Results

Patients

Median patient age at diagnosis was 61.5 years (range 19—-87). These patients had a 1,2,3 and 5 years survival
probability of 50%, 15%, 8% and 0%, respectively. Median survival was of 369 days (range 5-1767 days).

Harmonization results

Figure 2 presents synthesis results for four different images of the dataset. Visual results were more satisfying
using Hgan than Hyny, with sharp boundaries and high contrast between gray and white matter reproducing the
properties of the target template image. No noticeable structure loss could be observed, suggesting the efficiency
of the two-step training procedure in preserving image structures.

Radiomic features and selection

Among the 73 texture and histogram features investigated 49 were statistically different (adjusted p-

value < 0.05) on Hypyy images. This number increased to 55 on Hgan images (table 1). In total, 57 features were
found impacted on Hyyyq or Hgan images (table 1).

From the 57 features found to be impacted by harmonization, the LASSO algorithm selected 14, 12 and 13
features with Hy,one, Hiv and Hg an images, respectively. The number of selected features was of 10, 13 and 17
with H, o ne Hiv and Hgay images, respectively, when the LASSO regression model was applied on all the
radiomic features (see table 2). The shape feature ‘3D surface’, describing the area at the surface of the tumor
volume, was selected in the three models and was associated with the highest weight. The contribution of
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Figure 4. Overall survival curves obtained on the training (A), (C) and (E) and on the testing set (B), (D) and (F) for Hyope data (A) and
(B), Hym data (C) and (D) and Hian data (E) and (F) with models obtained using only features impacted by the harmonization.
Patients were split according the optimal cut-offs (Youden ] Indexes) found on the training set. Reported p-value correspond of the
results of the Kaplan—Meier (log rank) test.

1250

Table 3. AUCs and specificity/sensitivity (Youden ] Index) found on the training for the validation set with the three harmonization

methods.
Method AUC (95% CI) Threshold  Specificity ~ Sensitivity
Features impacted by the harmoniza- No harmonization 0.70(0.54-0.85)  —0.21 0.48 0.75
tion only
Histogram matching 0.67(0.51-0.83)  —0.03 0.61 0.71
harmonization
GAN harmonization 0.80(0.68-0.93)  0.32 0.91 0.58
All radiomic features No harmonization 0.75(0.60-0.90)  0.12 0.83 0.58
Histogram matching 0.74(0.59-0.89)  0.02 0.78 0.67
harmonization
GAN harmonization 0.78 (0.65-0.92)  0.04 0.65 0.67

histogram and texture features versus shape features was of 47% versus 53% for H,,,,c» 62% versus 38% for Hyy

and 71% versus 29% for Hgan. The contribution of features impacted by the harmonization versus others was of
22% versus 78% for H,,gne, 39% versus 61% for Hyyn and 41% versus 59% for Hoan.
All the features from the histogram and texture matrices selected showed a weak correlation with the tumor
core volume (p < 0.5), at the exception of the busyness from the NGTDM (correlation p = 0.84 (see table 2)).
Figure 3 shows correlation between the shape features used in the Hy,,, model and histogram and texture
features selected in the 3 different models. Again, the only high correlation was found between the 3D surface
and the busyness from the NGTDM in Hgay model (p = 0.82). All the other features showed non-statistically
significant differences witha |p| < 0.56.
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Figure 5. Overall survival curves obtained on the training (A), (C) and (E) and on the testing set (B), (D) and (F) for Hyone data (A) and
(B), Hiy data (C) and (D) and Hgan data (E) and (F) with models obtained using the whole set of radiomic features. Patients were split
according the optimal cut-offs (Youden ] Indexes) found on the training set. Reported p-value correspond of the results of the Kaplan—
Meier (log rank) test.

Prediction models

ROC curves show AUCs 0f 0.70 (0.54—0.85 95% CI) for H,,on. model, 0.67 (0.51-0.83 95% CI) for Hygngand 0.80
(0.68-0.93 95% CI) for Hgany model on the testing set on the models build from features impacted by the
harmonization only. Models build from the whole set of radiomic features exhibit AUCs of 0.75 (0.60—0.90 95%
CI), 0.74 (0.59-0.89 95% CT) and 0.78 (0.65-0.92 95% CI) with H,o e, Hive and Hgan, respectively (table 3).

On the models build from features impacted by the harmonization only, the thresholds on radiomics score
which maximize the Youden J index (Youden 1950) were of —0.21, —0.03 and 0.32 for H,,gne; Hinveand Hoan
models, respectively. All three feature sets allowed to divide the patients of the training set into two groups with
significantly different survival: median survival of 298 versus 495 days (p = 0.002) for H,,,, median survival of
268 versus 453 days (p = 0.002) for Hyyy and a median survival of 241 versus 430 days (p = 0.006) for Hgan
(figures 4(A), (C) and (E)). Only the Hgany model was found able to validate the results the validation dataset with
two groups of significantly different median survivals (189 versus 437 days, p = 0.006) (figure 4(F)). A median
survival of 293 versus 437 days were found for H, o (p = 0.35) and Hip (p = 0.45) (figures 4(B) and (D).

On the models build from the whole set of radiomic features, the thresholds on radiomics score which
maximize the Youden J index (Youden 1950) were 0f0.12,0.01 and —0.07 for H,, e, Hiv and Hgany models,
respectively. All three datasets allowed to divide the patients of the training set into two groups with significantly
different survival: median survival of 213 versus 445 days (p = 0.002) for H, o, median survival of 268 versus
448 days (p = 0.003) for Hepyg and a median survival of 277 versus 454 days (p = 0.0002) for Hgan (figures 5(A),
(C) and (E)). These thresholds obtained on the training dataset allowed to dichotomize the patients on the
validation dataset into two of groups with significantly different survival: median survival of 189 versus 437 days
(p = 0.003) for H,,ope, median survival of 189 versus 437 days (p = 0.01) for Hypyrand a median survival of 352
versus 486 days (p = 0.02) for Hgan (figures 5(B), (D) and (F)).

Discussion

Although the potential usefulness of radiomics in oncology has been demonstrated in numerous studies (Kumar
etal2012, Lambin etal 2017, Hatt et al 2019, Rogers et al 2020), models are often not easy to validate in patient
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cohorts outside the center where the model was initially created, if the images used differ too much from the
ones used to build the model. One of the main reasons for this concerns the variability in image acquisition and
reconstruction protocols which can be minimized through harmonization initiatives (Boellaard et al 2015,
Ellingson et al 2015). However, although capable of reducing variability, the use of such protocol harmonization
does not allow to eliminate all effects and can mostly be implemented in well controlled prospective clinical
trials, which do not greatly facilitate the uptake of radiomics in routine clinical practice. In addition,
manufacturers use specific image reconstruction algorithms and associated parameters and data corrections
which are practically impossible to standardize. Within this context the potential of harmonization may play a
keyrole. This can be performed in the radiomics space once the parameters have been extracted or directly in the
image space. This latter solution presents multiple potential advantages for further automatization of the model
building process (Visvikis et al 2019) but also generalization of radiomics based models to single patient datasets
in a retrospective fashion. In this study we aimed at assessing if image harmonization with two different
approaches (histogram matching and deep learning) can help in building radiomics models to separate patients
into groups of different survival.

We were able to validate the models built on the parameters extracted using the three different image
datasets (no harmonization for H,,o,., HM and GAN based for Hypy and Hgan respectively). All these models
were found to exhibit similar performance. However, the Hyyy and Hgany models included histogram and
texture features that were found impacted by the harmonization process. This result clearly suggests that there
are features used for the OS prediction model that are influenced by the center effect. In addition, from the
models built using only features impacted by the harmonization we were only able to validate the Hgay model.
This result clearly suggests that advanced image harmonization has the ability to smooth the variability between
images and recover the predictive power of some radiomic features. In this study, we have used the manual
segmentations done by experts that are included in the BRATS dataset. Using delineation performed after image
harmonization could also help to improve the prediction power of the models.

If globally, the harmonization did not significantly improve the predictive power of the OS models built
using the whole set of radiomics features, these models have the advantage of selecting less tumor shape related
features, which are less robust to tumor segmentation compared to histogram and texture features (Parmar et al
2014, Tixier etal 2019). Consequently, one would expect overall performance improvements for models built on
harmonized data when tumors are smaller and less contrasted.

Comparing the performance of the image harmonization (Hyn and Hgan), with feature harmonization
techniques, such as Combat and its variants (Orlhac et al 2018, Da-ano et al 2020b), or investigating the
combination of harmonization in both feature and image space would have been of interest but was not possible
in this study given that center specific information is not available in the dataset used. In addition, the number of
patients per center is too small to allow an appropriate usage of feature space harmonization techniques. In
addition, even if such information was available, this dataset was built from images coming from 19 different
institutions and consequently, number of patients per center would have been too small to appropriately use
harmonization techniques in the feature space. Another consequence of not having the image center
information available is not knowing the repartition of the image centers in the training and testing sets.
However, the large number of centers guarantee the presence of heterogeneous data in both sets.

Results obtained on OS prediction models from different harmonization techniques are showing that the
image harmonization in a multi-institutional cohort allows to recover the predictive value of some radiomics
features that was lost due to differences in the image properties across the centers. In addition, harmonization
using deep learning techniques seems to outperform the histogram matching technique, which reinforces the
interest in pursuing the development of new advanced harmonization techniques for the optimized use of
radiomics models in a multi-center trial setting. Given that harmonization techniques in the feature space need
to assume that the distribution of each feature is the same across all the cohorts, we believe that the image
harmonization techniques have the potential to outperform feature harmonization, and this will be investigated
in a future study using appropriate multicenter datasets.
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