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Abstract

The independence of noise and covariates is a standard assumption in online linear regression with
unbounded noise and linear bandit literature. This assumption and the following analysis are invalid
in the case of endogeneity, i.e., when the noise and covariates are correlated. In this paper, we study
the online setting of Instrumental Variable (IV) regression, which is widely used in economics to
identify the underlying model from an endogenous dataset. Specifically, we upper bound the identi-
fication and oracle regrets of the popular Two-Stage Least Squares (2SLS) approach to IV regression
but in the online setting. Our analysis shows that Online 2SLS (O2SLS) achieves O(d2 log2 T ) identi-
fication and O(γ

√
dT log T ) oracle regret after T interactions, where d is the dimension of covariates

and γ is the bias due to endogeneity. Then, we leverage O2SLS as an oracle to design OFUL-IV, a
linear bandit algorithm. OFUL-IV can tackle endogeneity and achieves O(d

√
T log T ) regret. For

datasets with endogeneity, we experimentally show the efficiency of OFUL-IV in terms of estimation
error and regret.
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1. Introduction

Online regression is a founding component of online learning (Kivinen et al., 2004), sequential test-
ing (Kazerouni and Wein, 2021), contextual bandits (Foster and Rakhlin, 2020), and reinforcement
learning (Ouhamma et al., 2022). Specially, online linear regression is widely used and analysed to
design efficient algorithms with theoretical guarantees (Greene, 2003; Abbasi-Yadkori et al., 2011b;
Hazan and Koren, 2012). In linear regression, the outcome (or output variable) Y ∈ R, and the
input features (or covariates, or treatments) X ∈ Rd are related by a structural equation:

Y = βTX+ η,

where β is the true parameter and η is the observational noise with variance σ2. The goal is
to estimate β from an observational dataset. Two common assumptions in the analysis of linear
regression are (i) bounded observations and covariates (Vovk, 1997; Bartlett et al., 2015; Gaillard
et al., 2019), and (ii) exogeneity, i.e. independence of the noise η and the input features X (E[η|X] =
0) (Abbasi-Yadkori et al., 2011b; Ouhamma et al., 2021). Under exogeneity, researchers have
studied scenarios, where the observational noise is unbounded and has only bounded variance σ2.
Ouhamma et al. (2021) show that the unbounded stochastic setting asks for different technical
analysis than the bounded adversarial setting popular in online regression literature. Additionally,
in real-life, exogeneity is often violated, and we encounter endogeneity, i.e. dependence between
noise and covariates (E[η|X] ̸= 0) (Greene, 2003; Angrist et al., 1996). Endogeneity arises due to
omitted explanatory variables, measurement errors, dependence of the output and the covariates
on unobserved confounding variables etc. (Wald, 1940; Mogstad et al., 2021; Zhu et al., 2022). In
this paper, we analyse online linear regression that aims to estimate β accurately from endogeneous
observational data, where the noise is stochastic and unbounded.

Instrumental Variable Regression. Historically, Instrumental Variables (IVs) are intro-
duced to identify and quantify the causal effects of endogenous covariates (Newey and Powell,
2003). IVs are widely used in economics (Wright, 1928; Mogstad et al., 2021), causal inference (Ru-
bin, 1974; Hernan and Robins, 2020; Harris et al., 2022), bio-statistics and epidemiology (Burgess
et al., 2017).

Example 1.1. Carneiro et al. (2011); Mogstad et al. (2021) aim to estimate the number of returning
students to college using the National Longitudinal Survey of Youth data. The return depends on
multiple covariates X, such as whether the individual attended college, her AFQT scores, her family
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income, her family conditions (mother’s years of education, number of siblings etc.). Often the
family conditions have unobserved confounding effects on the college attendance and scores. This
endogenous nature of data leads to bias in traditional linear regression estimates, such as Ordinary
Least Squares (OLS). To mitigate this issue, Carneiro et al. (2011); Mogstad et al. (2021) leverage
two IVs (Z): average log income in the youth’s county of residence at age 17, and the presence of
a four-year college in the youth’s county of residence at age 141. The logic is that a youth might
find going to college more attractive when labour market opportunities are weaker and a college is
nearby. Using these two IVs, the youth’s attendance to college is estimated. Then, in the next stage
this estimate of college attendance is used with family conditions to predict the return of the youth to
college. This two stage regression approach with IVs produces a more accurate estimate of youths’
return to the college than OLS models assuming exogeneity.

This approach to conduct two stages of linear regression using instrumental variables is called
Two Stage Least Squares Regression (2SLS) (Angrist and Imbens, 1995; Angrist et al., 1996). 2SLS
has become the standard tool in economics, social sciences, and statistics to study the effect of treat-
ments on outcomes involving endogeneity. Recently, in machine learning, researchers have extended
traditional 2SLS techniques to nonlinear structures, non-compliant instruments, and corrupted ob-
servations using deep learning (Liu et al., 2020; Xu et al., 2020, 2021), graphical models (Stirn and
Jebara, 2018), and kernel regression (Zhu et al., 2022), respectively. The existing analysis of 2SLS
are asymptotic, i.e. what can be learned if we have access to infinite number of samples in an offline
setting (Singh et al., 2020; Liu et al., 2020; Nareklishvili et al., 2022). In applications, this analysis
is vacuous as one has access to only finite samples. Additionally, in practice, it is natural to acquire
the data sequentially as treatments are chosen on-the-go, and then to learn the structural equation
from the sequential data (Venkatraman et al., 2016). This setting motivates us to analyse the online
extension of 2SLS, referred as O2SLS.

Additionally, in an interactive setting, if a policy maker aims to build more schools at some of
the lower income areas as a form of intervention, she observes only the changes corresponding to it.
This is referred as bandit feedback in online learning literature and studied under the linear bandit
formulation (Abbasi-Yadkori et al., 2011a). This motivates us to further extend O2SLS to linear
bandits, where bandit feedback and endogeneity occur simultaneously.

In this paper, we investigate these two questions:

1. What is the upper bound on the loss in performance for deploying parameters estimated by
O2SLS instead of the true parameters β? How estimating the true parameters β influence different
performance metrics under endogeneity?

2. Can we design efficient algorithms for linear bandits with endogeneity by using O2SLS?
Our Contributions. Our investigation has led to

1. A Non-asymptotic Analysis of O2SLS: First, we identify three notions of regret: identification
regret, oracle regret, and population regret. Though all of them are of same order under endeogeneity,
we show that the relations are more nuanced under endogeneity and unbounded noise. We focus
specifically on the identification regret, i.e. the sum of differences between the estimated parameters
{βt}Tt=1, and the true parameter β, and oracle regret, i.e. the sum of differences between the losses
incurred by the estimated parameters {βt}Tt=1, and the true parameter β. In Section 4, we theo-
retically show that O2SLS achieve O(d2 log2 T ) identification regret and O(d2 log2 T + γ

√
dT log T )

oracle regret after receiving T samples from the observational data. Identification regret of O2SLS
is d log T multiplicative factor higher than regret of online linear regression under exogeneity, and
oracle regret is O(γ

√
dT log T ) additive factor higher. These are the costs that O2SLS pay for

tackling endogeneity in two stages. In our knowledge, we are the first to propose a non-asymptotic
regret analysis of O2SLS with stochastic and unbounded noise.

1. One can argue whether these are either sufficient or weak IVs. For simplicity, we assume sufficiency here, i.e. the
IVs can decouple the unobserved confounding.
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2. OFUL-IV for Linear Bandits with Endogeneity: In Section 5, we study the linear bandit
problem with endogeneity. We design an extension of OFUL algorithm used for linear bandit
with exogeneity, namely OFUL-IV, to tackle this problem. OFUL-IV uses O2SLS to estimate the
parameters, and corresponding confidence bounds on β to balance exploration–exploitation. We
show that OFUL-IV achieve O(d

√
T log T ) regret after T interactions. We experimentally show that

OFUL-IV incur lower regret than OFUL under endogeneity (end of Section 5).

2. Related Work

Online Regression without Endogeneity. Our analysis of O2SLS extends the tools and tech-
niques of online linear regression without endogeneity. Analysis of online linear regression began
with (Foster, 1991; Littlestone et al., 1991). Vovk (1997, 2001) show that forward and ridge re-
gressions achieve O(dY 2

max log T ) for outcomes with bound Ymax. Bartlett et al. (2015) generalise
the analysis further by considering the features known in hindsight. Gaillard et al. (2019) improve
the analysis further to propose an optimal algorithm and a lower bound. These works perform
an adversarial analysis with bounded outcomes, covariates, and observational noise, while we focus
on the stochastic setting. Ouhamma et al. (2021) study the stochastic setting with bounded input
features and unbounded noise. But they need to assume independence of noise and input features.
In this paper, we analyse online 2SLS under endogeneity and unbounded (stochastic) noise. We do
not assume to know the bound on the outcome and derive high probability bounds for any bounded
sequence of features.

Linear Bandits without Endogeneity. Linear bandits generalise the setting of online linear
regression under bandit feedback (Abbasi-Yadkori et al., 2011a, 2012; Foster and Rakhlin, 2020). To
be specific, in bandit feedback, the algorithm observes only the outcomes for the input features that
it has chosen to draw during an interaction. Popular algorithm design techniques, such as optimism-
in-the-face-of-uncertainty and Thompson sampling, are extended to propose OFUL (Abbasi-Yadkori
et al., 2012) and LinTS (Abeille and Lazaric, 2017), respectively. OFUL and LinTS algorithms
demonstrate O(d

√
T log T ) and O(d1.5

√
T log T ) regret guarantees under exogeneity assumption.

Here, we use O2SLS as a regression oracle to develop OFUL-IV for linear bandits with endogeneity.
We prove that OFUL-IV achieves O(d

√
T log T ) regret.

Instrument-armed Bandits. Kallus (2018) is the first to study endogeneity, and instrumental
variables in stochastic bandit setting. Stirn and Jebara (2018) propose a Thompson sampling-type
algorithm for stochastic bandits, where endogeneity arises due to non-compliant actions. But both
Kallus (2018) and Stirn and Jebara (2018) study only the finite-armed bandit setting where arms
are independent of each other. In this paper, we study the stochastic linear bandit setting with
endogeneity, which requires different techniques for analysis and algorithm design.

3. Preliminaries: Instrumental Variables & Offline Two-stage Least Squares
(2SLS)

We are given an observational dataset {xi, yi}ni=1 consisting of n pairs of input features and out-
comes, such that yi ∈ R and xi ∈ Rd.2 These inputs and outcomes are stochastically generated
using a linear model

yi = β⊤xi + ηi, (Second stage)

where β ∈ Rd is the unknown true parameter vector of the linear model, and ηi ∼ N (0, σ2
η) is the

unobserved error term representing all causes of yi other than xi. It is assumed that the error terms
ηi are independently and identically distributed, and have bounded variance σ2. The parameter

2. Matrices and vectors are represented with bold capital and bold small letters, e.g. A and a, respectively.
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Figure 1: The DAG for 2SLS. The unobserved noises are ϵ and η (in grey), while z,x, y are observed
quantities.

vector β quantifies the causal effect on yi due to a unit change in a component of xi, while retaining
other causes of yi constant. The goal of linear regression is to estimate β by minimising the square
loss over the dataset (Brier, 1950), i.e. β̂ ≜ argminβ′

∑
i=1(yi − β′⊤xi)

2.
The obtained solution is called the Ordinary Least Square (OLS) estimate of β (Wasserman,

2004), and used as a corner stone of online regression (Gaillard et al., 2019) and linear bandit
algorithms (Foster and Rakhlin, 2020). Specifically, if the input feature matrix Xn ∈ Rn×d is
defined as [x1,x2, . . . ,xn]

⊤, the outcome vector is yn ≜ [y1, . . . , yn]
⊤, and the noise vector is

ηn ≜ [η1, . . . , ηn]
⊤, the OLS estimator is expressed as

β̂OLS ≜ (X⊤
nXn)

−1X⊤
n yn = β + (X⊤

nXn)
−1X⊤

nηn

If Xn and ηn are independent, the second term has zero expected value conditioned on Xn. Hence,
the OLS estimator is asymptotically unbiased, i.e. β̂OLS →∞ as n→∞.

In practice, the input features x and the noise η are often correlated (Greene, 2003, Chapter
8). As in Figure 1, this dependence, called endogeneity, is modelled with a confounding unobserved
random variable ϵ. To compute an unbiased estimate of β under endogeneity, a popular technique
is to introduce the Instrumental Variables (IVs) z (Angrist et al., 1996; Newey and Powell, 2003).
IVs are chosen such that they are highly correlated with endogenous components of x (relevance
condition) but are independent of the noise η (exogeneity condition for z).

This leads to the Two-stage Least Squares (2SLS) approach to IV regression (Angrist and
Imbens, 1995; Angrist et al., 1996). Here, we further assume that IVs, i.e. Zn ≜ [z1, . . . ,zn]

⊤,
cause linear effects on the endogenous covariates. Specifically, for the just-identified IVs,

Xn = ZnΘ+En, (First stage)

where Θ ∈ Rd×d is an unknown first-stage parameter matrix and En ≜ [ϵ1, . . . , ϵn]
⊤ is the un-

observed noise matrix leading to confounding in the second stage. This is a “classic” multiple
regression, where the covariates z are independent of the noise terms ϵ ∼ N (0, σ2

ϵId) (Wasserman,
2004, Ch. 13). Thus, the first-stage is amenable to OLS regression. This formulation leads us to
the 2SLS estimator:

β̂2SLS =
(
Z⊤
nXn

)−1
Z⊤
n yn. (2SLS)

As long as E[ziηi] = 0 in the true model, we observe that

β̂2SLS =
(
Z⊤
nXn

)−1
Z⊤
nXnβ +

(
Z⊤
nXn

)−1
Z⊤
nηn

p→ β,

as n→∞. This works because IV solves for the unique parameter that satisfies 1
nZ

⊤
n η

p→ 0. Since
x and η are correlated, 2SLS estimator is not unbiased in finite-time.
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Assumption 3.1. The assumptions for conducting 2SLS with just-identified IVs are (Greene,
2003):

1. Well behaved data. For every n ∈ N, the matrices Z⊤
nZn and Z⊤

nXn are full rank, and thus
invertible.

2. Endogeneity of x. The second stage input features x and noise η are not independent:
x ̸⊥⊥ η.

3. Exogeneity of z. The IV random variables are independent of the noise in the second stage:
z ⊥⊥ η.

4. Relevance Condition. The variables z and x are correlated: z ̸⊥⊥ x. This implies that
there exists r > 0:









n
(
Z⊤
nXn

)−1








2

≤ 1

r
. (1)

4. Online Two-Stage Least Squares Regression

In this section, we describe the problem setting and schematic of Online Two-Stage Least Squares
Regression, in brief O2SLS. Following that, we first define two notions of regret: identification and
oracle, aimed at estimating the true parameter and producing accurate predictions. We provide a
theoretical analysis of O2SLS and upper bound the two types of regret (Section 4.2).

O2SLS. In the online setting of IV regression, the data (x1, z1, y1), . . . , (xT , zT , yT ), . . . arrives
in a stream. Following the 2SLS model (Figure 1), data is generated from{

xt = Θ⊤zt + ϵt

yt = β⊤xt + ηt,
(2)

such that xt ̸⊥⊥ ηt and zt ⊥⊥ ηt for all t ∈ N. At each step t, the online IV regression algorithm is
served with a new input feature xt and an IV zt, and it aims to predict an outcome ŷt ≜ β⊤

t xt ∈ R.
Here, βt is the estimate of the parameter at step t computed using current (xt, zt) and the data
{(xi, zi, yi)}i=1 observed so far. Following the prediction, Nature reveals the true outcome yt.
Quality of the prediction is evaluated using a square loss ℓt (βt) ≜ (ŷt − yt)

2 (Foster, 1991). The
online protocol is the following.

At each round t = 1, 2, . . . , T
1. zt is sampled i.i.d. from an unknown distribution
2. xt is sampled according to Equation (2) given zt

3. we compute an estimate β• and make a prediction ŷt = β⊤
• xt

4. we observe the true yt following Equation (2)
5. we incur in a loss (yt − ŷt)

2 = (yt − β⊤
• xt)

2

In order to address this problem, we propose an online form of the 2SLS estimator. Thus,
modifying Equation (2SLS), we obtain the O2SLS estimator that is computed for the prediction at
time t, using information up to time t− 1:

βt−1 ≜

(
t−1∑
s=1

zsx
⊤
s

)−1 t−1∑
s=1

zsys (O2SLS)

We use the O2SLS estimator at step t − 1 for the prediction ŷt = β⊤
t−1xt. We elaborate O2SLS in

Algorithm 1.

Remark 4.1. We could use xt and zt that we observe before committing to the estimate βt, and
use it to predict ŷt (Vovk, 2001). Since we cannot use yt for this estimate, we have to modify

6
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Algorithm 1 O2SLS

1: for t = 1, 2, . . . , T do
2: Observe zt, xt

3: Compute βt−1 according to Equation (O2SLS)
4: Predict ŷt = β⊤

t−1xt

5: Observe yt and compute loss ℓt
(
βt−1

)
6: end for

2SLS to incorporate this additional knowledge. We skip this modification and use βt−1 to predict.
Previously, Venkatraman et al. (2016) studied O2SLS for system identification but provided only an
asymptotic analysis.

4.1 Defining Regrets: Identification and Oracle

To analyse the online regression algorithms, it is essential to define proper performance metrics,
specifically regrets. Typically, regret quantifies what an online (or sequential) algorithm cannot
achieve as it does not have access to the whole dataset rather observes it step by step. Here, we
discuss and define different regrets that we leverage in our analysis of O2SLS.

In econometrics and bio-statistics, where 2SLS is popularly used the focus is accurate identifica-
tion of the underlying structural model β. Identifying β leads to understanding of the underlying
economic or biological causal relations and their dynamics. In ML, Venkatraman et al. (2016) ap-
plied O2SLS for online linear system identification. Thus, given a sequence of estimators {βt}Tt=1

and a sequence of covariates {xt}Tt=1, the cost of identifying the true parameter β can be quantified
by

R̃T (β) ≜
T∑
t=1

(x⊤
t βt−1 − x⊤

t β)
2. (3)

We refer to R̃T (β) as identification regret over horizon T . In the just identified setting that we are
considering, the identification regret is equivalent to the regret of counterfactual prediction (Eqn.
5, Hartford et al. (2016)). Counterfactual predictions are important to study the causal questions:
what would have changed in the outcome if Treatment a is used instead of treatment b. One of the
modern applications of IVs are to facilitate such counterfactual predictions (Hartford et al., 2016;
Bennett et al., 2019; Zhu et al., 2022).

Alternatively, one might be interested in evaluating and improving the quality of prediction
obtained using an estimator {βt}Tt=1 with respect to an underlying oracle (or expert), which is
typically the case in statistical learning theory and forecasting (Foster, 1991; Cesa-Bianchi and
Lugosi, 2006). If the oracle has access to the true parameters β, the cost in terms of prediction that
the estimators pay with respect to the oracle is r̄t ≜ ℓt (βt) − ℓt (β). Thus, the regret in terms of
the quality of prediction is defined as

RT (β) ≜
T∑
t=1

(yt − x⊤
t βt−1)

2 −
T∑
t=1

(yt − x⊤
t β)

2. (4)

We refer to RT (β) as the oracle regret. This regret is studied for stochastic analysis of online
regression (Ouhamma et al., 2021) and is also useful for analysing bandit algorithms (Foster and
Rakhlin, 2020).

As O2SLS is interesting for learning causal structures, we focus on the identification regret. On
the other hand, to compare with the existing results in online linear regression, we also analyse the
oracle regret of O2SLS. Though we know that they are of similar order (w.r.t. T ) in the exogenous
setting, we show that they differ significantly for O2SLS under endogeneity.

7
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Remark 4.2. In online learning theory focused on Empirical Risk Minimisation (ERM), an-
other type of regret is considered where the oracle has access to the best offline estimator βT ≜
argminβ

∑T
t=1(yt − x⊤

t β)
2 given the observations over T steps Cesa-Bianchi and Lugosi (2006).

Thus, the new formulation of regret becomes

RT =
T∑
t=1

(yt − x⊤
t βt−1)

2 −min
β

T∑
t=1

(yt − x⊤
t β)

2. (5)

We refer to it as the population regret. Under exoegeneity, Ouhamma et al. (2021) shows that oracle
regret and population regret differs by o(log2 T ). We show that under endeogeneity their expected
values differ by Ω(T ). Thus, we avoid studying this notion of regret in this paper. More details are
in Appendix E.

4.2 Theoretical Analysis

Confidence Interval of βt. The central result in our analysis is concentration of the O2SLS
estimates βt around β.

Lemma 4.1 (Confidence Ellipsoid for the Second-stage Parameters). Let us define the design matrix
to be Gz,t = Z⊤

t Zt + λId for some λ > 0. Then, for ση-sub-Gaussian first stage noise ηt, the true
parameter β belongs to the set

Et =
{
β ∈ Rd : ∥βt − β∥

Ĥt
≤
√

bt(δ)
}
, (6)

with probability at least 1 − δ ∈ (0, 1), for all t ≥ 0. Here, bt(δ) ≜
dσ2

η

4 log
(
1+tL2

z/λ
δ

)
, Ĥt ≜

Θ̂
⊤
t Gz,tΘ̂t, and Θ̂t is the estimate of the first-stage parameter at time t (Appendix J).

Lemma 4.1 extends the well-known elliptical lemma for OLS and Ridge estimators under exoe-
geneity to the O2SLS estimator under endogeneity. It shows that the size of the confidence intervals
induced by O2SLS estimate at time T is O(

√
d log T ), which is of the same order as that of the

exogenous elliptical lemma (Abbasi-Yadkori et al., 2011a).
Identification Regret Bound. Now, we state the identification regret upper bound of O2SLS

and a brief proof sketch.

Theorem 4.1 (Identification Regret of O2SLS). If Assumption 3.1 holds true, then for bounded
IVs ∥z∥2 ≤ L2

z, if ηt is the ση-sub-Gaussian second stage noise and ϵt is the component-wise σϵ-
sub-Gaussian first stage noise, the regret of O2SLS at step T > 1 satisfies

R̃T ≤ bT−1(δ)︸ ︷︷ ︸
Estimation
O(d log T )

(
(C2

1 + dC2
2 )f(T ) + C4

)︸ ︷︷ ︸
Second Stage Feature norm

O(d log T )

with probability at least 1 − δ ∈ (0, 1). Here, bT−1(δ) is the confidence bound of O2SLS estimate

around β (Lemma 4.1) and f(T ) ≜
(
C′

3
λ + log(T )+1

λmin(Σ)/2

)
. C1, C2, C ′

3, C4 are d and T -independent

positive constants (Appendix G), and λmin(Σ) is the minimum eigenvalue of the true covariance
matrix of IVs, i.e. Σ ≜ E[zz⊤].

Proof Sketch. For brevity, we define ∆βt−1 ≜ βt−1−β. By applying Cauchy-Schwarz inequality
in Eq. (3), we decouple the effects of parameter estimates and feature norms

T∑
t=1

(
∆β⊤

t−1xt

)2
≤

T∑
t=1

∥∥∆βt−1

∥∥2
Ĥt−1

∥xt∥2Ĥ−1
t−1

8
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Now, we bound this term by (a) using the confidence bound to control the concentration of βt

around β, and (b) by bounding the sum of feature norms.

Step a: Confidence Intervals of βt. We directly use Lemma 4.1 to bound
∥∥∆βt−1

∥∥2
Ĥt−1

by bt−1.

Step b: Bounding the Second Stage Features. Now, we need to bound the sum of the fea-
ture norms. We use Lemma C.3 to obtain

∑T
t=1 ∥xt∥2Ĥ−1

t−1
≤
(
C2
1 + dC2

2

)
f(T ) + C4. The idea

is to substitute xt with (First stage) equation. This leads to two terms
∑T

t=1 ∥Θ
⊤zt∥2Ĥ−1

t−1

and∑T
t=1 ∥ϵt∥

2
Ĥ−1

t−1
. Then, we bound the first term by C2

1f(T ) using boundedness of the first-stage

features and the concentration property of the minimum eigenvalue of the design matrix of the first

stage, i.e.





G−1

z,t−1







2
≜









(∑t−1
s=1 z

T
s zs

)−1








2

. The concentration of the minimum eigenvalue leads

to the term f(T ) ≜
(
C′

3
λ + log(T )+1

λmin(Σ)/2

)
.

Then, we bound
∑T

t=1 ∥ϵt∥
2
Ĥ−1

t−1
using component-wise sub-Gaussianity of the first stage noise.

This leads to a bound dC2
2f(T ) + C4 with probability 1− δ.

Final step. Since bt−1 is non-decreasing in t, we conclude that
∑T

t=1

(
∆β⊤

t−1xt

)2
is upper

bounded by bT−1(δ)((C
2
1 + dC2

2 )f(T ) + C4). Thus, we conclude that the identification regret of
O2SLS is O(d2 log2 T ) for bounded IVs and unbounded noises.

Remark 4.3. Theorem 4.1 entails a regret R̃T = O
(
d2 log2(T )

)
, where d is dimension of IV. This

regret bound is d log T more than the regret of online ridge regression, i.e. O(d log T ) (Gaillard
et al., 2019). This is due to the fact that we perform d linear regressions in the first-stage and using
the predictions of first stage for the second-stage regression. These two regression steps in cascade
induce the proposed regret bound.

Oracle Regret Bound. Now, we provide a proof sketch of the oracle regret. Further details
are in Appendix G.

Theorem 4.2 (Oracle Regret of O2SLS). Under the same hypothesis of Theorem 4.1, the Oracle
Regret of O2SLS at step T > 1 satisfies

RT ≤ R̃T︸︷︷︸
Identif.
Regret

O(d2 log2 T )

+
√

bT−1(δ)︸ ︷︷ ︸
Estimation
O(

√
d log T )

σηC1

√
f(T ) log

(
log T

δ

)
︸ ︷︷ ︸
First Stage Feature Norm

O(
√
log T )

+C5

√
2df(T ) +

√
dC6︸ ︷︷ ︸

Correlated noise
Concentration Term

O(
√
d log T )

+γL
Θ̂

−1

(
C3√
λ
+

2
√
2T√

λmin(Σ)

)
︸ ︷︷ ︸


Correlated noise

Bias Term
O(γ

√
T )

with probability at least 1 − δ ∈ (0, 1). We define γ ≜ ∥γ∥2 = ∥E[ηsϵs]∥2. C1, C2, C ′
3, and C4

are the d and T -independent positive constants (as in Thm. 4.1 and App. G). Constants C5 ≜

8e2
(
σ2
η + σ2

ϵ

)
L
Θ̂

−1

√
log(2/δ), C6 ≜ C5

√
max

{
1
λ ,

2
λmin(Σ)

}
log(2/δ), and f(T ) ≜

(
C′

3
λ + log(T )+1

λmin(Σ)/2

)
.

Proof Sketch. Using Equation (4) and Equation (2), we decompose the regret at step T as

RT =
T∑
t=1

(
∆β⊤

t−1xt

)2
︸ ︷︷ ︸

(•1•)

+2
T∑
t=1

ηt∆β⊤
t−1Θ

⊤zt︸ ︷︷ ︸
(•2•)

+2
T∑
t=1

ηt∆β⊤
t−1ϵt︸ ︷︷ ︸

(•3•)

.
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The proof proceeds by bounding each of these three terms.
Term 1: Second Stage Regression Error. We observe that Term (•1•) is same as R̃T . By

Theorem 4.1, we know R̃T = O(d2 log2 T ).
Term 2: Coupling of First-stage Data and Second-stage Parameter Estimation. Now,

we bound the second term using concentration inequalities of martingales. First, we observe that

wt ≜
(
βt−1 − β

)⊤
Θ⊤zs is a martingale with respect to the filtration

Ft−1 = σ (z1, ϵ1, η1, . . . ,zt−1, ϵt−1, ηt−1, zt) .

We also note that wt is Ft−1−measurable since βt−1 and zt are too. By concentration property of
scalar-valued martingale concentration (Theorem I.2), we get that with probability 1− δ

(•2•) ≤

∣∣∣∣∣
T∑
t=1

ηtwt

∣∣∣∣∣
≤

√√√√√2

(
1 + σ2

η

T∑
t=1

w2
t

)
log


√

1 + σ2
η

∑T
t=1w

2
t

δ

.

Now, we focus on bounding the quantity appearing under square root. By applying Cauchy-Schwarz
inequality and a reasoning similar to bounding Term (•1•), we get

∑T
t=1w

2
t ≤ bT−1(δ)C

2
1f(T ).

Hence, we conclude that Term (•2•) is O(
√
d log T ) ignoring the log log terms.

Term 3: Coupling of First- and Second-stage Noises. Finally, we bound Term (•3•)
containing the correlation between the first- and second-stage noise. This term is referred as the
self-fulfilling bias (Li et al., 2021). We bound this term by splitting it into two.

T∑
t=1

ηt∆β⊤
t−1ϵt =

T∑
t=1

∆βT
t−1 (ϵtnt − γ)︸ ︷︷ ︸

Martingale Concentration Term

+

T∑
t=1

∆β⊤
t−1γ︸ ︷︷ ︸

Bias Term

Here, γ ≜ E[ηsϵs]. This leads to the first term, which is a summation of martingale difference se-
quence and can be bounded using concentration inequalities in Lemma F.2. The technical challenge
is to derive the sub-exponential parameters induced by ϵtηt in the martingale difference, since the
individual terms are products of two dependent random variables ϵt and ηt. By applying Bernstein’s
inequality on the martingale difference and

∥∥∆βt−1

∥∥
Ĥt−1

≤
√
bT−1(δ) with probability 1 − δ, we

obtain √
bT−1(δ)︸ ︷︷ ︸

Estimation
O(

√
d log T )

C5

√
2d f(T ) + C6︸ ︷︷ ︸

Correlated noise
Concentration Term

O(
√
d log T )

The Bias Term is the one where the correlation γ appears explicitly. We bound this term (Lemma F.3)
by bounding the sum of the square root of the smallest eigenvalues of the first stage covariates de-

sign matrix
∑T

t=1

√





G−1

z,t−1







2
. We reuse the upper bound on the individual terms (Lemma B.2),

where we show that the minimum eigenvalue of the first stage design matrix grows Ω(t). Thus, we

get that
√

λmax

(
G−1

z,t

)
is O( 1√

t
). This leads to the following bound on the Bias Term

√
bT−1(δ)︸ ︷︷ ︸

Estimation
O(

√
d log T )

γL
Θ̂

−1

(
C3√
λ
+ 2

√
2T√

λmin(Σ)

)
︸ ︷︷ ︸


Correlated noise - Bias Term

O(∥γ∥2
√
T )
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Thus, we conclude the proof and get that the oracle regret of O2SLS is O(γ
√
dT log T + d2 log2 T ).

Remark 4.4. Under exogeneity and unbounded stochastic noise, the oracle regret of online linear
regression is O(d2 log2 T ) (Ouhamma et al., 2021). Under endogeneity and unbounded stochastic
noise, O2SLS incurs an extra O(γ

√
dT log T ) factor in the oracle regret. This term appears due to

the correlation between the second and the first-stage noises, and it is proportional to the degree of
correlation between the noises in these two stages. Thus, the bias introduced by the correlation of
noises acts as the dominant term. In 2SLS literature, this is referred as the self-fulfilling bias (Li
et al., 2021). When the noises are independent, i.e. γ = 0, we retrieve an oracle regret of the same
order as that of the exogenous case.

5. Linear Bandits with Endogeneity: OFUL-IV

We formulate stochastic Linear Bandits with Endogeneity (LBE) with a two-stage linear model of
data generation (Eqn. (2)). Then, we propose an index-based optimistic algorithm, OFUL-IV. Our
analysis shows that OFUL-IV achieves O(d

√
T log T ) regret. Our experimental results show that

OFUL-IV achieve lower regret and more accurately estimates than OFUL (Abbasi-Yadkori et al.,
2011a).

In bandit setting, we observe xt and yt depending on arm (or intervention) At ∈ At drawn
at time t ∈ {1, . . . , T}.

xt = Θ⊤zt,At + ϵt (LBE-first)

yt = β⊤xt + ηt (LBE-second)

Here, yt is the reward at round t. Each arm a corresponds to a vector of IVs zt,a ∈ Zt ⊂ Rd, and a
vector of endogenous variables xt,a ∈ Xt ⊂ Rd (generated as per (LBE-first)). Here, Xt and Zt are
sets of IVs and endogenous variables corresponding to At. Similar to regression setting, we have two
sources of unobserved noises: ϵt (σ

2
ϵI-sub-Gaussian) are i.i.d. vector error terms at round t which

is independent of z, and ηt (σ2
η-sub-Gaussian), representing all causes of yt other than xt. True

parameters β ∈ Rd and Θ ∈ Rd×d are unknown to the agents. This is an extension of the classical
stochastic linear bandit (Lattimore and Szepesvári, 2020, Ch. 19). Now, we state the protocol of
LBE.

At each round t = 1, 2, . . . , T , the agent
1. Observes a sample zt,a ∈ Zt and xt,a ∈ xt of contexts for all a ∈ At

2. Chooses an arm At ∈ At

3. Obtains the reward yt computed from (LBE-first)
4. Updates the parameter estimates Θ̂t and βt

OFUL-IV: Algorithm Design. If the agent had full information in hindsight, she could infer the
best arm (or intervention) in At as

a∗t = argmax
a∈At

E[x⊤
t,aβ]

We denote the corresponding variables as z∗
t and x∗

t . Thus, choosing a∗ can be shown as choosing
z∗
t and x∗

t . But the agent does not know them and aims to select {at}Tt=1 leading to minimum
regret (Eqn. (4)). Now, we extend the OFUL algorithm minimising regret in linear bandits with
exogeneity (Abbasi-Yadkori et al., 2011a). The core idea is that the algorithm maintains a confidence
set Bt−1 ⊆ Rd around the parameter β, which is computed only using the observed data. Then, the

11



Della Vecchia and Basu

Algorithm 2 OFUL-IV

1: Input: Initialization parameters β0, Θ̂0, b
′
0

2: for t = 1, 2, . . . , T do
3: Observe zt,a ∈ Zt and xt,a ∈ xt for a ∈ At

4: Compute βt−1 according to Equation (O2SLS)
5: Choose action At that solves Equation (7)
6: Update βt ← βt−1, Θ̂t ← Θ̂t, b

′
t ← b′t

7: end for

algorithm chooses an optimistic estimate of β̃t−1 from that confidence set:

β̃t−1 = argmax
β′∈Bt−1

(
max
x∈Xt

x⊤β′
)

Then, she chooses the action leading to xt = argmaxx∈Xt
x⊤β̃t, which maximizes the reward ac-

cording to the estimate β̃t. In brief, the algorithm chooses the pair (xt, β̃t−1) = argmax
(x,β′)∈Xt×Bt−1

x⊤β′.

In order to tackle endogeneity, we choose to use the O2SLS estimate βt−1 computed using data
observed till t− 1. Then, we build an ellipsoid Bt−1 around it, such that

Bt−1 ≜

{
β ∈ Rd : ∥βt − β∥

Ĥt
≤
√
b′t(δ)

}
and

b′t(δ) ≜ 2σ2
η log

(
det (Gz,t)

1/2 λ−d/2

δ

)
.

Given this confidence interval, we optimistically choose the arm

At = argmax
a∈At

〈
xt,a,βt−1

〉
+
√
b′t−1(δ) ∥xt,a∥Ĥ−1

t−1
. (7)

This arm selection index together with the O2SLS estimator yielding βt−1 construct the OFUL-IV
(Algorithm 2).

Theorem 5.1. Under the same assumptions and notations of Theorem 4.1 and Theorem 4.2,
Algorithm 2 incurs a regret

RT ≤ 2
√
T
√

bT−1(δ)︸ ︷︷ ︸
Estimation
O(
√

d log T )

√
(C2

1 + dC2
2 )f(T ) + C4︸ ︷︷ ︸

Second Stage Feature norm
O(

√
d log T )

with probability 1− δ and for horizon T > 1.

Proof Sketch. Step 1: Optimism. We observe that RT =
∑T

t=1 β
⊤x∗ − β⊤xt ≜

∑T
t=1 rt.

Since (xt, β̃t−1) is optimistic in Xt × Bt, and β ∈ Bt, we obtain rt ≤ (β̃t−1 − β)⊤xt.

Step 2: Decomposition. Now, we decompose regret as

(β̃t−1 − β)⊤xt = (β̃t−1 − βt−1)
⊤xt + (βt−1 − β)⊤xt.

The first term depends on tightness of confidence interval, while the second depends on accuracy
of the estimate βt−1.

12
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Figure 2: We compare instantaneous regrets (left) of OFUL and OFUL-IV in a linear bandit setting.
We show the MSE between the parameters estimated by the two algorithms and the true parameter
β (right). OFUL-IV incurs lower instantaneous regret and MSE.

Step 3: Confidence Bound. Now, we can decouple the impact of parameter and observed data

in both the terms using
∥∥∥β̃t−1 − βt−1

∥∥∥
Ĥt−1

∥xt∥Ĥ−1
t−1

and
∥∥βt−1 − β

∥∥
Ĥt−1

∥xt∥Ĥ−1
t−1

, respectively.

By construction of the optimistic confidence interval and concentrations bound of Lemma 4.1, both∥∥∥β̃t−1 − βt−1

∥∥∥
Ĥt−1

and
∥∥βt−1 − β

∥∥
Ĥt−1

are bounded by
√
b′t−1(δ). By determinant-trace inequality

(Lemma A.1), we get that b′T−1(δ) ≤
dσ2

η

4 log
(
1+TL2

z/λ
δ

)
.

Final Step. Since the regret RT≤
√

T
∑T

t=1 r
2
t , we obtain

RT ≤ ση

√√√√dT log

(
1 + TL2

z/λ

δ

)( T∑
t=1

∥xt∥2Ĥ−1
t−1

)
.

Now, we bound the sum of the first-stage feature norms
∑T

t=1 ∥xt∥2Ĥ−1
t−1

by (C2
1 + dC2

2 )f(T ) + C4

(Lemma C.3), which is O(d log T ). A detailed proof is in Appendix H.

Thus, we conclude that regret of OFUL-IV is O(d
√
T log T ). OFUL-IV achieves regret of similar

order under endogeneity as OFUL achieves under exoegeneity.

Experimental Analysis. Now, we compare performance of OFUL-IV and OFUL (Abbasi-Yadkori
et al., 2011a) for LBE setting. OFUL builds a confidence ellipsoid centered at βRidge,t to concentrate
around β, while OFUL-IV uses O2SLS to build an accurate estimate. We deploy the experiments in
Python3 on a single Intel(R) Core(TM) i7-8665U CPU@1.90GHz. For each algorithm, we report the
mean and standard deviation of instantaneous regret and mean square error ∥βt−β∥2 over 100 runs.
We run the algorithms with the same regularisation parameters equal to 10−3. We denote the normal
distribution with mean µ and standard deviation σ as N (µ, σ), with Nn we indicate its multivariate
extension to n dimensions. For each experiment, we sample the true parameters in our model once
according to β ∼ N50(1⃗0, I50) and Θi,j ∼ N (0, 1) for each component. Then we sample at each time

t the vectors zt,a∼N50(⃗0, I50), ϵt,a∼N50(⃗0, I50), and the scalar noise ηt,a = 1
13

(
η̃t,a +

∑12
i=1 ϵt,a,i

)
where η̃t,a∼N (0, 1).

The estimates obtained by OFUL-IV achieves 3-order less error than those of OFUL (Fig. 2b).
Thus, OFUL-IV leads to lower regret than OFUL for linear bandits with endogeneity (Fig. 2a).
Further experimental details and results of regression are deferred to Appendix K.1.
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6. Conclusions and Future Works

In this paper, we study online IV regression, specifically the online 2SLS algorithm, for unbounded
noise and endogenous data. We analyse the finite-time identification and oracle regrets of O2SLS.
We observe that O2SLS incurs O(d2 log2 T ) identification regret, which is d log T higher than that
of online linear regression under exogeneity. In contrast, O2SLS achieves O(∥γ∥2

√
dT log T ) oracle

regret as the correlation between the noises in the two-stages dominate the identification regret. But
these two are of the same order in the exogenous setting. Following that, we study stochastic linear
bandits with endogeneity. We propose OFUL-IV that uses O2SLS to estimate the model parameters.
We show that OFUL-IV achieves O(d

√
T log T ) regret. We experimentally show that OFUL-IV yields

more accurate estimates of the true parameter and thus, lower regret.
For simplicity, we consider the just-identified IVs. In future, we will like to extend our algorithms

and analysis to weakly or over-identified IVs (Greene, 2003). Additionally, O2SLS and OFUL-IV
work if the IVs are already specified. There has been significant work to identify IVs in offline
setting (Newey and Powell, 2003; Chen et al., 2020). Still, it is an open question how optimally IVs
can be identified online, while O2SLS is performed simultaneously.
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Appendix

A. Useful Results

Notations for scalars, vectors, matrices: We indicate in bold vectors and matrices, e.g. the
vector and matrix (matrices are also usually capitalized) v ∈ Rd,A ∈ Rd×d; while scalars do not
use the bold notation, e.g. the scalar s ∈ R. We indicate the determinant of matrix A with det(A)
and its trace with Tr(A). For a x ∈ R≥0, we indicate the function that takes as input x, and gives
as output the least integer greater than or equal to x as ⌈x⌉ (ceiling function). We indicate the
identity matrix of dimension d with Id.

A.1 Random Variables

Random variables follow the previous convention if they are scalar, vectors, or random matrix
variables. We adopt the following convention when we talk about sub-Gaussians and sub-exponential
random variables.

Definition A.1 (Sub-Gaussian r.v.). A random variable X with mean µ = E[X] is sub-Gaussian
if there is a positive number σ such that

E
[
eλ(X−µ)

]
≤ eσ

2λ2/2 for all λ ∈ R.

Definition A.2 (Sub-exponential r.v.). A random variable X with mean µ = E[X] is sub-exponential
if there are non-negative parameters (ν, α) such that

E
[
eλ(X−µ)

]
≤ eν

2λ2/2 for all |λ| < 1

α

A.2 Norms of Vectors and Matrices

Definition A.3 (ℓp-norms). For a vector v ∈ Rn, we express its ℓp-norm as ∥v∥p for p ≥ 0. A
special case is the Euclidean ℓ2-norm denoted as ∥·∥2, which is induced by classical scalar product
on Rn denoted by ⟨·, ·⟩.

Given a rectangular matrix A ∈ Rn×m with n ≥ m, we write its ordered singular values as

σmax(A) = σ1(A) ≥ σ2(A) ≥ · · · ≥ σm(A) = σmin(A) ≥ 0

The minimum and maximum singular values have the variational characterization

σmax(A) = max
v∈Sm−1

∥Av∥2 and σmin(A) = min
v∈Sm−1

∥Av∥2,

where Sd−1 ≜
{
v ∈ Rd | ∥v∥2 = 1

}
is the Euclidean unit sphere in Rd.

Definition A.4 (ℓ2-operator norm). The spectral or ℓ2-operator norm of A is defined as

~A~2 ≜ σmax(A) . (8)

Since covariance matrices are symmetric, we also focus on the set of symmetric matrices in Rd,
denoted Sd×d =

{
Q ∈ Rd×d | Q = QT

}
, as well as the subset of positive semidefinite matrices given

by

Sd×d
+ ≜

{
Q ∈ Sd×d | Q ⪰ 0

}
.
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From standard linear algebra, we recall the facts that any matrix Q ∈ Sd×d is diagonalizable via a
unitary transformation, and we use λ(Q) ∈ Rd to denote its vector of eigenvalues, ordered as

λmax(Q) = λ1(Q) ≥ λ2(Q) ≥ · · · ≥ λd(Q) = λmin(Q).

Note that a matrix Q is positive semidefinite-written Q ⪰ 0 for short-if and only if λmin(Q) ≥ 0.

Remark A.1 (Rayleigh-Ritz variational characterization of eigenvalues). We remind also the
Rayleigh-Ritz variational characterization of the minimum and maximum eigenvalues-namely

λmax(Q) = max
v∈Sd−1

v⊤Qv and λmin(Q) = min
v∈Sd−1

v⊤Qv.

Remark A.2. For any symmetric matrix Q, the ℓ2-operator norm can be written as

~Q~2 = max {λmax(Q), |λmin(Q)|} ,

by virtue of which it inherits the variational representation ~Q~2 = maxv∈Sd−1

∣∣v⊤Qv
∣∣ .

Corollary A.1. Given a rectangular matrix A ∈ Rn×m with n ≥ m, suppose that we define the m
dimensional symmetric matrix R = ATA. We then have the relationship

λj(R) = (σj(A))2 for j = 1, . . . ,m

We now introduce norms that are induced by positive semi-definite matrices in the following
way.

Definition A.5. For any vector y ∈ Rn and matrix A ∈ Sn×n
+ , let us define the norm ∥y∥A ≜√

yTAy =
√
⟨y,Ay⟩.

Throughout the paper we will need often to bound matrix induced norms using ℓ2-norms for
operators, the following results shows how this can be done easily for generic matrices. We specialize
this result as we need in the text.

Proposition A.1. Take A,B ∈ Rn×n, with B ⪰ 0 positive semi-definite and x ∈ Rn

∥Ax∥2B = ∥x∥2A⊤BA ≤ ~B~2~A~2
2∥x∥22 (9)

Proof. The equality holds since we can rewrite

∥Ax∥2B = ⟨Ax,BAx⟩ = ⟨x,A⊤BAx⟩ = ∥x∥2A⊤BA.

The inequality follows by the definition of ℓ2-norms, where we further substitute y = Ax, to get

⟨Ax,BAx⟩ = ⟨Ax,BAx⟩
∥Ax∥22

∥Ax∥22
∥x∥22

∥x∥22 =
⟨y,By⟩
∥y∥22

∥Ax∥22
∥x∥22

∥x∥22 ≤ ~B~2~A~2
2∥x∥22.

We note that the inequality holds trivially for x in the null space of A, therefore, in the previous
case, we can safely divide by ∥Ax∥2 and ∥x∥2.
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A.3 Technical Lemmas

Lemma A.1 (Determinant-Trace Inequality). Suppose z1, z2, . . . ,zt ∈ Rd and for any 1 ≤ s ≤ t,
∥zs∥2 ≤ Lz. Let Gz,t = λI+

∑t
s=1 zsz

⊤
s for some λ > 0. Then,

det (Gz,t) ≤
(
λ+ tL2

z/d
)d

(10)

Proof. Let α1, α2, . . . , αd be the eigenvalues of Gz,t. Since Gz,t is positive definite, its eigenvalues

are positive. Also, note that det(Gz,t) =
∏d

s=1 αs and Tr (Gz,t) =
∑d

s=1 αs. By inequality of
arithmetic and geometric means,

d
√
α1α2 · · ·αd ≤

α1 + α2 + · · ·+ αd

d
.

Therefore, det (Gz,t) ≤ (Tr (Gz,t) /d)
d.

Now, it remains to upper bound the trace:

Tr (Gz,t) = Tr(λId) +
t∑

s=1

Tr
(
zsz

⊤
s

)
= dλ+

t∑
s=1

∥zs∥22 ≤ dλ+ tL2
z

and the lemma follows.
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B. Concentration of The Minimum Eigenvalue of The Design Matrix

The aim of the section is to find a concentration result for the minimum eigenvalue of the design
matrix, which, in turn, gives us a concentration of the ℓ2-norm of the inverse of the design matrix


G−1
z,t





2
.

We start by staging two know results that we use in order to derive Lemma B.2. Lemma B.1 is
a direct corollary of Weyl’s theorem for eigenvalues (see for example Exercise 6.1 in (Wainwright,
2019)).

Lemma B.1. For two symmetric matrices A and B

|λmin(A)− λmin(B)| ≤ ~A−B~2. (11)

The following, is a classical concentration result for the covariance matrix using the ℓ2-norm for
matrices, for a proof of this result we refer the reader to Corollary 6.20 in (Wainwright, 2019).

Theorem B.1 (Estimation of covariance matrices). Let z1, . . . ,zt be i.i.d. zero-mean random
vectors with covariance Σ such that ∥zs∥2 ≤ Lz almost surely. Then for all δ > 0, the sample

covariance matrix Σ̂t =
1
t

∑t
s=1 zsz

⊤
s satisfies

P
[



Σ̂t −Σ







2
≥ δ
]
≤ 2d exp

(
− tδ2

(2L2
z~Σ~2 + δ)

)
,

this means that with probability at least 1− δ






Σ̂t −Σ







2
≤ 4L2

z

t
log

(
2d

δ

)
+ 2

√
2L2

z

t
log

(
2d

δ

)
~Σ~2.

Now, we use this concentration bound together with the bound on the difference of the minimum
eigenvalues of two symmetric matrices in order to bound the maximum eigenvalue of the inverse of
the design matrix.

Lemma B.2 (Well-behavedness of First-stage Design Matrix). Let z1, . . . ,zt be i.i.d. zero-mean
random vectors with covariance Σ such that ∥zs∥2 ≤ Lz almost surely. We denote the regularized
design matrix as Gz,t = λId +

∑t
s=1 zsz

⊤
s . For all δ > 0 and regularization parameter λ > 0, we

observe that



G−1
z,t





2
= λmax

(
G−1

z,t

)
≤

{
1
λ if t ≤ C3

2
t λmin(Σ) if t > C3

.

Here, C3 > 0 is a constant defined by Equation (13) and λmin(Σ) is the minimum eigenvalue of the
true covariance matrix of z, i.e. Σ ≜ E[zz⊤].

Proof. First, we aim to find a lower bound for the smallest eigenvalue of the design, matrix where
we set the regularization parameter λ to zero. We denote the ‘non-regularized’ design matrix as
Gλ=0

z,t . For t ≥ 1, we observe that Gλ=0
z,t /t ≜ Σ̂t. Thus, by applying Equation (11), we obtain

∣∣λmin

(
Gλ=0

z,t /t
)
− λmin(Σ)

∣∣ ≤ 4L2
z

t
log

(
2d

δ

)
+ 2

√
2L2

z

t
log

(
2d

δ

)
~Σ~2 .

Further substituting A ≜ 2L2
z log

(
2d
δ

)
leads to the following lower bound for the minimum eigenvalue

λmin

(
Gλ=0

z,t

)
≥ max

{
0, t
(
λmin(Σ)− 2A/t− 2

√
Aλmax(Σ)/t

)}
.
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Here, λmax(Σ) and λmin(Σ) is the maximum and minimum eigenvalues of the true covariance matrix
of z, i.e. Σ ≜ E[zz⊤]. By well-behavedness assumption of the IV, both of them are positive and
bounded reals.

Now, from the variational definition of the minimum eigenvalues, we have

λmin(Gz,t) ≥ λmin

(
Gλ=0

z,t

)
+ λ,

which implies that λmin(Gz,t) ≥ λ for all t ≥ 0, with equality for t = 0. Thus, we have

λmin(Gz,t) ≥ max
{
λ, λ+ t

(
λmin(Σ)− 2A/t− 2

√
Aλmax(Σ)/t

)}
. (12)

Let us consider the second term inside maximum of Equation (12), and we split it in the following
way

λ+ t λmin(Σ)− 2A− 2
√

tAλmax(Σ) = t
λmin(Σ)

2︸ ︷︷ ︸
Term (A)

+

(
t

2
λmin(Σ)− 2

√
tAλmax(Σ) + λ− 2A

)
︸ ︷︷ ︸

Term (B)

Now we study for which values Term (B) is non-negative. The corresponding second order
polynomial equation is obtained substituting u =

√
t, and reads

u2 λmin(Σ)− 4u
√

Aλmax(Σ) + 2(λ− 2A) = 0 ,

which has two solutions given by

u± =
2
√
Aλmax(Σ)±

√
4Aλmax(Σ) + 2(2A− λ)λmin(Σ)

λmin(Σ)
.

In particular for t > ⌈u+⌉, Term (A) ≥ 0, and Equation (12) reads

λmin(Gz,t) ≥ max {λ, t λmin(Σ)/2} .

Therefore, for t > ⌈2λ/λmin(Σ)⌉ and t > ⌈u+⌉ we have that λmin(Gz,t) ≥ t λmin(Σ)/2.
Putting the results together, we conclude that

λmin(Gz,t) ≥ t λmin(Σ)/2 for t > C3 ≜ max {⌈2λ/λmin(Σ)⌉, ⌈u+⌉} , (13)

while for t ≤ C3, we retain the trivial lower bound of the minimum eigenvalue, i.e. λ.
In summary, we have

λmin(Gz,t) ≥

{
λ if t ≤ C3

t λmin(Σ)/2 if t > C3

⇐⇒ λmax

(
G−1

z,t

)
≤

{
1
λ if t ≤ C3

2
t λmin(Σ) if t > C3

.
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C. Technical Lemmas for the Endogeneous Setting

In this section, we present some useful Lemmas that we used in the proofs of the regret bounds of
O2SLS and OFUL-IV.

Remark C.1. In Appendix J, we describe that the first stage regression in O2SLS can be expressed
as running d independent ridge regressions for each column of Θ (Equation (27)). Since the standard
analysis of each of the ridge regressions assume independent and sub-Gaussian noise added in the
linear model (cf. Theorem J.1; (Ouhamma et al., 2021)), we assume that each component of the
first stage noise, i.e. ϵt,i, corresponding to the i-th ridge regression is sub-Gauss(σϵ). Thus, we
obtain that E∥ϵt∥22 ≤ dσ2

ϵ . We use this result throughout this section.

Lemma C.1 (Bounding the First-stage Parameters). Given the relevance condition in Assump-
tion 3.1 and a regularization parameter λ > 0, we have the following upper bound for the inverse of
the estimated parameter (Equation (27)) in the first-stage regression:






Θ̂

−1

t







2
≤ λ+ L2

z

r
≜ L

Θ̂
−1 (14)

Proof. By the sub-multiplicativity of the matrix norms we have






Θ̂

−1

t







2
=









(
Z⊤
t Xt

)−1 (
Z⊤
t Zt + λI

)







2

≤








(
Z⊤
t Xt

)−1








2






Z⊤
t Zt + λI







2

Then, by the sub-additivity of the norms and the variational definition of the biggest eigenvalue






Z⊤
t Zt + λI







2
≤






Z⊤
t Zt







2
+ ~λI~2 ≤ max

v∈Sd−1

〈
v,

t∑
s=1

zsz
⊤
s v

〉
+ λ

= max
v∈Sd−1

t∑
s=1

⟨v, zs⟩2 + λ ≤
t∑

s=1

∥zs∥22 + λ

≤ tL2
z + λ

Then, we note that the quantity






(
Z⊤
t Xt

)−1






2
≤ 1

tr by the definition of relevance, which implies






Θ̂

−1

t







2
≤ tL2

z + λ

tr
=

L2
z + λ/t

r
≤ L2

z + λ

r
(15)

Lemma C.2 (Bounding the Impact of First-stage Noise). For first stage noises that is component-

wise sub-Gaussian(σϵ), and first-stage parameter estimates satisfying





Θ̂

−1

t







2
≤ L

Θ̂
−1 (Lemma C.1),

we have that

T∑
t=1

∥ϵt∥2
Θ̂

−1
t−1G

−1
z,t−1Θ̂

−⊤
t−1

≤ dσ2
ϵL

2

Θ̂
−1

(
C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)

)
+ C4︸ ︷︷ ︸

O(d log T )

with probability at least 1− δ and with C4 a constant defined in Equation (17).
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Proof. The proof follows using chain of inequalities from Proposition A.1 and Lemma C.1,

T∑
t=1

∥ϵt∥2
Θ̂

−1
t−1G

−1
z,t−1Θ̂

−⊤
t−1

≤
T∑
t=1






G−1

z,t−1







2






Θ̂

−1

t−1







2

2
∥ϵt∥22

≤ L2

Θ̂
−1

T∑
t=1






G−1

z,t−1







2

((
∥ϵt∥22 − E ∥ϵt∥22

)
+ E ∥ϵt∥22

)
≤ L2

Θ̂
−1

T∑
t=1






G−1

z,t−1







2

(
∥ϵt∥22 − E ∥ϵt∥22

)
︸ ︷︷ ︸

I

+L2

Θ̂
−1

T∑
t=1






G−1

z,t−1







2
E ∥ϵt∥22︸ ︷︷ ︸

II

Term I: We now assume ∥ϵt∥22 − E ∥ϵt∥22 ∼ sub-exp(ν, α) where the correct values of ν, α can
simply be taken from the results on the square of sub-Gaussians and gives that ν ≜ d4

√
2σ2

ϵ and
α ≜ 4σ2

ϵ .
Now, given an X ∼ sub-exp(ν, α), we have that its rescaling by a constant c is distributed

according to X
c ∼ sub-exp

(
v
c ,

c
α

)
which follows by sustituting λ→ λ/c into the definitions

E
[
eλX/c

]
≤ eλ

2ν2/2c2 , ∀|λ/c| ≤ 1

α
⇔ |λ| ≤ c

α

Using this, we can rescale by the factor t in the following

P

[
n∑

t=m

∥ϵt∥22 − E ∥ϵt∥22
t

≥ µ

]
≤ E

[
eλ

∑n
t=m

∥ϵt∥
2−E∥ϵt∥

2

t

]
e−λµ ≤ e

∑n
t=m λ2ν2/2t2−λµ ≤ e

λ2ν2

2 ( 1
m−1

− 1
n)−λµ

which holds ∀|λ| ≤ m
α thanks to the following series of inequalities

∑n
m

1
t2
≤
∫ n
m−1 1/t

2dt =

(−1
t |
n
m−1 = − 1

n + 1
m−1 . This proves that

T∑
t=C3

∥εt∥22 − E ∥εt∥22
t

∼ sub-exp
(
ν

√
1

C3 − 1
− 1

T
,
C3

α

)
(16)

We bound the following summation using Lemma B.2:

T∑
t=1






G−1

z,t−1







2

(
∥ϵt∥22 − E ∥ϵt∥22

)
=

C3∑
t=0

λmax

(
G−1

z,t

) (
∥ϵt+1∥22 − E ∥ϵt+1∥22

)
+

T−1∑
t=C3+1

λmax

(
G−1

z,t

) (
∥ϵt+1∥22 − E ∥ϵt+1∥22

)

≤ 1

λ

C3∑
t=0

(
∥ϵt+1∥22 − E ∥ϵt+1∥22

)
+

2

λmin(Σ)

T−1∑
t=C3+1

∥ϵt+1∥22 − E ∥ϵt+1∥22
t

≤ C3 + 1

λ

(
d4
√
2σ2

ϵ

√
2 log(1/δ) +

1

2σ2
ϵ

log(1/δ)

)
+

2

λmin(Σ)

(√
2ν2

(
1

C3
− 1

T

)
log(1/δ) +

2C3

α
log(1/δ)

)
Since term I can be upperbounded by a constant O(1) we just name this constant C4 where we also
substitute back the definitions ν = d4

√
2σ2

ϵ and α = 4σ2
ϵ :

C4 ≜ L2

Θ̂
−1

C3 + 1

λ

(
d4
√
2σ2

ϵ

√
2 log(1/δ) +

1

2σ2
ϵ

log(1/δ)

)
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+
2L2

Θ̂
−1

λmin(Σ)

(
d4
√
2σ2

ϵ

√
2

C3
log(1/δ) +

2C3

4σ2
ϵ

log(1/δ)

)
(17)

Term II: The proof follows using the high probability bound that we introduce in Lemma B.2,
plus the estimate

∑n
k=1

1
k < log(n) + 1:

dσ2
ϵL

2

Θ̂
−1

T∑
t=1

λmax

(
G−1

z,t−1

)
≤ dL2

ϵL
2

Θ̂
−1

 C3∑
t=0

1

λ
+

T−1∑
t=C3+1

2

λmin(Σ)t


≤ dL2

ϵL
2

Θ̂
−1

(
C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)

)
.

Therefore, putting Term I and Term II together, we obtain

T∑
t=1

∥ϵt∥2
Θ̂

−1
t−1G

−1
z,t−1Θ̂

−⊤
t−1

≤ dσ2
ϵL

2

Θ̂
−1

(
C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)

)
+ C4︸ ︷︷ ︸

O(d log T )

Lemma C.3 (Bounding the Sum of Feature Norms). Under the same conditions of Lemma C.2
plus first-stage parameters with bounded ℓ2-norm ~Θ~2 ≤ LΘ and bounded IVs ∥z∥2 ≤ L2

z we have
that

T∑
t=1

∥xt∥2
Θ̂

−1
t−1G

−1
z,t−1Θ̂

−⊤
t−1

≤ L2

Θ̂
−1

(
L2
ΘL2

z + dσ2
ϵ

)(C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)

)
+ C4︸ ︷︷ ︸

O(d log T )

Proof. We start by substituting the First Stage equations inside the norm and using a Triangle
Inequality

T∑
t=1

∥xt∥2
Θ̂

−1
t−1G

−1
z,t−1Θ̂

−⊤
t−1

=

T∑
t=1

∥∥∥Θ⊤zt + ϵt

∥∥∥2
Θ̂

−1
t−1G

−1
z,t−1Θ̂

−⊤
t−1

≤
T∑
t=1

∥∥∥Θ⊤zt

∥∥∥2
Θ̂

−1
t−1G

−1
z,t−1Θ̂

−⊤
t−1

+

T∑
t=1

∥ϵt∥2
Θ̂

−1
t−1G

−1
z,t−1Θ̂

−⊤
t−1

≤ L2

Θ̂
−1

(
L2
ΘL2

z + dσ2
ϵ

)(C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)

)
+ C4

where in the last inequality we used the result of Lemma C.2 for the second term and the following
chain of inequality for the following term

T∑
t=1

∥∥∥Θ⊤zt

∥∥∥2
Θ̂

−1
t−1G

−1
z,t−1Θ̂

−⊤
t−1

≤ L2
ΘL2

zL
2

Θ̂
−1

T∑
t=1

λmax

(
G−1

z,t−1

)

≤ L2
ΘL2

zL
2

Θ̂
−1

 C3∑
t=0

1

λ
+

T−1∑
t=C3+1

2

λmin(Σ)t


≤ L2

ΘL2
zL

2

Θ̂
−1

(
C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)

)
.
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D. Elliptical Lemma for the Endogeneous Setting

Lemma D.1 (Confidence Ellipsoid for the Second-stage Parameters). Let us define the design

matrix to be Gz,t = Z⊤
t Zt + λId for some λ > 0 and Ĥt ≜ Θ̂

⊤
t Gz,tΘ̂t. Then, for ση-sub-Gaussian

second stage noise ηt, the true parameter β belongs to the set

Et =
{
β ∈ Rd : ∥βt − β∥

Ĥt
≤
√

bt(δ)
}
,

with probability at least 1− δ ∈ (0, 1), for all t ≥ 0. Here, bt(δ) ≜
dσ2

η

4 log
(
1+tL2

z/λ
δ

)
.

Proof. We can rewrite

βt − β =
(
Z⊤
t Xt

)−1
Z⊤
t ηt = Θ̂

−1

t

(
Z⊤
t Zt + λId

)−1
Z⊤
t ηt = Θ̂

−1

t G−1
z,tZ

⊤
t ηt.

Take x ∈ Rd and by the Cauchy–Schwarz inequality we have

(I)︷ ︸︸ ︷
x⊤βt − x⊤β = x⊤Θ̂

−1

t G−1
z,tZ

⊤
t ηt =

〈
Θ̂

−⊤
t x,G−1

z,tZ
⊤
t ηt

〉
≤
∥∥∥Θ̂−⊤

t x
∥∥∥
G−1

z,t

∥∥∥G−1
z,tZ

⊤
t ηt

∥∥∥
Gz,t

=
∥∥∥Θ̂−⊤

t x
∥∥∥
G−1

z,t︸ ︷︷ ︸
(II)

∥∥∥Z⊤
t ηt

∥∥∥
G−1

z,t︸ ︷︷ ︸
(III)

.

The choice we will make for x is the following

x ≜ Θ̂
⊤
t Gz,tΘ̂t(βt − β) = Ĥt(βt − β), (18)

which leads to the following rewriting for the three previous terms.
Term (I): From a simple substitution and the definition of a norm induced by a matrix we have

x⊤βt − x⊤β = ⟨x,βt − β⟩ =
〈
Θ̂

⊤
t Gz,tΘ̂t(βt − β),βt − β

〉
= ∥βt − β∥2

Θ̂
⊤
t Gz,tΘ̂t

.

Term (II): First, we rewrite the following term∥∥∥Θ̂−⊤
t x

∥∥∥
G−1

z,t

=
〈
Θ̂

−⊤
t x, Θ̂

−⊤
t x

〉
G−1

z,t

= x⊤Θ̂
−1

t G−1
z,tΘ̂

−⊤
t x = ∥x∥

Θ̂
−1
t G−1

z,tΘ̂
−⊤
t

= ∥x∥(
Θ̂

⊤
t Gz,tΘ̂t

)−1 ,

and, once again, we substitute the definition of x in Equation (18):

∥x∥(
Θ̂

⊤
t Gz,tΘ̂t

)−1 = ∥Θ̂
⊤
t Gz,tΘ̂t(βt − β)∥(

Θ̂
⊤
t Gz,tΘ̂t

)−1

= ∥βt − β∥
Θ̂

⊤
t Gz,tΘ̂t

.

Terms (III): We bound the last term using Theorem I.1 for the first inequality, and Lemma A.1
in the second inequality:

∥∥∥Z⊤
t ηt

∥∥∥
G−1

z,t

=

∥∥∥∥∥
t∑

s=1

ηszs

∥∥∥∥∥
G−1

z,t

≤

√√√√2(ση/2)2 log

(
det (Gz,t)

1/2 λ−d/2

δ

)

≤

√
dσ2

η

4
log

(
1 + tL2

z/λ

δ

)
.
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Finally, from our initial decomposition, dividing on both sides by ∥βt − β∥
Θ̂

⊤
t Gz,tΘ̂t

, we get

∥βt − β∥
Θ̂

⊤
t Gz,tΘ̂t

≤

√
dσ2

η

4
log

(
1 + tL2

z/λ

δ

)
.

Remark D.1. We note that the ellipsoid bound has the following order in d and t while neglecting
the constants:

bt(δ) = O (d log(t))
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E. A Detailed Discussion on Different Definitions of Regret

In econometrics, the focus has historically been given to the correct identification of the estimator
β. This is because the community has been mainly interested in discovering causal relations and
assigning causal meaning to the parameters in the regression. Instead, the primary concern of the
statistics and statistical learning community has been arguably on generalization. Interestingly, this
tension between these two efforts has not been analyzed until recently since the two communities
have worked in two different settings, the endogenous and the exogenous ones, where this conflict
is not apparent. In fact, under exogeneity the problem of identifying correctly the true parameter
β is solved at the same time as the one of having good generalization since the OLS estimator
is a consistent estimator. With the exogeneity hypothesis is possible to perform the two tasks of
identification and generalization at the same time. This is not true if we introduce the more realistic
assumption of endogeneity. In this case, the Minimum Mean Squared Error Estimator (MMSEE)
becomes the following,

βMMSEE = E
[
xx⊤

]−1
E[xy] = β + E

[
xx⊤

]−1
E[xη].

This follows by solving for β∗ in ∂β∗Exy

[
(y − xβ∗)2

]
= 0, and by substituting for the definition

of y in E[xy] = E
[
xx⊤]β∗ (provided that we can invert the covariance matrix E

[
xx⊤]). Under

exogeneity E[xη] = 0 and the MMSEE conicedes with β. Instead, in the more realistic case of
endogenous noise E[xη] ̸= 0 and the MMSEE estimator is biased with respect to the oracle β. This
reveals that if we want to perform well at prediction time, we don’t actually want an estimator
for the oracle β, but we want to use an estimator of the MMSE, which can be done in by taking
the Empirical Risk Minimizer (ERM). This would lead us to the OLS estimator for regression
but without the nice properties of unbiasedness that it has in the exogenous setting. If we don’t
account for this endogeneity, we end up with a biased estimate that generalizes well but has no
causal meaning.

On the contrary, we are instead interested in finding notions of regret that preserve the causal
interpretation of the estimates, and this naturally leads to extending the instrumental variables
analysis to the online setting. This motivates the inspection of different notions of regret, which differ
from the population regret for a time-dependent estimator βt−1 defined as RT (βT ) ≜

∑T
t=1(yt −

x⊤
t βt−1)

2−minβ
∑T

t=1(yt−x⊤
t β)

2 where we indicated with βT = argminβ
∑T

t=1(yt−x⊤
t β)

2. This
is studied in the online learning literature but under the exogeneity assumptions. Therefore, we
introduce two alternative regrets that measure the performance of an estimator βt−1 compared to

the oracle. They are the oracle regret RT (β) and the identification regret R̃T (β) below

RT (β) =

T∑
t=1

(yt − x⊤
t βt−1)

2 −
T∑
t=1

(yt − x⊤
t β)

2 and R̃T (β) =

T∑
t=1

(x⊤
t βt−1 − x⊤

t β)
2.

Theorem E.1 shows that an estimator that performs well in terms of oracle regret is instead a
bad choice for the population regret, and the other way around.

Theorem E.1. For any estimator, the quantity ∆T ≜ RT (βT ) − RT (β) is lower bound in expec-
tation by E[∆T ] = Ω(T )

Proof Sketch. Solving for βT leads to the OLS estimator for data up to time T : βT = β +(∑T
t=1 x

⊤
t xt

)−1∑T
t=1 x

⊤
t ηt provided that we can invert the design matrix in the previous expression.

Using this expression we ca rewrite ∆T using ∆βT ≜ β − βT and GT ≜
∑T

t=1 x
⊤
t xt as follows

∆T =

T∑
t=1

(
x⊤
t ∆βT

)2
+ 2

T∑
t=1

ηtx
⊤
t ∆βT = 3∥∆βT ∥2GT

.
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Thanks to Lemma B.2, we know that the minimum eigenvalue of GT is Ω(T ) which implies
∥∆βT ∥2GT

≥ ∥∆βT ∥22 λmin(GT ) ≳ ∥∆βT ∥22T . Furthermore, we can bound away from zero in expec-
tation ∥∆βT ∥ by using Cramér–Rao bound on each component of the estimator βT , for which we

have E
[
(βT,i − βi)

2
]
≥ [1+b′(βi)]

2

I(βi)
+ b(βi)

2 where b(βi) = E[βT,i] − βi is the bias of the estimator

and I(βi) is the Fisher Information evaluated at βi. We know that βT is a biased estimator of β in
the endogenous setting, therefore the bias is strictly positive for at least one component, and this
concludes the proof.
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F. Lemmas on Correlation between First and Second Stages

In the first part of this section, we derive a concentration result for the quantity

St ≜
t∑

s=1

∆β⊤
s−1 (ϵsηs − γ) ,

which we call the Martingale Concentration Term in the proof of Theorem 4.2. We can prove
that St is a martingale adapted to the filtration Ft ≜ σ (ϵs:t, η1:t, z1:t) (or equivalently a sum of
martingale difference sequence), by proving that: (a) E [|St|] ≤ ∞ and (b) E [St+1 | Ft] = St. The
first condition is immediate and the second can be easily verified since:

E [St+1 | Ft] = E

[
∆β⊤

t (ϵt1ηt+1 − γ) +
t∑

s=1

∆β⊤
s−1 (ϵsηs − γ)

∣∣∣∣∣Ft

]
= 0 +

t∑
s=1

∆β⊤
s−1 (ϵsηs − γ) = St.

Then, the idea is to apply the following theorem on concentration bounds for martingale differ-
ence sequences for the first term in eq. (24). In our case the martingale difference sequence is
{(∆β⊤

s−1 (ϵsηs − γ) ,Fs)}∞s=1.

Theorem F.1 (Concentration Bounds for Martingale Difference Sequences Wainwright (2019)).
Let {(Dk,Fk)}∞k=1 be a martingale difference sequence, and suppose that E

[
eλDk | Fk−1

]
≤ eλ

2ν2k/2

almost surely for any |λ| < 1/αk. Then the following hold:

1. The sum
∑n

k=1Dk is sub-exponential with parameters
(√∑n

k=1 ν
2
k , α∗

)
, where α∗ := max

k=1,...,n
αk.

2. The sum satisfies the concentration inequality

P

[∣∣∣∣∣
n∑

k=1

Dk

∣∣∣∣∣ ≥ t

]
≤

 2e
− r2

2
∑n

k=1
ν2
k if 0 ≤ t ≤

∑n
k=1 ν

2
k

α∗
,

2e−
1

2α∗ if t >
∑n

k=1 ν
2
k

α∗
.

To apply the previous theorem, we derive in the following the sub-exponentiality parameters

ν∗s , α
∗
s for the martingale difference Ds ≜ ∆β⊤

s−1 (ϵsηs − γ) such that E
[
eλ∆β⊤

s−1(ϵsηs−γ)
∣∣∣Fs−1

]
≤

eλ
2ν

∗2
s /2 a.s. ∀|λ| < 1/α∗

s and then we apply the previous theorem. The bound is derived in the
following lemma.

Lemma F.1 (Square and product of non-independent sub-Gaussian random variables). Given two
non-independent random variables X ∼sub-Gauss(σX) and Y ∼sub-Gauss(σY ), we can prove the
two following things:

1. X2 is sub-exp
(
4
√
2σ2, 4σ2

)
;

2. the recentered random variable XY is sub-exp
(
4
√
2
(
σ2
X + σ2

Y

)
, 2
(
σ2
X + σ2

Y

))
.

Proof. We prove the two statements in order and we use the first result to prove the second for the
case of non independent random variables, which leads to different constants with respect to the
result for independent random variables.

1. We start bounding the rescaled p-th power of X

E [|X/σ√2|p] =
∫ ∞

0
P {|X/σ√2|p ≥ u} du (integral identity for positive r.v.)

=
1√
2σ

∫ ∞

0
P
{
|X| ≥ t

√
2σ
}
ptp−1dt (change of variable u = tp)

≤
∫ ∞

0
2e−t2ptp−1dt (by σ-sub-Gaussianity)
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= pγ(p/2) (set t2 = s and use definition of Gamma function))

By multiplying the previous inequality on both sides by the constant (
√
2σ)p we obtain

E [|X|p] ≤ p2
p
2σpΓ(p/2).

Now, let Y = X2 and µY = E[Y ]. By power series expansion and since Γ(r) = (r − 1)! for an
integer r, we have:

E
[
eλ(Y−µY )

]
= 1 + λE [Y − µY ] +

∞∑
r=2

λrE [(Y − µY )
r]

r!
≤ 1 +

∞∑
r=2

λrE
[
|X|2r

]
r!

≤ 1 +

∞∑
r=2

λr2r2rσ2rΓ(r)

r!
= 1 +

∞∑
r=2

λr2r+1σ2r = 1 +
8λ2σ4

1− 2λσ2

By making |λ| ≤ 1/
(
4σ2
)
, we have 1/

(
1− 2λσ2

)
≤ 2. Finally, since (∀α)1 + α ≤ eα, we

have that a sub-Gaussian variable X with parameter σ is sub-exponential with parameters
(4
√
2σ2, 4σ2), in fact we have:

E
[
eλ(X

2−E[X2])
]
≤ e16λ

2σ4 ∀|λ| ≤ 1/
(
4σ2
)
.

2. We notice that

XY − E[XY ] =

(
X − Y

2

)2

− E

[(
X − Y

2

)2
]
−

((
X + Y

2

)2

− E

[(
X + Y

2

)2
])

≜ Z1 − Z2

where we defined Z1 ≜
(
X−Y

2

)2 − E
[(

X−Y
2

)2]
and Z2 ≜

(
X+Y

2

)2 − E
[(

X+Y
2

)2]
. We have to

take into account the dependence, and we start with the sum/difference between X,Y

E
[
eλ(X+Y )

]
≤
√
E [e2λX ]

√
E [e2λY ] ≤

√
e

4λ2σ2
X

2

√
e

4λ2σ2
X

2 = e
λ2

2 [2(σ
2
X+σ2

Y )]

where we used Cauchy-Schwarz inequality and the sub-Gaussianity of X and Y . This proves

for rescaled variables that both X + Y and X − Y are sub-Gauss
(√

2
√
σ2
X + σ2

Y

)
, therefore

their rescaled versions X+Y
2 and X−Y

2 are sub-Gauss

(√
σ2
X+σ2

Y√
2

)
. At this point we use the

result on square of sub-Gaussian random variables at point 1, to have that Z1 and Z2 are

both sub-exp
(
4
√
2
σ2
X+σ2

Y
2 , 4

σ2
X+σ2

Y
2

)
.

Again we use Cauchy-Schwarz due to the dependency between the random variables Z1 and
Z2 in the first inequality in the next equation

E
[
eλ(XY−E[XY )]

]
= E

[
eλ(Z1−Z2)

]
≤
√
E [e2λZ1 ]E [e−2λZ2 ] ≤ e+

4λ2

2
8(σ2

X+σ2
Y )

2

which holds for λ ≤ 1
2(σ2

X+σ2
Y )

. This proves that the sub-exponential parameters are indeed

ν ≜ 4
√
2
(
σ2
X + σ2

Y

)
and α ≜ 2

(
σ2
X + σ2

Y

)
.

Lemma F.2 (Concentration of Correlated First and Second-stage Noise). For sub-Gaussian first-
and second-stage noises with parameters ση and σϵ, and first-stage parameter estimates satisfying





Θ̂

−1

t







2
≤ L

Θ̂
−1 (Lemma C.1), we show that
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∣∣∣∣∣
T∑
t=1

∆β⊤
t−1 (ϵtηt − γ)

∣∣∣∣∣ ≤ 8e2
(
σ2
η + σ2

ϵ

)√
dL

Θ̂
−1

√
bT−1(δ)

(√
2 log(2/δ)

(
C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)

)

+

√
max

{
1

λ
,

2

λmin(Σ)

}
log(2/δ)

)

with probability at least 1− δ ∈ [0, 1).

Proof. The proof proceeds in steps and the main technical difficulty arises from the dependence
between the random variables, which we tackle using Lemma F.1 plus some techniques derived
from the equivalent characterizations of sub-Gaussians and sub-exponential random variables.

1. We bound the p-th moment of the random variable zi ≜ (ϵs,iηs − γi) using the result from
Lemma F.1 for the product of two non independent random variables. The random variable zi
is the centered product of ηs and ϵs,i which are sub-Gaussians, therefore it is sub-exp (νi, αi)

with νi ≜ 4
√
2
(
σ2
ϵ + σ2

η

)
, αi ≜ 2

(
σ2
ϵ + σ2

η

)
. We can also take K5 ≜ max

{
αi,

νi√
2

}
=

4
(
σ2
ϵ + σ2

η

)
which implies E

[
eλzi

]
≤ eλ

2K2
5 ∀|λ| ≤ 1

K5
, and together with the inequality

|x|p ≤ pp (ex + e−x) we obtain

E
[∣∣∣∣ ziK5

∣∣∣∣p] ≤ E
[
pp
(
exp

(
zi
K5

)
+ exp

(
− zi
K5

))]
≤pp2eK2

5/K
2
5 ≤ 2epp

The previous inequality directly implies an inequality on the p-th norm of the random variable
ϵs,iηs − γi

p

√
E [|ϵs,iηs − γi|

p] ≤ p
√
2eK5p ≤ 2eK5p = 4e

(
σ2
ϵ + σ2

η

)
p ≜ K2p

2. We finally find the sub-exponential parameters for the scalar product ∆βT
s−1(ϵsηs−γ). Using

the sub-exponential characterization with Lp norm we have ∀p ≥ 1

∥∥∆βT
s−1 (ϵsηs − γ)

∥∥
p
≤

d∑
i=1

∣∣∆βs−1,i

∣∣ ∥ϵs,iηs − γ∥p ≤
d∑

i=1

∣∣∆βs−1,i

∣∣K2p = Ksp (19)

where Ks ≜
∑d

i=1

∣∣∆βs−1,i

∣∣K2 ≜ 4e
(
σ2
ϵ + σ2

η

)∑d
i=1

∣∣∆βs−1,i

∣∣ We are ready to bound the
moment-generating function and derive the

E
[
eλ

∑
i ∆βs−1,i(ϵs,iηs−γi) | Fs−1

]
= E

 ∞∑
p=0

λp
(
∆β⊤(ϵsηs − γ)

)p
p!

 (series expansion)

=
∞∑
p=0

λp

p!
E
[(

∆β⊤(ϵsηs − γ)
)p]

(linearity of expectation)

= 1 +

∞∑
p=2

λpE
[(
∆β⊤(ϵsηs − γ)

)p]
p!

(1st moment = 0)

≤ 1 +
∞∑
p=2

λpKp
spp

p!
(Equation (19))

≤ 1 +
∞∑
p=2

λpKs
pep (Stirling’s approximation p! ≥ pp

ep )
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= 1 +
(λKse)

2

1− λKse
(expression valid ∀|λ| ≤ 1

Kse
)

≤ 1 + 2 (λKse)
2 (valid for |λ| ≤ 1

2Kse
)

≤ e2λ
2K2

s e
2

(using 1 + x ≤ ex
2
for all x ∈ R)

Therefore we have that ∆βT
s−1(ϵsηs − γ) is sub-exp(2Kse, 2Kse). We finally substitute for

Ks and we obtain

∆βT
s−1(ϵsηs − γ) ∼ sub-exp

(
8e2
(
σ2
ϵ + σ2

η

) ∥∥∆βs−1

∥∥
1
, 8e2

(
σ2
ϵ + σ2

η

) ∥∥∆βs−1

∥∥
1

)
3. We are now ready to derive the concentration for the sum of the martingale difference sequence

using Theorem F.1. From Theorem F.1 we have that
∣∣∣∑T

t=1Dt

∣∣∣ ≤ √
2 log(2/δ)

∑
t ν

2
s +

2α∗ log(2/δ) with probability bigger than 1− δ. With the following substitutions:

Dt → ∆β⊤
t−1 (ϵtηt − γ) , α∗ → 8e2

(
σ2
ϵ + σ2

η

)
max

s

∥∥∆βs−1

∥∥
1
, νs → 8e2

(
σ2
ϵ + σ2

η

) ∥∥∆βs−1

∥∥
1

we obtain that with probability bigger than 1− δ∣∣∣∣∣
T∑
t=1

∆β⊤
t−1 (ϵtηt − γ)

∣∣∣∣∣ ≤
√√√√2 log

(
2

δ

)
(8e2)2

(
σ2
η + σ2

ϵ

)2 T∑
t=1

∥∥∆βt−1

∥∥2
1

+ 8e2
(
σ2
η + σ2

ϵ

)
max

t

∥∥∆βt−1

∥∥
1
log(2/δ)

4. We study the term
∥∥∆βt−1

∥∥
1
, its sum and maximum over t, which we need to substitute

in the previous concentration bound. We can bound
∥∥∆βt−1

∥∥2
1
≤ d

∥∥∆βt−1

∥∥2
2
and then use

some matrix tricks in the following for the individual terms∥∥∆βt−1

∥∥2
2
=
∥∥∥Ĥ−1/2Ĥ1/2∆βt−1

∥∥∥2
2

≤





Ĥ

−1/2
t−1







2

2

∥∥∆βt−1

∥∥2
Ĥt−1

(Proposition A.1)

≤





Ĥ−1

t−1







2
bt−1(δ) (Lemma D.1)

≤ L2

Θ̂
−1






G−1

z,t−1







2
bT−1(δ) (again Proposition A.1)

When we take the sum over the rounds we have

T∑
t=1

∥∥∆βt−1

∥∥2
1
≤ d

T∑
t=1

∥∥∆βt−1

∥∥2
2
≤ dL2

Θ̂
−1bT−1(δ)

T∑
t=1






G−1

z,t−1







2
(Proposition A.1)

≤ dL2

Θ̂
−1bT−1(δ)

(
C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)

)
(from Lemma B.2)

For the maximum, we have instead

max
t

∥∥∆βt−1

∥∥
1
≤
√
dL

Θ̂
−1

√
bT−1(δ)~G

−1
z,t−1~2 ≤

√
dL

Θ̂
−1

√
bT−1(δ)max

{
1

λ
,

2

λmin(Σ)

}
Finally, we can substitute back these expressions in the bound at the previous point. We have
that with a probability bigger than 1− δ∣∣∣∣∣

T∑
t=1

∆β⊤
t−1 (ϵtηt − γ)

∣∣∣∣∣ ≤
√

2 log(2/δ) (8e2)2
(
σ2
η + σ2

ϵ

)2
dL2

Θ̂
−1bT−1(δ)

(
C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)

)
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+
(
8e2
) (

σ2
η + σ2

ϵ

)√
dL

Θ̂
−1

√
bT−1(δ)max

{
1

λ
,

2

λmin(Σ)

}
log(2/δ)

Lemma F.3 (Bias of Correlated First and Second-stage Noise). Under the same hypothesis of
previous lemmas we can bound the bias term in the following way

T∑
t=1

∆β⊤
t−1γ ≤ ∥γ∥2LΘ̂

−1

√
bT (δ)

(
C3√
λ
+ 2

√
2T√

λmin(Σ)

)

Proof. The bias term has a much simpler analyis

T∑
t=1

∆β⊤
t−1γ ≤

T∑
t=1

∥∆βt−1∥Ĥt
∥γ∥

Ĥ−1
t

(from Cauchy-Schwarz)

≤
√

bT−1(δ)

T∑
t=1

∥γ∥
Θ̂

−1
t G−1

z,tΘ̂
−⊤
t

(from Lemma D.1 and bT−1 increasing)

≤
√
bT−1(δ)∥γ∥2LΘ̂

−1

T∑
t=1

√





G−1

z,t−1







2
(from Proposition A.1)

≤
√

bT−1(δ)∥γ∥2LΘ̂
−1

 C3∑
t=1

1√
λ
+

T−1∑
t=C3+1

√
2

λmin(Σ)t

 (from Lemma B.2)

≤
√

bT−1(δ)∥γ∥2LΘ̂
−1

(
C3√
λ
+ 2

√
2T√

λmin(Σ)

)

where the last inequality follows from
∑n

k=1
1√
k
=
∑n

k=1

∫ k
k−1

dx√
k
≤
∑n

k=1

∫ k
k−1

dx√
x
=
∫ n
0

dx√
x
= 2
√
n.
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G. Regret Analysis for IV Regression: O2SLS

In this section, we elaborate on the proofs and techniques to bound the regret of O2SLS.

Remark G.1. In Appendix J, we describe that the first stage regression in O2SLS can be expressed
as running d independent ridge regressions for each column of Θ (Equation (27)). Since the standard
analysis of each of the ridge regressions assume independent and sub-Gaussian noise added in the
linear model (cf. Theorem J.1; (Ouhamma et al., 2021)), we assume that each component of the
first stage noise, i.e. ϵt,i, corresponding to the i-th ridge regression is sub-Gauss(σϵ). Thus, we
obtain that E∥ϵt∥22 ≤ dσ2

ϵ . For the rest of the paper, we use this bound for the expected value of the
norm of the first stage noise.

Theorem G.1 (Identification Regret of O2SLS). If Assumption 3.1 holds true, then for a first stage
noises that is a componentwise sub-Gaussian(σϵ) r.v., a second stage noise that is sub-Gaussian(ση),
first-stage parameters with bounded ℓ2-norm ~Θ~2 ≤ LΘ, bounded IVs ∥z∥2 ≤ L2

z and a fixed expect
value E[ηsϵs] ≜ γ ∈ Rd, the regret of O2SLS at step T is

R̃T ≤ bT−1(δ)︸ ︷︷ ︸
Estimation
O(d log T )

L2

Θ̂
−1

(
L2
ΘL2

z + dσ2
ϵ

)(C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)

)
+ C4︸ ︷︷ ︸

Second Stage Feature norm
O(d log T )

 = O
(
d2 log2(T )

)

with probability at least 1−δ ∈ [0, 1). Here, bT−1(δ) is the confidence interval defined by Lemma 4.1,

the estimates of the first-stage parameters are bounded according to Equation (14), i.e. ~Θ̂
−1

t ~2 ≤
L
Θ̂

−1, C3 is defined in Lemma B.2, C4 in Lemma C.2, λ > 0 is the regularization parameter of

the first stage and λmin(Σ) is the minimum eigenvalue of the true covariance matrix of IVs, i.e.
Σ ≜ E[zz⊤].

Remark G.2. In order to shorten the result and clarify the dimension d-dependence and T -
dependence in Theorem 4.1, we further define C1 ≜ L

Θ̂
−1LΘLz, C2 ≜ L

Θ̂
−1σϵ. We also define

the constants C3 and C4 respectively in Equation (13) and Equation (17). We define C ′
3 ≜ C3 + 1

and f(T ) ≜
(
C′

3
λ + log(T )+1

λmin(Σ)/2

)
. Since these constants are d- and T -independent, and bT−1(δ) is

O (d log(T )), we obtain that the Identificaiton Regret of O2SLS is O
(
d2 log2(T )

)
.

Proof of Theorem. We bound it (a) using the confidence bound to control the concentration of βt

around β, and (b) by bounding the sum of feature norms according to the following decomposition.
Step 1: By applying Cauchy-Schwarz inequality, we first decouple the effect of parameter esti-

mation and the feature norms(
βt−1 − β

)⊤
xt≤

∥∥βt−1 − β
∥∥
Ĥt
∥xt∥Ĥ−1

t
≤
√

bt−1(δ) ∥xt∥(
Θ̂

⊤
t−1Gz,t−1Θ̂t−1

)−1 (20)

where we used the definition of Ĥt ≜ Θ̂
⊤
t−1Gz,t−1Θ̂t−1 and Lemma D.1. The last inequality holds

with probability at least 1− δ. Since bt is monotonically increasing in t, by Equation (20),

T∑
t=1

((
βt−1 − β

)⊤
xt

)2
≤ bT−1(δ)

T∑
t=1

∥xt∥2(
Θ̂

⊤
t−1Gz,t−1Θ̂t−1

)−1 .

Step 2: Now, we need to bound the sum of the feature norms, for which we can directly use the
result of Lemma C.3
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T∑
t=1

∥xt∥2
Θ̂

−1
t−1G

−1
z,t−1Θ̂

−⊤
t−1

≤ L2

Θ̂
−1

(
L2
ΘL2

z + dσ2
ϵ

)(C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)

)
+ C4 (21)

Step 3: By combining the results of the previous steps and considering the definition of bT−1(δ),
we conclude that we can bound the Identification Regret as follows, and its orders is O

(
d2 log2(T )

)
T∑
t=1

((
βt−1 − β

)⊤
xt

)2
≤ bT−1(δ)︸ ︷︷ ︸

O(d log T )

L2

Θ̂
−1

(
L2
ΘL2

z + dσ2
ϵ

)(C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)

)
+ C4︸ ︷︷ ︸


O(d log T )

Theorem G.2 (Oracle Regret of O2SLS). If Assumption 3.1 hold true, then for first stage noises
that is componentwise sub-Gaussian(σϵ) and second stage noise that is sub-Gaussian(ση), first-stage
parameters with bounded ℓ2-norm ~Θ~2 ≤ LΘ, bounded IVs ∥z∥2 ≤ L2

z and bounded expect value
E[ηsϵs] ≜ γ, the regret of O2SLS at step T is

RT ≤ bT−1(δ)︸ ︷︷ ︸
Estimation
O(d log T )

L2

Θ̂
−1

(
L2
ΘL2

z + dσ2
ϵ

)(C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)
+ C4

)
︸ ︷︷ ︸

Second Stage Feature norm
O(d log T )



+
√

bT−1(δ)︸ ︷︷ ︸
Estimation
O(

√
d log T )


σηLΘ̂

−1LΘLz

√(
C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)

)
︸ ︷︷ ︸

First Stage Feature Norm
O(

√
log T )

+8e2
(
σ2
η + σ2

ϵ

)√
dL

Θ̂
−1

(√
2 log

(
2

δ

)(
C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)

)
+

√
max

{
1

λ
,

2

λmin(Σ)

}
log

2

δ

)
︸ ︷︷ ︸

Correlated noise
Concentration Term

O(
√
d log T )

+ ∥γ∥2LΘ̂
−1

(
C3√
λ
+ 2

√
2T√

λmin(Σ)

)
︸ ︷︷ ︸

Correlated noise
Bias Term
O(∥γ∥2

√
T )


= O

(
(d log T )2 + ∥γ∥2

√
dT log T

)
with probability at least 1 − δ ∈ [0, 1). Here, bT−1(δ) is the confidence interval defined by

Lemma 4.1, the estimates of the first-stage parameters are bounded according to Equation (14),
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i.e. ~Θ̂
−1

t ~2 ≤ L
Θ̂

−1, C3 is defined in Lemma B.2, C4 in Lemma C.2, λ > 0 is the regularization

parameter of the first stage and λmin(Σ) is the minimum eigenvalue of the true covariance matrix
of IVs, i.e. Σ ≜ E[zz⊤].

Remark G.3. In order to shorten the result and clarify the dimension d-dependence and T -
dependence in Theorem 4.2, we further define C1 ≜ L

Θ̂
−1LΘLz, C2 ≜ L

Θ̂
−1σϵ. We also define the

constants C3 and C4 respectively in Equation (13) and Equation (17). Finally, the constants C5 ≜

8e2
(
σ2
η + σ2

ϵ

)
L
Θ̂

−1

√
log(2/δ), C6 ≜ C5

√
max

{
1
λ ,

2
λmin(Σ)

}
log(2/δ), and f(T ) ≜

(
C′

3
λ + log(T )+1

λmin(Σ)/2

)
.

We also define γ ≜ ∥γ∥2 = ∥E[ηsϵs]∥2. Since these constants are d- and T -independent, and bT−1(δ)
is O (d log(T )), we obtain that the Identificaiton Regret of O2SLS is O

(
d2 log2(T )

)
and the Oracle

Regret is O(d2 log2 T + γ
√
dT log T ).

Proof of Theorem. By Equation (4), defining ∆βt−1 ≜
(
βt−1 − β

)
, the instantaneous regret at step

t is

Rt ≜ ℓt
(
βt−1

)
− ℓt (β) =

(
yt − β⊤

t−1xt

)2
−
(
yt − β⊤xt

)2
=
((

βt−1 − β
)⊤

xt − ηt

)2
− η2t =

((
βt−1 − β

)⊤
xt

)2
+ 2ηt

(
βt−1 − β

)⊤
xt

=
(
∆β⊤

t−1xt

)2
+ 2ηt∆β⊤

t−1xt

Since xt = Θ⊤zt + ϵt by (First stage), the second term can be rewritten substituting as

2ηt∆β⊤
t−1xt = 2ηt∆β⊤

t−1Θ
⊤zt + 2ηt∆β⊤

t−1ϵt

Therefore, the cumulative regret or regret RT by horizon T is

T∑
t=1

Rt =

T∑
t=1

(
∆β⊤

t−1xt

)2
︸ ︷︷ ︸

(•1•)

+2

T∑
t=1

ηt∆β⊤
t−1Θ

⊤zt︸ ︷︷ ︸
(•2•)

+2

T∑
t=1

ηt∆β⊤
t−1ϵt︸ ︷︷ ︸

(•3•)

(22)

The proof proceeds by bounding each of the three terms individually.

Term 1: Second-stage Regression Error. The first term (•1•) quantifies the error introduced
by the second stage regression. This is exactly equal to the Identification Regret that we bounded
in Theorem G.1. Therefore we know that it is bounded as

(•1•) ≤ bT−1(δ)︸ ︷︷ ︸
O(d log T )

L2

Θ̂
−1

(
L2
ΘL2

z + dσ2
ϵ

)(C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)
+ C4

)
︸ ︷︷ ︸

O(d log T )

= O
(
d2 log2(T )

)

Term 2: Coupling of First-stage Data and Second-stage Parameter Estimation. Now,
we bound (•2•) using martingale inequalities similar to the ones used for the confidence intervals
to derive a uniform high probability bound.

Step 1: Following Theorem I.2, we define

ws ≜
(
βs−1 − β

)⊤
Θ⊤zs and Ft−1 ≜ σ (z1, ϵ1, η1, . . . ,zt−1, ϵt−1, ηt−1, zt) .

It is immediate to verify that the hypothesis are satisfied, since wt is Ft−1-measurable as βt−1 and
zt are too. Bearing in mind this substitution we have
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∣∣∣∣∣
T∑
t=1

ηtwt

∣∣∣∣∣ ≤
√√√√√2

(
1 + σ2

η

T∑
t=1

w2
t

)
log


√
1 + σ2

η

∑T
t=1w

2
t

δ

 (23)

with probability at least 1− δ.

Step 2: Thus, we proceed like for the first term in the Step 2 for Term 1:

T∑
t=1

〈
βt−1 − β,Θ⊤zt

〉2
≤ bT−1(δ)

T∑
t=1

∥∥∥Θ⊤zt

∥∥∥2(
Θ̂

⊤
t−1Gz,T−1Θ̂t−1

)−1

(Cauchy-Schwarz and Lemma D.1)

≤ bT−1(δ)

T∑
t=1






G−1

z,t−1







2






Θ̂

−1

t−1







2

2

∥∥∥Θ⊤zt

∥∥∥2
2

(Proposition A.1)

≤ bT−1(δ)L
2

Θ̂
−1

T∑
t=1






G−1

z,t−1







2
~Θ~2

2∥zt∥22

(Proposition A.1 and definition of L2

Θ̂
−1)

≤ bT−1(δ)L
2

Θ̂
−1L

2
ΘL2

z

T∑
t=1






G−1

z,t−1







2

(boundedness of zt and definition of LΘ)

= bT−1(δ)︸ ︷︷ ︸
O(d log T )

L2

Θ̂
−1L

2
ΘL2

z

(
C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)

)
︸ ︷︷ ︸

O(log T )

(from Lemma B.2)

= O
(
d(log T )2

)
where in the first inequality we also used the fact that bt−1(δ) is monotonically increasing in t, to
take the radii outside the summation.

Step 3: Thus, substituting inside Equation (23), the order of (•2•) is negligible with respect to
term (•1•)

2
T∑
t=1

ηt(βt−1 − β)⊤Θ⊤zt ≤

√
2

(
1 + bT−1(δ)σ2

ηL
2

Θ̂
−1L

2
ΘL2

z

(
C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)

))
︸ ︷︷ ︸

O(
√
d log T )√√√√log

(√
1 + bT−1(δ)σ2

ηL
2

Θ̂
−1L

2
ΘL2

z

(
C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)

)/
δ

)
︸ ︷︷ ︸

O
(√

log(
√
d log T )

)
= O

(√
d log T

√
log(
√
d log T )

)
with probability at least 1− δ.
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Term 3: Coupling of First- and Second-stage Noises. We bound the term (•3•) containing
the self-fulfilling bias, i.e. the correlation between the first- and second-stage noise, by splitting it
into two contributions.

T∑
t=1

ηt(βt−1 − β︸ ︷︷ ︸
∆βt−1

)⊤ϵt =
T∑
t=1

∆β⊤
t−1 (ϵtηt) +

T∑
t=1

∆β⊤
t−1Et [ϵtηt]−

T∑
t=1

∆β⊤
t−1Et [ϵtηt]

=

T∑
t=1

∆β⊤
t−1ϵtηt −

T∑
t=1

∆β⊤
t−1γ +

T∑
t=1

∆β⊤
t−1γ

=

T∑
t=1

∆βT
t−1 (ϵtnt − γ)︸ ︷︷ ︸

Martingale Concentration Term
O(log(T ))

+

T∑
t=1

∆β⊤
t−1γ︸ ︷︷ ︸

Bias Term
O(

√
T )

(24)

Now we can use Lemma F.2 and Lemma F.3 to conclude that term (•3•) is bounded by the following
quantity

8e2
(
σ2
η + σ2

ϵ

)
L
Θ̂

−1

√
dbT−1(δ)

(√
2 log(

2

δ
)

(
C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)

)
+

√
max

{
1

λ
,

2

λmin(Σ)

}
log

2

δ

)
︸ ︷︷ ︸

d log(T )

+
√

bT−1(δ)∥γ∥2LΘ̂
−1

(
C3√
λ
+ 2

√
2T√

λmin(Σ)

)
︸ ︷︷ ︸

O(∥γ∥2
√
dT log T )
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H. Regret Analysis for IV Linear Bandits: OFUL-IV

Theorem H.1. Under the same assumptions as that of Theorem 4.2, Algorithm 2 incurs a regret

RT =

T∑
t=1

rt ≤ 2
√
T
√
bT−1(δ)

√
L2

Θ̂
−1

(
L2
ΘL2

z + dσ2
ϵ

)(C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)

)
+ C4

with probability 1− δ, horizon T > 1 and C4 is defined in eq. (17).

Proof. The instantaneous regret rt reads

⟨β,x∗⟩ − ⟨β,xt⟩ ≤
〈
β̃t−1,xt

〉
− ⟨β,xt⟩ (since (xt, β̃t−1) is optimistic inside Xt × Bt)

=
〈
βt−1 − β,xt

〉
+
〈
β̃t−1 − βt−1,xt

〉
(summing and subtracting βt−1)

≤
∥∥βt−1 − β

∥∥
Θ̂

⊤
t−1Gz,t−1Θ̂t−1

∥xt∥(
Θ̂

⊤
t−1Gz,t−1Θ̂t−1

)−1

+
∥∥∥β̃t−1 − βt−1

∥∥∥
Θ̂

⊤
t−1Gz,t−1Θ̂t−1

∥xt∥(
Θ̂

⊤
t−1Gz,t−1Θ̂t−1

)−1

(Cauchy-schwarz ineq.)

≤ 2
√
bt−1(δ) ∥xt∥(

Θ̂
⊤
t−1Gz,t−1Θ̂t−1

)−1 (Lemma D.1)

The last inequality uses the concentration of βt around the true value β, and the fact that we
choose β̃t−1 inside Bt−1. In both cases, the two norms are bounded by the radius of the ellipsoid,

i.e.
√
bt−1(δ). Since we already know in this case how to concentrate the sum of the features norms∑T

t=1 ∥xt∥2
Θ̂

−1
t−1G

−1
z,t−1Θ̂

−⊤
t−1

from Lemma C.3, we bound the cumulative regret using Cauchy-Schwarz

inequality in the first inequality below, and we substitute the bound on the instantaneous regret
that we just obtained:

RT≤

√√√√T
T∑
t=1

r2t ≤ 2

√√√√T
T∑
t=1

bt−1(δ) ∥xt∥2
Θ̂

−1
t−1G

−1
z,t−1Θ̂

−⊤
t−1

≤ 2
√
T
√

bT−1(δ)

√√√√ T∑
t=1

∥xt∥2
Θ̂

−1
t−1G

−1
z,t−1Θ̂

−⊤
t−1

(25)

where in the second inequality, we used the fact that the radius bt−1(δ) is monotonically increasing
in t. Now, we can use Lemma C.3 to bound the sum of feature norms, and putting all together, we
obtain the following bound:

RT ≤ 2
√
T
√
bT−1(δ)︸ ︷︷ ︸

O(
√
d log T )

√
L2

Θ̂
−1

(
L2
ΘL2

z + dσ2
ϵ

)(C3 + 1

λ
+ 2

log(T ) + 1

λmin(Σ)

)
+ C4︸ ︷︷ ︸

O(
√
d log T )

= O
(
d
√
T log T

)
.
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I. Concentration of Scalar and Vector-valued Martingales

We look for deviations of the vector martingales
∑t

s=1 ηszs and the scalar valued martingale

T∑
t=1

ηt
(
βt−1 − β

)⊤
Θ⊤zt

from their expected values. These results are required in the proof of Theorem G.2. The first
martingale is vector-valued while the second is scalar-valued. For the vector-valued martingale, we
want to bound its deviations when its values are weighted by the inverse of its design matrix G−1

z,t

like it appears in ∥st∥2G−1
z,t
. The design matrix G−1

z,t is itself derived from the martingale. Hence, it

is called the ‘self-normalized bound’. The following theorems were introduced in (Abbasi-Yadkori
et al., 2011a, 2012) for the two cases. We state and prove them here for completeness. We leverage
the fact that the first and second stage noises are sub-Gaussian random variables.

Lemma I.1. Let µ ∈ Rd be arbitrary and consider for any t ≥ 0

mµ
t ≜

t∏
s=1

exp

(
ηs ⟨µ, zs⟩

σ2
− 1

2
⟨µ, zs⟩2

)
.

Let τ be a stopping time with respect to the filtration {Ft}∞t=0. Then, mµ
τ is a.s. well-defined and

E
[
mµ

τ

]
≤ 1.

Proof. We claim that
{
mµ

t

}∞
t=0

is a supermartingale. Let

dµt ≜ exp

(
ηt ⟨µ, zt⟩

σ2
− 1

2
⟨µ, zt⟩2

)
.

Observe that by conditional R-sub-Gaussianity of ηt we have E
[
dµt | Ft−1

]
≤ 1. Clearly, dµt is

Ft-measurable, as is mµ
t . Further,

E
[
mµ

t | Ft−1

]
= E

[
mµ

1 · · · d
µ
t−1d

µ
t | Ft−1

]
= dµ1 · · · d

µ
t−1E

[
dµt | Ft−1

]
≤ mµ

t−1,

showing that
{
mµ

t

}∞
t=0

is indeed a supermartingale and in fact E
[
mµ

t

]
≤ 1.

Now, we argue that mµ
τ is well-defined. By the convergence theorem for nonnegative super-

martingales, Mµ
∞ = limt→∞mµ

t is almost surely well-defined. Hence, mµ
τ is indeed well-defined

independently of whether τ < ∞ holds or not. Next, we show that E
[
mµ

τ

]
≤ 1. For this let

Qµ
t = Mµ

min{τ,t} be a stopped version of
(
mµ

t

)
t
. By Fatou’s Lemma, E

[
mµ

τ

]
= E

[
lim inft→∞Qµ

t

]
≤

lim inft→∞ E
[
Qµ

t

]
≤ 1, showing that E

[
mµ

τ

]
≤ 1 indeed holds.

Next lemma uses the “method of mixtures” technique, (Lattimore and Szepesvári, 2020) Chapter
20.

Lemma I.2. Let {Ft}∞t=0 be a filtration. Let τ be a stopping time with respect to the filtration
{Ft}∞t=0. Then, for any δ > 0, with probability 1− δ

∥sτ∥2G−1
z,τ
≤ 2σ2

2 log

(
det (Gz,τ )

1/2 λ−d/2

δ

)
.
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Proof. We decompose Gz,t according to the following notation in order to ease the notation

Gz,t ≜ λId +
t∑

s=1

zsz
⊤
s = V +Vt

where V and Vt are defined by V ≜ λId and Vt ≜
∑t

s=1 zsz
⊤
s . We can rewrite for example mµ

t as

follows mµ
t = exp

(
⟨µ,st⟩
σ2
− 1

2∥µ∥
2
Vt

)
.

Let µ be a Gaussian random variable which is independent of all the other random variables
and whose covariance is V−1. Define

mt ≜ E
[
mµ

t | F∞
]
,

where F∞ is the tail σ-algebra of the filtration i.e. the σ-algebra generated by the union of the all
events in the filtration. Clearly, we still have E [mτ ] = E

[
E
[
mµ

τ | µ
]]
≤ 1. Let us calculate mt.

Let f denote the density of µ and for a positive definite matrix P let c(P) =
√
(2π)d/ det(P) =∫

exp
(
−1

2x
⊤Px

)
dx. Then,

mt =

∫
Rd

exp

(
⟨µ, st⟩ −

1

2
∥µ∥2Vt

)
f(µ)dµ

=

∫
Rd

exp

(
−1

2

∥∥µ−V−1
t st

∥∥2
Vt

+
1

2
∥st∥2V−1

t

)
f(µ)dµ

=
1

c(V)
exp

(
1

2
∥st∥2V−1

t

)∫
Rd

exp

(
−1

2

{∥∥µ−V−1
t st

∥∥2
Vt

+ ∥µ∥2V
})

dµ

Elementary calculation shows that if P is positive semi-definite and Q is positive definite

∥x− a∥2P + ∥x∥2Q =
∥∥x− (P+Q)−1Pa

∥∥2
P+Q

+ ∥a∥2P − ∥Pa∥2(P+Q)−1 .

Therefore,∥∥µ−V−1
t st

∥∥2
Vt

+ ∥µ∥2V =
∥∥∥µ− (V +Vt)

−1 st

∥∥∥2
V+Vt

+
∥∥V−1

t st
∥∥2
Vt
− ∥st∥2(V+Vt)

−1

=
∥∥∥µ− (V +Vt)

−1 st

∥∥∥2
V+Vt

+ ∥st∥2V−1
t
− ∥st∥2(V+Vt)

−1 ,

which gives

mt =
1

c(V)
exp

(
1

2
∥st∥2(V+Vt)

−1

)∫
Rd

exp

(
−1

2

∥∥∥µ− (V +Vt)
−1 st

∥∥∥2
V+Vt

)
dµ

=
c (V +Vt)

c(V)
exp

(
1

2
∥st∥2(V+Vt)

−1

)
=

(
det(V)

det (V +Vt)

)1/2

exp

(
1

2
∥st∥2(V+Vt)

−1

)
=

(
det(V)

det (V +Vt)

)1/2

exp

(
1

2
∥st∥2(V+Vt)

−1

)
Now, from E [mτ ] ≤ 1, we obtain

P

[
∥sτ∥2(V+Vτ )

−1 > 2 log

(
det (V +Vτ )

1/2

δ det(V)1/2

)]
= P

 exp
(
1
2 ∥sτ∥

2
(V+Vτ )

−1

)
δ−1 (det (V +Vτ ) /det(V))

1
2

> 1


≤ E

 exp
(
1
2 ∥sτ∥

2
(V+Vτ )

−1

)
δ−1 (det (V +Vτ ) /det(V))

1
2


= E [mτ ] δ ≤ δ
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and substituting back the definition of Gz,t gives

P

[
∥sτ∥2G−1

z,τ
> 2 log

(
det (Gz,τ )

1/2

δλd/2

)]
≤ δ.

Theorem I.1 (Self-Normalized Bound for Vector-Valued Martingales). Let {Ft}∞t=0 be a filtration.
Let {ηt}∞t=1 be a real-valued stochastic process such that ηt is Ft-measurable and ηt is conditionally
σ2-sub-Gaussian for some σ2 ≥ 0 i.e. ∀λ ∈ R holds

E
[
eληt | Ft−1

]
≤ exp

(
λ2σ2

2

2

)
.

Let {zt}∞t=1 be an Rd-valued stochastic process such that zt is Ft−1-measurable. For any t ≥ 0,
define st =

∑t
s=1 ηszs. Then, for any δ > 0, with probability at least 1− δ, for all t ≥ 0,

∥st∥2G−1
z,t
≤ 2σ2

2 log

(
det (Gz,t)

1/2 λ−d/2

δ

)
Proof. We will use a stopping time construction, which goes back at least to (Freedman, 1975).
Define the bad event

Bt(δ) =

{
ω ∈ Ω : ∥st∥2G−1

z,t
> 2σ2

2 log

(
det (Gz,t)

1/2 det(V)−1/2

δ

)}
We are interested in bounding the probability that

⋃
t≥0Bt(δ) happens. Define τ(ω) = min{t ≥

0 : ω ∈ Bt(δ)}, with the convention that min ∅ = ∞. Then, τ is a stopping time. Further,⋃
t≥0Bt(δ) = {ω : τ(ω) <∞} Thus,

P

⋃
t≥0

Bt(δ)

 = P[τ <∞] = P

[
∥sτ∥2G−1

z,τ
> 2σ2

2 log

(
det (Gz,τ )

1/2 det(V)−1/2

δ

)
, τ <∞

]

≤ P

[
∥sτ∥2G−1

z,τ
> 2σ2

2 log

(
det (Gz,τ )

1/2 det(V)−1/2

δ

)]
≤ δ.

Lemma I.3. Let (Ft)t≥0 be a filtration such that wt is Ft−1 measurable and ηt is Ft measurable
and is conditionally σ2-sub-Gaussian. Let τ be a stopping time w.r.t. to this filtration i.e. the event
{τ ≤ t} belongs to Ft. The following sequence of random variables is a martingale with respect to
Ft: st =

∑t
s=1 ηsws. Furthermore, for any δ > 0, σ2 > 0, with probability at least 1− δ:

|sτ | ≤ σ2

√√√√√2

(
1/σ2

2 +

τ∑
t=1

w2
t

)
log


√
1 + σ2

2

∑τ
t=1w

2
t

δ


Proof. The fact that it is a martingale follows from the conditional sub-Gaussianity. Then for
λ ∈ Rd, t > 0 we define

mλ
t = exp

(
λ st
σ2
− λ2

2

t∑
s=1

w2
s

)
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dλt =
ληtwt

σ2
− λ2

2
w2
t

Since τ be a stopping time with respect to the filtration {Ft}∞t=0 we can show that mλ
τ is well-defined

almost surely and E
[
mλ

τ

]
≤ 1. We start by proving that

{
mλ

t

}∞
t=0

is a supermartingale. Clearly, dλt
is Ft-measurable, as is mλ

t . Further,

E
[
mλ

t | Ft−1

]
= E

[
mλ

1 · · · dλt−1d
λ
t | Ft−1

]
= dλ1 · · · dλt−1E

[
dλt | Ft−1

]
≤ mλ

t−1,

showing that
{
mλ

t

}∞
t=0

is indeed a supermartingale. Next we show that mλ
τ is always well-defined

and E
[
mλ

τ

]
≤ 1. First define M̃ = mλ

τ and note that M̃(ω) = Mλ
τ(ω)(ω). Thus, when τ(ω) = ∞,

we need to argue about Mλ
∞(ω). By the convergence theorem for nonnegative supermartingales,

limt→∞mλ
t (ω) is well-defined, which means mλ

τ is well-defined, independently of whether τ < ∞
holds or not. Now let Qλ

t = Mλ
min{τ,t} be a stopped version of mλ

t . We proceed by using Fatou’s

Lemma to show that E
[
mλ

τ

]
= E

[
lim inft→∞Qλ

t

]
≤ lim inft→∞ E

[
Qλ

t

]
≤ 1.

Let Λ ∼ N
(
0, σ2

2

)
be a Gaussian random variable and define mt = E

[
mΛ

t | F∞]. Clearly, we
still have E [mt] = E

[
E
[
mΛ

t | Λ
]]
≤ 1. Let us calculate mt. We will need the density λ which is

f(λ) = 1√
2πσ2

2

e−λ2/2σ2
2 . Now, it is easy to write mt explicitly

mt = E
[
mΛ

t | F∞
]
=

∫ ∞

−∞
mλ

t f(λ)dλ =

√
1

2πσ2
2

∫ ∞

∞
exp

(
λst
σ2
− λ2

2

t∑
s=1

w2
s

)
e−λ2/2σ2

2dλ

= exp

(
s2t

2σ2
2

(
1/σ2

2 +
∑t

s=1w
2
s

))√ 1

1 + σ2
2

∑t
s=1w

2
s

where we have used that
∫∞
−∞ exp

(
aλ− bλ2

)
= exp

(
a2/(4b)

)√
π/b.

To finish the proof, we use Markov’s inequality and the fact that E [mτ ] ≤ 1 :

P

|sτ | ≥ R

√√√√√2

(
1/σ2

2 +
τ∑

t=1

w2
t

)
log


√
1 + σ2

2

∑τ
t=1w

2
t

δ




= P

 (
∑τ

t=1 ηtwt)
2

2σ2
2

(
1/σ2

2 +
∑τ

t=1w
2
t

) ≥ log


√
1 + σ2

2

∑τ
t=1w

2
t

δ


= P

exp( s2τ
2σ2

2

(
1/σ2

2 +
∑τ

t=1w
2
t

)) ≥
√
1 + σ2

2

∑τ
t=1w

2
t

δ


= P

[
mτ ≥

1

δ

]
≤ E [mτ ]

1/δ
≤ δ

Theorem I.2 (Self-normalized Bound for Scalar Valued Martingales). Under the same assumptions
as the previous theorem, for any δ > 0, with probability at least 1− δ, for all t ≥ 0,

∣∣∣∣∣
t∑

s=1

ηtwt

∣∣∣∣∣ ≤ σ2

√√√√√2

(
1/σ2

2 +

t∑
s=1

ws

)
log


√

1 + σ2
2

∑t
s=1w

2
s

δ

 (26)
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Proof. Define the “bad” event

Bt(δ) =

ω ∈ Ω :

(∑t
s=1 ηsws

)2
1/σ2

2 +
∑τ

t=1w
2
t

> 2σ2
2 ln


√
1 + σ2

2

∑t
s=1w

2
s

δ


We are interested in bounding the probability that

⋃
t≥0Bt(δ) happens. Define τ(ω) = min {t ≥ 0 : ω ∈ Bt(δ)},

with the convention that min ∅ =∞. Then, τ is a stopping time. Further,
⋃

t≥0Bt(δ) = {ω : τ(ω) <
∞} Thus, by the previous theorem it holds that

P

⋃
t≥0

Bt(δ)

 = P[τ <∞] = P

 (∑t
s=1 ηsws

)2
1/σ2

2 +
∑τ

t=1w
2
t

> 2σ2
2 ln


√
1 + σ2

2

∑t
s=1w

2
s

δ

 and τ <∞


= P

 (∑t
s=1 ηsws

)2
1/σ2

2 +
∑τ

t=1w
2
t

> 2σ2
2 ln


√

1 + σ2
2

∑t
s=1w

2
s

δ

 ≤ δ
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J. Parameter Estimation and Concentration in First Stage

There are many ways of addressing the regression problem in the first stage and they fundamentally
reduce to a choice for the regularizer in the regression. If we do not introduce such regularizer, we
are left with a system of multiple regressions that can be solved with standard OLS (estimator).
Another choice is to introduce a Frobenius norm regularizer. We introduce the parameter λ > 0
and a regularization term λ~Θ~

2
F , which is used to penalize the model complexity. By choosing the

Frobenius norm, the system of equations decouples again but each with a regularizer term. Thus, we
end up with d independent linear equations that we try to fit separately. More interesting settings
could try to solve the optimization problem jointly by a regularizer that couples the equations (e.g.
(Wainwright, 2019) provides concentration results for such settings). This will be interesting to
investigate in future works.

We indicate with θj the j-th column of the matrix Θ, then

Θ̂t ∈ argmin
Θ

t∑
s=1

∥∥∥x⊤
s − z⊤

s Θ
∥∥∥2
2
+ λ~Θ~

2
F

= argmin
Θ

t∑
s=1

 d∑
j=1

(
xs,j − z⊤

s θj

)2
+ λ

d∑
j=1

∥∥θj

∥∥2
2


= argmin

{θj}dj=1

d∑
j=1

(
t∑

s=1

(
xs,j − z⊤

s θj

)2
+ λ

∥∥θj

∥∥2
2

)

Clearly, we can compute separately the columns θ̂t,j of Θ̂t as

θ̂t,j ∈ argmin
θj

t∑
s=1

(
xs,j − z⊤

s θj

)2
+ λ

∥∥θj

∥∥2
2

(27)

with solution

θ̂t,j =
(
Z⊤
t Zt + λId

)−1
Z⊤
t xt,j

where xt,j is a vector with components x1,j , . . . , xt,j . The solution to the independent quadratic
optimization problems is in matrix notation equal to

Θ̂t =
(
Z⊤
t Zt + λId

)−1
Z⊤
t Xt

From the decomposition of the problem into multiple independent regressions, we understand
that it is enough to concentrate the individual columns of Θ̂t around the ones of Θ and then to use
a union bound to put things together.

Theorem J.1 (Confidence Ellipsoid for Columns in First Stage). Define xt = z⊤
t θj + ϵt,j with ϵt,j

is σϵ-sub-Gaussian and assume that
∥∥θj

∥∥
2
≤ S. Then, for any δ > 0, with probability at least 1− δ,

for all t ≥ 0, θj lies in the set

Et =

θj ∈ Rd :
∥∥∥θ̂t,j − θj

∥∥∥
Gz,t

≤ σϵ

√√√√2 log

(
det (Gz,t)

1/2 det(λId)−1/2

δ

)
+ λ1/2S


Furthermore, if for all t ≥ 1, ∥zt∥2 ≤ Lz then with probability at least 1− δ, for all t ≥ 0,

∥∥∥θ̂t,j − θj

∥∥∥
Gz,t

≤ σϵ

√
d log

(
1 + tL2

z/λd

δ

)
+ λ1/2S
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Corollary J.1 (Confidence Ellipsoid for First Stage). Under the conditions of the previous theorem,
for any δ > 0, with probability at least 1− δ, for all t ≥ 0






Θ̂t −Θ







2

F
=

d∑
j=1

∥∥∥θ̂t,j − θj

∥∥∥2
2
≤ d

(
σϵ

√
d log

(
1 + tL2

z/λd

δ

)
+ λ1/2S

)
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K. Experiments

K.1 Experimental Analysis of O2SLS

Now, we aim to compare the empirical performance of O2SLS estimator with the online ridge
regression (Ridge) and the Vovk-Azoury-Warmuth Forecaster (VAWf) (Orabona, 2019). The Ridge
estimator is given by

βRidge
t =

(
X⊤

t Xt + λRidgeId
)−1

XT
t yt,

while VAWf reads

βVAWf
t =

(
X⊤

t+1Xt+1 + λVAWfId
)−1

XT
t yt.

We choose the regularisation parameters to be all equal to 10−3. We deploy the experiments in
Python3 on a single Intel(R) Core(TM) i7-8665U CPU@1.90GHz. An experiment consisting of 100
runs of an algorithm takes approximately ten minutes. We denote the normal distribution with
mean µ and standard deviation σ as N (µ, σ), with Nn we indicate its multivariate extension to
n dimensions. We consider the true parameter of the model to be generated as β∼N50(1⃗0, I50)
and Θi,j∼N (0, 1) for each of its entry. At each time step we sample the vectors zt∼N50(⃗0, I50),
and ϵt∼N50(⃗0, I50). The endogenous noise in the second stage is ηt = (η̃t +

∑12
i=1 ϵt,i)/13, where

η̃t∼N (0, 1) is a r.v. independent from all the others. From Figure 3, we observe that in the presence
of endogeneity, Ridge and VAWf have very similar performances and are sensibly worse than O2SLS
according to the instantaneous identification regret.
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(a) Instantaneous regret
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(b) Cumulative regret

Figure 3: Performance of O2SLS for online linear regression compared with online Ridge and VAWf
in terms of identification regret. O2SLS incurs lower regret compared to the other two. We average
our curves over 100 samples and the shaded area indicates one standard deviation. The y−axis is
in logarithmic scale.
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