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We give here proofs of the results in Butucea et al. (2023); we keep the same notations and number
the equations starting from the last one therein.

A. Auxiliary results in the proof of Theorem 3.1

In the next lemma, we give an upper bound of 퐼0. Recall the constants 퐶 ′
푁

and 퐶퐹 from Assumption
4.1.

Let 푓 ∈ 퐿2 (휈), we dene the mapping 푣 : 퐿2 (휈) → 퐿2 (휈) such that for any 푧 ∈Z:

푣( 푓 ) (푧) =




sign( 푓 (푧))
| 푓 (푧) |푝−1

‖ 푓 ‖ 푝−1
퐿푝 (휈)

if ‖ 푓 ‖퐿푝 (휈) > 0,

휈(Z)
− 1

푞 otherwise,

(48)

so that ‖푣( 푓 )‖퐿푞 (휈) = 1.

Lemma A.1. Under the assumptions of Theorem 3.1 and with the element 푃1 ∈ 퐻푇 from Assumption
4.1 associated to the function 푉 :Z ×Q★→ R dened by:

푉 (푧, 휃★푘 ) = 푣(퐼0,푘 ) (푧),

we get that:

퐼0 ≤ 퐶 ′
푁 퐼2 + (1 −퐶퐹 )퐼3 + |Υ̂(푃1) |.

Proof. We have
퐼0,푘


퐿푝 (휈)

=

퐼0,푘
푝
퐿푝 (휈)

/
퐼0,푘

푝−1
퐿푝 (휈)

and therefore:

퐼0 :=
’
푘∈푆★

퐼0,푘

퐿푝 (휈)

=

’
푘∈푆★

π
푉 (푧, 휃★푘 )

©≠
´
©≠
´

’
ℓ∈푆̃푘 (푟 )

퐵̂ℓ (푧)
™Æ
¨
− 퐵★푘 (푧)

™Æ
¨
휈(d푧).
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Let 푃1 be an element of 퐿푇 from Assumption 4.1 associated to the function 푉 such that properties
(푖) − (푖푣) therein hold. By adding and substracting

Õ
푘∈푆★

Õ
ℓ∈푆̃푘 (푟 )


퐵̂ℓ휙푇 (휃̂ℓ ),푃1


퐿푇

to 퐼0 and using

the property (푖푖) satised by the element 푃1, that is,

휙푇 (휃

★
푘
),푃1 (푧)


푇
= 푉 (푧, 휃★

푘
) for all 푘 ∈ 푆★ and

휈-almost every 푧 ∈Z, we obtain:

퐼0 =
’
푘∈푆★

’
ℓ∈푆̃푘 (푟 )

π
퐵̂ℓ (푧)


푉 (푧, 휃★푘 ) −


휙푇 (휃̂ℓ ),푃1 (푧)


푇


휈(d푧) + Υ̂(푃1)−

’
ℓ∈푆̃ (푟 )푐


퐵̂ℓ휙푇 (휃̂ℓ ),푃1


퐿푇

.

We deduce, using Hölder’s inequality, that:

퐼0 ≤
’
푘∈푆★

’
ℓ∈푆̃푘 (푟 )

퐵̂ℓ

퐿푝 (휈)

푉 (휃★푘 ) −

휙푇 (휃̂ℓ ),푃1


푇


퐿푞 (휈)

+ |Υ̂(푃1) |

+
’

ℓ∈푆̃ (푟 )푐

퐵̂ℓ

퐿푝 (휈)

휙푇 (휃̂ℓ ),푃1

푇


퐿푞 (휈)

.

Notice that 휃̂ℓ ∉
–
푘∈푆★

B푇 (휃
★
푘
, 푟) for ℓ ∈ 푆̃(푟)푐 . Then, by using the properties (푖푖) and (푖푖푖) from As-

sumption 4.1, we get that Lemma A.1 holds with the constants 퐶 ′
푁
and 퐶퐹 from Assumption 4.1.

In the next lemma, we give an upper bound of 퐼1. Recall the constants 푐푁 and 푐퐹 from Assumption
4.2. Recall the mapping 푣 dened in (48).

Lemma A.2. Under the assumptions of Theorem 3.1 and with the element 푄0 ∈ 퐿푇 from Assumption
4.2 associated to the function 푉 :Z ×Q★→ R dened by:

푉 (푧, 휃★푘 ) = 푣(퐼1,푘 ) (푧),

we get that:

퐼1 ≤ 푐푁 퐼2 + 푐퐹 퐼3 + |Υ̂(푄0) |.

Proof. We have writing 퐼1,푘 (푧) for 퐼1,푘 (푟) (푧):

퐼1 =
’
푘∈푆★

퐼1,푘

퐿푝 (휈)

=

’
푘∈푆★

π
푉 (푧, 휃★푘 )퐼1,푘 (푧)휈(d푧).

Let 푄0 be an element of 퐿푇 from Assumption 4.2 associated to the function 푉 such that properties
(푖) − (푖푖푖) therein hold. By adding and substracting

Õ
ℓ∈푆̃ (푟 )


퐵̂ℓ휙푇 (휃̂ℓ ),푄0


퐿푇

=


퐵̂Φ푇 (휗̂),푄0


퐿푇

−
Õ

ℓ∈푆̃ (푟 )푐


퐵̂ℓ휙푇 (휃̂ℓ ),푄0


퐿푇

to 퐼1 and using the triangle inequality, we obtain:

퐼1 ≤
’
푘∈푆★

’
ℓ∈푆̃푘 (푟 )

π
|퐵̂ℓ (푧) |

푉 (푧, 휃★푘 ) sign(휃̂ℓ − 휃★푘 ) 픡푇 (휃̂ℓ , 휃
★
푘 ) −


휙푇 (휃̂ℓ ),푄0 (푧)


푇

 휈(d푧)

+
’

ℓ∈푆̃ (푟 )푐



퐵̂ℓ휙푇 (휃̂ℓ ),푄0


퐿푇

 +


퐵̂Φ푇 (휗̂),푄0


퐿푇

 .
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The property (푖) of Assumption 4.2 gives that

휙푇 (휃

★
푘
),푄0 (푧)


푇
= 0 for all 푘 ∈ 푆★ and 휈−almost

every 푧 ∈ Z. This implies that

퐵★Φ푇 (휗

★),푄0

퐿푇

= 0 . Then, by using the denition of 퐼2 and 퐼3

from (42)-(43) and the properties (푖) and (푖푖) of Assumption 4.2, we obtain:

퐼1 ≤ 푐푁 퐼2 + 푐퐹 퐼3 +



퐵̂Φ푇 (휗̂),푄0


퐿푇

 = 푐푁 퐼2 + 푐퐹 퐼3 + |Υ̂(푄0) |,

with the constants 푐푁 and 푐퐹 from Assumption 4.2.

At this point, one needs to bound 퐼2 and 퐼3. In order to do so, we bound from above and from below
the Bregman divergence 퐷퐵 dened by:

퐷퐵 = ‖퐵̂‖ℓ1 ,퐿푝 (휈) − ‖퐵★‖ℓ1 ,퐿푝 (휈) − Υ̂(푃0), (49)

where 푃0 ∈ 퐻푇 is the element given by Assumption 4.1 associated to the function 푉 given by:

푉 (푧, 휃★푘 ) = sign(퐵★푘 (푧))
|퐵★
푘
(푧) |푝−1

퐵★
푘

푝−1
퐿푝 (휈)

for all 푘 ∈ 푆★. (50)

The next lemma gives a lower bound of the Bregman divergence.

Lemma A.3. Under the assumptions of Theorem 3.1 and with the constants 퐶푁 and 퐶퐹 of Assumption
4.1, we get that:

퐷퐵 ≥ 퐶푁 퐼2 +퐶퐹 퐼3.

Proof. By denition (49) of 퐷퐵 we have:

퐷퐵 =

’
푘∈푆̂

퐵̂푘

퐿푝 (휈)

−

퐵̂푘휙푇 (휃̂푘 ),푃0


퐿푇


−

’
푘∈푆★

퐵★푘

퐿푝 (휈)

−

퐵★푘휙푇 (휃

★
푘 ),푃0


퐿푇


.

By using the interpolating properties of 푃0 from Assumption 4.1 associated to 푉 dened in (50), we
have

Õ
푘∈푆★

퐵★
푘


퐿푝 (휈)

−

퐵★
푘
휙푇 (휃

★
푘
),푃0


퐿푇

= 0. Hence, we deduce that:

퐷퐵 =

’
푘∈푆̂

퐵̂푘

퐿푝 (휈)

−

퐵̂푘휙푇 (휃̂푘 ),푃0


퐿푇

≥
’
푘∈푆̂

퐵̂푘

퐿푝 (휈)

−


퐵̂푘휙푇 (휃̂푘 ),푃0


퐿푇



≥
’
푘∈푆̂

퐵̂푘

퐿푝 (휈)

−
퐵̂푘


퐿푝 (휈)

휙푇 (휃̂푘 ),푃0

푇


퐿푞 (휈)

≥
’
ℓ∈푆̃ (푟 )

퐵̂ℓ

퐿푝 (휈)


1 −

휙푇 (휃̂ℓ ),푃0

푇


퐿푞 (휈)


+

’
푘∈푆̃ (푟 )푐

퐵̂푘

퐿푝 (휈)


1 −

휙푇 (휃̂푘 ),푃0

푇


퐿푞 (휈)


.

Thanks to properties (푖) and (푖푖푖) of Assumption 4.1 and the denitions (42) and (43) of 퐼2 and 퐼3, we
obtain:

퐷퐵 ≥
’
푘∈푆★

’
ℓ∈푆̃푘 (푟 )

퐶푁
퐵̂ℓ


퐿푝 (휈)

픡푇 (휃̂ℓ , 휃
★
푘 )

2 +
’

푘∈푆̃ (푟 )푐
퐶퐹

퐵̂푘

퐿푝 (휈)

≥ 퐶푁 퐼2 +퐶퐹 퐼3,
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where the constants 퐶푁 and 퐶퐹 are that of Assumption 4.1.

We now give an upper bound of the Bregman divergence.

Lemma A.4. Under the assumptions of Theorem 3.1, we have:

휅 휈(Z) 퐷퐵 ≤ 퐼2


퐶 ′
푁푀0 + 푐푁푀1 + 2−1푀2


+ 퐼3 ((2 −퐶퐹 )푀0 + 푐퐹푀1)

+ |Υ̂(푃1) |푀0 + |Υ̂(푄0) |푀1 + 휅 휈(Z) |Υ̂(푃0) |.

Proof. Recall that Q★ ⊂ Θ푇 . We deduce from (40) that:

휅(‖퐵̂‖ℓ1 ,퐿푝 (휈) − ‖퐵★‖ℓ1 ,퐿푝 (휈) ) ≤
1

휈(Z)
Υ̂(푊푇 ) −

1
2
푅̂2
푇 ≤ 1

휈(Z)
Υ̂(푊푇 ).

Together with (49), we obtain:

휅퐷퐵 ≤ 1
휈(Z)

|Υ̂(푊푇 ) | + 휅 |Υ̂(푃0) |.

Then, use (45) to get the Lemma.

We recall the events:

A푖 =


1

휈(Z)
푀푖 ≤ C 휅


, for 푖 ∈ {0, 1, 2} and A =A0 ∩A1 ∩A2,

where:

C =

퐶퐹

2(2 −퐶퐹 + 푐퐹 )
∧ 퐶푁

2(퐶 ′
푁
+ 푐푁 + 2−1)

·

Lemma A.5. Under the assumptions of Theorem 3.1, we have on the event A:

퐶푁 퐼2 +퐶퐹 퐼3 ≤ 2C′

|Υ̂(푃1) | + |Υ̂(푄0) | + |Υ̂(푃0) |


with C′

= C ∨ 1.

Proof. By combining the upper and lower bounds in Lemmas A.4 and A.3, we deduce that:

퐼2


퐶푁 − 1

휅 휈(Z)


퐶 ′
푁푀0 + 푐푁푀1 + 2−1푀2


+ 퐼3


퐶퐹 − 1

휅 휈(Z)
((2 −퐶퐹 )푀0 + 푐퐹푀1)



≤ 1
휅 휈(Z)

|Υ̂(푃1) |푀0 +
1

휅 휈(Z)
|Υ̂(푄0) |푀1 + |Υ̂(푃0) |.

We deduce the inequality of the Lemma on the event A.

B. Proof of Corollary 3.4

This section is dedicated to the proof of Corollary 3.4. We shall apply Theorem 3.1 in the particular case
푝 = 2 and 푞 = 2. Recall that the measure 휈 is a sum of 푛 weighted Dirac measures. All the assumptions
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of Theorem 3.1 are in force. We shall only give tail bounds for the quantities 푀 푗 with 푗 = 0, 1, 2 dened
in (23).

For 푗 = 0, 1, 2 and 휃 ∈ Θ푇 , we set 푋 푗 (휃) =

〈
푊푇 , 휙

[ 푗 ]

푇
(휃)

〉

푇


퐿2 (휈)

. Notice that 푀 푗 = supΘ푇
푋 푗 and

that the process 푋2
푗
is a 휒2 process.

We rst consider 푗 = 0. Using (12) and (14), we have that:

‖휙푇 (휃)‖2푇 = 1 and
휙 [1]
푇

(휃)


2

푇
=K

[1,1]
푇

(휃, 휃) = 1.

We dene two functions 푓푛 and 푔푛 on R by:

푓푛 (푥) = e−푥 (1−2
√

푛
푥 ) and 푔푛 (푥) =

푥
푛
2

Γ( 푛2 )
e−푥/2, (51)

where Γ denotes the gamma function. Notice that both functions are decreasing on [푛,+∞).
We set:

퐴 =

C2 휈(Z)2

휎2‖푎‖ℓ∞Δ푇
·

Recall Assumption 3.1 on the noise holds. We deduce from Lemma E.2 with 퐶1 = 퐶2 = 1 and 푢 =

C2 휅2 휈(Z)2, that for 휅 ≥

(푛 + 1)/퐴:

P


푀2

0 > C2 휅2 휈(Z)2

≤ 푓푛


휅2 퐴


+
4|Θ푇 |픡푇
2푛/2

푔푛


휅2퐴


, (52)

where |Θ푇 |픡푇 denotes the diameter of the set Θ푇 with respect to the metric 픡푇 .

We consider 푗 = 1. We have by (12) and (14) that:

휙 [1]
푇

(휃)


2

푇
= 1 and

퐷̃1;푇 [휙
[1]
푇

] (휃)


2

푇
=

휙 [2]
푇

(휃)


2

푇
=K

[2,2]
푇

(휃, 휃).

Recall 퐿2,2 and V푇 are dened in (17) and (20). Since Assumptions 2.3 and 2.4 hold, we get that for
휃 ∈ Θ푇 :

K
[2,2]
푇

(휃, 휃) ≤ 퐿2,2 +V푇 ≤ 2퐿2,2.

We deduce from Lemma E.2 with 퐶1 = 1, 퐶2 =

2퐿2,2 and 푢 = C2 휅2 휈(Z)2, that for 휅 ≥


(푛 + 1)/퐴:

P


푀2

1 > C2 휅2 휈(Z)2

≤ 푓푛


휅2퐴


+
4

2퐿2,2 |Θ푇 |픡푇

2푛/2
푔푛


휅2퐴


. (53)

We consider 푗 = 2. We have by (14) that:

휙 [2]
푇

(휃)


2

푇
=K

[2,2]
푇

(휃, 휃) and
퐷̃1;푇 [휙

[2]
푇

] (휃)


2

푇
=

휙 [3]
푇

(휃)


2

푇
=K

[3,3]
푇

(휃, 휃).

Recall the denition of the function ℎ∞ from (16) and the constants 퐿2,2, 퐿3, V푇 dened in (17) and
(20). Using also Assumption 2.4 so that V푇 ≤ 퐿2,2 ∧ 퐿3, we get that for all 휃 ∈ Θ푇 :

K
[2,2]
푇

(휃, 휃) ≤ 퐿2,2 +V푇 ≤ 2퐿2,2 and K
[3,3]
푇

(휃, 휃) ≤ 퐿3 +V푇 ≤ 2 퐿3.
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We deduce from Lemma E.2 with 퐶1 =

2퐿2,2, 퐶2 =

√
2퐿3 and 푢 = C2 휅2 휈(Z)2, that for

휅 ≥

2 퐿2,2 (푛 + 1)/퐴,

we have:

P


푀2

2 > C2 휅2 휈(Z)2

≤ 푓푛


휅2 퐴

2퐿2,2


+
4
√
퐿3 |Θ푇 |픡푇
퐿2,2 2푛/2

푔푛


휅2 퐴

2퐿2,2


. (54)

Wet set:

퐵 =

C′2
1 휈(Z)2

휎2‖푎‖ℓ∞Δ푇
with C′

1 =

√
C2

2퐿2,2 ∨ 1
· (55)

We deduce from (52), (53) and (54) that for 휅 ≥

(푛 + 1)/퐵:

2’
푗=0

P(푀 푗 > C 휅 휈(Z)) ≤ 3


푓푛


휅2퐵


+
C′
2 |Θ푇 |픡푇

2푛/2
푔푛


휅2퐵


, (56)

where the constant C′
2 is nite positive and dened by:

C′
2 = 4

(
1 ∨


2퐿2,2 ∨

√
퐿3
퐿2,2

)
.

Recall that the functions 푓푛 and 푔푛 are decreasing on [푛,+∞). We get the following asymptotically-
equivalent functions (up to a multiplicative constant) for 푓푛 (푐 푛) and 푔푛 (푐 푛) and some positive constant
푐:

푓푛 (푐 푛) = e−푛(푐−2
√
푐)

푔푛 (푐 푛)/2
푛
2  e−

푛
2 (푐−log(푐)−1)+

1
2 log(푛) . e−

푛
2 (푐−log(푐)−3/2) .

(57)

Indeed, we use that Γ(푛/2)  e
푛
2 log( 푛2 )−

푛
2 −

1
2 log(푛) . Thus, the constant 푐 determines which of the two

terms 푓푛 (푐 푛) and 푔푛 (푐 푛)/2
푛
2 is dominant.

By solving a second order inequality, we give a lower bound on the tuning parameter 휅 so that the
rst right hand term of (56) is bounded by 1/휏 for some 휏 > 1.

Indeed for 휏 > 1 and 휅 ≥

(푛 + 1)/퐵


1 +


1 + log(휏)

푛


we have:

푓푛 (휅
2퐵) ≤ 1

휏
·

We also have:

푔푛 (휅
2퐵) ≤ 푔푛

©≠
´
푛

(
1 +



1 +
log(휏)
푛

)2™Æ
¨
≤ 푔푛 (푛) e

−푛/2/
√
휏,
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where we used that 푔푛 is decreasing on [푛,+∞) for the rst inequality and that log(1 + 푥) ≤ 푥 for the
second. So that, we get:

2’
푗=0

P(푀 푗 > C 휅 휈(Z)) ≤ 3
휏
+
3C′

2 |Θ푇 |픡푇√
휏 2

푛
2

푔푛 (푛) e
−푛/2

. (58)

Then, by using (57), we deduce an asymptotical equivalence up to a multiplicative constant: 퐹 (푛) :=
푔푛 (푛) e−푛/2/2푛/2  e−푛/2+log(푛)/2.
Finally, using the denition of 퐵 given in (55), when

휅 ≥ C1휎

√
‖푎‖ℓ∞Δ푇 푛
휈(Z)2

(
1 +



1 +
log(휏)
푛

)

we get by Theorem 3.1 that the bound (21) stands with probability larger than 1−C2


1
휏
+

|Θ푇 |픡푇 퐹 (푛)
√
휏


,

where:

C1 =
√
2/C′

1 and C2 = 3(1∨ C ′
2).

This completes the proof of the corollary.

C. Proof of Corollary 3.6

In this section, we prove Corollary 3.6. We shall apply Theorem 3.1 in the particular case 푝 = 1 and
푞 = +∞. Recall that the measure 휈 is a sum of 푛 weighted Dirac measures. All the assumptions of
Theorem 3.1 are in force. We shall only give tail bounds for the quantities 푀 푗 with 푗 = 0, 1, 2 dened

by 푀 푗 = supΘ푇
푋 푗 where 푋 푗 (휃) =


〈
푊푇 , 휙

[ 푗 ]

푇
(휃)

〉

푇


퐿∞ (휈)

.

Using Assumption 3.1, we get for any 푗 = 0, 1, 2 that:

P(푀 푗 > C 휅 휈(Z)) ≤
’
푧∈Z

P

(
sup
Θ푇

〈
푊푇 (푧), 휙

[ 푗 ]

푇
(휃)

〉

푇
> C 휅 휈(Z)

)

≤ 푛P

(
sup
Θ푇

〈
푤푇 , 휙

[ 푗 ]

푇
(휃)

〉

푇
> C 휅 휈(Z)

)
.

We use (Butucea et al., 2022, Lemma A.2) that establishes a tail bound for suprema of smooth Gaus-
sian processes and similar arguments as those developed in the proof of (Butucea et al., 2022, The-

orem 2.1) to get tail bounds on supΘ푇

〈
푤푇 , 휙

[ 푗 ]

푇
(휃)

〉

푇
for 푗 = 0, 1, 2. We obtain for any 휏 > 1 and

휅 ≥ C3휎

Δ푇 log 휏/휈(Z) with C3 =

2
C


1 ∨


2퐿2,2


:

P

(
sup
Θ푇

〈
푤푇 , 휙

[ 푗 ]

푇
(휃)

〉

푇
> C 휅 휈(Z)

)
≤ C′

4

(
|Θ푇 |픡푇

휏

log 휏

∨ 1
휏

)
,
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where C′
4 is a positive constant depending on 푟 and K∞ dened in (Butucea et al., 2022, Eq. (84)). We

get:

2’
푗=0

P(푀 푗 > C 휅 휈(Z)) ≤ 3C′
4 푛

(
|Θ푇 |픡푇

휏

log 휏

∨ 1
휏

)
.

Therefore, we obtain by Theorem 3.1 that (21) stands with probability larger than

1 − C4 푛

(
|Θ푇 |픡푇

휏

log 휏

∨ 1
휏

)
,

with C4 = 3C′
4 provided the tuning parameter in (3) satises 휅 ≥ C3휎


Δ푇 log 휏/휈(Z).

D. Proofs for the construction of certicates

This section is devoted to the proof of Propositions 4.1 and 4.2. We shall rst introduce norms that
will be useful later in the proof. Then, we shall closely follow the proofs of (Butucea et al., 2022,
Propositions 7.4 and 7.5).

Let 푝, 푞 ∈ [1,+∞] such that 푝 ≤ 푞 and 1/푝 + 1/푞 = 1, let 푚, 푛 ∈ N. We dene a norm ‖·‖∗,푞 on
퐿푞 (휈,R푛) by:

‖ 푓 ‖∗,푞 = max
1≤푘≤푛

‖ 푓푘 ‖퐿푞 (휈) .

We shall also dene a norm on any matrix 퐴 ∈ R
푛×푚 by:

‖퐴‖op,∗,푞 = sup
푓 ∈ 퐿푞 (휈,R푚)
‖ 푓 ‖∗,푞 ≤ 1

‖퐴 푓 ‖∗,푞 .

Recall the denition of the operator norm associated to the ℓ∞ sup-norm dened for any matrix 퐴 ∈
R
푛×푚 by:

‖퐴‖op,ℓ∞ = max
1≤푘≤푛

’
1≤ℓ≤푚

|퐴푘 ,ℓ |.

We have the following elementary result.

Lemma D.1. We have the equality on matrix norms on R
푛×푚:

‖·‖op,ℓ∞ = ‖·‖op,∗,푞 .

Proof. Let be 퐴 ∈ R
푛×푚. We have by denition and the triangle inequality for any 푓 ∈ 퐿푞 (휈,R푚):

‖퐴 푓 ‖∗,푞 = max
1≤푘≤푛



푚’
ℓ=1

퐴푘 ,ℓ 푓ℓ


퐿푞 (휈)

≤ max
1≤푘≤푛

푚’
ℓ=1

|퐴푘 ,ℓ |‖ 푓ℓ ‖퐿푞 (휈) .

Hence for any 푓 ∈ 퐿푞 (휈,R푚) such that ‖ 푓 ‖∗,푞 ≤ 1, we have:

‖퐴 푓 ‖∗,푞 ≤ max
1≤푘≤푛

’
1≤ℓ≤푚

|퐴푘 ,ℓ | = ‖퐴‖op,ℓ∞ .
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Therefore, we have the bound ‖퐴‖op,∗,푞 ≤ ‖퐴‖op,ℓ∞ .

Let us show that, in fact, we have an equality between those two norms. We set

푘★ = arg max
1≤푘≤푛

푚’
ℓ=1

|퐴푘 ,ℓ |

and we dene 푓★ so that for almost every 푧 ∈ Z, 푓★(푧) = 휈(Z)−1/푞 (sign(퐴푘★,1), · · · , sign(퐴푘★,푞)).
We have ‖ 푓 ‖∗,푞 = 1 and ‖퐴 푓 ‖∗,푞 = ‖퐴‖op,ℓ∞ . Thus, we have ‖퐴‖op,∗,푞 ≥ ‖퐴‖op,ℓ∞ . Therefore we
obtain the equality ‖·‖op,ℓ∞ = ‖·‖op,∗,푞 .

Since the norm ‖·‖op,∗,푞 does not depend on 푞, we note ‖·‖op,∗ instead of ‖·‖op,∗,푞 .

Lemma D.2. Let 푥 ∈ R
푚, 퐴 ∈ R

푛×푚 and 푓 ∈ 퐿푞 (휈,R푚). We have the following inequalities:

푥> 푓

퐿푞 (휈)

≤ ‖푥‖ℓ1 ‖ 푓 ‖∗,푞 and ‖퐴 푓 ‖∗,푞 ≤ ‖퐴‖op,∗‖ 푓 ‖∗,푞 .

Proof. This is clear since
푥> 푓


퐿푞 (휈)

≤Õ푚
ℓ=1 |푥ℓ |‖ 푓ℓ ‖퐿푞 (휈) ≤ ‖푥‖ℓ1 ‖ 푓 ‖∗,푞 .

For a function 푓 : Z × Θ → R, we note for any 푧 ∈ Z, 푓 (푧) (resp. any 휃 ∈ Θ, 푓 (휃)) the function
푓 (푧, ·) : 휃 7→ 푓 (푧, 휃) (resp. 푓 (·, 휃) : 푧 7→ 푓 (푧, 휃)). The context in which we shall use this notation will
be clear so that there is no confusion.

D.1. Proof of Proposition 4.1(Construction of an interpolating certicate).

Let 푇 ∈ N and 푠 ∈ N
∗. Recall Assumptions 2.2 (and thus 2.1 on the regularity of 휑푇 ) and 2.3

on the regularity of the asymptotic kernel K∞ are in force. Let 휌 ≥ 1, let 푟 ∈

0, 1/


2퐿0,2


and

푢∞ ∈

0,퐻 (2)

∞ (푟 , 휌)

such that (푖푖), (푖푖푖), (푖푣) and (푣) of Proposition 4.1 hold. Recall the deni-

tions (32) and (34) of Θ푠
푇 ,훿

and 훿∞. By assumption 훿∞ (푢∞, 푠) is nite. Let 휗★ = (휃★1 , . . . , 휃
★
푠 ) ∈

Θ푠
푇 , (2휌푇 훿∞ (푢∞ ,푠))∨(2푟 ) . We note Q★ = {휃★

푖
, 1 ≤ 푖 ≤ 푠} the set of cardinality 푠. Let 푉 : Z × Q★ → R

such that for any 휃★ ∈ Q★,
푉 (휃★)


퐿푞 (휈)

= 1. Let 훼, 휉 ∈ 퐿푞 (휈,R푠). We dene the function 푃훼, 휉 on Z

as:

푃훼, 휉 (푧) =

푠’
푘=1

훼푘 (푧)휙푇 (휃
★
푘 ) +

푠’
푘=1

휉푘 (푧) 퐷̃1,푇 [휙푇 ] (휃
★
푘 ), (59)

which belongs to 퐻푇 . Recall the denition (13) of the kernel K푇 . Using (14), we dene the corre-
sponding certicate function on Z ×Θ by:

휂훼, 휉 (푧, 휃) = 〈휙푇 (휃),푃훼, 휉 (푧)〉푇 =

푠’
푘=1

훼푘 (푧) K푇 (휃, 휃
★
푘 ) +

푠’
푘=1

휉푘 (푧) K
[0,1]
푇

(휃, 휃★푘 ). (60)

Notice that the function 휂 is twice continuously differentiable on Θ with respect to its second variable
휃 due to Assumption 2.1. By Assumption 2.2 on the regularity of 휑푇 and the positivity of 푔푇 and (14),



10

we get that for almost every 푧 ∈Z the function 휃 7→ 휂훼, 휉 (푧, 휃) is of class C3 on Θ, and that:

퐷̃1;푇 [휂훼, 휉 (푧)] (휃) =

푠’
푘=1

훼푘 (푧) K
[1,0]
푇

(휃, 휃★푘 ) +

푠’
푘=1

휉푘 (푧) K
[1,1]
푇

(휃, 휃★푘 ). (61)

We give a preliminary technical lemma. Set:

Γ =


Γ
[0,0]

Γ
[1,0]>

Γ
[1,0]

Γ
[1,1]


, for Γ[푖, 푗 ]

=K
[푖, 푗 ]

푇
(휗★). (62)

As we have V(푇) ≤ infΘ∞ 푔∞, by Lemma 7.3 of Butucea et al. (2022) we have that:

Θ
푠
푇 ,휌푇 훿∞ (푢∞ ,푠)

⊆ Θ
푠
푇 ,훿푇 (푢푇 (푠) ,푠)

(63)

where 푢푇 (푠) = 푢∞ + (푠 − 1)V1 (푇). Hence we have:

(휃★푖 , 1 ≤ 푖 ≤ 푠) ∈ Θ
푠
푇 ,훿푇 (푢푇 (푠) ,푠)

. (64)

We deduce from (34), (35), (64) and Lemma D.1 that:
퐼 − Γ

[0,0]

op,∗

≤ 푢푇 (푠),

퐼 − Γ
[1,1]


op,∗

≤ 푢푇 (푠),

Γ[1,0]

op,∗

≤ 푢푇 (푠) and
Γ[1,0]>


op,∗

≤ 푢푇 (푠).

(65)

We shall write for any 푧 ∈Z:

푉 (푧) = (푉 (푧, 휃★1 ), · · · ,푉 (푧, 휃
★
푠 ))

>
. (66)

Lemma D.3. Let be 1 ≤ 푝 ≤ 푞 ≤ +∞ such that 1/푝 + 1/푞 = 1. Let 푉 :Z × Q★→ R be a measurable
mapping such that for any 휃★ ∈ Q★,

푉 (·, 휃★)

퐿푞 (휈)

= 1. Assume that (65) holds. Assume also that
푢푇 (푠) < 1/2. Then, there exist 훼, 휉 ∈ 퐿푞 (휈,R푠) such that:

휂훼, 휉 (푧, 휃
★
푘 ) =푉 (푧, 휃

★
푘 ) for 1 ≤ 푘 ≤ 푠, for 휈 − almost every 푧, (67)

퐷̃1,푇 [휂훼, 휉 (푧)] (휃
★
푘 ) = 0 for 1 ≤ 푘 ≤ 푠, for 휈 − almost every 푧, (68)

and we have also that:

‖훼‖∗,푞 ≤
1 − 푢푇 (푠)

1 − 2푢푇 (푠)
, ‖휉‖∗,푞 ≤

푢푇 (푠)

1 − 2푢푇 (푠)
,

훼 −푉

∗,푞

≤ 푢푇 (푠)

1 − 2푢푇 (푠)
,

and

‖훼‖∗,푝 ≤ 휈(Z)1/푝−1/푞
1 − 푢푇 (푠)

1 − 2푢푇 (푠)
, ‖휉‖∗,푝 ≤ 휈(Z)1/푝−1/푞

푢푇 (푠)

1 − 2푢푇 (푠)
,

훼 −푉

∗,푝

≤ 휈(Z)1/푝−1/푞
푢푇 (푠)

1 − 2푢푇 (푠)
·

Remark D.4. The construction of interpolating certicates is different from the one introduced in
Golbabaee and Poon (2022) where 휈 is the counting measure and 푞 = 2. Indeed, in Golbabaee and Poon

(2022) the mapping 휉 is constant and 훼 and 휉 solve (67) and ∇
휂훼, 휉 (·, 휃★푘 )

2
퐿2 (휈)

= 0 for 1 ≤ 푘 ≤ 푠

instead of (68).
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Proof. Let 푧 ∈ Z such that (67) and (68) are satised. By (Butucea et al., 2022, Lemma 10.1), we
obtain that:

훼(푧) = Γ
−1
푆퐶푉 (푧) and 휉 (푧) = −[Γ[1,1] ]−1Γ[1,0]

Γ
−1
푆퐶푉 (푧).

where Γ푆퐶 = Γ[0,0] − Γ[1,0]> [Γ[1,1] ]−1Γ[1,0] and:

‖퐼 − Γ푆퐶 ‖op,∗ = ‖퐼 − Γ푆퐶 ‖op,ℓ∞ ≤ 푢푇 (푠)

1 − 푢푇 (푠)
,

Γ−1푆퐶

op,∗

=

Γ−1푆퐶

op,ℓ∞

≤ 1 − 푢푇 (푠)

1 − 2푢푇 (푠)
· (69)

We recall that if 푀 is a matrix such that, ‖퐼 −푀 ‖op,∗ < 1, then 푀 is non-singular, 푀−1
=

Õ
푖≥0

(퐼−푀)푖

and
푀−1

op,∗ ≤

1 − ‖퐼 −푀 ‖op,∗

−1
. Using (65), (69), the fact that

푉

∗,푞

= 1 and Lemma D.2, we

get:

‖훼‖∗,푞 ≤
Γ−1푆퐶


op,∗

푉

∗,푞

≤ 1 − 푢푇 (푠)

1 − 2푢푇 (푠)
,

‖휉‖∗,푞 ≤
[Γ[1,1] ]−1Γ[1,0]

Γ
−1
푆퐶


op,∗

푉

∗,푞

≤
[Γ[1,1] ]−1


op,∗

Γ[1,0]

op,∗

Γ−1푆퐶

op,∗

≤ 푢푇 (푠)

1 − 2푢푇 (푠)
,

훼 −푉

∗,푞

≤
(Γ−1푆퐶 − 퐼)


op,∗

푉

∗,푞

≤ ‖Γ푆퐶 − 퐼 ‖op,∗
Γ−1푆퐶


op,∗

≤ 푢푇 (푠)

1 − 2푢푇 (푠)
·

Then use that for any 푓 ∈ 퐿푞 (휈), we have

‖ 푓 ‖퐿푝 (휈) ≤ 휈(Z)1/푝−1/푞 ‖ 푓 ‖퐿푞 (휈) (70)

by Hölder’s inequality as 푝 ≤ 푞, to obtain the upper bound on the norm ‖·‖∗,푝 . This nishes the proof.

We x 푉 :Z ×Q★→ R such that for any 휃★ ∈ Q★ we have
푉 (휃★)


퐿푞 (휈)

= 1 and we consider 푃훼, 휉
and 휂훼, 휉 with 훼 and 휉 characterized by (67) and (68) from Lemma D.3. Let 푒ℓ ∈ R

푠 be the vector with
all the entries equal to zero but the ℓ-th which is equal to 1.

Proof of (푖푖푖) from Assumption 4.1 with 퐶퐹 = 휀∞ (푟/휌)/10. Let 휃 ∈ Θ푇 such that 픡푇 (휃,Q★) > 푟

(far region). It is enough to prove that
휂훼, 휉 (휃)


퐿푞 (휈)

≤ 1 −퐶퐹 . Let 휃★ℓ be one of the elements of Q★

closest to 휃 in terms of the metric 픡푇 . Since 휗★ ∈ Θ푠
푇 ,2휌푇 훿∞ (푢∞ ,푠)

, we have, by the triangle inequality
that for any 푘 ≠ ℓ:

2휌푇 훿∞ (푢∞, 푠) < 픡푇 (휃
★
ℓ , 휃

★
푘 ) ≤ 픡푇 (휃

★
ℓ , 휃) + 픡푇 (휃, 휃

★
푘 ) ≤ 2픡푇 (휃, 휃

★
푘 ).

Hence, we have 휗★
ℓ ,휃

∈ Θ푠
푇 ,휌푇 훿∞ (푢∞ ,푠)

, where 휗★
ℓ ,휃

denotes the vector 휗★ whose ℓ-th coordinate has
been replaced by 휃. Then, we obtain from Lemma 7.3 of Butucea et al. (2022) that Θ푠

푇 ,휌푇 훿∞ (푢∞ ,푠)
⊆

Θ푠
푇 ,훿푇 (푢푇 (푠) ,푠)

and thus:

휗★ℓ ,휃 ∈ Θ
푠
푇 ,훿푇 (푢푇 (푠) ,푠)

. (71)

We denote by Γℓ ,휃 (resp. Γ[푖, 푗 ]

ℓ ,휃
) the matrix Γ (resp. Γ[푖, 푗 ]) in (62) where 휗★ has been replaced by

휗★
ℓ ,휃

. Notice the upper bounds (65) also hold for Γℓ ,휃 because of (71). Recall we have that for any
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휃 ∈ Θ, K푇 (휃, 휃) = 1 and K
[0,1]
푇

(휃, 휃) = 0. Elementary calculations give with 휂훼, 휉 from Lemma D.3
that:

휂훼, 휉 (푧, 휃) = 푒
>
ℓ


Γ
[0,0]
ℓ ,휃

− 퐼

훼(푧) + K푇 (휃, 휃

★
ℓ )훼ℓ (푧) + 푒

>
ℓ Γ

[1,0]>
ℓ ,휃

휉 (푧) + K
[0,1]
푇

(휃, 휃★ℓ )휉ℓ (푧). (72)

By taking the norm ‖·‖퐿푞 (휈) in (72) and using the triangle inequality we get:

휂훼, 휉 (휃)

퐿푞 (휈)

≤
Γ[0,0]
ℓ ,휃

− 퐼


op,∗

‖훼‖∗,푞 + ‖훼‖∗,푞 |K푇 (휃, 휃★ℓ ) |

+

Γ[1,0]>
ℓ ,휃


op,∗

‖휉‖∗,푞 + |K
[0,1]
푇

(휃, 휃★ℓ ) |‖휉‖∗,푞 .
(73)

Since 휃 belongs to the “far region", we have by denition of 휀푇 (푟) given in (30) that:

|K푇 (휃, 휃
★
ℓ ) | ≤ 1 − 휀푇 (푟). (74)

The triangle inequality and the denitions (20) of V푇 and (17) of 퐿1,0 give:

|K
[0,1]
푇

(휃, 휃★ℓ ) | ≤ 퐿1,0 +V푇 . (75)

Then, using (65) (which holds for Γℓ ,휃 thanks to (71)), we get that:

휂훼, 휉 (휃)

퐿푞 (휈)

≤ 1 − 휀푇 (푟) +
푢푇 (푠)

1 − 2푢푇 (푠)


2 + 퐿1,0 +V푇


.

Notice that the function 푟 7→ 휀∞ (푟) is increasing. Since 휌푇 ≤ 휌, we get by Lemma 7.1 of Butucea et al.
(2022) that:

휀푇 (푟) ≥ 휀∞ (푟/휌푇 ) −V푇 ≥ 휀∞ (푟/휌) −V푇 . (76)

By assumption, we have 푢푇 (푠) ≤ 퐻
(2)
∞ (푟 , 휌) ≤ 1/4. Hence, we have 1

1−2푢푇 (푠)
≤ 2. We also have V푇 ≤

1/2 as V푇 ≤ 퐻
(1)
∞ (푟 , 휌). Therefore, we get:

휂훼, 휉 (휃)

퐿푞 (휈)

≤ 1 − 휀∞ (푟/휌) +V푇 + 푢푇 (푠)

5 + 2퐿1,0


.

The assumption 푢푇 (푠) ≤ 퐻
(2)
∞ (푟 , 휌) gives:

푢푇 (푠) ≤
8

10 (5 + 2퐿1,0)
휀∞ (푟/휌)· (77)

The assumption V푇 ≤ 퐻
(1)
∞ (푟 , 휌) gives V푇 ≤ 휀∞ (푟/휌)/10. Hence, we have

휂훼, 휉 (휃)

퐿푞 (휈)

≤ 1 −
휀∞ (푟/휌)

10 . Thus, Property (푖푖푖) from Assumption 4.1 holds with 퐶퐹 = 휀∞ (푟/휌)/10.

Proof of (푖) from Assumption 4.1 with 퐶푁 = 휈∞ (휌푟)/180. Let 휃 ∈ Θ푇 such that 픡푇 (휃,Q★) ≤
푟 . Let ℓ ∈ {1, · · · , 푠} such that 휃 ∈ B푇 (휃

★
ℓ
, 푟) (“near region"). Thus, it is enough to prove that휂훼, 휉 (휃)


퐿푞 (휈)

≤ 1 − 퐶푁 픡푇 (휃
★
ℓ
, 휃)2. This will be done by using Lemma E.3 to obtain a quadratic

decay on 휂훼, 휉 from a bound on its second Riemannian derivative.



Simultaneous off-the-grid learning of mixtures issued from a continuous dictionary 13

Recall that the function 휂훼, 휉 is twice continuously differentiable with respect to its second variable.

Differentiating (61) and using that K[2,0]
푇

(휃, 휃) = −1 and K
[2,1]
푇

(휃, 휃) = 0, we deduce that for almost
every 푧 ∈Z:

퐷̃2;푇 [휂훼, 휉 (푧)] (휃) = 푒
>
ℓ (퐼 + Γ

[2,0]
ℓ ,휃

)훼(푧) + K
[2,0]
푇

(휃, 휃★ℓ )푒
>
ℓ 훼(푧) + 푒

>
ℓ Γ

[2,1]
ℓ ,휃

휉 (푧) + K
[2,1]
푇

(휃, 휃★ℓ )푒
>
ℓ 휉 (푧).

(78)
We get:

퐷̃2;푇 [휂훼, 휉 (푧)] (휃) −푉 (푧, 휃★ℓ )K
[2,0]
푇

(휃, 휃★ℓ ) = 푒
>
ℓ (퐼 + Γ

[2,0]
ℓ ,휃

)훼(푧) + K
[2,0]
푇

(휃, 휃★ℓ )푒
>
ℓ (훼(푧) −푉 (푧))

+ 푒>ℓ Γ
[2,1]
ℓ ,휃

휉 (푧) + K
[2,1]
푇

(휃, 휃★ℓ )푒
>
ℓ 휉 (푧). (79)

The triangle inequality and the denition of V푇 give:

|K
[2,0]
푇

(휃, 휃★ℓ ) | ≤ 퐿2,0 +V푇 and |K
[2,1]
푇

(휃, 휃★ℓ ) | ≤ 퐿2,1 +V푇 , (80)

where 퐿2,0 and 퐿1,2 are dened in (17). We deduce from (71), the denition of 훿푇 in (34) and (35) that:
퐼 + Γ

[2,0]
ℓ ,휃


op,∗

≤ 푢푇 (푠) and
Γ[2,1]
ℓ ,휃


op,∗

≤ 푢푇 (푠). (81)

We deduce from (79) that:

퐷̃2;푇 [휂훼, 휉 ] (휃) −푉ℓ (푧)K [2,0]
푇

(휃, 휃★ℓ )


퐿푞 (휈)

≤ ‖훼‖∗,푞
퐼 + Γ

[2,0]
ℓ ,휃


op,∗

+

훼 −푉

∗,푞

(퐿2,0 +V푇 )

+ ‖휉‖∗,푞
Γ[2,1]

ℓ ,휃


op,∗

+ 퐿2,1 +V푇



≤ 푢푇 (푠)

1 − 2푢푇 (푠)
(1 + 퐿2,0 + 퐿2,1 + 2V푇 ).

By assumption, we have 푢푇 (푠) ≤ 퐻
(2)
∞ (푟 , 휌) ≤ 1/6. Hence, we have 1

1−2푢푇 (푠)
≤ 2. Furthermore, we

have by assumption that V푇 ≤ 퐻
(1)
∞ (푟 , 휌) ≤ 1/2 and 푢푇 (푠) ≤ 퐻

(2)
∞ (푟 , 휌). In particular, we have:

푢푇 (푠) ≤
8

9(2퐿2,0 + 2퐿2,1 + 4)
휈∞ (휌푟).

Therefore, we obtain:
퐷̃2;푇 [휂훼, 휉 ] (휃) −푉 (푧, 휃★ℓ )K

[2,0]
푇

(휃, 휃★ℓ )


퐿푞 (휈)

≤ 8
9
휈∞ (휌푟). (82)

We now check that the hypotheses of Lemma E.3-(푖푖) hold in order to obtain a quadratic decay on
휃 7→

휂훼, 휉 (휃)

퐿푞 (휈)

from the bound (82). First recall that for almost every 푧 ∈ Z, 휃 7→ 휂훼, 휉 (푧, 휃) is
twice continuously differentiable and have the interpolation properties (67). By the triangle inequality
and since by assumption V푇 ≤ 퐿2,0, we have:

sup
Θ2
푇

|K
[2,0]
푇

| ≤ 퐿2,0 +V푇 ≤ 2퐿2,0.
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Then, Lemma 7.1 of Butucea et al. (2022) ensures that for any 휃, 휃 ′ in Θ푇 such that 픡푇 (휃, 휃 ′) ≤ 푟 we
have:

−K[2,0]
푇

(휃, 휃 ′) ≥ 휈∞ (푟휌푇 ) −V푇 ≥ 휈∞ (휌푟) −V푇 ≥ 9
10
휈∞ (휌푟),

where we used that the function 푟 7→ 휈∞ (푟) is decreasing and 휌푇 ≤ 휌 for the second inequality and that
V푇 ≤ 퐻

(1)
∞ (푟 , 휌) ≤ 휈∞ (휌푟)/10 for the last inequality.

Set 훿 = 8
9 휈∞ (휌푟), 휀 = 9

10 휈∞ (휌푟), 퐿 = 2퐿2,0. As 푟 < 퐿−
1
2 and 훿 < 휀, we apply Lemma E.3-(푖푖) and

get for 휃 ∈ B푇 (휃
★
ℓ
, 푟):

휂훼, 휉 (휃)

퐿푞 (휈)

≤ 1 − 휈∞ (휌푟)

180
픡푇 (휃, 휃

★
ℓ )

2
.

Proof of (푖푖) from Assumption 4.1 with 퐶 ′
푁

= (5퐿2,0 + 퐿2,1 + 4)/8. Let 휃 ∈ Θ푇 such that
픡푇 (휃,Q

★) ≤ 푟 . Let ℓ ∈ {1, · · · , 푠} such that 휃 ∈ B푇 (휃
★
ℓ
, 푟) (“near region"). We shall prove that휂훼, 휉 (휃) −푉 (휃★ℓ )


퐿푞 (휈)

≤ 퐶 ′
푁
픡푇 (휃

★
ℓ
, 휃)2.

Let us consider the function 푓 : (푧, 휃) → 휂훼, 휉 (푧, 휃) −푉 (푧, 휃★ℓ ). We will bound
퐷̃2;푇 [ 푓 ] (휃)


퐿푞 (휈)

on B푇 (휃★ℓ , 푟) and apply Lemma E.3-(푖) on 푓 to prove the the inequality of property (푖푖). Notice that for
almost every 푧 ∈Z, the map 휃 7→ 푓 (푧, 휃) is twice continuously differentiable. By construction, see (67),
we have for almost every 푧 ∈Z that 퐷̃2;푇 [ 푓 (푧)] = 퐷̃2;푇 [휂훼, 휉 (푧)], 푓 (푧, 휃★ℓ ) = 0 and 퐷̃1;푇 [ 푓 (푧)] (휃

★
ℓ
) =

0. We deduce from (78) and the bounds (80) that:

퐷̃2;푇 [ 푓 ] (휃)

퐿푞 (휈)

≤ ‖훼‖∗,푞
퐼 + Γ

[2,0]
ℓ ,휃


op,∗

+ ‖훼‖∗,푞 (퐿2,0 +V푇 )

+ ‖휉‖∗,푞
Γ[2,1]
ℓ ,휃


op,∗

+ ‖휉‖∗,푞 (퐿2,1 +V푇 ).

Using (81), and the bounds on 훼 and 휉 from Lemma D.3, we get:

퐷̃2;푇 [ 푓 ] (휃)

퐿푞 (휈)

≤ 1 − 푢푇 (푠)

1 − 2푢푇 (푠)
(퐿2,0 +V푇 + 푢푇 (푠)) +

푢푇 (푠)

1 − 2푢푇 (푠)
(퐿2,1 +V푇 + 푢푇 (푠)).

Since 푢푇 (푠) ≤ 퐻
(2)
∞ (푟 , 휌) ≤ 1/6 and V푇 ≤ 퐻

(1)
∞ (푟 , 휌) ≤ 1/2, we get:

퐷̃2;푇 [ 푓 ] (휃)

퐿푞 (휈)

≤ 5
4
퐿2,0 +

1
4
퐿2,1 + 1.

We get thanks to Lemma E.3-(푖) on the function 푓 that for any 휃 ∈ B푇 (휃
★
ℓ
, 푟):

휂훼, 휉 (휃) −푉 (휃★ℓ )

퐿푞 (휈)

≤ 1
8


5퐿2,0 + 퐿1,2 + 4


픡푇 (휃, 휃

★
ℓ )

2
.

Proof of (푖푣) from Assumption 4.1 with 퐶퐵 = 2. Recall the denition of 푃훼, 휉 in (59). Elementary
calculations give using the denitions of Γ[0,0] and Γ[1,1] in (62):

푃훼, 휉
2
퐿푇

≤ 2



푠’
푘=1

훼푘 (푧)휙푇 (휃
★
푘 )



2

퐿푇

+ 2



푠’
푘=1

휉푘 (푧) 휙
[1]
푇

(휃★푘 )



2

퐿푇
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= 2
’

1≤푘 ,ℓ≤푠
K푇 (휃

★
푘 , 휃

★
ℓ )

π
훼푘 (푧)훼ℓ (푧)휈(d푧) + 2

’
1≤푘 ,ℓ≤푠

K
[1,1]
푇

(휃★푘 , 휃
★
ℓ )

π
휉푘 (푧)휉ℓ (푧)휈(d푧)

≤ 2‖훼‖∗,푞 ‖훼‖∗,푝
’

1≤푘 ,ℓ≤푠
|K푇 (휃

★
푘 , 휃

★
ℓ ) | + 2‖휉‖∗,푞 ‖휉‖∗,푝

’
1≤푘 ,ℓ≤푠

|K
[1,1]
푇

(휃★푘 , 휃
★
ℓ ) |

≤ 2푠 ‖훼‖∗,푞 ‖훼‖∗,푝
Γ[0,0]


op,∗

+ 2푠 ‖휉‖∗,푞 ‖휉‖∗,푝
Γ[1,1]


op,∗

.

Using that ‖퐼 ‖op,∗ = 1 and (65), we get that:

Γ[0,0]

op,∗

≤ 1 + 푢푇 (푠) and
Γ[1,1]


op,∗

≤ 1 + 푢푇 (푠).

By assumption we have 푢푇 (푠) ≤ 퐻
(2)
∞ (푟 , 휌) ≤ 1

6 . Using (70), we deduce that:

푃훼, 휉
2
퐿푇

≤ 2(1 + 푢푇 (푠))
(1 − 푢푇 (푠))

2 + 푢푇 (푠)
2

(1 − 2푢푇 (푠))2
휈(Z)1/푝−1/푞푠 ≤ 4 푠 휈(Z)1/푝−1/푞 .

This gives:
푃훼, 휉


퐿푇

≤ 2
√
푠 휈(Z)1/2푝−1/2푞 . (83)

We proved that (푖)-(푖푣) from Assumption 4.1 stand. By assumption we also have that for all 휃 ≠ 휃 ′ ∈
Q★ : 픡푇 (휃, 휃 ′) > 2 푟 , therefore Assumption 4.1 holds. This nishes the proof of Proposition 4.1.

D.2. Proof of Proposition 4.2 (Construction of an interpolating derivative

certicate)

This section is devoted to the proof of Proposition 4.2. We shall closely follow the proof of (Butucea
et al., 2022, Proposition 7.5).

Let 푇 ∈ N and 푠 ∈ N
∗. Recall Assumptions 2.2 (and thus 2.1 on the regularity of 휑푇 ) and 2.3 on

the regularity of the asymptotic kernel K∞ are in force. Let 푟 > 0 and 푢′∞ ∈ (0, 1/6) such that (푖푖푖)
and (푖푣) of Proposition 4.2 hold. Recall the denitions (32) and (34) of Θ푠

푇 ,훿
and 훿∞. By assumption

훿∞ (푢′∞, 푠) is nite. Let 휗
★
= (휃★1 , . . . , 휃

★
푠 ) ∈ Θ푠

푇 , (2휌푇 훿∞ (푢′∞ ,푠))∨(2푟 ) . We note Q★ = {휃★
푖
, 1 ≤ 푖 ≤ 푠} the

set of cardinality 푠.
Let 푉 :Z × Q★→ R be such that

푉 (휃★)

퐿푞 (휈)

= 1 for any 휃★ ∈ Q★. Recall the notation 푉 dened
in (66). Let 훼, 휉 ∈ 퐿푞 (휈,R푠). We consider the real-valued function 휂훼, 휉 dened on Z ×Θ by (60).

Recall the denition of V푇 from (20) and dene 푢′
푇
(푠) = 푢′∞ + (푠 − 1)V푇 . Thanks to (63) and (64),

we get that (65) holds with 푢푇 (푠) replaced by 푢′
푇
(푠).

Lemma D.5. Let be 1 ≤ 푝 ≤ 푞 ≤ +∞ such that 1/푝 + 1/푞 = 1. Let 푉 :Z × Q★→ R be a measurable
mapping such that for any 휃★ ∈ Q★,

푉 (·, 휃★)

퐿푞 (휈)

= 1. Assume that we have (65) with 푢푇 (푠) replaced
by 푢′

푇
(푠) < 1/2. Then, there exist 훼, 휉 ∈ 퐿푞 (휈,R푠) such that:

휂훼, 휉 (푧, 휃
★
푘 ) = 0 for 1 ≤ 푘 ≤ 푠, for 휈 − almost every 푧, (84)

퐷̃1,푇 [휂훼, 휉 (푧)] (휃
★
푘 ) =푉 (푧, 휃

★
푘 ) for 1 ≤ 푘 ≤ 푠, for 휈 − almost every 푧, (85)
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and we also have:

‖훼‖∗,푞 ≤
푢′
푇
(푠)

1 − 2푢′
푇
(푠)

, ‖휉‖∗,푞 ≤
1 − 푢′

푇
(푠)

1 − 2푢′
푇
(푠)

, (86)

and

‖훼‖∗,푝 ≤ 휈(Z)1/푝−1/푞
푢′
푇
(푠)

1 − 2푢′
푇
(푠)

, ‖휉‖∗,푝 ≤ 휈(Z)1/푝−1/푞
1 − 푢′

푇
(푠)

1 − 2푢′
푇
(푠)

· (87)

Proof. Let 푧 ∈Z such that (84) and (85) are satised. Using the notations from Section D.1, we obtain
by (Butucea et al., 2022, Lemma 10.2) that:

훼(푧) = −Γ−1푆퐶Γ
[1,0]> [Γ[1,1] ]−1푉 (푧) and 휉 (푧) =


퐼 + [Γ[1,1] ]−1Γ[1,0]

Γ
−1
푆퐶Γ

[1,0]>

[Γ[1,1] ]−1푉 (푧).

Using (65), (69) and the fact that
푉


∗,푞

= 1, we readily obtain (86). We then obtain the controls (87)

using (70).

We x 푉 :Z ×Q★→ R such that for any 휃★ ∈ Q★ we have
푉 (휃★)


퐿푞 (휈)

= 1 and we consider 푃훼, 휉
and 휂훼, 휉 given by (59) and (60), with 훼 and 휉 given by Lemma D.5.

Proof of (푖) from Assumption 4.2 with 푐푁 = (퐿0,2 + 퐿2,1 + 7)/8. We dene the function 푓 :
(푧, 휃) 7→ 휂훼, 휉 (푧, 휃) − 푉 (푧, 휃★

ℓ
) sign(휃 − 휃★

ℓ
)픡푇 (휃, 휃

★
ℓ
) on Z × Θ. To prove the Property (푖), we will

bound
퐷̃2;푇 [ 푓 ] (휃)


퐿푞 (휈)

on Θ and apply Lemma E.3-(푖). Recall 픡푇 (휃, 휃★ℓ ) = |퐺푇 (휃) −퐺푇 (휃★ℓ ) | with
퐺푇 a primitive of

√
푔푇 , and thus 푓 (푧, 휃) = 휂훼, 휉 (푧, 휃) − 푉 (푧, 휃★

ℓ
) (퐺푇 (휃) − 퐺푇 (휃

★
ℓ
)). We deduce that

for 휈-almost every 푧 ∈Z the function 푓 is twice continuously differentiable with respect to its second
variable on Θ; and elementary calculations give that 퐷̃2;푇 [ 푓 (푧)] (휃) = 퐷̃2;푇 [휂훼, 휉 (푧)] (휃) for any 휃 ∈ Θ

and for 휈-almost every 푧 ∈Z as 퐷̃1;푇 [퐺푇 ] = 1 and 퐷̃2;푇 [퐺푇 ] = 0.
Let 휃 ∈ Θ푇 and let 휃★

ℓ
be one of the elements of Q★ closest to 휃 in terms of the metric 픡푇 . Recall

the notations Γℓ ,휃 (resp. Γ[푖, 푗 ]

ℓ ,휃
) and 휗★

ℓ ,휃
dened after (71). Since for 휈-almost every 푧 ∈ Z we have

퐷̃2;푇 [ 푓 (푧)] = 퐷̃2;푇 [휂훼, 휉 (푧)], we deduce from (78) that:

퐷̃2;푇 [ 푓 ] (휃)

퐿푞 (휈)

≤
퐼 + Γ

[2,0]
ℓ ,휃


op,∗

‖훼‖∗,푞 + ‖훼‖∗,푞 |K
[2,0]
푇

(휃, 휃★ℓ ) |

+ ‖휉‖∗,푞
Γ[2,1]
ℓ ,휃


op,∗

+ ‖휉‖∗,푞 |K
[2,1]
푇

(휃, 휃★ℓ ) |.

Notice that (71) holds with 푢푇 (푠) replaced by 푢′푇 (푠). Using (80) and (81) and the bounds (86) on 훼 and
휉 from Lemma D.5, we get:

퐷̃2;푇 [ 푓 ] (휃)

퐿푞 (휈)

≤
푢′
푇
(푠)

1 − 2푢′
푇
(푠)

(퐿2,0 +V푇 + 푢′푇 (푠)) +
1 − 푢′

푇
(푠)

1 − 2푢′
푇
(푠)

(퐿2,1 +V푇 + 푢′푇 (푠)).

By assumption, we have 푢′
푇
(푠) ≤ 1/6 and V푇 ≤ 1. Hence, we obtain:

퐷̃2;푇 [ 푓 ] (휃)

퐿푞 (휈)

≤ 1
4
퐿2,0 +

5
4
퐿2,1 +

7
4
·
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Since we have for almost every 푧 ∈ Z, 푓 (푧, 휃★
ℓ
) = 0 and 퐷̃1;푇 [ 푓 (푧)] (휃

★
ℓ
) = 퐷̃1;푇 [휂훼, 휉 (푧)] (휃

★
ℓ
) −

푉 (푧, 휃★
ℓ
) = 0, using Lemma E.3 (푖), we get, with 푐푁 = (퐿2,0 + 5퐿2,1 + 7)/8:

휂훼, 휉 (휃) −푉 (휃★ℓ ) sign(휃 − 휃★ℓ ) 픡푇 (휃, 휃
★
ℓ )

퐿푞 (휈)

= ‖ 푓 (휃)‖퐿푞 (휈) ≤ 푐푁 픡푇 (휃, 휃
★
ℓ )

2
.

Proof of (푖푖) from Assumption 4.2 with 푐퐹 = (5퐿1,0 + 7)/4. Let 휃 ∈ Θ푇 , we shall prove that휂훼, 휉 (휃)

퐿푞 (휈)

≤ 푐퐹 . Let 휃★ℓ be one of the elements of Q★ closest to 휃 in terms of the metric 픡푇 .

We deduce from (73) on the upper bound of
휂훼, 휉 (휃)


퐿푞 (휈)

, using (65), the inequality from (15), (75)
and the bounds (86) on 훼 and 휉 from Lemma D.5 that:

휂훼, 휉 (휃)

퐿푞 (휈)

≤
푢′
푇
(푠)

1 − 2푢′
푇
(푠)


1 + 푢′푇 (푠)


+

1 − 푢′
푇
(푠)

1 − 2푢′
푇
(푠)


퐿1,0 +V푇 + 푢′푇 (푠)


.

Since 푢′
푇
(푠) ≤ 1/6 and V푇 ≤ 1, we obtain:

휂훼, 휉 (휃)

퐿푞 (휈)

≤ 5
4
퐿1,0 +

7
4
·

Proof of (푖푖푖) from Assumption 4.2 with 푐퐵 = 2. Using very similar arguments as in the proof
of (83) (taking care that the upper bound of the norms ‖·‖∗,푞 and ‖·‖∗,푝 of 훼 and 휉 are given by (86)

and (87)) we also get
푃훼, 휉


퐿푇

≤ 2
√
푠 휈(Z)1/2푝−1/2푞 .

We proved that (푖)-(푖푖) from Assumption 4.2 stand for any 휃 ∈ Θ푇 . Hence Assumption 4.2 holds for
any positive 푟 such that for all 휃 ≠ 휃 ′ ∈ Q★ : 픡푇 (휃, 휃 ′) > 2 푟 . This nishes the proof of Proposition 4.2.

E. Auxiliary Lemmas

In this section, we provide the proofs of the intermediate results.

E.1. Proof of Proposition 1.3

We prove the optimization problem (3) is well posed. Denote the objective function of (3) by 퐹 (퐵,휗),
that is the penalized risk. Then, we have:

inf
퐵∈퐿2 (휈,R퐾 ) ,휗∈Θ퐾

푇

퐹 (퐵,휗) ≤ 퐹 (0,휗★) =
1

2휈(Z)
‖푌 ‖2퐿푇 .

By Minkowski inequality, we have that ‖·‖퐿푝 (휈,R퐾 ) ≤ ‖·‖ℓ1 ,퐿푝 (휈) . Indeed, we have for any 퐵 =

(퐵1, . . . , 퐵퐾 ) ∈ 퐿2 (휈,R퐾 ), with 퐵푘 ∈ 퐿2 (휈):

‖퐵‖퐿푝 (휈,R퐾 ) :=



(
퐾’
푘=1

퐵2
푘

) 1
2

퐿푝 (휈)

≤


퐾’
푘=1

|퐵푘 |


퐿푝 (휈)

≤ ‖퐵‖ℓ1 ,퐿푝 (휈) .
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Therefore, the minimization of 퐹 over 퐵 can be restricted to the centered closed ball B0 in 퐿 푝 (휈,R퐾 )
of radius ‖푌 ‖2퐿푇 /(휅2휈(Z)). We recall that the space 퐿 푝 (휈,R퐾 ) is a reexive Banach space whose dual

is 퐿푞 (휈,R퐾 ) with 1/푝 + 1/푞 = 1, see (Diestel and Uhl, 1977, Theorem 1 p.98). By Kakutani Theorem,
the closed balls of 퐿 푝 (휈,R퐾 ) are therefore compact with respect to the weak topology, see (Brezis,
2011, Theorem 3.17). In particular (3) amounts to minimizing 퐹 over the compact set B0 ×Θ퐾

푇
.

We show that the objective function 퐹 is lower semi-continuous (lsc). Recall that a convex strongly
continuous (that is, continuous with respect to the strong topology) real valued function dened on a
Banach space is weakly lsc (that is, lsc with respect to the weak topology), see (Brezis, 2011, Corollary
3.9). For any 퐵 ∈ 퐿2 (휈,R퐾 ), we have:

‖퐵‖ℓ1 ,퐿푝 (휈) ≤ 퐾
1
푞

(
퐾’
푘=1

‖퐵푘 ‖ 푝퐿푝 (휈)

) 1
푝

= 퐾
1
푞

π
‖퐵(푧)‖ 푝

ℓ푝
휈(d푧)

 1
푝

≤ 퐾
1
2

π
‖퐵(푧)‖ 푝

ℓ2
휈(d푧)

 1
푝

= 퐾
1
2 · ‖퐵‖퐿푝 (휈,R퐾 ) ,

(88)

where we used Hölder’s inequality. We deduce that the function 퐵 7→ ‖퐵‖ℓ1 ,퐿푝 (휈) is strongly continu-
ous. Since it is also convex, we get it is weakly lsc.

Recall the space (퐿푇 , ‖·‖퐿푇 ) is a Hilbert space, see (Diestel and Uhl, 1977, Section IV). The function
푋 7→ ‖푌 − 푋 ‖퐿푇 dened on 퐿푇 is weakly lsc as it is strongly continuous and convex. Then, since the
function 휗 7→ Φ(휗) is continuous, we deduce that the function (퐵,휗) 7→ 퐵Φ(휗) is continuous from
퐿 푝 (휈,R퐾 ) × R

퐾 to 퐿푇 with respect to the product topology of the weak topology on 퐿 푝 (휈,R퐾 ) and
the usual topology on R

퐾 . Since the composition of a continuous function by a lsc function is a lsc
function, we deduce that the function (퐵,휗) 7→ ‖푌 − 퐵Φ(휗)‖퐿푇 is lsc (with respect to product topology
of the weak topology on 퐿 푝 (휈,R퐾 ) and the usual topology on R

퐾 ).

In conclusion, the objective function (퐵,휗) 7→ 퐹 (퐵,휗) is lsc (with respect to the product topology
of the weak topology on 퐿 푝 (휈,R퐾 ) and the usual topology on R퐾 ). Then, we conclude using that a lsc
function on a compact set attains a minimum value, see (Aliprantis and Border, 2006, Theorem 2.43).

E.2. Tail bound for suprema of 흌2 processes

We give a tail bound for suprema of weighted 휒2 processes indexed on an interval 퐼 ⊂ R.

Lemma E.1. Let 퐼 ⊂ R be a bounded interval. Assume that 푋 = (푋 (휃), 휃 ∈ 퐼) is a real centered Gaus-
sian process with Lipschitz sample paths. Consider the process 푌 =

푛Õ
푖=1

푋2
푖
where (푋푖 , 1 ≤ 푖 ≤ 푛) are

independent copies of 푋 . Then, for an arbitrary 휃0 ∈ 퐼 and for all 푢 > 푛 sup휃 ∈퐼 Var(푋 (휃)), we have:

P


sup
퐼

푌 > 푢


≤ e

− 푢
Var푋 (휃0 )


1−2


푛Var푋 (휃0 )

푢



+4
π

퐼


Var(푋 ′(휃))

2푛/2Γ(푛/2)
√
푢


푢

Var(푋 (휃))

 (푛+1)/2
e−

푢
2Var(푋 (휃 ) ) d휃.

(89)

Proof. Recall that 퐼 is a bounded interval. Hence, the process 푌 dened on 퐼 has Lipschitz sample
paths. Then, applying Inequality (122) from Butucea et al. (2022) to the process 푌 and taking the
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expectation, we get, with 푀 = sup퐼 푌 , 푎 = 푢 > 0, 푏 = 푢 + 휀, 휀 > 0 and 푥0 = 휃0:

π 푢+휀

푢

P(푀 ≥ 푡) d푡 ≤ 휀P(푌 (휃0) ≥ 푢) +

π

퐼

E

|푌 ′(휃) |1{푢<푌 (휃)<푢+휀 }


d휃. (90)

The random variable 푌 (휃0) is a standard 휒2 variable of degree 푛 and therefore we have by (Obozin-
ski, Wainwright and Jordan, 2011, Lemma 11) for 푢 > 푛Var(푋 (휃0)):

P (푌 (휃0) ≥ 푢) ≤ e
− 푢

Var(푋 (휃0 ) )


1−2


푛Var(푋 (휃0 ) )

푢



. (91)

Notice that (91) trivially holds if Var(푋 (휃0)) = 0 as 푢 > 0.
We now give a bound of the second term in the right-hand side of (90). Since (푋 ′

푖
, 푋푖) are indepen-

dent Gaussian processes for 푖 = 1, · · · , 푛, we can write for a given 휃 ∈ 퐼:

푋 ′
푖 (휃) = 훼휃푋푖 (휃) + 훽휃퐺푖 ,

where (퐺푖 , 1 ≤ 푖 ≤ 푛) are independent standard Gaussian random variables independent of the vari-
ables (푋푖 (휃), 1 ≤ 푖 ≤ 푛) and:

훼휃 =
E[푋 ′(휃)푋 (휃)]

Var(푋 (휃))
and 훽2휃 =Var(푋 ′(휃)) − 훼2

휃Var(푋 (휃)),

with the convention that 훼휃 = 0 if Var(푋 (휃)) = 0. Since 푌 ′
= 2

푛Õ
푖=1

푋 ′
푖
푋푖 푎.푒., we get that:

E

|푌 ′(휃) |1{푢<푌 (휃)<푢+휀 }


≤ 2|훼휃 |E


푌 (휃)1{푢<푌 (휃)<푢+휀 }


+ 2|훽휃 |E



푛’
푖=1

푋푖 (휃)퐺푖


1{푢<푌 (휃)<푢+휀 }



.

Since the variables (퐺푖 , 1 ≤ 푖 ≤ 푛) and (푋푖 (휃), 1 ≤ 푖 ≤ 푛) are independent, the variable 푍 =

푛Õ
푖=1

푋푖 (휃)퐺푖 contidionally to the variables (푋푖 (휃), 1 ≤ 푖 ≤ 푛) is a standard Gaussian random variable of

variance 푌 (휃). This implies that:

E



푛’
푖=1

푋푖 (휃)퐺푖


1{푢<푌 (휃)<푢+휀 }



=


2
휋
E

[
푌 (휃)1{푢<푌 (휃)<푢+휀 }

]
.

We deduce that:

E

|푌 ′(휃) |1{푢<푌 (휃)<푢+휀 }


≤ 2

(
|훼휃 | (푢 + 휀) +


2
휋
|훽휃 |

√
푢 + 휀

)
P(푢 < 푌 (휃) < 푢 + 휀),

The random variable 푌 (휃) is distributed as a 휒2 variable and has a density:

푝푌 (휃) (푢) =
푢푛/2−1

2푛/2Γ(푛/2)


1

Var(푋 (휃))

푛/2
e−

푢
2Var(푋 (휃 ) ) ,

where by convention 푝푌 (휃) (푢) is taken equal to 0 if Var(푋 (휃)) = 0 and where Γ denotes the gamma
function.
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Letting 휀 goes to 0 in (90), using (91), the right continuity of the cdf of 푀 and the monotonicity of
the density 푝푌 (휃) (푢) of 푌 (휃) on [푛Var푋 (휃),+∞[, we deduce that for 푢 > 푛 sup휃 ∈퐼 Var(푋 (휃)):

P(푀 ≥ 푢) ≤ e
− 푢

Var푋 (휃0 )


1−2


푛Var푋 (휃0 )

푢



+2
π

퐼

(
|훼휃 |푢 +


2
휋
|훽휃 |

√
푢

)
푝푌 (휃) (푢) d휃. (92)

We now bound the second term of the right-hand side of (92) in two steps. Using that 훽2
휃
≤ Var(푋 ′(휃)),

we get that:


2
휋
|훽휃 |

√
푢 푝푌 (휃) (푢) ≤

1
√
휋


Var(푋 ′(휃))

2(푛−1)/2Γ(푛/2)
√
푢


푢

Var(푋 (휃))

푛/2
e−

푢
2Var(푋 (휃 ) ) . (93)

Thanks to the Cauchy-Schwarz inequality, we get |훼휃 | ≤

Var(푋 ′(휃))/


Var(푋 (휃)). We get that:

|훼휃 |푢 푝푌 (휃) (푢) ≤

Var(푋 ′(휃))

2푛/2Γ(푛/2)
√
푢


푢

Var(푋 (휃))

 (푛+1)/2
e−

푢
2Var(푋 (휃 ) ) . (94)

Notice that (93) and (94) hold also if Var(푋 (휃)) = 0. Using that


2
휋
+ 1 ' 1.8 ≤ 2 and that 푢 ≥

sup휃 ∈퐼 Var(푋 (휃)), we deduce (89) from (92), (93) and (94).

Recall the functions 푓푛 and 푔푛 dened by (51).

Lemma E.2. Let 푇 ∈ N and 푛 ∈ N
∗ be xed. Let beZ = {1, · · · , 푛}. Suppose that Assumptions 2.1 and

2.2 hold. Let ℎ be a function of class C1 from Θ푇 to 퐻푇 , with Θ푇 a sub-interval of Θ. Assume there
exist nite constants 퐶1 and 퐶2 such that for all 휃 ∈ Θ푇 :

‖ℎ(휃)‖푇 ≤ 퐶1 and
퐷̃1;푇 [ℎ] (휃)


푇
≤ 퐶2. (95)

Let (푊푇 (푧), 푧 ∈Z) be 퐻푇 -valued noise processes such that Assumption 3.1 holds. Let 푎 = (푎1, · · · , 푎푛)

be a sequence of nonnegative real numbers.
Set for any 푧 in the set Z of cardinality 푛, 푋 (푧) = (푋 (푧, 휃) = 〈ℎ(휃),푊푇 (푧)〉푇 , 휃 ∈ Θ) and 푌 =Õ
푧∈Z

푎푧푋 (푧)
2. Then, we have for 푢 ≥ (푛 + 1) ‖푎‖ℓ∞휎

2Δ푇퐶
2
1 :

P

(
sup
휃 ∈Θ푇

푌 (휃) > 푢

)
≤ 푓푛

(
푢

휎2‖푎‖ℓ∞Δ푇퐶2
1

)
+
4퐶2 |Θ푇 |픡푇

퐶1 2푛/2
푔푛

(
푢

휎2‖푎‖ℓ∞Δ푇퐶2
1

)
, (96)

where |Θ푇 |픡푇 denotes the diameter of the interval Θ푇 with respect to the metric 픡푇 , ‖푎‖ℓ∞ =

max푧∈Z |푎푧 | and Γ denotes the classical gamma function.

Proof. First we notice that:

P

(
sup
Θ푇

푌 > 푢

)
≤ P

(
sup
Θ푇

푍 > 푢/‖푎‖ℓ∞

)
, (97)

where 푍 =

Õ
푧∈Z

푋 (푧)2. We shall apply Lemma E.1 to the process 푍 .
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Recall that the Gaussian processes 푋 (푧) with 푧 ∈ Z are independent with the same distribution as
a process denoted 푋 = (푋 (휃), 휃 ∈ Θ푇 ). The process 푋 has Lipschitz sample paths on Θ푇 and 푋 ′(휃) =
〈휕휃 ℎ(휃),푤푇 〉푇 for 푎.푒. 휃 ∈ Θ푇 . By Assumption 3.1, we have for all 휃 ∈ Θ푇 and 푧 ∈Z:

Var(푋 (휃)) ≤ 휎2
Δ푇 ‖ℎ(휃)‖2푇 ≤ 휎2

Δ푇퐶
2
1 . (98)

We rst consider the case where Θ푇 = [휃min, 휃max] is a compact interval with 휃min < 휃max. Then,
according to Lemma E.1, Inequality (89) holds with 푌 replaced by 푍 for 푢 > 푛휎2Δ푇퐶

2
1 .

Notice that the function 푥 7→ 푥
푛+1
2 e−푥/2 is decreasing on [푛 + 1,+∞) and that the function 푥 7→

e
−푥


1−2

√
푛
푥



is decreasing on [푛,+∞). Then, plugging (98) in Inequality (89), we obtain for 푢 > (푛 +

1) 휎2Δ푇퐶
2
1 :

P

(
sup
Θ푇

푍 > 푢

)
≤ e

− 푢

휎2Δ푇 퐶2
1

©≠
´
1−2


푛휎2Δ푇 퐶2

1
푢

™Æ
¨

+
4

2푛/2Γ(푛/2)
√
푢

(
푢

휎2Δ푇퐶
2
1

) (푛+1)/2
e
− 푢

2휎2Δ푇 퐶2
1

π

Θ푇


Var(푋 ′(휃)) d휃.

(99)

There exists a geodesic 훾 : [0, 1] 7→ Θ푇 such that 훾0 = 휃min, 훾1 = 휃max and 픡푇 (휃min, 휃max) =∫ 1
0 | §훾푡 |


푔푇 (훾푡 ) d푡. Hence, a change of variable gives:

π

Θ푇


Var(푋 ′(휃)) d휃 =

π 1

0
| §훾푡 |

√

푔푇 (훾푡 ) ·
Var(푋 ′(훾푡 ))

푔푇 (훾푡 )
d푡. (100)

By Assumption 3.1, we have for all 휃 ∈ Θ푇 :

Var(푋 ′(휃)))

푔푇 (휃)
≤ 휎2

Δ푇

퐷̃1;푇 [ℎ] (휃)
2
푇
≤ 휎2

Δ푇퐶
2
2 .

Using this bound in (100), we get:

π

Θ푇


Var(푋 ′(휃)) d휃 ≤ 퐶2휎


Δ푇 |Θ푇 |픡푇 , (101)

where |Θ푇 |픡푇 is the diameter of the interval Θ푇 with respect to the metric 픡푇 .
Combining (99), (101) and (97), we nally obtain (96) for Θ푇 a bounded closed interval. Then, use

monotone convergence and the continuity of 푍 to get (96) for any interval Θ푇 .

E.3. Technical lemma

We consider functions 휂 : Z × Θ 7→ R and bound the quantities ‖휂(휃)‖퐿푞 (휈) on some regions of Θ
under some assumptions on the second covariant derivative of 휂 with respect to 휃. The following
Lemma extends (Poon, Keriven and Peyré, 2021, Lemma 2). The proof is similar, as the latter covers
the case where 휈 is a Dirac measure and ‖·‖퐿푞 (휈) reduces to | · |.
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Lemma E.3. Let 푞 ∈ [1,+∞]. Suppose Assumption 2.2 holds. Consider a function 휂 : Z × Θ twice
continuously differentiable with respect to its second variable and 휃0 ∈ Θ푇 .

(i) Assume that for 휈-almost every 푧 ∈Z we have 휂(푧, 휃0) = 0 and 퐷̃1;푇 [휂(푧)] (휃0) = 0, and that there
exist 훿 > 0 and 푟 > 0 such that for any 휃 ∈ B푇 (휃0, 푟) we have:

퐷̃2;푇 [휂] (휃)

퐿푞 (휈)

≤ 훿. (102)

Then, we have ‖휂(휃)‖퐿푞 (휈) < (훿/2) 픡푇 (휃, 휃0)2, for any 휃 ∈ B푇 (휃0, 푟).

(ii) Assume now that for 휈-almost every 푧 ∈ Z, 휂(푧, 휃0) = 푉 (푧) and 퐷̃1;푇 [휂(푧)] (휃0) = 0 where
푉 ∈ 퐿푞 (휈) with ‖푉 ‖퐿푞 (휈) = 1. Assume there exists a nite positive constant 퐿 such that

sup
휃0 ,휃 ∈Θ푇

|K
[0,2]
푇

(휃0, 휃) | ≤ 퐿 and there exist 휀 > 0 and 푟 ∈ (0, 퐿−
1
2 ) such that for any 휃 ∈ B푇 (휃0, 푟),

−K[0,2]
푇

(휃0, 휃) ≥ 휀. Suppose that for any 휃 ∈ B푇 (휃0, 푟) and 훿 < 휀:

퐷̃2;푇 [휂] (휃) −푉K[0,2]
푇

(휃0, 휃)


퐿푞 (휈)

≤ 훿. (103)

Then, we have ‖휂(휃)‖퐿푞 (휈) ≤ 1 − (휀−훿)
2 픡푇 (휃, 휃0)

2
, for any 휃 ∈ B푇 (휃0, 푟).
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