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ONLINE INSTRUMENTAL VARIABLE REGRESSION

Online Instrumental Variable Regression:
Regret Analysis and Bandit Feedback

Riccardo Della Vecchia

Debabrota Basu
E‘quz’pe Scool, Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189- CRIStAL, F-59000 Lille, France

Abstract

The independence of noise and covariates is a standard assumption in online linear regres-
sion and linear bandit literature. This assumption and the following analysis are invalid in
the case of endogeneity, i.e., when the noise and covariates are correlated. In this paper, we
study the online setting of instrumental variable (IV) regression, which is widely used in
economics to tackle endogeneity. Specifically, we analyse and upper bound regret of Two-
Stage Least Squares (2SLS) approach to IV regression in the online setting. Our analysis
shows that Online 2SLS (02SLS) achieves O(d? log® T') regret after T' interactions, where
d is the dimension of covariates. Following that, we leverage the O2SLS as an oracle to
design OFUL-1V, a linear bandit algorithm. OFUL-IV can tackle endogeneity and achieves
O(dv/TlogT) regret. For datasets with endogeneity, we experimentally demonstrate that
0O2SLS and OFUL-IV incur lower regrets than the state-of-the-art algorithms for both the
online linear regression and linear bandit settings.

1. Introduction

Online regression is one of the founding components of online learning (Kivinen et al., 2004),
sequential testing (Kazerouni and Wein, 2021), contextual bandits (Foster and Rakhlin,
2020), and reinforcement learning (Ouhamma et al., 2022). Specially, online linear regres-
sion is widely used and analysed to design efficient algorithms and to derive corresponding
theoretical guarantees, respectively (Greene, 2003; Abbasi-Yadkori et al., 2011b; Hazan and
Koren, 2012). In linear regression, the outcome (or output variable) Y € R, and the input
features (or covariates, or treatments) X € R? are related by a linear structural equation:

Y =p"X +1, (1)

where 3 is the true parameter and 7 is the observational noise with variance 2. The

goal is to estimate B from an observational dataset. A common assumption in online lin-
ear regression is ezogeneity, i.e. independence of the noise 7 and the input features X
(E[n|X] = 0) (Abbasi-Yadkori et al., 2011b; Ouhamma et al., 2021). In real-life, exogene-
ity is often violated, and we encounter endogeneity, i.e. dependence between noise and
covariates (E[n|X] # 0) (Greene, 2003; Angrist et al., 1996; Zhu et al., 2022).

Endogeneity naturally arises due to plethora of reasons, including causal dependence
on multiple variables, omitted explanatory variables, measurement errors etc. (Wald, 1940;
Greene, 2003; Mogstad et al., 2021). Another cause of endogeneity in data observed from
empirical studies is dependence of the output and the covariates on unobserved confounding
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variables (Zhu et al., 2022). Instrumental Variables (IVs) are introduced to identify and
quantify the causal effects of endogenous covariates (Newey and Powell, 2003). IVs are
widely used in economics (Wright, 1928; Mogstad et al., 2021), causal inference (Rubin,
1974; Hernan and Robins, 2020; Harris et al., 2022), bio-statistics and epidemiology (Burgess
et al., 2017).

Example 1.1. (Carneiro et al., 2011; Mogstad et al., 2021) aim to estimate the number
of returning students to college using the National Longitudinal Survey of Youth data. The
return depends on multiple covariates X, such as whether the individual attended college,
her AFQT scores, her family income, her family conditions (mother’s years of education,
number of siblings, urban residence at age 14 etc.). But often the family conditions have
unobserved confounding effects on the college attendance and scores. This endogenous na-
ture of data leads to bias in traditional linear regression estimates, such as Ordinary Least
Squares. In order to mitigate this issue, Carneiro et al. (2011); Mogstad et al. (2021) lever-
age two instrumental variables (Z): average log income in the youth’s county of residence at
age 17, and the presence of a four-year college in the youth’s county of residence at age 14.
The logic is that a youth might find going to college more attractive when labour market op-
portunities are weaker and a college is nearby. Using these two instrumental variables, the
youth’s attendance to college is estimated. Then, in the next stage this estimate of college
attendance is used with family conditions to predict the return of the youth to college. This
two stage regression approach with instrumental variable produces a more accurate estimate
of youths’ return to the college than OLS models assuming exogeneity.

This approach to conduct two stages of linear regression using instrumental variables
is called Two Stage Least Squares Regression (2SLS) (Angrist and Imbens, 1995; Angrist
et al., 1996). 2SLS has become the standard tool in economics, social sciences, and statis-
tics to study the effect of treatments on outcomes involving endogeneity (Mogstad et al.,
2021). Recently, in machine learning community, researchers have extended traditional
2SLS techniques to nonlinear structures, non-compliant instruments, and corrupted obser-
vations using deep learning (Liu et al., 2020; Xu et al., 2020, 2021; Nareklishvili et al.,
2022), graphical models (Stirn and Jebara, 2018), and kernel regression (Zhu et al., 2022),
respectively.

In the best of our knowledge, all the existing works assume access to an observational
dataset and solves 2SLS for that dataset in an offline setting. Also, the analysis available
on the performance of 2SLS is asymptotic, i.e. what can be learned if we have access to
infinite number of samples (Singh et al., 2020; Liu et al., 2020; Nareklishvili et al., 2022).
In practical applications, this analysis is vacuous as one has access to only finite samples.
Additionally, in practice, it is natural to acquire the data sequentially as treatments are
chosen on-the-go, and then to learn the structural equation from the sequential data. This
setting motivates us to develop and analyse the online extension of 2SLS, referred as O2SLS.

Additionally, in an interactive setting, if a policy maker aims to build more schools at
some of the lower income areas as a form of intervention, she observes only the changes
corresponding to it. This is referred as bandit feedback in online learning literature and
studied under the linear bandit formulation (Abbasi-Yadkori et al., 2011a). This motivates

1. One can argue whether these are sufficient or weak instrumental variables. For simplicity, we assume
sufficiency here, i.e. the instruments can decouple the unobserved confounding.
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us to further extend O2SLS to linear bandits, where bandit feedback and endogeneity occur
stmultaneously.

In this paper, we investigate these two questions:

1. What is the upper bound on the loss in performance for deploying parameters esti-
mated by O2SLS instead of the true parameters 3¢

2. Can we design efficient algorithms linear bandit with endogeneity by using O2SLS?
Our Contributions. Our investigation has led to

1. An Analysis of O2SLS: Following online learning literature, we consider regret, i.e.
the sum of differences between the losses incurred by the estimated parameters {3,}L_;,
and the true parameter 3, as the performance metric (Cesa-Bianchi and Lugosi, 2006). In
Section 4, we theoretically show that O2SLS achieve O(d?log®T') regret after receiving T
samples from the observational data, which is d log T" higher than the regret bound for online
linear regression under exogeneity (Gaillard et al., 2019). This is the cost that O2SLS pay
for handling endogeneity in two stages. In Section 4.2, we experimentally show that O2SLS
incur less error than online ridge in problems with endogeneity. In our knowledge, we are
the first to propose a regret analysis of O2SLS.

2. OFUL-IV for Linear Bandits with Endogeneity: In Section 5, we study the linear ban-
dit problem with endogeneity. We design an extension of OFUL algorithm used for linear
bandit with exogeneity, namely OFUL-IV, to tackle this problem. OFUL-IV uses O2SLS to
estimate the parameters, and corresponding confidence bounds on 3 to balance exploration—
exploitation. We show that for bounded outcomes, OFUL-IV achieve O(dv/T logT) regret
after T" interactions. We experimentally show that OFUL-IV incur lower regret than OFUL
under endogeneity (Section 5.3).

3. Technical Tools: To reach our theoretical results, we propose novel technical tools,
which can be of parallel interest. (a) We prove that the confidence interval around the
parameter 3 at step t is O(dlogt) (Lemma 4.1), which can be used to build confidence
intervals for parameters in cascaded regressions. (b) We also show that the sum of products
of the first and second-stage noises, is bounded by \/ dlog T'log(1/d) with probability 1 —§
(Lemma B.4).

2. Related Work

Online Regression without Endogeneity. Our analysis of O2SLS extends the tools
and techniques of online linear regression without endogeneity. Analysis of online linear
regression began with (Foster, 1991; Littlestone et al., 1991). (Vovk, 1997, 2001) have shown
that forward and ridge regressions achieve O(dY2,, log T) for outcomes with known bound
Yimax. Bartlett et al. (2015) generalised the analysis further for outcomes with unknown
bound but by considering the features known in hindsight. Gaillard et al. (2019) improved
the analysis further to propose an optimal algorithm. Ouhamma et al. (2021) further
provided a high-probability bound over all possible sequences of bounded input features.
But all these works assume independence of the noise and the input features. In this paper,
we analyse online linear regression under endogeneity for the first time. We do not assume
the bound on the outcome variable to be known, and also derive high probability bounds

for any bounded sequence of input features.
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Linear Bandits without Endogeneity. Linear bandits generalise the setting of on-
line linear regression under bandit feedback (Abbasi-Yadkori et al., 2011a, 2012; Foster
and Rakhlin, 2020). To be specific, in bandit feedback, the algorithm observes only the
outcomes for the input features that it has chosen to draw during an interaction. Popu-
lar algorithm design techniques, such as optimism-in-the-face-of-uncertainty and Thompson
sampling, are extended to propose OFUL (Abbasi-Yadkori et al., 2012) and LinTS (Abeille
and Lazaric, 2017), respectively. OFUL and LinTS algorithms demonstrate O(dv/T logT)
and O(d">/T'log T)) regret guarantees under exogeneity assumption. Here, we use Q2SLS
as a regression oracle to develop OFUL-IV algorithm for linear bandits with endogeneity.
We prove that OFUL-IV achieves O(dv/T logT) regret.

Instrument-armed Bandits. Kallus (2018) is the first to study endogeneity, and
instrumental variables in stochastic bandit setting. Stirn and Jebara (2018) propose a
Thompson sampling-type algorithm for stochastic bandits, where endogeneity arises due to
non-compliant actions. But both (Kallus, 2018) and (Stirn and Jebara, 2018) study only
the finite-armed bandit setting where arms are independent of each other. In this paper,
we study the linear bandit setting with endogeneity, which requirez different techniques for
analysis and algorithm design.

3. Preliminaries: Instrumental Variables & Offline Two-stage Least
Squares (25LS)

We are given an observational dataset {x;, y;}/_; consisting of n pairs of input features and
outcomes, such that y; € R and x; € R%.? These inputs and outcomes are stochastically
generated using a linear model

yi = B x; + i, (Second stage)

where 3 € R? is the unknown true parameter vector of the linear model, and 1; ~ N(0, 03)
is the unobserved error term representing all causes of y; other than x;. It is assumed
that the error terms 7); are independently and identically distributed, and have bounded
variance o2. The parameter vector 3 quantifies the causal effect on y; due to a unit change
in a component of @x;, while retaining other causes of y; constant. The goal of linear
regression is to estimate B3 by minimising the square loss over the dataset (Brier, 1950), i.e.
B £ argming 37, (y; — BT x;)?,

The obtained solution is called the Ordinary Least Square (OLS) estimate of 3 (Wasser-
man, 2004), and used as a corner stone of online regression (Gaillard et al., 2019) and linear
bandit algorithms (Foster and Rakhlin, 2020). Specifically, if the input feature matrix
X,, € R4 ig defined as [z1,®a,...,2,] ", the outcome vector is y,, = [y1,...,yn] ", and

the noise vector is 17,, 2 [171,...,m,] ", the OLS estimator is expressed as

Bors = (X0 X,) ' Xy, =B+ (X0 X,) X,

If X,, and m,, are independent, the second term has zero expected value conditioned on X,.
Hence, the OLS estimator is asymptotically unbiased, i.e. Bgr,g — 00 as n — oo.

In practice, the input features & and the noise 1 are often correlated (Greene, 2003,
Chapter 8). As in Figure 1, this dependence, called endogeneity, is modelled with a con-

2. Matrices and vectors are represented with bold capital and bold small letters, e.g. A and a, respectively.
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.

Figure 1: The DAG for 2SLS. The unobserved noises are € and 1 (in grey), while z,x,y
are observed quantities.

founding unobserved random variable €. To compute an unbiased estimate of 3 under en-
dogeneity, a popular technique is to introduce the Instrumental Variables (IVs) z (Angrist
et al., 1996; Newey and Powell, 2003). IVs are chosen such that they are highly correlated
with endogenous components of & (relevance condition) but are independent of the noise 7
(exogeneity condition for z). This formulation leads to instrumental variable regression to
tackle endogeneity.

In Two-stage Least Squares (2SLS) approach to IV regression (Angrist and Imbens,
1995; Angrist et al., 1996), it is further assumed that IVs, i.e. Z, £ [21,...,2,]", cause
linear effects on the endogenous covariates. Specifically, for the just-identified IVs,

Xn=2,0 +E,, (First stage)
where ® € R%9 is an unknown first-stage parameter matrix and E, £ [e1,...,€,]"
is the unobserved noise matrix leading to confounding in the second stage. This is a
“classic” multiple regression, where the covariates z are independent of the noise terms
€ ~ N(0,0%T,;) (Wasserman, 2004, Ch. 13). Thus, the first-stage is amenable to OLS
regression. This formulation leads us to the 2SLS estimator:

BasLs = (szn) Z\y,. (25LS)

As long as E[z;n;] = 0 in the true model, we observe that
~ -1 -1
BasLs = <ZZXH) ZZXWB + <szn) Zlnn = B,

as n — oo. This works because IV solves for the unique parameter that satisfies fZTn 0.
Since & and n are correlated, 25LS estimator is not unbiased in finite-time.

Assumption 3.1. The assumptions for conducting 2SLS with just-identified Instrumental
Variables are (Greene, 2003):
1. Well behaved data. For every n € N, the matrices Z,) Z,, and Z,) X,, are full rank,
and thus invertible.
2. Endogeneity of x. The second stage input features x and noise n are not indepen-

dent: x JL n.
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3. Exogeneity of z. The IV random wvariables are independent of the noise in the
second stage: z 1L 7.
4. Relevance Condition. The variables z and x are correlated: z JL x. This implies
that there exists t > 0:
n (ZI Xn)

4. Online Two-Stage Least Squares Regression

<

1
5 T

(2)

In this section, we describe the problem setting and schematic of Online Two-Stage Least
Squares Regression, in brief O2SLS. Following that, we provide a theoretical analysis of
02SLS and show that regret of O2SLS is O(d?log? T) (Section 4.1). In Section 4.2, we
experimentally show that O2SLS provides an accurate estimate of the true parameter 3,
and thus, incur lower regret than Online Ridge Linear Regression, in brief Ridge.

O2SLS. In the online setting of IV regression, the data (x1, 21,91), ..., (1, 21, Y1), - - -
arrives in a stream. Following the 2SLS model (Figure 1), data is generated from

Ty = @th + €
T (3)
Yy =0 @ + 1y,

such that x; /I n; and z¢ 1L n for all t € N. At each step ¢, the online IV regression
algorithm is served with a new input feature x; and an IV z;, and it aims to predict an
outcome §; £ ,BtT x; € R. Here, 3, is the estimate of the parameter at step ¢ computed
using current (@, z;) and the data {(x;, z;, ;) }i=1 observed so far. Following the prediction,
Nature reveals the true outcome gy;. Quality of the prediction is evaluated using a square
loss £ (B,) £ (J; — y;)* (Foster, 1991). The online protocol is expressed as:

At each round t =1,2,...,T
1. z; is sampled i.i.d. from an unknown distribution
x; is sampled according to Equation (3) given z;
we compute an estimate 3, and make a prediction y; = ﬁ,Ta:t
we observe the true g, following Equation (3)
. . ~N2 T..\2
we incur in a loss (y; — 91)° = (y1 — Be 1)

A

If the true parameter 3 was known, the square loss incurred at step ¢ by using 8 to
predict would be £;(3) = (yt —x] [3)2. Thus, if the online algorithm is run for T steps, the
cost of estimating the parameter from observed data can be quantified as the sum of the
instantaneous regrets 7, = £;(3,) — ¢ () (Cesa-Bianchi and Lugosi, 2006). This quantity
is called, regret (or cumulative regret) of the online IV regression algorithm, and is defined
as follows

T
RTé;t ;ft (By) — 4 (8))- (4)

Regret is the cost of not knowing the true 3. Lower is the regret better is the performance
of the online algorithm.
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Algorithm 1 O2SLS

1: fort=1,2,...,7T do
2 Observe z¢, ¢
3 Compute 3,_; according to Equation (O2SLS)
4: Predict 5; = B/ ,x;
)
6:

Observe y; and compute loss ¢; (,Bt_l)
end for

In order to address this problem, we propose an online form of the 2SLS estimator.
Thus, modifying Equation (2SLS), we obtain the O2SLS estimator that is computed for the
prediction at time ¢, using information up to time ¢ — 1:

=1y

t—1
By (zzsxz) S 2 (o25LS)
s=1 s=1
We use the O2SLS estimator at step ¢ — 1 for the prediction 7; = ,BtT_lact. We elaborate
O2SLS in Algorithm 1.

Remark 4.1. We could use x; and z; that we observe before committing to the estimate
B, and use it to predict y; (Vovk, 2001). Since we cannot use y; for this estimate, we have
to modify 2SLS to incorporate this additional knowledge. We skip this modification and use
Bi_1 to predict.

4.1 Theoretical Analysis

Confidence Interval of 3,. The central result in our analysis is concentration of the
O2SLS estimates 3; around (.

Lemma 4.1 (Confidence Ellipsoid for the Second-stage Parameters). Let us define the
design matriz to be G, ; = Z!Z;+ N\ for some X\ > 0. Then, for bounded first stage noise
|ne| < Ly, the true parameter B belongs to the set

& ={Ber!: 18, - Blg, < Voul®) . (5)

2
with probability at least 1 —§ € (0,1), for all t > 0. Here, b;(5) = d%T”log (%)

Proof Sketch. Step 1: First, we express the estimated 3, as a data-dependent pertur-
bation to the true 8. From Equation (2SLS) and (First stage), we obtain that

t -1y
IBt = /6 + (Z st;r> Z ZsMs
s=1 s=1
=0+ (ZtT—1Xt—1>7l Z, 1y, (6)

Following this, we show that the difference depends on estimate of the first stage pa-
rameter ®,; and the data observed till . Specifically, in the first stage, we estimate the true



DELLA VECCHIA AND BASU

parameter ® by solving a multiple ridge regression problem.
~ ¢ 2
O, ¢ argminZHmj . zj@HQ Ao
<)
s=1

Here, ||-||% is the Frobenius norm and A > 0 is the ridge regression parameter. We can
compute ©; by solving d ridge regression problems for each of the columns. Thus, we obtain
an estimate of the first stage parameter as

~ —1
O, = (ztT 7+ >\]Id> Z X, (7)

Thus, from Equation (6) and (7), we get

~—1 1
By — B =06, (Z;'—Zt + >\Hd> Z:’?t

We define G ; £ Z;r Z; + Al as the first stage design matriz. G is always invertible with
)\min(Gz,t) Z A

Step 2: Now, for any vector € R%, we can bound a " (8, — 3) using Cauchy-Schwarz
inequality

(8.~ B < [©, o

2/
_ t 't _
G ! G,

z,t

This step decouples the effects of the first stage estimate and the observations. Now, we

~ ~T ~
choose r =H;_; £ © G.:-10, i.e. the second stage design matriz. Thus,
T
18, - Blg, < |Z/nd| .
z,t

Step 3: Now, using the bound of vector-valued martingales (Abbasi-Yadkori et al.,
2011b), we bound the coupling between the second stage noise 1, and IVs Z; as

t
dL? 1+¢L2/\
HZ;FntH 1 = Znszs S 477 log 5 Z/
Gt s=1 G*i

with probably at least 1 — §. Hence, we conclude the proof.
Regret Bound. Now, we state the regret upper bound of O2SLS and a brief proof
sketch to achieve it.

Theorem 4.1 (Regret of O2SLS). If Assumption 3.1 hold true, for bounded first-stage and
second-stage noises |3 < dLZ, nf < LZ, the true first-stage parameters with bounded
ly-norm ||®||, < Le, and bounded IVs ||z||* < L2, regret of O2SLS at step T > 1 satisfies
with probability at least 1 —§ € (0,1)

7 Cot1 lon(T) +1
<bp_ d(C} ; :

R <bra(0) (et + e (4 PR
Estimation

O(dlogT) Second Stage Feature norm
O(dlogT)
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o (5 ) )

Estzmatzon
O(VdlogT) First Stage Feature norm
O(V1ogT)
C3+1 log (%)
+VdL,C: +4 log (T) + 1
n“2 \/X )\m1n(2)( g( ) )

Correlated noise

O(+/dlogT)

Here, bp_1(0) is the confidence bound of O2SLS estimate around B and is defined by
Lemma 4.1. Cy, Co, C5 are dimension and T-independent positive constants, and Apin(X)
is the minimum eigenvalue of the true covariance matriz of IVs, i.e. X = E[zzT].

Theorem 4.1 entails a regret Ry = O (d*log?(T)), where d is dimension of IV, and T
is the number of interactions. This regret bound is dlogT more than the regret of online
ridge regression, which is O(dlogT') (Gaillard et al., 2019). This is due to the fact that we
perform d linear regressions in the first-stage and using the predictions of first stage for the
second-stage regression. These two regression steps in cascade induce the proposed regret
bound.

Proof Sketch. By Equation (4), regret at step T is

T
Ry = Z (((Bt—l - B)th)Q + 2m(Byq — B)Tmt)

t=1

Thus, using Equation (3), we decompose the regret as

T T T
Ry = Z ((5t—1 - ﬁ)TfEt)Q +2 Znt (IBt—l - IB)T @th +2 Z Up (Bt—l - B)T €t .

t=1 t=1 t=1

(ole) (020) (e3e)

The proof proceeds by bounding each of these three terms.

Term 1: Second Stage Regression Error. Term (ele) is the error introduced by
the second stage regression. First, by applying Cauchy-Schwarz inequality, we decouple the
effect of parameter estimation and the feature norms

T
S (B -8) ) <2H6t1 Bll, |, lwdlg

t=1

Following the decomposition, we bound this term by (a) using the confidence bound to
control the concentration of 3, around 3, and (b) by bounding the sum of feature norms.

Step a: Confidence Intervals of B,. As t increases, the O2SLS estimates concentrate
around the true parameter 3 (Lemma 4.1). Thus, we derive a confidence interval at step
t — 1 such that with probability at least 1 — &,

dL? 2
o <1+tLZ/A>_

2 _
18,1~ BlIE,_, < bia(d) == )
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This inequality obtained by leveraging the concentration properties of the vector-valued
martingales (Theorem E.1).

Step b: Bounding the Second Stage Features with IV norms. Now, we need to bound
sum of the feature norms. First, we apply Equation (3) and triangle inequality to get

T T 9 T

2 T 2
Yolledfo, <D |@T=] .+ lelEo,
t=1 t=1 t=1

z,t—1

From the properties of matrix norm, the sum of IV norms is upper bounded by the
product of the minimum eigenvalue of estimated first-stage parameters, maximum eigen-
value of the true first stage parameters, and the sum of minimums eigenvalues of the design

matrix of the first stage, i.e. Et 1 H‘G zi-1 H‘ We bound each of these terms individually to

obtain a bound Cf <C3)\+1 + ;Og(?) )] /2> On the other hand, with probability at least 1 — 4,

the norm of first-stage noises is bounded by dC3 <C3+1 + /\lii(l( )J)r/lZ) (Lemma B.3).

Final step. By comblnlng all together, we conclude that

2
(o10) <th . (Hzthzl 1+||€t||ﬁt_11>

< bra(9) d<c%+03><c3“ + 1oell )“>>

~—— A mm( )/ 2
Estimation
O(dlogT) Second Stage Feature norm

O(dlogT)

The last inequality is true as b;—; is non-decreasing in ¢. Thus, we conclude that Term
(ele) is O(d%log? T)).

Term 2: Coupling of First-stage Data and Second-stage Parameter Estima-
tion. Now, we bound the second term using concentration inequalities of martingales,
similar to the ones used to derive a uniform high probability bound for the confidence
intervals.

We observe that w; = (,@t 11— ,@)T Oz, is a martingale with respect to the filtration
Fio1=0(z1,€1,M1,...,21-1,€—1,M—1, zt). We also note that w, is F;_; —measurable since
B;_1 and z; are too. Thus, by Theorem E.2 for scalar-valued martingale concentration, we
get that with probability at least 1 —§

(o20) <

1+ 0250 w?
<1+L22wt>log \/ n(S i

Now, we focus on bounding the quantity appearing under square root. Thus, by applying
Cauchy-Schwarz inequality and a reasoning similar to bounding Term (ele), we get

T
C3+1 log T —|—1
— Amin

IN

10
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Hence, we get that Term (e2e) is bounded by

C3+1 log( )+ logT
b C? 1
\/ﬁ\/ ( b\ mm( )/2 og 5 )
Estimation
O(VdlogT) First Stage Feature norm

O(VIogT)

Term (e2e) is O(v/dlog(T)) ignoring the loglog terms.

Term 3: Coupling of First- and Second-stage Noises. Finally, we bound Term
(e3e) containing the correlation between the first- and second-stage noise. This term is
referred as the self-fulfilling bias (Li et al., 2021). Similar to the previous terms, we first
decouple it into two components

T T
Znt (ﬁt—l - IG)T €t S ZHBt—l o BHITItlemetHﬁt_ﬁ
t=1 t=1

We know that Hﬁt—l — BHﬁFl < /br_1(6) with probability at least 1 — d. Now, to bound

the norms of the products between 7; and €; with respect to I/-\Itill, we show that

T
ZHmetHﬁt—gl < Lg1 ) Inrillesillzy/ Amax(G2;)
t

S

I
o

We further show that the minimum eigenvalue of the first stage design matrix grows
Q(t) (Lemma D.2). Thus, we get that )\maX(G;’%) is (’)(%), and our aim is to bound

T—1 [netallles+illo

=0 Vi . We apply Chernoff bound to obtain

T-1
1
Z [+ lllecrall2 <2LcLyy[2dlog | < | (log (T) +1).
=0 vt ’

Substituting this result along with the confidence bound, we observe that Term (e3e) is
O(dlogT).

Thus, we conclude that Term (ele) is the dominant term imposing a regret bound
O(d?log? T) for O2SLS.

4.2 Experimental Analysis

Now, we aim to compare empirical performance of the online ridge regression (Ridge) with
O2SLS estimator. The Ridge estimator is given by ,BR'dge = (XtTXt + /\Ridgeﬂd)_l xXTy,.
We choose the regularisation parameters to be ARrigge = 1072 and A = 1073. We deploy
the experiments in Python3 on a single Intel(R) Core(TM) i7-8665U CPU@1.90GHz. An
experiment consisting of 100 runs of an algorithm takes ~ 10 minutes.

We denote the normal distribution as A/ and a truncated normal distribution as A/tr'ne
with a set of of truncation parameters L. This implies that the normal (multivariate
normal) distribution is bounded in the interval [~L,+L] (in an hypercube [—L,+L]%).

11
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Figure 2: Performance of O2SLS for online linear regression compared with online ridge
regression, and an oracle. O2SLS incurs lower regret than online ridge and also achieves the
same prediction loss as the oracle asymptotically. We average our curves over 100 samples
and the shaded area indicates one standard deviation. The y—axis is in logarithmic scale.

ii.d

We consider the data is generated using ©;; ~ N(0,1), 2 i géunC(O,]I5o,1_0), and
i.0.d trunc

€ ~ Np"e(0, Iso, 1_0) The endogenous noise in the second stage is ; = (ﬁﬂrzﬁl €i)/13,
where 7j; i NTUe((1,10) is a r.v. independent from all the others and 3 < Niso(10,I50).

From Figure 2, we observe that in presence of endogeneity the Ridge estimator is not
able to recover the true parameter 8, while O2SLS can by 200 observations. Thus, Ridge,
which assumes exogeneity, leads to bad online predictions. O2SLS estimator solves this
issue. Also, O2SLS achieves almost 10-order less regret by 1000 observations (Fig. 2¢).

5. Linear Bandits with Endogeneity

In this section, we formulate Linear Bandits with Endogeneity (LBE) using a two-stage
linear model of data generation (Eqn. (3)). Then, we propose an index-based optimistic
algorithm, OFUL-IV. Our theoretical analysis in Sec. 5.2 shows that OFUL-IV achieves
O(d\/f logT) regret. In Sec. 5.3, Experimental results show that OFUL-IV achieve lower
regret than OFUL that assumes exogeneity.

In bandit setting, we observe x; and y; depending on arm (or intervention) A; € A;
drawn at time ¢t € {1,...,T}.

Ty = ®th,At —+ € (LBE—ﬁI‘St)
vy =B @ +m (LBE-second)

Here, y; is the reward at round ¢ and each arm a corresponds to a vector of IVs z; 4 € Z; C
R?. Also, a vector of endogenous variables Tiq € & C R? is obtained as per (LBE-first).
Here, X; and Z; are sets of IVs and endogenous variables corresponding to A;. Similar
to regression setting, we have two sources of unobserved noises: €, € R% are i.i.d. vector
error terms at round ¢ which is independent of z, and 7, representing all causes of y; other
than ;. True parameters 8 € R? and ® € R¥*? are unknown to the agents. This is an
extension of the classical stochastic linear bandit (Lattimore and Szepesvari, 2020, Chapter
19). Now, we state the protocol of Linear Bandits with Endogeneity (LBE).

12
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Algorithm 2 OFUL-IV

1: Input: Initialization parameters 3, (:)0, b;)

2: fort=1,2,...,T do

3: Observe z;, € Z; and x4 € A} for a € A,

4 Compute 3,_; according to Equation (O2SLS)
5 Choose action A; that solves Equation (9)

6: Update Bt — ﬁt—h O, +— O, [32 — b;

7: end for

At each round t = 1,2,...,T, the agent
1. Observes a sample z; , € Z; and 1, € A} of contexts for all a € A,
2. Chooses an arm A; € A;
3. Obtains the reward y; computed from (LBE-first)
4. Updates the parameter estimates (:)t and 3,

5.1 OFUL-IV: Algorithm Design

If the agent had full information in hindsight, she could infer the best arm (or intervention)
in A; as
a; = argmaxIE[acZa,B]
a€ Ay

We denote the corresponding variables as zf and x;. Thus, choosing a* can be shown as
choosing 2z} and ;. But the agent does not know them and aims to select {a;}_; leading
to minimum regret (Eqn. (4)). Now, we extend the OFUL algorithm minimising regret
in linear bandits with exogeneity (Abbasi-Yadkori et al., 2011a). The core idea is that the
algorithm maintains a confidence set B;_; C R% around the parameter 3, which is computed
only using the observed data. Then, the algorithm chooses an optimistic estimate of 3,_;
from that confidence set:

B, , = argmax <max iUT,@/> (8)
BIEBtfl TrEX:
Then, she chooses the action leading to x; = argmaxg,cy, zL'TBt, which maximizes the

reward according to the estimate Bt. In brief, the algorithm chooses the pair (z, ,ét_l) =
argmax ' 3.
(Cc,ﬁ/)EXz xXBi_1
In order to tackle endogeneity, we choose to use the O2SLS estimate 8;_; computed
using data observed till ¢t — 1. Then, we build an ellipsoid B;_; around it, such that

1/2y—d/
By 2 {ﬂ eR?: |8, — Blg, < \/b;(é)} and b}(5) £ 2I2log (M) Given
this confidence interval, we optimistically choose the arm

Ay = argmax (Ze.a, B;-1) + 1/b)_1(0) [@rallg-1 - (9)

ac€A;

This arm selection index together with the O2SLS estimator yielding 8, ; construct the
OFUL-IV (Algorithm 2).

13
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5.2 Theoretical Analysis

Theorem 5.1. Under the same assumptions as that of Theorem 4.1, Algorithm 2 incurs a

regret
ol (S ER)

with probability 1 — § and horizon T > 1.

Proof Sketch. Step 1: Optimism. The regret in this setting Ry = ZtT:1 Blx, —
Bz, 2 Zle r¢. Since (x¢, B;_1) is optimistic in X} x B, and also B € By, we obtain

re < (Bey — B) .

Step 2: Decomposition. Now, we decompose regret as

(th -B8)a, = (/Btfl —Bi) T+ (B — B) i

The first term corresponds to tightness of the confidence interval, while the second term
depends on accuracy of the estimate 3,_;.
Step 3: Confidence Bound. Now, we can decouple the impact of parameter and ob-

served data in both the terms using Hﬁt_l - B4 a . ||:BtHﬁ;_11 and Hﬁt_l - BHﬁt_1 ||13tHﬁ;_11,

respectively.
By construct of the optimistic confidence interval and concentrations bound of Lemma 4.1,

both H,Bt_l - B 4 and ||B;_; — 5Hﬁt | are bounded by /b;_;(6). By determinant-
t—1 -
2
trace inequality (Lemma A.1), we get that b/, _,(d) < % log (%)

Final Step. Since the regret RTS\/TZ;‘L rZ, we obtain
14+ TL2/\
Ry < Ly, | dT log < el ) (Z ”"BtHH—l )

Now, we bound the sum of feature norms 3/, ”th%—l by d(C% +C3) (
t—1

as we did it in Step 2 while bounding Term (ele), which is O(dlogT).
Thus, we conclude that regret of OFUL-IV is O(dv/T log T).

Cstl log(T)+1>
X A (2)/2

5.3 Experimental Analysis

In the LBE setting, the agent chooses actively from a set of arms that correspond to compact
and bounded sets of endogenous and instrumental variables. Now, we compare performance
of OFUL-IV and OFUL for LBE setting. We implement and run the algorithms in the
same setting as before, and with the same regularisation parameters Arigge = 1073 and

A = 1073, Furthermore, we take ©;; ~ N'W(0,1,10), 2., <" NEEW(0, I50, 10), and
a £ NEEwme (0, Is, 1_0) The noise in the second stage is 1, = %3 (nw + Zi:l 6t,a,z‘>-

Here, 7 4 i NTUe((1,10) is independent of others, and 3 il N5o(1_0, I50).

14
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Figure 3: We compare instantaneous regrets (left) of OFUL algorithm and OFUL-IV in a
linear bandit setting. We also show the MSE between the parameters estimated by the two
algorithms and the true parameter 3 (right). OFUL-IV incurs lower instantaneous regret
and MSE loss.

OFUL builds a confidence ellipsoid (Ouhamma et al., 2021) centered at Bgigge ; to concen-
trate around 3, while OFUL-IV uses O2SLS to build an accurate estimate. The estimates
obtained by OFUL-IV achieves 3-order less error than those of OFUL (Fig. 3b). Thus,
OFUL-IV leads to lower regret than OFUL for linear bandits with endogeneity (Fig. 3a).

6. Conclusions and Future Works

Accuracy of the existing online linear regression estimators depend on independence of the
covariates and the noise. In this paper, we study the setting where this assumption is vio-
lated. We propose a theoretical analysis of online 2SLS algorithm, which is known to produce
unbiased estimates of parameters under endogeneity in the offline setting. We show that on-
line 2SLS (02SLS) achieves O(d? log? T) regret bound uniformly for all input features. This
is dlog T higher than online linear regression with exogeneity assumption (Gaillard et al.,
2019; Ouhamma et al., 2021). This is the cost paid by O2SLS due to endogeneity. Following
that, we study stochastic linear bandits with endogeneity. We propose OFUL-IV that uses
O2SLS to estimate the model parameters. We show that OFUL-IV achieves O(dv/T log T)
regret. We experimentally validate that O2SLS and OFUL-IV achieve better performance
under endogeneity, where other online regression and linear bandit algorithms produce inac-
curate estimates. Specifically, O25LS and OFUL-IV incur almost 10 to 7 order lower regret
than others.

For simplicity, we consider the just-identified IVs. In future, we will like to extend
our algorithms and analysis to weakly or over-identified IVs (Greene, 2003). Additionally,
0O2SLS and OFUL-IV work if the IVs are already specified. There has been significant work
to identify I'Vs in offline setting (Newey and Powell, 2003; Chen et al., 2020). Still, it is
an open question how optimally IVs can be identified online, while O2SLS is performed
simultaneously.
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A. Existing and Useful Results

Notations: We indicate the determinant of matrix A with det(A) and its trace with
Tr(A). For a x € R>q, we indicate the function that takes as input z, and gives as output
the least integer greater than or equal to = as [z] (ceiling function). We indicate the identity
matrix of dimension d with I;.

A.1 Norms of Vectors and Matrices

Definition A.1 (¢,-norms). For a vector v € R", we express its {y-norm as ||v||, for p > 0.
A special case is the Euclidean lo-norm denoted as ||-||2, which is induced by classical scalar
product on R™ denoted by (-, -).

RnXm

Given a rectangular matrix A € with n > m, we write its ordered singular values

UmaX(A) = Ul(A) > UQ(A) = 2 Um(A) = Umin(A) > 0

The minimum and maximum singular values have the variational characterization

Omax(A) = max [[Av]2 and opin(A)= min |[Av|s,
veSm—1 veSm—1

where S*! £ {v € R? | |||z = 1} is the Euclidean unit sphere in R?.
Definition A.2 ({s-operator norm). The spectral or {s-operator norm of A is defined as
llAll2 £ omax(A) - (10)

Since covariance matrices are symmetric, we also focus on the set of symmetric matrices
in R?, denoted S¥*¢ = {Q eR™ | Q= QT}, as well as the subset of positive semidefinite
matrices given by

Sﬁlrxdé{Qesdx”QiO}

From standard linear algebra, we recall the facts that any matrix Q € S¥¢ is diagonalizable
via a unitary transformation, and we use A\(Q) € R? to denote its vector of eigenvalues,
ordered as

Amax(Q) = A1(Q) > A2(Q) > -+ > Aa(Q) = Amin(Q)-
Note that a matrix Q is positive semidefinite-written Q > 0 for short-if and only if
Amin(Q) Z 0.

Remark A.1 (Rayleigh-Ritz variational characterization of eigenvalues). We remind also
the Rayleigh-Ritz variational characterization of the minimum and mazrimum eigenvalues-
namely

Amax(Q) = max v' Qv and  Apin(Q) = min v’ Qu.

veSd—1 veSd—1

Remark A.2. For any symmetric matriz Q, the lo-operator norm can be written as

Q[[2 = max {Amax(Q), [Amin(Q) [},

by virtue of which it inherits the variational representation ||Q||z = max,cga—1 [v' Qu].
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Corollary A.1. Given a rectangular matriz A € R™™ ™ with n > m, suppose that we define
the m dimensional symmetric matric R = ATA. We then have the relationship

A(R) = (0j(A)?  forj=1,....,m
We now introduce norms that are induced by positive semi-definite matrices in the
following way.
Definition A.3. For any vector y € R" and matric A € SU™", let us define the norm
lylla £ VyTAy = \/(y, Ay).

Throughout the paper we will need often to bound matrix induced norms using £s-norms
for operators, the following results shows how this can be done easily for generic matrices.
We specialize this result as we need in the text.

Proposition A.1. Take A, B € R™™"™ with B > 0 positive semi-definite and x € R"
lAz|E = llz|3rga < IIBll2llAl3]l3 (11)
Proof. The equality holds since we can rewrite
|Az|l} = (Az, BAz) = (@, ATBAT) = ||| 4- (12)

The inequality follows by the definition of fo-norms, where we further substitute y = Ax,
to get

(Az,BAz) |Az|3, ., (y,By)|Az|3, 2012
(Az, BAx) = |3 = ]z < [IBll2lAllzllzlz.  (13)
[Az]3  [l]l3 lyl3 =3
We note that the inequality holds trivially for x in the null space of A, therefore, in the
previous case, we can safely divide by ||[Az||e and ||x]|2. O
A.2 Technical Lemmas
Lemma A.1 (Determinant-Trace Inequality). Suppose zi,z2,...,2; € R? and for any

1<s<t, ||zslly < L,. Let Goy =N+ 3", z2] for some X > 0. Then,
det (Gzy) < (A + tL2/d)" (14)

Proof. Let aq,aa,...,0q be the eigenvalues of G, ;. Since G.; is positive definite, its
eigenvalues are positive. Also, note that det(G, ;) = Hle ag and Tr (G, ) = Zle as. By
inequality of arithmetic and geometric means,

Yojag - ag < al-f-ozzz”-—f—ozd.

Therefore, det (G ) < (Tr (G.,) /d)*.
Now, it remains to upper bound the trace:

t t
Tr (Gay) = Tr(Aly) + 3 Tr (zsz;r> =N+ Y |lz)3 < dh + L2

s=1 s=1

and the lemma follows. O
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B. Regret Analysis for Online IV Regression: O2SLS

In this section, we elaborate the proofs and techniques to bound the regret of O2SLS.

Theorem B.1 (Regret of O2SLS). If Assumption 3.1 hold true, then for bounded first and
second stage noises ||€]|3 < dLZ, |ni|* < L7, first-stage parameters with bounded ly-norm
IOy < Le, and bounded IVs HzH2 <L? the regret of O2SLS at step T is

Ry < br_1(0) (L%_l (LeL2 +dL?) <03; Ly 21°g( )(;)1» (15)
(T

bT_1<5>(LnL@1LeLz\/ (C?*j 1+2°§ z )) (16)

+Vd(Ly 1 LeLy) (Ci/; ! *4\/;;%5(/2)) (log (T) + 1)) ) (17)

with probability at least 1 —§ € [0,1).

Here, bp_1(d) is the confidence interval defined by Lemma 4.1, the estimates of the
first-stage parameters are bounded according to Equation (55), i.e. |||C:)t_1m2 < Lg-1, Cs is
defined in Lemma D.2, X\ > 0 is the reqularization parameter of the first stage and \pin(X)
is the minimum eigenvalue of the true covariance matric of IVs, i.e. 3 = ]E[zzT].

In order to shorten the result and clarify the dimension and T-dependence, we further
define C £ LéflL@Lz, Cy 2 L@—ILG. We present the shorten result with these con-
stants in Theorem 4.1. Since these constants are d- and T-independent, and bp_;(9) is
O (dlog(T)), we obtain that the regret of O25LS is O (d?log*(T)).

Before proceeding to the proof, we make a remark on the relationship between sub-
Gaussian and bounded random variables (r.v.). We leverage this result throughout our
analysis, as we assume the IVs, the covariates, and the noises are bounded random variables.

Remark B.1 (Sub-Gaussianity of Bounded Random Variables). Bounded random vari-
ables, for example in [a,b], are sub-Gaussian with parameter @ In our analysis of
O2SLS and OFUL-IV, we consider that the first- and second-stage noises, n; and €, are
bounded random variables. Specifically, 1y € [—Ly,+Ly| and each component of €, i.e.
€ € [—Le,+L¢) fori e {1,...,d}. This implies that the second-stage noise 1y is Ly-sub-
Gaussian and the components of the first-stage noise €;; are Le-sub-Gaussians.

Now, we elaborate the detailed proof of Theorem B.1.

Proof. By Equation (4), the instantaneous regret at step ¢ is
N T 2 T..\? T 29
L0 (Bi) — 4 (B) = (?/t - 5t_1$t) - (yt -p wt) = ((@H -B) @ — Ut) —

T

- ((ﬂt—l - ﬂ)T mt)Q + 21 (B—1 — B) (19)
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Since z; = O 2, + ¢ by (First stage), the second term can be rewritten as

2my (Btﬂ - B)T Ty =2 (/Btfl - ,B)T © 'z, +2m (Btfl - B)T € (20)

Therefore, the cumulative regret or regret by horizon T is

T T T T
=Y =3 (Blim - ﬂTmt)Q +2) (B~ 8) @ 242 m (B —B) @

t=1 t=1 t=1 t=1

J/

(ole) (02e) (e3e)

(21)
The proof proceeds by bounding each of the three terms individually.

Term 1: Second-stage Regression Error. The first term (ele) quantifies the error
introduced by the second stage regression. We bound it (a) using the confidence bound to
control the concentration of 3, around 3, and (b) by bounding the sum of feature norms
according to the following decomposition.

Step 1: By applying Cauchy-Schwarz inequality, we first decouple the effect of parameter
estimation and the feature norms.

Bir=8) 2B = Bl ., o, I o7 (22)

1Gz - 10, 1>_1

and from Lemma B.1, we get
(/3t71 ) < Vb 1( ”th(AT

with probability at least 1 — §. This inequality is due to the fact that O2SLS estimates
concentrate around the true parameter 3 as t increases.
Since b; is monotonically increasing in ¢, by Equation (23),

, 23
1Gei1000) (23)

T T
@9 =3 (=0 w) <@ leliy o 6 0

t=1 t=1

For any T' > 1 (Lemma B.1), the confidence interval at step T'— 1 is

b1 (6) & dfl (1 +(T ; 1)L§/A> (25)
Step 2: Now, we need to bound the sum of the feature norms
T
Z ||33t||@t Gzl .8 Z H@ zt + Gt’ 6lat &7 (Equation (First stage))

2
e, ' c! @sr +ZHQH®t IG_t 10, 1

fletl z

H@TZt

™M=

(Triangle Inequality)
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d ~—1 12 T 2 2 ..
=Yzt O (fom= ) ropossion a
A-IZ\HGM\H (@132 13 + dL2) (26)

< L2 (LBLE+dL2) imG“ lm (27)

We bound the remaining summation using Lemma D.2:

Cs T-1
zmazt = Ama(G2H) + Y Aman(GE)) (25)
t=0 t=C3+1
T-1
Cs+1 2 1
< + - (29)
A Amin(X) o t
C3+1 log(T') +1
< 2 30
S U WG >) (30)
and we obtain
Cs3+1  _log(T)+1
< L2, (L§L:+dL? 2 : 31
Z” Mor e o)™ = For (bt +dle) (5= + 270 i 3!
Step 3: By combining Equation (24) and (31), we conclude that
T
ole) < by 1(d x| N 32
1) o@Dy oy (32)

dL? 14+ (T —1)L%/X Cs+1 _log(T)+1
< o 2202 (LAL2 +dL?) (=2 2
< ( 5 ) o (Lol +d e)( Y T ®) (33)

O(dlogT) O(dlog T)
= O (d*log*(T)) (34)

Term 2: Coupling of First-stage Data and Second-stage Parameter Estimation.
Now, we bound (e2e) using martingale inequalities similar to the ones used for the confidence
intervals to derive a uniform high probability bound.

Step 1: Following Theorem E.2, we define

T
Wg = (53_1 - /6) GTZS and ftfl = g (Zla €1,M1y--y2t—1,€t—1,Tt—1, Zt) .

It is immediate to verify that the hypothesis are satisfied, since w; is F;_i-measurable as
B;_; and z; are too. Bearing in mind this substitution we have

14+ 225 w?
<1+L2Zwt>log Y . =, (35)

24



ONLINE INSTRUMENTAL VARIABLE REGRESSION

with probability at least 1 — §.
Step 2: Thus, we proceed like for the first term in the Step 2 for the previous Term
(oLe):

T SN2 T T
> (81-8.0"x) Sle(‘”;H@ zt”(éjlc;z,mc:)“)‘l

t=1

(Cauchy-Schwarz and Lemma B.1)

<or-s Yt o o= (opostion a0

< br_y LA_lz\HGzt NN (36)

< bro1(0)L3 112 L2Z‘HG“ 1m (37)

= by 1(0) L2 LBLE <C3A+ L 2105@(2)1) (38)
O(dlogT) O(oeT) —

=0 (dlog®T) (39)

where in the first inequality we also used the fact that b;_;(d) is monotonically increasing
in ¢, to take the radii outside the summation.

Step 3: Thus, substituting inside Equation (35), the order of (e2e) is O (\/&log(T) log (M)).
Term 3: Coupling of First- and Second-stage Noises. We bound the term (e3e)

containing the self-fulfilling bias, i.e. the correlation between the first- and second-stage
noise.

T T
Znt (IBt—l_IB)TEtSZH’Bt 1 ’BHG (Gav 180 Hnt tHe Nl 1 (:)t—jl
t=1 t=1

(Cauchy-Schwarz)

br—1( ZHmetH@fl el 1(:);;1 (Lemma B.1)

Cs+1 log (1/5)
S\/le(é)\/a(Lé_1LeLn)< iﬂ +4 )\nin(z)(log(T)+1)>

O(vdlogT)
O(vdlogT)
(Lemma B.4)
= O (dlogT) (40)
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where in the second inequality we also used the fact that b;_1(d) is monotonically increasing
in t, to take the radii outside the summation.
O

Remark B.2. In Appendiz F, we describe that the first stage regression in O2SLS can be
expressed as running d independent ridge regressions for each column of ® (Equation (94)).
Since the standard analysis of each of the ridge regressions assume independent and sub-
Gaussian noise added in the linear model (cf. Theorem F.1; (Ouhamma et al., 2021)), we
assume that each component of the first stage noise, i.e. € ;, corresponding to the i-th ridge

regression is bounded in [—Le, Le]. Thus, we obtain that ||€|3 = Z?zl €;; < dLZ. For the
rest of the paper, we use this fact that ||€||3 is bounded by dL?.

Lemma B.1 (Confidence Ellipsoid for the Second-stage Parameters). Let us define the
design matriz to be G, ; = Z!Z;+ Ny for some X\ > 0. Then, for bounded first stage noise
|ne| < Ly, the true parameter B belongs to the set

= {Ber: 18, - Blg, < VO }. (41)

2
with probability at least 1 — § € (0,1), for all t > 0. Here, by(5) = %log (%)

Proof. We can rewrite

B, —B= (ZtTXt> Z/m, = G)t <ZtTZt + )\Hd) Z/m = @t G;éZtTm- (42)

Take € R? and by the Cauchy-Schwarz inequality we have

z'B,—x B=2'0, G;\Z/n, <@t x, G}z nt> (43)
~—T ~—
<[e sl lemizind g = |6 |, J2n -
(11) (I11)
The choice we will make for « is the following
~T ~ ~
x £ 0, G;+0:(8; — B) = H(B; — B), (45)

which leads to the following rewriting for the single terms in which we decomposed our

problem.

Term (I): From a simple substitution and the definition of a norm induced by a matrix
we have

278 -2'8 = (2.8,-B) = (0, G..0:(8,-P).B-B)  (40)
= 18, - Bl

(BG 9,5
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Term (II): First, we rewrite the following term

H(:)ZTmHGz1 = (8, 2.6, 'x) L= 276,'6:10, 'a = zlg 1 (9)
= Hw”((:):(;z,t(:)t)il ) (49)
and, once again, we substitute the definition of x in Equation (45):
~T .
HmH(é:Gz,tét)_l = [0, G208, — B)H(C:):Gz,tét)_l (50)
= 18— BH@:GM@{ (51)

Terms (IIT): We bound the last term using Theorem E.1 for the first inequality, and
Lemma A.1 in the second inequality:

t 1/2 y_d/2 2 2
det (G, A4/ dL 1+ ¢L2/X
HZ?ntHGfHE nezs| < 2(Ln/2)210g( ( ’tg )g\/ 4”log< ; / >
Zs s=1

G
(52)
Finally, from our initial decomposition, dividing on both sides by ||3, — 3| 67 a. .6 Ve
z,tY9t
get '
dL? 1+tL2/\
_ R < n z .
18, - Bllg7e, o, < \/ o (2 (53)
O

Remark B.3. We note that the ellipsoid bound has the following order in d and t while
neglecting the constants:

b;(6) = O (dlog(t)) (54)

Lemma B.2 (Bounding the First-stage Parameters). Given the relevance condition in
Assumption 3.1 and a reqularization parameter A > 0, we have the following upper bound
for the inverse of the estimated parameter (Equation (94)) in the first-stage regression:

o Le

o7 < 252
2

; . (55)

Proof. By the sub-multiplicativity of the matrix norms we have
~—1 T -1 T
jofl,= (=% (z'z+x)

-1
< (zrx)

2

Jaim s, &
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Then, by the sub-additivity of the norms

t
H(zjzt + Aﬂm < (HZTZt(H +[|AL)l, < max <U,Zzszjv> +A (58)
veSd— —1
t t
_ 2 2
= max, > (v,25)° + A < Z;stug + A (59)
<tL% 4+ ) (60)

Then, we note that the quantity H‘ (Z;r Xt)_l‘HQ < % by the definition of relevance, which

implies

o 2 2 4 2
'H@tlm S75Lz+)\:Lz—|— /tSLZ+)\ (61)
2 tr T T
O

Lemma B.3 (Bounding the Impact of First-stage Noise). For bounded first and second stage

~—1
noises ||€]|3 < dLZ, |m)? < L%, and first-stage parameter estimates satisfying ‘H@t m2 <
L@—l (Lemma B.2), we have that

2
PP NN G>)

<03 +1 _log(T) + 1> | )

2
Z”et”@t oo e SdL L

z,t—1-t—1
with probability at least 1 — 4.

Proof. The proof follows using chain of inequalities from Proposition A.1 and Lemma B.2,

€|l ~—
Zu 5 oo

Then, we use the high probability bound that we introduce in Lemma D.2, plus the estimate
Y ore1 % < log(n) + 1:

ztl

T
Tl < ZH‘Gzt 1m H‘Gt 1‘“ ||€tH2 < dLZLA—l Z)‘max<G;,Ll) (63)
t=1

T
2 —1 2
L2 03 A (GZEy) < AL2LE ZA - Z Amm N (5 (64)
t=1 t=C3+1
C3+1 log(T) +1
< dL2LA_ 2
O

Lemma B.4 (Concentration of Correlated First and Second-stage Noise). For bounded
~—1

first- and second-stage noise, and first-stage parameter estimates satisfying m(—)t H’z < Lé—l

(Lemma B.2), we show that

T
Z||77t€t||(:);_11G_ 6 < VdLg-1LeLy (Ci/;l +4\/i\m§(2/26))(10g (T) + 1)) ., (66)
t=1 min

with probability at least 1 — 6 € [0,1).
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Proof. We exploit again the results of Proposition A.1

T T
_ ~—1 _
Zumetuet e S0 Ve o], Imeille = Lo+ 3~ inillledlizy/Amax (G251 )
* t=1

(67)

Now we concentrate the eigenvalues of the inverse of the design matrix according to Lemma D.2,
and with probability at least 1 — §

-1
ZHmGtHA—l e T Z|77t+1|||€t+1”2 Amax (G 1)+ D Imgallersillzy/Amax (G5 1)
t=Cs3+1
(68)
< L. \/E(C;),—i-l)LL + Z [7elll€el2
= Lg- el
; l® 2, v
(69)

-1 M which upper bounds the corre-

We proceed using Chernoff bound on ), "

sponding sum in the second term above. We start noting that by sub-Gaussianity and
boundedness of 7, €;

B [on3t \ns|||es||2/¢;] _E [euzi;ﬁ InslHeslla/x/EE[eulnt\\\etllz/\/i ‘ ;HH (70

< 62,u,2LQClL2 L1 1/s

)

< PL3ALE/IR [e“ o Ws“'ﬁsllwﬂ (boundedness of ||, [|es|2)
(iterating the same procedure)

1)

< 62/1,2L%sz(10g( )+1). (

At this point the probability of devitation of our quantity of interest using the Chernoff’s
method reads

T-1
|77t|||6t||2 . 2 2L2dL2 1 T 1)— 5
P ——=> <11’1f{6“‘ n < (log( )-‘r),u} 79
Tl ] <y ™)
e
= SAElosD D (the infimum p* = 6/4L2dL2(log(T)+1))

Therefore, with probability bigger than 1 — §:

T
3 |77t|”\/‘;”2 < 2L¢Lyy/2dlog (1/5) (log (T) + 1) . (73)
t=1

Finally, putting all together we have

Cs+1 log (1/5)
Z\Imetu o 6T S VdLg-1LeL, ( Sﬁ +4\/)\Iin(z)ﬂog(T)—l—l)> . (T4)

O]
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C. Regret Analysis for IV Linear Bandits: OFUL-IV

Theorem C.1. Under the same assumptions as that of Theorem 4.1, Algorithm 2 incurs
a regret

T
C3+1 log(T) +1
— < 2 2 2 2
Ry tzlrt < 2\/f\/bT_1(6)\/Lé_1 (L3 L2 + dL2) ( —+ 2 o () (75)

with probability 1 — § and horizon T > 1.

Proof. The instantaneous regret reads

= (B, ) — (B, @) (76)
< <,6' _15 a:t> (B, x) (since (wt,Bt_l) is optimistic inside X; x By)

<Bt 1= B, :z:t> <[§t,1 —Bi_1, :ct> (summing and subtracting 3,_)
< |1Bi1 = Bllg

1G St 1041 H tH((—)t 1Gzt— 19— 1)71

+Hﬁt 1= B

@t 1G2 2101 H t”((:)tT1Gzt 10— 1)71

(Cauchy-Schwarz inequality)

< 24/bq( Hmt”(AT )_1 (Lemma B.1)

0, Gz 10,4

The last inequality uses the concentration of 3, around the true value 3, and the fact that
we choose Bt_l inside B;_;. In both cases, the two norms are bounded by the radius of the
ellipsoid, i.e. y/b;_1(0).

Since we already know in this case how to concentrate the sum of the features norms

ST Hmt”/\—l ot e from Equation (31), we bound the regret using Cauchy-Schwarz
z,t— -

inequality in the first step to obtain

Rr<,\|T Z r? (Cauchy-Schwarz inequality)
t=1

<2 Tth ! ||xtHA1 (77)
—1

1 a-T
G;1 .0,

T

< 2VT/br_1(0) ZH%\%A ol &7 (78)
=1 t—1G2 1191

1 _log(T) + 1

< VT o) 12, (1312 +dr2) (L 1 92D F 1Y ation (31))
R , e A )\mm(z)

O(v/dlogT)

O(V/dlogT)
=0 (dﬁlog T) (79)

30



ONLINE INSTRUMENTAL VARIABLE REGRESSION

In the Equation (78), we use the fact that the radius b;_1(d) is monotonically increasing in
t. O
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D. Concentration of The Minimum Eigenvalue of The Design Matrix

The aim of the section is to find a concentration result for the minimum eigenvalue of the
design matrix, which, in turn, gives us a concentration of the fo-norm of the inverse of the
design matrix |||Gzt|||2

We start by staging two know results that we use in order to derive Lemma D.2.
Lemma D.1 is a direct corollary of Weyl’s theorem for eigenvalues (see for example Ex-
ercise 6.1 in (Wainwright, 2019)).

Lemma D.1. For two symmetric matrices A and B
‘)‘min(A) - mln( )| < H‘A BHb (80)

The following, is a classical concentration result for the covariance matrix using the
fo-norm for matrices, for a proof of this result we refer the reader to Corollary 6.20 in
(Wainwright, 2019).

Theorem D.1 (Estimation of covariance matrices). Let z1,...,2z¢ be i.i.d. zero-mean
random vectors with covariance % such that stHz < L, almost surely. Then for all § > 0,

the sample covariance matriz S =1 Z _, 2sZ, satisfies

~ 2
P[|8 - 2], 2 0] < 2dew <‘ (ngtzéyHQ n 5)) ! (81)

this means that with probability at least 1 — ¢

|- =], < % (?)”W” «(5) 121 )

Now, we use this concentration bound together with the bound on the difference of the
minimum eigenvalues of two symmetric matrices in order to bound the maximum eigenvalue

of the inverse of the design matrix.

Lemma D.2 (Well-behavedness of First-stage Design Matrix). Let z1,. .., 2z be i.i.d. zero-
mean random vectors with covariance X such that ||zs||, < L, almost surely. We denote
the regularized design matriz as G, = ANlg + 22:1 zsz] . For all § > 0 and regularization
parameter A > 0, we observe that

Lft < Cy

G Amax(Gz1) <% 7, .
ezl = rmntezh < {5 -

Here, C3 > 0 is a constant defined by FEquation (91) and Apin(X) is the minimum eigenvalue
of the true covariance matriz of z, i.e. ¥ 2 E[zz].

Proof. First, we aim to find a lower bound for the smallest eigenvalue of the design, matrix
where we set the regularization parameter A to zero. We denote the ‘non-regularized’ design
matrix as G;:to. For t > 1, we observe that G;}jo Jt =
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Thus, by applying Equation (80), we obtain

412 2d 212 2d
| Amin (G27°/t) — Amin(z)\ < tz log (5) + 2\/ tz log <5> =, - (84)

Further substituting A £ 2L2 log (%) leads to the following lower bound for the minimum
eigenvalue

Amin (G;70> > max {0, t (Amin(Z) —24f; — 2/ A (D) t)} . (85)

Here, Apax(X) and Apin () is the maximum and minimum eigenvalues of the true covariance
matrix of 2, i.e. ¥ 2 E[zz]. By well-behavedness assumption of the IV, both of them are
positive and bounded reals.

Now, from the variational definition of the minimum eigenvalues, we have

Amin(Gz,t) Z )\min (Géjo) + )‘7
which implies that Amin (Gz¢) > A for all t > 0, with equality for ¢ = 0. Thus, we have
Amin(G2¢) > max {)\, A+t ()\min(E) _ 24/ 2 Axmax(m/t) } : (36)

Let us consider the second term inside maximum of Equation (86), and we split it in
the following way

At Amin(B) — 24 — 20/t A Mpax(B) =t A‘“;(E) - <t Amin () = 2¢v/EA Apax (B) + A — 2A>
N e’

2

Term (A) Terr;lr (B)

(87)

Now we study for which values Term (B) is non-negative. The corresponding second
order polynomial equation is obtained substituting « = v/¢, and reads

U Ain (2) — 4ur/ A Amax () +2(A — 24) =0, (88)
which has two solutions given by

2V MDA A () F 224 — 1) Aain (%)

89
Ut )\min(z) ( )

In particular for ¢ > [u4], Term (A) > 0, and Equation (86) reads
Amin(Gz,1) > max {\, t Anin(2)/2} . (90)

Therefore, for t > [2A/ Apin(X)] and ¢ > [uy | we have that Apin(Gz ) > t Amin(X)/2.
Putting the results together, we conclude that
Amin(Gzt) >t Amin(X)/2 for ¢ > Cs £ max {[2A/ Anin(2)], [u+]}, (91)
while for ¢t < C3, we retain the trivial lower bound of the minimum eigenvalue, i.e. .
In summary, we have
Aift < Cy

)\min G 2
(Gz) {t)\min(Z)/2 if t > Cj

_ Lift < Cs
= Amax(G3y) < {/\ 2 s COa (92)
Do) 0> 03

O]
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E. Concentration of Scalar and Vector-valued Martingales

We look for deviations of the vector martingales Ztszl nszs and the scalar valued martingale

Zz;l N (ﬁt,1 — ﬁ)T © "z, from their expected values. These results are required in the
proof of Theorem B.1. The first martingale is vector-valued while the second is scalar-
valued. For the vector-valued martingale, we want to bound its deviations when its values
are weighted by the inverse of its design matrix G;é like it appears in ”stHéﬁ . The design

matrix G;}t is itself derived from the martingale. Hence, it is called the ‘self-normalized
bound’.

The following theorems were introduced in (Abbasi-Yadkori et al., 2011a, 2012) for the
two cases. We state and prove them here for completeness. We leverage the fact that the
IVs, the covariates, and the noises are bounded random variables, and thus sub-Gaussian.

E.1 Vector Martingales

Lemma E.1. Let pu € R? be arbitrary and consider for any t > 0

mft £ Hexp (B2 a2,

02

Let 7 be a stopping time with respect to the filtration {F;};=,. Then, m¥ is a.s. well-defined
and E [mT] <1.

Proof. We claim that {mf }:Zo is a supermartingale. Let

ne (s ze) 1 2
ar & _ = .
t eXp < o9 2 <IJ’) Zt> >
Observe that by conditional R-sub-Gaussianity of 7; we have E [df | ,7:,5_1] < 1. Clearly, d!*
is Fi-measurable, as is mf‘. Further,

E[mf' | Fioa] =E[mf---di dif | Foa] =df - di B [d) | Fooa] <mft

showing that {mt } +—o is indeed a supermartingale and in fact E [mt ] <1

Now, we argue that m¥ is well-defined. By the convergence theorem for nonnegative
supermartingales, M& = lim;_ oo mf is almost surely well-defined. Hence, m¥ is indeed
well-defined independently of whether 7 < oo holds or not. Next, we show that E [mT] <1

For this let Qf' = Mzm{T 1 be a stopped version of (mt ) By Fatou’s Lemma, E [mf] =

E [liminf; o Q}] <liminf; o E [Q}] < 1, showing that E [m#] < 1 indeed holds. O

Next lemma uses the “method of mixtures” technique, (Lattimore and Szepesvari, 2020)
Chapter 20.

Lemma E.2. Let {F};°, be a filtration. Let T be a stopping time with respect to the
filtration {F;};2,. Then, for any 6 > 0, with probability 1 — 6

det (G, ) /2 \=4/2
|ysT||é;1T < 20§1og< et ( g .
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Proof. We decompose G ; according to the following notation in order to ease the notation

t
Gey 2N+ ) 2z, =V 4V,

s=1

where V and V; are defined by V £ Ay and V; £ Zizl zsz] . We can rewrite for example

mf as follows mf = exp (<“U’7jt> - %”HH%@) :

Let p be a Gaussian random variable which is independent of all the other random
variables and whose covariance is V1. Define

mtéE[mf|}"@o],

where F, is the tail o-algebra of the filtration i.e. the o-algebra generated by the union
of the all events in the filtration. Clearly, we still have E [m,] = E [IE [m’TL ] u]] < 1. Let
us calculate m;. Let f denote the density of u and for a positive definite matrix P let

c(P) = /(2m)4/ det(P) = [exp (—ix " Px) dz. Then,
me= [ esv (G = lulR, ) £
1 _ 1
= /Rd exp (—2 H/J, — Vt 1315Hi,t + 5 ”st‘%[tl> f(u)du

1 1 2 1 -1, 12 2
= WGXP <2 ||3t||vt—1> /Rd exp <—2 {HH -V StHvt + HMHV}) dp

Elementary calculation shows that if P is positive semi-definite and Q is positive definite
_ 2
lz = allp + [|l2G = [Jz — (P + Q)~'Pal|p, o + llallp — [Pal{p,q)--
Therefore,
= Vsl + Ml =l (v vo sl Vs, sy
v otlvy v Y v, t oty Hi(v4ve)~
S T A R P A PO T S
t t ViV, t Vt t (VJth) )

which gives

_ 1 1 2 1 1 2

me= cgren (3sifvevyt) oo (gl - vvortal )
_c(V+Vy) 1 2 B det(V) 1/2 1 )
= W exXp 5 ”StH(V+Vt)—1 == m exXp 5 HStH(VJth)_l

_ o det(V) 2 1” H?
“Ndet(v+vy ) TP\ lFtlvevy
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Now, from E [m,] < 1, we obtain

1 2
det (V + V)2 exp (g Is7lliy v, )
P HSTH?VJrV )-1 > 2log et (V+ 1/)2 =P <2 (VHVr) > - > 1
. 6 det(V) 6=1 (det (V + V) /det(V))2
[ 1 2
exp (3 187121y o1
<E (2 (V+V7) ) :
01 (det (V+V;)/det(V))2
=E[m;]d <o
and substituting back the definition of G ; gives
det (G.,)'/?
2 z,T
P [HSTHGz,%r > 210g (W < 0.
O

Theorem E.1 (Self-Normalized Bound for Vector-Valued Martingales). Let {F;};2, be a
filtration. Let {n:};=, be a real-valued stochastic process such that n; is Fi-measurable and
N 18 conditionally oo-sub-Gaussian for some oo > 0 i.e. YA € R holds

2 2
E [ekm | ]-'t,l} < exp </\ 202) .

Let {zt};’il be an Re-valued stochastic process such that z; is Fi—1-measurable. For any
t > 0, define sy = Zi:l Nszs. Then, for any & > 0, with probability at least 1 — 9§, for all
t>0,

det (G, )/2 \=4/2
lsli%.s < 203 log< (G=0)

Proof. We will use a stopping time construction, which goes back at least to (Freedman,
1975). Define the bad event

1/2 ~1/2
Bt<5>={wef2:||st||é—;>20510g(det<Gz¢> 5det<v> )}

We are interested in bounding the probability that (J,~o B¢(d) happens. Define 7(w) =
min{t > 0:w € B(d)}, with the convention that min) = oco. Then, 7 is a stopping time.
Further, (J;5q Bt(6) = {w : 7(w) < oo} Thus,

det (G.,)Y? det(V)~1/2
P UBt(é) :]P’[T<oo]:}P’[||sT||é;1T>20§10g< et(Gzr) 3 (V) ,T < 00
>0 ’

< 4.

dtG Tl/2dtV_1/2
S]P>[||S'r’2c;rz1 >20’§]0g< e( z,) 5 e( )
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E.2 Scalar Martingales

Lemma E.3. Let (F;),~q be a filtration such that wy is Fy—1 measurable and n; is F;
measurable and is conditionally oo-sub-Gaussian. Let T be a stopping time w.r.t. to this
filtration i.e. the event {T <t} belongs to Fy. The following sequence of random variables
is a martingale with respect to Fy: s¢ = Zi:l nsws. Furthermore, for any 6 > 0,09 > 0,
with probability at least 1 —§:

r V1+035, w?
lsr| < o2 2(1/03—1—210,52) log 5
t=1

Proof. The fact that it is a martingale follows from the conditional sub-Gaussianity. Then
for A € R% t > 0 we define

Since T be a stopping time with respect to the filtration {F;};°, we can show that m?
is well-defined almost surely and E [m)‘] < 1. We start by proving that {mf‘}zo is a

2
supermartingale. Clearly, d} is Fj-measurable, as is m;. Further,

B[ | Fia] =B [md i) | 7] = @) d B[] A <miy

showing that {mg\}zo is indeed a supermartingale. Next we show that m? is always well-
defined and E [m?] < 1. First define M = m} and note that M(w) = M} w) (w). Thus,

T 7(
when 7(w) = oo, we need to argue about M2 (w). By the convergence theorem for non-
negative supermartingales, lim; ., m (w) is well-defined, which means m? is well-defined,
independently of whether 7 < co holds or not. Now let Q) = M li‘l in{r.t} be a stopped version
of m. We proceed by using Fatou’s Lemma to show that [mi‘] =K [lim inf; oo Q;\] <
liminf; o E [Q}] < 1.

Let A ~ N (0,03) be a Gaussian random variable and define m; = E [m{* | F>]. Clearly,
we still have E [m;] = E [E [m{* | A]] < 1. Let us calculate m;. We will need the density A

which is f(\) = 21 26_)‘2/ 203 Now, it is easy to write m; explicitly
7T0'2
A o A 1 o0 )\St )\2 ! 2 7}\2/20.2
my =E [m | Fuo| = m; f(A)dA = om0l exp o 2 ws | e 2dA\
—0oQ o0 s=1

57 1
TP > 2Nt 2
203 (Vo3 + >0y w?) 1+03 e w3
where we have used that [%_exp (aX — bA?) = exp (a?/(4b)) \/7/b.
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To finish the proof, we use Markov’s inequality and the fact that E [m;] <1 :

T \/1—1—03272110?
ls;| > R 2(1/ag+zwg> log : i
t=1

(g mewr)? \/1 +o3 X Wy
=P 2 2 T3y = 108 5
03 (/03 + 31 wy)
| s2 \/14‘0%2;:1@”?_
=P |exp o = > 5
o3 (1/03 + X1 wi)
>

O]

Theorem E.2 (Self-normalized Bound for Scalar Valued Martingales). Under the same
assumptions as the previous theorem, for any § > 0, with probability at least 1 — &, for all
t>0,

¢ ¢ 1+ 03 Z w?
Zntwt < g9 |2 (1/0% + Zws> log \/ =1 (93)
s=1 s=1

Proof. Define the “bad” event

()’ VR T

Bi(d) =<weN:
t(0) 1/o5 + >, w;

7 > 205 In

We are interested in bounding the probability that (J,>q Bt(0) happens. Define 7(w) =
min{t > 0:w € B(d)}, with the convention that min() = co. Then, 7 is a stopping time.
Further, (J;5q Bt(6) = {w : 7(w) < oo} Thus, by the previous theorem it holds that

2 t
(Sl i) Vit

B (6 Plr <oo] =P >2021n and 7 < 00
tL>JO /o3 + 35w o
(Zt 1778“’5) \/1+U ZS 1w
5 > 202 1In <9
1/of + 370 wi
O
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F. Parameter Estimation and Concentration in First Stage

There are many ways of addressing the regression problem in the first stage and they
fundamentally reduce to a choice for the regularizer in the regression. If we do not introduce
such regularizer, we are left with a system of multiple regressions that can be solved with
standard OLS (estimator). Another choice is to introduce a Frobenius norm regularizer.
We introduce the parameter A > 0 and a regularization term \||®||%, which is used to
penalize the model complexity. By choosing the Frobenius norm, the system of equations
decouples again but each with a regularizer term. Thus, we end up with d independent
linear equations that we try to fit separately. More interesting settings could try to solve the
optimization problem jointly by a regularizer that couples the equations (e.g. (Wainwright,
2019) provides concentration results for such settings). This will be interesting to investigate
in future works.
We indicate with 6; the j-th column of the matrix ©, then

t

Y 2

®, € argmin E Hac;r - zI@H + )O3
© s=1 2

d d
= argminz Z (CBs,j - stQj>2 + )‘ZHQJH;
j=1

s= 7=1
d t 9 9
. T
= argncflunz <Z (ﬂfs,j - Zs Qj) + )‘HGJ'Hz)
{Qj}j:l j=1 \s=1
Clearly, we can compute separately the columns Et,j of @)t as
t
2
—~ . T 2
0. € argmin (:I:S,j -z Qj> + A[9;]1; (94)
=j s=1

with solution

~ 1
0y = (20 2+ W) 2/,

where x;; is a vector with components x1 ;,...,2¢;. The solution to the independent
quadratic optimization problems is in matrix notation equal to

O, = (ztT Zi+ A]Id>_1 7/ X,

From the decomposition of the problem into multiple independent regressions, we un-
derstand that it is enough to concentrate the individual columns of ®; around the ones of
© and then to use a union bound to put things together.

Theorem F.1 (Confidence Ellipsoid for Columns in First Stage). Define x; = th Qj + €t

with €;; 15 Le-sub-Gaussian and assume that HQ]-H2 < S. Then, for any § > 0, with
probability at least 1 — 0, for allt >0, 8; lies in the set

&=146;,cRr": |8, -,

J

det (G,)"/” det(ﬂd)l/2> 1 al2g
Gz:,t

< Le 210g<
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Furthermore, if for all t > 1,||z¢||, < L, then with probability at least 1 — 6, for all t > 0,

14tL2
< Le\/dlog <+//\d> + A28
Gz 0

Corollary F.1 (Confidence Ellipsoid for First Stage). Under the conditions of the previous
theorem, for any § > 0, with probability at least 1 — 9§, for allt >0

o0 0l 5[ s (55) )

6
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