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We give here proofs of the results in Butucea et al. (2023); we keep the same notations and number

the equations starting from the last one therein.

A. Auxiliary results in the proof of Theorem 3.1

In the next lemma, we give an upper bound of /y. Recall the constants Cy, and Cr from Assumption
4.1.

Let f € L?(v), we define the mapping v : L>(v) — L?(v) such that for any z € Z:

p-1
sign(f(z)) & it | fllze () >0,

v(f)(2) = 175, 48)

_1 .
v(Z) 4 otherwise,

so that [|[v(f)llza () = 1.

Lemma A.1l. Under the assumptions of Theorem 3.1 and with the element P| € Hr from Assumption
4.1 associated to the function V : Z X Q* — R defined by:

V(z,07) = v(lox)(2),
we get that:

Iy<ChnhL+(1-Cp)3+|Y(Py).

Proof. We have “Ika”LP(v) = ”10,k||€p(y)/”10,k| i;l(v) and therefore:

loi= ) Moillriy = D, /V(Z’gz)(( )y éf(z))_BZ(Z))V(dZ)'

keS* keS* €Sy (r)



Let P; be an element of L7 from Assumption 4.1 associated to the function V such that properties

(i) = (iv) therein hold. By adding and substracting }; > <E5¢T (éf)’P1>LT to Ip and using
keS* ¢Sy (r)

the property (ii) satisfied by the element P, that is, <¢T(9;),P1 (z))T =V(z,0%) for all k € S* and
v-almost every z € Z, we obtain:

=y 3 / Be(2) (V(z.0) = (61@0), Pr(2)), | v(d2) + Y (P = " (Bedr (60),P1),, -

keS* £eSy (r) LeS(r)e

We deduce, using Holder’s inequality, that:

105 Y, Balow IV ~ (6701 Pyl + TP
kES*KESk(r)
+ Z By Ll’(v)||<¢T(éf)’P1>T||Lq(y)'
teS(r)¢

Notice that 8, ¢ |J Br(0%,r) for £ € §(r)¢. Then, by using the properties (i) and (iii) from As-
keS*
sumption 4.1, we get that Lemma A.1 holds with the constants C}, and Cr from Assumption4.1. [

In the next lemma, we give an upper bound of 7. Recall the constants cy and cr from Assumption
4.2. Recall the mapping v defined in (48).

Lemma A.2. Under the assumptions of Theorem 3.1 and with the element Qo € Lt from Assumption
4.2 associated to the function V : Z X Q* — R defined by:

V(z,07) =v(I11)(2),

we get that:

L <enh+epl+1Y(Qo)l-

Proof. We have writing /1 x (z) for I1 (r)(2):

I = Z ||Il’kHLP(v) = Z /V(Z,QZ)Il,k(Z)V(dZ).

keS* keS*

Let Q¢ be an element of L7 from Assumption 4.2 associated to the function V such that properties

(i) — (iii) therein hold. By adding and substracting Y <éf¢T(éf)’Q0>LT = <§<I>T(19),Q0>LT -
£eS(r)

> <§g¢T (by), Q0> Iy 0 I and using the triangle inequality, we obtain:
teS(r)c

n<y / |Be(2)|V(2,65) sign(8; — 07) o1 (8¢,67) = (67 (8e), Q0(2)) | v(d2)

keS* £eSy (r)

+ 3 [(Beord0.00),, | +|(Bor ).00),, |-

teS(r)c
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The property (i) of Assumption 4.2 gives that <¢T (9;),Q0(z)>T =0 for all kK € $* and v—almost
every z € Z. This implies that (B*(DT (ﬁ*),Q()) Ly = 0 . Then, by using the definition of I, and I3
from (42)-(43) and the properties (i) and (ii) of Assumption 4.2, we obtain:

I <enb+cplz+ |<E®T (5),Q0>LT| =cnh+crl+|Y(Qo)l,
with the constants ¢y and ¢y from Assumption 4.2. O

At this point, one needs to bound I, and /3. In order to do so, we bound from above and from below
the Bregman divergence D g defined by:

D =Bll¢,.Lr(v) = 1B*lle,.1r ) — Y(Po), (49)

where P € Hr is the element given by Assumption 4.1 associated to the function V given by:

o UBR(z )|‘D_1 N
V(z,0%) =sign(By(z)) ————— forall k € §*. (50)
IBxl7

The next lemma gives a lower bound of the Bregman divergence.

Lemma A.3. Under the assumptions of Theorem 3.1 and with the constants C and Cr of Assumption
4.1, we get that:

Dp>CNnL+CFgls.

Proof. By definition (49) of D p we have:

D5 =Y (IBellny, - (Beor@o.po)y, ) - 3 (I57]

keS keS*

LP(v) ~(Br¢r (67), PO)LT ) .

By using the interpolating properties of Py from Assumption 4.1 associated to V defined in (50), we
have Z ||B HLP(V) (B*¢T (67)s P0> = 0. Hence, we deduce that:

DB = Z “gk”LP(V) - <ék¢T (ék)’P0>LT
keS

> S Wbl - [(Beor Go.po) |

keS

> > 1Bello ) = 1Bell o ) 7 000, Po) N o
keS

2 Bello oy (1= 187 @ Po) gl )+ D 1Bl (1= 187 @00 PoYy ) -
£eS(r) keS(r)c
Thanks to properties (i) and (iii) of Assumption 4.1 and the definitions (42) and (43) of I; and I3, we
obtain:

Dp > Z Z CNHéé’”Lp(v)bT(é[GQZ)Z"‘ Z CF||ék||Lp(V)ZCNI2+CFI3,
keS* £e8, (r) keS(r)e
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where the constants Cy and Cr are that of Assumption 4.1. O
We now give an upper bound of the Bregman divergence.

Lemma A.4. Under the assumptions of Theorem 3.1, we have:

kv(Z)Dp <1y (C],VMO +cn M +2_1M2) +13((2-Cp)My+cpM;)
+[Y(P) Mo+ [Y(Qo) M, +kv(Z) Y (Py)l.

Proof. Recall that Q* ¢ ®7. We deduce from (40) that:

A 1 1
B L ) < ——Y (W, Sz YW
«1Blle.Lr ) = 1Bl e ) < S Y (Wr) - vz '

Together with (49), we obtain:

kDp < 1Y (Wr)|+ [T (Po)l.

(Z )
Then, use (45) to get the Lemma. O

We recall the events:

Ai = MISCK}, fori € {0,1,2} and A=AyNA NAy,

{

V(Z)
where:

Cr Cn

C= A :
22-Cr+cFp)  2(Cph+cen+27h)

Lemma A.5. Under the assumptions of Theorem 3.1, we have on the event A:
Cnl+Crl3 <2C’ (|Y(P1)| +1Y(Qo)l + |Y(P0)|) with C'=CV 1.

Proof. By combining the upper and lower bounds in Lemmas A.4 and A.3, we deduce that:

1 , _
I (CN - m (CNMQ+CNM1 +2 le)) +13 (CF — (2-Cp)My+cp M)

1
kv(2)

< P+ —— (o) My + [T (Po).
(2 (2

We deduce the inequality of the Lemma on the event A. O

B. Proof of Corollary 3.4

This section is dedicated to the proof of Corollary 3.4. We shall apply Theorem 3.1 in the particular case
p =2 and g = 2. Recall that the measure v is a sum of n weighted Dirac measures. All the assumptions
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of Theorem 3.1 are in force. We shall only give tail bounds for the quantities M; with j =0, 1, 2 defined
in (23).

For j=0,1,2 and 6 € Or, we set X;(0) = H<Wr,¢;j](9)> . Notice that M = supg,. X; and

T HL2(V)
that the process X]2 is a y? process.

We first consider j = 0. Using (12) and (14), we have that:

2
lor @13 =1 and [ol @) =" 0.00=1.

We define two functions f,, and g, on R by:

o) =¥ 02VD and gn<x>=;§i)e"‘/2, 51
2

where I" denotes the gamma function. Notice that both functions are decreasing on [n,+00).
We set:

__Cv@2)?
2lall,Ar

Recall Assumption 3.1 on the noise holds. We deduce from Lemma E.2 with C{ =C, =1 and u =

C? kK*v(Z)?, that for k > +/(n+ 1)/ A:

P (Mg > C2 K2 V(Z)z) < fa (K2 A) + 4|21T/|;T 8n (KZA) , (52)

where |7 |y, denotes the diameter of the set ®7 with respect to the metric dy.

We consider j = 1. We have by (12) and (14) that:

[fh@] =1 and [Brrtof 1o =o' @) =% 0.0,

Recall Ly > and Vr are defined in (17) and (20). Since Assumptions 2.3 and 2.4 hold, we get that for
0eOr:

K22(6,6) < Loa +Vr <2La .

We deduce from Lemma E.2 with C1 =1, Co = /2Ly and u = C?k*v(Z)?, that for k > +/(n+ 1)/A:

(53)

4420132107 |oy )
SLZECINEN

P(M7> 1 NZP) < o (PA)+ ~ s

We consider j =2. We have by (14) that:
21 P 2.2 ~ 2 2 3 2 33
[eF @ = @0 ana [Brrisio) = [sF @], =% 0.0,

Recall the definition of the function /. from (16) and the constants Lj >, L3, Vr defined in (17) and
(20). Using also Assumption 2.4 so that Vr < L > A L3, we get that for all § € Or:

K2(0,0) < Loa+Vp <2Lpp and K271(6,6) < Ly+Vr <21Ls.
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We deduce from Lemma E.2 with C| = /2L 3, C2 = V2L3 and u = C?k?v(Z)?, that for

k>2Ly(n+1)/A,

we have:
2A 44/L3 |O7 |y K2 A
P(M3>CPPNZP) < fu| 2|+ . . 54
2> D) b5 | o (54)
Wet set:

CIZV Z 2 2
pe SV Cl = o (55)
o?|lallg, Ar 2L,V 1

We deduce from (52), (53) and (54) that for k > \/(n+1)/B:

2 C2I|®T|DT 2
> B(M; > Crv(Z) <3 (fn (K23) g (K B)) , (56)
7=0

where the constant C, is finite positive and defined by:

’ VL3
Ci=4|1Vv+2LyoV .

Recall that the functions f,, and g, are decreasing on [n,+c0). We get the following asymptotically-
equivalent functions (up to a multiplicative constant) for f;, (c n) and g, (c n) and some positive constant
c:

fulen) =7
57)
gnlcn)/2% = o3 (c-log(c) =D+ log(n) < o—% (c-log(c)=3/2)

Indeed, we use that I'(n/2) < e? log(%)~5 -3 log(n) Thus, the constant ¢ determines which of the two
terms f,(cn) and g, (c n)/Z% is dominant.

By solving a second order inequality, we give a lower bound on the tuning parameter « so that the
first right hand term of (56) is bounded by 1/7 for some 7 > 1.

Indeed for 7> 1 and k > /(n+1)/B (1 +4/1+ @) we have:

1

fu(PB) < —-
.

We also have:

n

2
gn(KzB) <gn (n (1 +4/1+ log(T)) <gn(n) e—n/2/\/;’
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where we used that g,, is decreasing on [n,+c0) for the first inequality and that log(1 + x) < x for the
second. So that, we get:

2 3¢50
ST, > Can(Z)) £ 24 T2y ez, (58)

j=0 vr2d

Then, by using (57), we deduce an asymptotical equivalence up to a multiplicative constant: F(n) :=
gn (n) e—n/2/2n/2 - e—n/2+log(n)/2.

Finally, using the definition of B given in (55), when

k> Co

lalleArn ([ log()
V() n

.\ |®T|DTF<n>),

we get by Theorem 3.1 that the bound (21) stands with probability larger than 1 — C, (% Nz

where:

Ci=V2/C] and C=3(1VCy).

This completes the proof of the corollary.

C. Proof of Corollary 3.6

In this section, we prove Corollary 3.6. We shall apply Theorem 3.1 in the particular case p =1 and
g = +oo. Recall that the measure v is a sum of n weighted Dirac measures. All the assumptions of
Theorem 3.1 are in force. We shall only give tail bounds for the quantities M; with j =0, 1,2 defined
by M =supg, X; where X;(6) = ||<WT,¢7[J](9)>T Lot
(v
Using Assumption 3.1, we get for any j =0, 1,2 that:

P(M;>Ckv(Z2)< ) P
zeZ

Or

sup (Wr (), 01 (0)) > ckv<z>)

<nP

sup <WT’ ff’[Tj] (9)>T >Ck v(Z)) .

Or

We use (Butucea et al., 2022, Lemma A.2) that establishes a tail bound for suprema of smooth Gaus-
sian processes and similar arguments as those developed in the proof of (Butucea et al., 2022, The-

orem 2.1) to get tail bounds on supg,. <wT,¢[Tj](0)>T for j =0,1,2. We obtain for any 7 > 1 and

k = C30 At log7/v(Z) with C3 = % (1 v \/2L2,2):

P (sup <wT,¢[Tj](6)>T > CKV(Z)) <C,

Or

107 oy vl),
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where C; is a positive constant depending on r and K defined in (Butucea et al., 2022, Eq. (84)). We
get:

iP(Mj>CKV(Z))S3CA;n mvl .

Therefore, we obtain by Theorem 3.1 that (21) stands with probability larger than

1O7 |oy vl),

J=0

1-C4n

T4flogr T

with C4 = 3 C provided the tuning parameter in (3) satisfies k > C30+/Ar log 7/v(Z).

D. Proofs for the construction of certificates

This section is devoted to the proof of Propositions 4.1 and 4.2. We shall first introduce norms that
will be useful later in the proof. Then, we shall closely follow the proofs of (Butucea et al., 2022,
Propositions 7.4 and 7.5).

Let p,q € [1,+00] such that p < g and 1/p +1/g =1, let m,n € N. We define a norm ||-||, , on
L9(v,R") by:

10q = max 11 fillzay)-

We shall also define a norm on any matrix A € R by:

1 Allop,s.q = sup IAS.q-
feLi(v,R™)
Ifll,g <1

Recall the definition of the operator norm associated to the £, sup-norm defined for any matrix A €
R by:

A = max Z Ak ¢l
” ||op,£’00 I<k<n | k,[l

1<t<m

We have the following elementary result.
Lemma D.1. We have the equality on matrix norms on R

”'Hop,t’m = Il'”op,*,q~

Proof. Let be A € R™™, We have by definition and the triangle inequality for any f € L9 (v,R™):

m
ZAk,é’ft’
=1

Hence for any f € L9(v,R™) such that 1 f1l..q <1, we have:

m

< max A .
1<k<n | kf'”ff”LQ(V)
L (v) =1

A = max
lASl g max.

A < max Z A =||A .
14F g < max > [Arel=Allopz.

T T 1<t<m



Simultaneous off-the-grid learning of mixtures issued from a continuous dictionary 9

Therefore, we have the bound [|Allop . 4 < [|Allop,e., -

Let us show that, in fact, we have an equality between those two norms. We set
m
k* = arg max Z |Ak.c
1<k<n o

and we define f* so that for almost every z € Z, f*(z) = v(Z) ™4 (sign(Agx 1), ,sign(Agx 4)).

We have ||fll., =1 and [|[Af]l, 4 = [[Allop,e.,- Thus, we have ||Allop .4 = [Allop,e.,- Therefore we

obtain the equality [|“[lop,z.. = llllop,«.q- O
Since the norm ||-[|p .., does not depend on g, we note ||-|op . instead of [|-[op, . 4-

Lemma D.2. Let x e R™, A e R"™™ and f € L9 (v,R™). We have the following inequalities:

ke f

i S Wl 1 fllg  and  1AFN. 4 < IAllp-If1. q-

Proof. This is clear since ||xT f

Lo < S el fell ) < Inllg 171, -
O

For a function f : Z x ® — R, we note for any z € Z, f(z) (resp. any 6 € ©, f(6)) the function
f(z,)): 0 f(z,0) (resp. f(-,0) : z+— f(z,0)). The context in which we shall use this notation will
be clear so that there is no confusion.

D.1. Proof of Proposition 4.1(Construction of an interpolating certificate).

Let 7 € N and s € N*. Recall Assumptions 2.2 (and thus 2.1 on the regularity of ¢7) and 2.3
on the regularity of the asymptotic kernel K are in force. Let p > 1, let r € (0, 1/ \/2L0,2) and
U € (0, Héoz) (r,p)) such that (ii), (iii), (iv) and (v) of Proposition 4.1 hold. Recall the defini-
tions (32) and (34) of ® 5 and . By assumption deo(ueo,s) is finite. Let 9* = (67,...,607) €
G;,(Zpr S (ttoous))V (20 We note Q* = {67, 1 <i < s} the set of cardinality 5. Let V: Z xQ* - R

such that for any 6* € Q*, ||V(9*)||Lq(y) =1.Leta,& € L9(v,R*). We define the function P, s on Z
as:

Pae(2)= ) k(D)9 () + Y &(2) Dir [o71(6)), (59)
k=1 k=1

which belongs to Hr. Recall the definition (13) of the kernel K7 . Using (14), we define the corre-
sponding certificate function on Z X ® by:

Naré (2,0) = (97 (0), Pae ()1 = ) () K (0,07) + Y & () K1 (0,0%).  (60)
k=1 k=1

Notice that the function 7 is twice continuously differentiable on ® with respect to its second variable
6 due to Assumption 2.1. By Assumption 2.2 on the regularity of ¢7 and the positivity of gr and (14),
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we get that for almost every z € Z the function 6 - 14, £(z,6) is of class C 3 on @, and that:

Dixna,e(D10) = Y ar() K 0,00 + > &) K (60, 67). (©1)
k=1 k=1

We give a preliminary technical lemma. Set:
.01  plt.0lT . -
) (F[I,O] INIRY ) A G (62)

As we have V(T) < infg_, go0, by Lemma 7.3 of Butucea et al. (2022) we have that:

e;wr Soo (tt0,8) = 6;,& (ur (5),5) (63)
where ur (s) = o + (s — 1)V (T). Hence we have:
(07, 1<i<s)€® (64

T.o7 (ur (s).s)°

We deduce from (34), (35), (64) and Lemma D.1 that:

H[ o0l <y (s), ”1 vl <up(s), Hr“vol <ur(s) and |jr["01TH <ur(s).
op,* op,* op,* op,*
(65)
We shall write for any z € Z:
V()= (V(z,07),,V(z,05) . (66)

Lemma D.3. Letbe 1 < p < q < +oo suchthat 1/p+1/g=1. Let V: Z x Q* — R be a measurable
mapping such that for any 6* € Q*, “V("e*)”m(y) = 1. Assume that (65) holds. Assume also that

ut (s) < 1/2. Then, there exist a,& € L91(v,R®) such that:

Na,e(2,07)=V(z,05) for 1<k<s, forv—almostevery z, (67)
Dir [Ma,e(2)] (6;) =0 for 1<k<s, forv—almostevery z, (68)
and we have also that:
1 —ur(s) ur () = ur ()
lallg € T, il < oy o= < 2
1 = 2ur (s) 1 = 2ur(s) w,g 1 =2ur(s)
and
“1)q 1 —ur(s) - ur ()
< 1/p=-1/g 2 T 5/ < 1/p-1/qg _"T1°)
lal.,p <7(2)' 779 T2 el < (@) T
vl < 1p-t/g_UT(8)
||a{ *,P - V(Z) 1- 2MT (S)

Remark D.4. The construction of interpolating certificates is different from the one introduced in
Golbabaee and Poon (2022) where v is the counting measure and ¢ = 2. Indeed, in Golbabaee and Poon
(2022) the mapping ¢ is constant and @ and & solve (67) and V||17a,§(~, 02)”22(1,) =0 for 1<k<s
instead of (68).
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Proof. Let z € Z such that (67) and (68) are satisfied. By (Butucea et al., 2022, Lemma 10.1), we
obtain that:

a(z) =T5eV(z) and  &(z)=—[CH7IPIOIPELy(z).
where [gc = [10-0] — pILOIT [PIL]-1P[LO0] gpg;

1 —ur(s)
op,le T 1- 2MT (S)

ur (s)

e Ise (©)

I =Tscllop,« =1 = Tscllop,e., <

=|rsk
- lFse

We recall that if M is a matrix such that, |/ — M|,y . < 1, then M is non-singular, M=y (I-M)

i>0

—1 |
and ||M‘1 ||Op L < (1 — |1 - Mllop,*) . Using (65), (69), the fact that “V =1 and Lemma D.2, we
get: K
B | 1 —ur(s)
R V| £——F=,
||C¥|| 4 sC op,* *,q 1- ZMT (S)
< |ty pior o vl < ” rltig-1 rltol -1 < ”T—(s)
11l q < TM1] SClopall g ST opeell SCllop.e = T= 207 (5)
_ - _ _ ur (s)
o-v|| <l -n ”VH <IICsc = 1llops|[Csel| < —F——="
” *,q Sc op,* *,q op> sc op,* 1-2ur (S)

Then use that for any f € L9(v), we have

IfllLe () < VYP7V Fll L) (70)

by Holder’s inequality as p < g, to obtain the upper bound on the norm |||, . This finishes the proof.
O

We fix V : Z X @* — R such that for any §* € Q* we have ”V(H*)”Lq(v) =1 and we consider P, ¢
and 774, # with @ and ¢ characterized by (67) and (68) from Lemma D.3. Let e, € R* be the vector with
all the entries equal to zero but the £-th which is equal to 1.

Proof of (iii) from Assumption 4.1 with Cr = £.,(r/p)/10. Let 6 € O such that by (6,Q*) > r
(far region). It is enough to prove that ”’la,f (9)||Lq(v) < 1-Cr.Let 6} be one of the elements of Q*
closest to 6 in terms of the metric dr. Since 9* € G);,sz Seot1es.5)” V€ have, by the triangle inequality
that for any k # ¢:

2pT S0 (heo, 8) < DT (67, 6%) < b7 (67,0) +d7 (6,65) < 207 (6,65).

Hence, we have 9% , € ©° , where 9% _ denotes the vector #* whose ¢-th coordinate has
£,0 T’pTdoo(uoo,S) £,0

been replaced by 6. Then, we obtain from Lemma 7.3 of Butucea et al. (2022) that ©. o7 6o (0,5) -
and thus:

S
OF 61 (ur (5).5)

9}, €0 (71)

T,67 (ur (s),8)°

We denote by I'z ¢ (resp. Ft[,i’of]) the matrix I" (resp. r'li-/1) in (62) where 9* has been replaced by
0; PE Notice the upper bounds (65) also hold for I's ¢ because of (71). Recall we have that for any
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0 €0, Kr(0,0)=1 and WTLO’IJ (6,6) = 0. Elementary calculations give with 1, ¢ from Lemma D.3
that:

Nae(@0) =e] (T = 1) a() + % (6,60 )ac(2) + €] TH @ + 90 0. 00)602). (72)

By taking the norm [|-|| 4, in (72) and using the triangle inequality we get:

0,0
@y < [T =1 el g + Nl 1% (6. 67)]

’ op,*

(73)
1,0 0,1
o e R O
Since 6 belongs to the “far region", we have by definition of &7 (r) given in (30) that:
K7 (6,67)| < 1—er(r). (74)
The triangle inequality and the definitions (20) of V¢ and (17) of L; ¢ give:

171 (0,00)1 < Lo+ Vi (75)

Then, using (65) (which holds for I'; ¢ thanks to (71)), we get that:

ur ()
Lt](y) < 1 —ST(")+ 1 _ZMT(S)

[7a.2(6) (2+Lio+Vr).

Notice that the function r — &£ (r) is increasing. Since pr < p, we get by Lemma 7.1 of Butucea et al.
(2022) that:

er(r) 2 éeo(r/pr) = Vr 2 €00 (r/p) = Vr. (76)
By assumption, we have ur (s) < H(Eoz) (r,p) < 1/4. Hence, we have m < 2. We also have Vy <

1/2as Vr < HCEO]) (r, p). Therefore, we get:

||n(,,§(9)||m(v) <1 -ex(r/p)+Vr +ur(s) (5+2L1 o).

The assumption ug (s) < Hg) (r,p) gives:

8
<—& : 77
w1 (5) < f Ty o) )
The assumption Vy < Hé,l)(r,p) gives Vr < £w(r/p)/10. Hence, we have ||’7m§(0)”m(v) <l1l-
%S/p). Thus, Property (iii) from Assumption 4.1 holds with Cr = £, (r/p)/10.

Proof of (i) from Assumption 4.1 with Cy = v (pr)/180. Let § € Or such that dr (6,Q*) <
r. Let £ € {1,---,s} such that 6 € BT(Gf,r) (“near region"). Thus, it is enough to prove that

||17m§(8) La(y) S 1 — Cy d7(6%,60)2. This will be done by using Lemma E.3 to obtain a quadratic
decay on 7174, ¢ from a bound on its second Riemannian derivative.
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Recall that the function 14, ¢ is twice continuously differentiable with respect to its second variable.

Differentiating (61) and using that ‘KTD’O] (0,0) =—1 and ‘K}z’” (0,60) =0, we deduce that for almost
every z€ Z:

Doz [Ma,¢(2)1(0) = el (I + TN a(2) + K120V (0.67)ef () + ] Ty e (2) + K1 (0,67 el £(2).

10,0
(78)
We get:

Doz [Ma.¢(2)1(0) = V(2. 00K (0.67) = e L (1 + T a(2) + K (0.67) e (a(2) - V(2))
+e] T2 e + K 0.07)ef £(2). (79)
The triangle inequality and the definition of Vr give:
720 0,0%)| < Log+Vr and K2 (0,08)] < Loy +Vr, 80)

where Ly o and L1 > are defined in (17). We deduce from (71), the definition of 67 in (34) and (35) that:

[2,0]
”I+F€’9

<ur(s) and ”F””H <ur(s). @81)
op,*

We deduce from (79) that:

|D2r e 1@ - Ve o7,

2,0
<llell, H1+rg,6]

+ Ha'—VH (L2’0+(VT)
*’q

op,*

el ([, 2o+

ur (s)

——(1+Lyo+Ly1+2Vr).
_1—2uT(s)( 2,0+ Lo +2Vr)

By assumption, we have ug (s) < Ho(oz) (r,p) < 1/6. Hence, we have m < 2. Furthermore, we
have by assumption that V < H((x,l) (r,p) <1/2and ur(s) < HCEOZ) (r, p). In particular, we have:

8

< s .
ur (S) - 9(2L2’0 + 2L2’1 + 4) v (pr)

Therefore, we obtain:

8

[Pz 1na.c10) - viz.opyc @67, < Sveton). (82)

L4 (v)

We now check that the hypotheses of Lemma E.3-(ii) hold in order to obtain a quadratic decay on
01— ||r]m§(6’) La(v) from the bound (82). First recall that for almost every z € Z, 6 = 14, £(2,6) is
twice continuously differentiable and have the interpolation properties (67). By the triangle inequality
and since by assumption Vr < L o, we have:

sup|7(7[~2’0]| <Lyo+Vr <2Lp.
o7
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Then, Lemma 7.1 of Butucea et al. (2022) ensures that for any 0, 6" in @7 such that d7 (6,0”) < r we
have:

HLO0,0) 2 veslrpr) ~ Vi 2 veo(pr) = Vi = v o),

where we used that the function r — v (r) is decreasing and pr < p for the second inequality and that
Vr < HY (1, p) < veo(pr) /10 for the last inequality.

Set 6 = ng(pr), e= %voo(pr), L=2Lp. Asr < L7 and § < &, we apply Lemma E.3-(ii) and
get for 6 € Br (07, r):

Voo (PT)
et =1~ g

[7a,(6) br (6,67)%.

Proof of (ii) from Assumption 4.1 with Cy, = (5Ly0 + L2, +4)/8. Let 6 € O such that
o7 (0,Q*) < r. Let € € {1,---,s} such that § € Br(67,r) (“near region"). We shall prove that

[70.&0) = VO a,, < Ch or (67,60)%.

Let us consider the function f : (z,60) — 174,£(2,60) = V(z, G’g). We will bound HD~2;T [f](G)HLq(V)
on Br (67, r) and apply Lemma E.3-(i) on f to prove the the inequality of property (ii). Notice that for
almost every z € Z, the map 6 — f(z, 6) is twice continuously differentiable. By construction, see (67),
we have for almost every z € Z that Dy, [ f(2)] = Da.r [Ma,£(2)]. f(z.07) =0and Dy [ f(2)1(67) =
0. We deduce from (78) and the bounds (80) that:

|D271£10) e el (Lo + V)

Lo < llallg]

2,1
el T2 g Lo+ V).

Using (81), and the bounds on « and ¢ from Lemma D.3, we get:

D2 [f] (Q)HLq(V) < 1M—T((S)) M;ET)( )

Since uy (s) < Ho(oz)(r,p) <1/6and Vr < H(Eol)(r,p) <1/2, we get:

(Loo+Vr +ur(s)) + (Lo,1 +Vr +ur(s)).

5 1
La(y) S 4L20+4L21+1

|’DZ;T ] (9)

We get thanks to Lemma E.3-(7) on the function f that for any 8 € By (6%,r):

1
[70,£(6) - V(Q;)Hm(v) <3 (5Laj0+ L12+4) dr (6,67)%

Proof of (iv) from Assumption 4.1 with Cg = 2. Recall the definition of P, ¢ in (59). Elementary
calculations give using the definitions of I'l%-% and I'1-11 in (62):
2 2
+
1%

Z ax ()97 (6}) Zsk(a or1(07)

k=1

1Paclly, <

Lt
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=2 3 K (07.0)) [ o @) +2
1 1

<k,l<s

>, wi e [aeve

<k,l<s

<2lelgllall, Y. 1K @001+ 20l I, > 1%L or60))

1<k,t<s 1<k,t<s

[0,0] [1,1]
< 2slal.glloll [P +2sl el prY)
Using that ||/||,p . = 1 and (65), we get that:

oo

<l+ur(s) and ||F[l’]]H < 1+ur(s).
op,* op,

By assumption we have u7 (s) < H‘g) (r,p) < %. Using (70), we deduce that:

(1—ur (s))? +ur (s)?

0-200)) v)VP-lag < a5y ()P4,
—zur (s

1Pa.cl7, <21 +ur(s)

This gives:
Pq <2+sv(Z)\PP12, (83)
H ,§||LT

We proved that (i)-(iv) from Assumption 4.1 stand. By assumption we also have that for all 8 # 6’ €
Q* : b7 (0,0’) > 2r, therefore Assumption 4.1 holds. This finishes the proof of Proposition 4.1.

D.2. Proof of Proposition 4.2 (Construction of an interpolating derivative
certificate)

This section is devoted to the proof of Proposition 4.2. We shall closely follow the proof of (Butucea
et al., 2022, Proposition 7.5).

Let T € N and s € N*. Recall Assumptions 2.2 (and thus 2.1 on the regularity of ¢7) and 2.3 on
the regularity of the asymptotic kernel K, are in force. Let » > 0 and u/, € (0, 1/6) such that (iii)
and (iv) of Proposition 4.2 hold. Recall the definitions (32) and (34) of @} s and 6. By assumption
Ooo(uly, s) is finite. Let 9#* = (67,...,0%) € @;’(ZPT S (itlons)) v (2r) - e MOTE Q* ={0*,1<i<s}the
set of cardinality s.

Let V: Z x @* — R be such that ||V(¢9*)”Lq(v) =1 for any 6* € Q*. Recall the notation V defined

in (66). Let @, & € L9(v,R*). We consider the real-valued function 77, ¢ defined on Z x @ by (60).

Recall the definition of Vr from (20) and define u/. (s) = ul, + (s — 1)Vr. Thanks to (63) and (64),
we get that (65) holds with ur (s) replaced by u7. (s).

Lemma D.5. Letbe 1 < p < g <+ocosuchthat 1/p+1/qg=1. Let V: Z x @ — R be a measurable
mapping such that for any 0* € Q*, HV(-, 9*)||Lq = 1. Assume that we have (65) with ur (s) replaced
by u.(s) < 1/2. Then, there exist a,&é € L9(v,R*) such that:

Na,e(2, 92) =0 for 1<k<s, forv—almostevery z, (84)

Dir[Na&(2)] (07)=V(z,0;) for 1<k<s, forv—almost every z, (85)
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and we also have:

ur(s) 1 —ul.(s)
llallq < EETATE €lq = T 2u, ()" (86)
and
1/p-1/q u/T () 1/p- l/q M,T(S)
lell.,, < v(Z) AT Il , < v(Z) “2u (s) (87)

Proof. Let z € Z such that (84) and (85) are satisfied. Using the notations from Section D.1, we obtain
by (Butucea et al., 2022, Lemma 10.2) that:

a(z) = _FE%F[],O]T[1—‘[1,1]]—1‘7(2) and £(2) = (]+ [l"[l,l]]—IF[I,O]I—EéF[l,O]T) [F[l’l]]_1V(Z).

Using (65), (69) and the fact that ) \%
using (70).

= 1, we readily obtain (86). We then obtain the controls (87)
q

O

We fix V: Z x Q* — R such that for any 0* € Q* we have HV(H*)”U(V) =1 and we consider P, ¢
and 174, ¢ given by (59) and (60), with @ and ¢ given by Lemma D.5.

Proof of (i) from Assumption 4.2 with cy = (Lo + L, + 7)/8. We define the function f :
(2,0) = Na,&(2,60) — V(z,67) sign(6 — 67)dr (6,67) on Z x ©. To prove the Property (i), we will
bound ||D~2;T [f] (0)| La(y) On © and apply Lemma E.3-(i). Recall dr (,67) = |G (0) — G7 (6})| with
Gr a primitive of /g7, and thus f(z,6) =na,£(z,0) = V(z,67)(Gr (0) — G (6})). We deduce that
for v-almost every z € Z the function f is twice continuously differentiable with respect to its second
variable on ©; and elementary calculations give that Do [ £(2)](8) = Do [na,£(2)](6) for any 6 € ©
and for v-almost every z € Z as Dy.7 [Gr]=1and D7 [Gr]=0

Let 6 € ®7 and let 6* be one of the elements of Q* closest to § in terms of the metric d7. Recall

the notations I'z g (resp. F L7,/ ]) and 19 deﬁned after (71). Since for v-almost every z € Z we have
Dayr [f(2)]=Dor[Na.e (Z)], we deduce from (78) that:

1527 LAON o < 1+ Nl + g 76 0,671
L v I L OO

Notice that (71) holds with ur (s) replaced by u}. (s). Using (80) and (81) and the bounds (86) on @ and
¢ from Lemma D.5, we get:

- (5) " |
“DZT[f (Q)HLCI(V) P T " ( )(L20+(VT +I"T(s))+ T A )(L2,1 Yy +uT(s)),
Ur
By assumption, we have u.(s) < 1/6 and Vr < 1. Hence, we obtain:
~ 1 5 7
||D2;T [f] (G)HL"(V) < ZLZ’() + ZLZ’] + Z
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Since we have for almost every z € Z, f(z,67) =0 and D\t [f(2]1(67) = D1 [(a.£(2)](6}) -
V(z, 9;) =0, using Lemma E.3 (i), we get, with cy = (L2,0+5L2,1 +7)/8:

170, (8) = V(67) sign( — 6}) o7 (6,6})

L4 (v) = “f(@)”[,q(v) <cnN bT (9’ 9;)2.

Proof of (ii) from Assumption 4.2 with cr = (5L o+ 7)/4. Let 6§ € Or, we shall prove that
||770,§(9)“Lq(v) <cf. Let 9; be one of the elements of @* closest to 6 in terms of the metric d7.

We deduce from (73) on the upper bound of Hfla,g (0)||Lq (v)? using (65), the inequality from (15), (75)
and the bounds (86) on a and & from Lemma D.5 that:

’ 1_ ’
7,0, < % (1+uf () + #MTT((SS)) (Lio+Vr +uf(s).

Since uf. (s) < 1/6 and Vr < 1, we obtain:

5 7
“na’sf(a)”Lq(v) < ZLI’O + Z

Proof of (iii) from Assumption 4.2 with ¢ = 2. Using very similar arguments as in the proof
of (83) (taking care that the upper bound of the norms ||-||, , and ||+l , of @ and & are given by (86)

and (87)) we also get ”P“vé"HLT < 2\/EV(Z)1/2p_1/24~

We proved that (i)-(if) from Assumption 4.2 stand for any 8 € ®7 . Hence Assumption 4.2 holds for
any positive r such that for all § # 8’ € Q* : by (6,6’) > 2r. This finishes the proof of Proposition 4.2.

E. Auxiliary Lemmas

In this section, we provide the proofs of the intermediate results.

E.1. Proof of Proposition 1.3

We prove the optimization problem (3) is well posed. Denote the objective function of (3) by F(B, ),
that is the penalized risk. Then, we have:

1
inf F(B,9) < F(0,9%) = ———||Y||%...
BeL?(v,RK), 90K (B.9) < F( ) 2v(2) ¥l

By Minkowski inequality, we have that ||||.»(, rx) < lI'll¢, L (v)- Indeed, we have for any B =
(B1,...,Bg) € L*(v,RK), with By € L*(v):

K 2
||B||LP(V,RK) = ( Bi) <
k=1 L ()

K
|By|
=

<|IBllg,,r(v)-
LP(v)
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Therefore, the minimization of F over B can be restricted to the centered closed ball B in L” (v,RX)
of radius ||Y ||2LT /(k2v(Z)). We recall that the space LP (v, RK) is a reflexive Banach space whose dual
is L9(v, ]RK) with 1/p+1/g =1, see (Diestel and Uhl, 1977, Theorem 1 p.98). By Kakutani Theorem,
the closed balls of L”(v,RX) are therefore compact with respect to the weak topology, see (Brezis,
2011, Theorem 3.17). In particular (3) amounts to minimizing F over the compact set By X @f .

We show that the objective function F is lower semi-continuous (Isc). Recall that a convex strongly
continuous (that is, continuous with respect to the strong topology) real valued function defined on a

Banach space is weakly Isc (that is, Isc with respect to the weak topology), see (Brezis, 2011, Corollary
3.9). For any B € L?(v,RK), we have:

ZannU,(V)) %( JALETH v(dz))p

1 l
<K:2 (/ ||B(z)||§2v(dz)) =K -|[Bllp(y,rK)

1
IBll¢,,Lr vy < K4

(88)

|-

where we used Holder’s inequality. We deduce that the function B +— ||B||;, r(,) is strongly continu-
ous. Since it is also convex, we get it is weakly Isc.

Recall the space (L7, |||z, ) is a Hilbert space, see (Diestel and Uhl, 1977, Section IV). The function
X = ||Y = X|| 1, defined on Ly is weakly Isc as it is strongly continuous and convex. Then, since the
function ¢ — ®(4) is continuous, we deduce that the function (B, ) +— B®(¥}) is continuous from
LP (v,RK) x RK to Ly with respect to the product topology of the weak topology on L? (v,RK) and
the usual topology on RX. Since the composition of a continuous function by a Isc function is a Isc
function, we deduce that the function (B, )  [|Y — B®(#)|| . is Isc (with respect to product topology
of the weak topology on L” (v,RX) and the usual topology on RX).

In conclusion, the objective function (B, #) +— F(B, ) is Isc (with respect to the product topology

of the weak topology on L (v,RX) and the usual topology on RX). Then, we conclude using that a Isc
function on a compact set attains a minimum value, see (Aliprantis and Border, 2006, Theorem 2.43).

E.2. Tail bound for suprema of y? processes
We give a tail bound for suprema of weighted y? processes indexed on an interval I C R.

Lemma E.1. Let I C R be a bounded interval. Assume that X = (X(@) 0 € 1) is a real centered Gaus-
sian process with Lipschitz sample paths. Consider the process Y = Z X2 where (X;, 1 <i < n) are

=1
independent copies of X. Then, for an arbitrary 0 € I and for all u > n supgey Var(X(0)), we have:

u nVarX(H) 1)/2
P(sup ¥ > u <e_VarX(90)(1 2 0 / y Var(X’(0)) u (n+1)/ U
I B 2121 (n/2) \u \ Var(X(6)) ’

(89)

Proof. Recall that / is a bounded interval. Hence, the process Y defined on [ has Lipschitz sample
paths. Then, applying Inequality (122) from Butucea et al. (2022) to the process Y and taking the
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expectation, we get, with M =sup; Y, a=u>0,b=u+¢, &> 0and xo = 0p:

u+e&
/ P(M >1t)dr < eP(Y(8g) > u) + /E [1Y7(0) |1 i<y (6)<urey ] 96 (90)
u 1

The random variable Y (6) is a standard y? variable of degree 1 and therefore we have by (Obozin-
ski, Wainwright and Jordan, 2011, Lemma 11) for u > nVar(X(6p)):

nVar(X (0))
1-2¢ )

Notice that (91) trivially holds if Var(X(6g)) =0 as u > 0.
We now give a bound of the second term in the right-hand side of (90). Since (X, X;) are indepen-
dent Gaussian processes fori =1,---,n, we can write for a given 6 € I:

P(Y(6y) > u) < e_V“"(X“’O”( 91)

X;(G) =agX;(0) +BoGi,

where (G;, 1 <i < n) are independent standard Gaussian random variables independent of the vari-
ables (X;(0), 1 <i <n) and:
_E[X"(6)X(0)]

Y= "Var(X(8)) and B, = Var(X'(6)) - ag Var(X(6)),

n
with the convention that @ = 0 if Var(X(6)) =0. Since Y' =2 3} X/X; a.e., we get that:
i=1

En] X:(0)Gi

i=1

E [|YI(9)|1{M<Y(9)<M+8}] < 2|C¥9|E [Y(Q)l{u<Y(6)<u+s}] +2|ﬁ0|E 1{u<Y(0)<u+8}

Since the variables (G;, 1 <i < n) and (X;(6),1 <i < n) are independent, the variable Z =
n

>, X;(0)G; contidionally to the variables (X;(6), 1 <i < n) is a standard Gaussian random variable of
i=1

variance Y (6). This implies that:

E

n

2
in(e)Gi 1{u<Y(0)<u+s}l = \/;E [VY(9)1{M<Y(0)<M+5}] :
i1

We deduce that:
, 2
E [IY" ()1 {u<y (6)<ure}] < 2(|ae|<u +e) +\/;|,39|‘/M +s) P(u<Y(0) <u+e),

The random variable Y (6) is distributed as a y? variable and has a density:

Mn/Z—l 1 n/2 w
T 2Var(X(6))
2121 (n)2) (Var(X(a))) ¢ :

Py (o) (u) =

where by convention py (g) (1) is taken equal to 0 if Var(X(6)) =0 and where I" denotes the gamma
function.
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Letting £ goes to 0 in (90), using (91), the right continuity of the cdf of M and the monotonicity of
the density py gy (u) of Y() on [n VarX(#),+oo[, we deduce that for u > n sup,; Var(X(6)):

_ u 1-2 [nVarX(é}O)) )
P(M>u)<e V”’“”O)( “ +2/ |a9|u+1/;|ﬁg|\/ﬁ Py (e)(u) do. (92)
1

We now bound the second term of the right-hand side of (92) in two steps. Using that 82, < Var(X’(6)),
we get that:

93)

2 1 +Var(X'(6) u n/2 N
\/;|,30|WPY(0)(M) < & 2002 (Var(X(G))) e Va(X (@)

Thanks to the Cauchy-Schwarz inequality, we get |a@g| < +/Var(X’(6))/+/Var(X(68)). We get that:

VaI(X’(Q)) u (n+1)/2 w
lag|u py (o) (u) <

2n/2r(n/2)\/ﬁ Var(X (@) e 2Var(X(0)) | 94)

Notice that (93) and (94) hold also if Var(X(6)) = 0. Using that \/g +1=~1.8<2 and that u >
supg¢; Var(X(6)), we deduce (89) from (92), (93) and (94). O

Recall the functions f;, and g, defined by (51).

Lemma E.2. Let T € N and n € N* be fixed. Let be Z = {1,--- ,n}. Suppose that Assumptions 2.1 and
2.2 hold. Let h be a function of class C 1 from Ot to Hr, with Ot a sub-interval of ©. Assume there
exist finite constants C1 and C, such that for all 6 € O :

Ih(@)ly <C1 and ||Dir[h](0); < Ca. (95)

Let (Wr (z2),z € Z) be Hr -valued noise processes such that Assumption 3.1 holds. Let a = (ay, - ,ay)

be a sequence of nonnegative real numbers.

Set for any z in the set Z of cardinality n, X(z) = (X(z,0) = (h(0),Wr(2))7,0€0) and Y =
> a,X(z)?. Then, we have for u > (n+1) ||a||[m0'2ATC12:

zeZ
P(sup Y(9)>u)§fn( “ )+4C2|®T|3Tgn( = ), (96)

0cOr o2lall, Ar C? Cy2n/2 o2lall, Ar C?

where |Or |y, denotes the diameter of the interval @ with respect to the metric dr, |allg, =
max, ez |a;| and T" denotes the classical gamma function.

Proof. First we notice that:

PlsupY >u| <P
Or

sup Z > M/Ilallfm) ; o7

Or

where Z= Y X(z)?. We shall apply Lemma E.1 to the process Z.
zeZ
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Recall that the Gaussian processes X (z) with z € Z are independent with the same distribution as
a process denoted X = (X (0), 8 € Or). The process X has Lipschitz sample paths on @7 and X’(6) =
(0gh(0),wr)r for a.e. § € Or. By Assumption 3.1, we have for all 9 € 7 and z € Z:

Var(X () < o*Ar||h(0) |13 < > Ar C2. (98)

We first consider the case where O = [Onin, Imax] 1S @ compact interval with Oy < Omax. Then,
according to Lemma E.1, Inequality (89) holds with Y replaced by Z for u > n o> Ar C%.

-x/2

Notice that the function x — x"7 e is decreasing on [n + 1,+c0) and that the function x +—

e_x(l_zﬁ) is decreasing on [n,+00). Then, plugging (98) in Inequality (89), we obtain for u > (n +
2A. 2.
1) o2 A C2:

u nv’zATC2
PlsupZ>u|<e
or (99)
4 (n+1)/2 ¥
20207 C2
+ e T y/ Var(X’(6))deo.
2121 (n)2) Vu \ o2A7 C? /@T (X7(9))

There exists a geodesic y : [0,1] — O such that vy = Omin, Y1 = Omax and d7 (Opmin, Omax) =
/01 |v¢|Vgr (v¢) dt. Hence, a change of variable gives:

N @ndo= [ tilfer - LEX D) 4 (100)
(€] 0

gr (71)
By Assumption 3.1, we have for all § € O7:

Var(X'(6)))
gr ()

Using this bound in (100), we get:

/ VVar(X'(6))d6 < Cy o /A7 1O |y, (101)
Or

< A7 ||Drr [ (O < A7 C3.

where |O7 [y, is the diameter of the interval @7 with respect to the metric dr.
Combining (99), (101) and (97), we finally obtain (96) for ®7 a bounded closed interval. Then, use
monotone convergence and the continuity of Z to get (96) for any interval O . O

E.3. Technical lemma

We consider functions 77: Z x ©® — R and bound the quantities [|17(6)[14(,) on some regions of ©
under some assumptions on the second covariant derivative of n with respect to 6. The following
Lemma extends (Poon, Keriven and Peyré, 2021, Lemma 2). The proof is similar, as the latter covers
the case where v is a Dirac measure and ||-|| 74 (,) reduces to | - |.
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Lemma E.3. Let g € [1,+00]. Suppose Assumption 2.2 holds. Consider a function n : Z X © twice
continuously differentiable with respect to its second variable and 6y € Or.

(i) Assume that for v-almost every z € Z we have 1(z,6p) =0 and D 1.1 [n(z)](6¢) = 0, and that there
exist 6 > 0 and r > 0 such that for any 6 € By (6y,r) we have:

La(y SO (102)

D2 [11(6)]

Then, we have |[n(6)|l1a(y) < (6/2) dr (6, 00)2, for any 6 € Br (6y,r).

(ii) Assume now that for v-almost every z € Z, n(z,60) = V(z) and D1.1[17(z)](6p) = 0 where
V e L9(v) with ||VllLa(y = 1. Assume there exists a finite positive constant L such that

sup |‘KT[O’2] (80,0)| < L and there exist € >0 and r € (0, L_%) such that for any 6 € By (09, 1),
Ho,HE@)T

—‘K}O’z] (69, 0) = €. Suppose that for any 0 € B (6y,r) and 6 < &:

| D2 t16) - vt 66,09

< 103
Lagw = (103)

Then, we have |[n(0)|lpa¢y < 1- (556) b7 (0,00)%, for any 6 € Br (6y,r).
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