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SIMULTANEOUS OFF-THE-GRID LEARNING OF MIXTURES ISSUED FROM A

CONTINUOUS DICTIONARY

CRISTINA BUTUCEA, JEAN-FRANÇOIS DELMAS, ANNE DUTFOY, AND CLÉMENT HARDY

Abstract. In this paper we observe a set, possibly a continuum, of signals corrupted by noise. Each

signal is a finite mixture of an unknown number of features belonging to a continuous dictionary. The
continuous dictionary is parametrized by a real non-linear parameter. We shall assume that the signals

share an underlying structure by saying that the union of active features in the whole dataset is finite.

We formulate regularized optimization problems to estimate simultaneously the linear coefficients in the
mixtures and the non-linear parameters of the features. The optimization problems are composed of a data

fidelity term and a (`1, Lp)-penalty. We prove high probability bounds on the prediction errors associated
to our estimators. The proof is based on the existence of certificate functions. Following recent works on the

geometry of off-the-grid methods, we show that such functions can be constructed provided the parameters

of the active features are pairwise separated by a constant with respect to a Riemannian metric. When the
number of signals is finite and the noise is assumed Gaussian, we give refinements of our results for p = 1

and p = 2 using tail bounds on suprema of Gaussian and χ2 random processes. When p = 2, our prediction

error reaches the rates obtained by the Group-Lasso estimator in the multi-task linear regression model.

MSC2020 subject classifictaion: Primary 62G08, secondary 62G05
Keywords: Continuous dictionary, Interpolating certificates, Mixture model, Multi-task learning, Non-

linear regression model, Off-the-grid methods, Simultaneous recovery, Sparse spike deconvolution.

1. Introduction

Observing repeatedly the same process is very frequent nowadays, due to the abundance of data in all fields.
Multi-task learning considers the simultaneous analysis of multiple datasets and produces an estimator for
each dataset. Datasets can be either discrete-time (e.g. regression models) or continuous-time in our context.
We assume that they bring information on the same underlying structure, but can also be contaminated at
some extent by outliers.

We assume each process has a signal-plus-noise structure and that the signal is a mixture of features
issued from a dictionary of smooth functions parametrized by some non-linear parameter (such as location,
scale, etc.). Such mixtures can be seen e.g. in spectroscopy where each feature corresponds to a chemical
component of the analyzed material, see [15].

We are interested in recovering simultaneously the signals, i.e. the linear weights in the mixture and the
non-linear parameters of the features, by minimizing a weighted prediction risk penalized by the sum of the
total energy of the weights that each feature has through the collection of all processes. The prediction risk
may put more weight on prescribed signals of interest. We give high probability bounds on the weighted
prediction risk that are analogous to the case of multi-task discrete linear regression models.

1.1. Model and method. Let (Z,F , ν) be a measure space with ν a finite positive non-zero measure and
let HT be a Hilbert space where the parameter T ∈ N accounts for the increasing asymptotic information in
the model. The Hilbert space HT is endowed with the scalar product 〈·, ·〉T and the norm ‖·‖T . We shall
consider the space LT = L2(ν,HT ), the set of HT -valued strong measurable functions f defined on (Z,F , ν)
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such that ‖f‖LT =
√∫
Z ‖f(z)‖2T ν(dz) is finite. We then endow LT with a scalar product noted 〈·, ·〉LT

defined for any f, g ∈ LT by :

〈f, g〉LT =

∫
〈f(z), g(z)〉T ν(dz).

The norm ‖·‖LT is the natural norm associated with the scalar product and LT is a Hilbert space, see [24,

Section IV]. For p ∈ [1,+∞), we write Lp(ν,RK) for the space of RK-valued measurable function f defined
on (Z,F , ν) such that

‖f‖Lp(ν,RK) =

(∫
Z
‖f(z)‖p`2 ν(dz)

) 1
p

is finite, where ‖·‖`2 is the usual Euclidean norm on RK . We simply write Lp(ν) for Lp(ν,R).

We assume we observe a random element Y of the Hilbert space LT . For any z ∈ Z, the element
Y (z) ∈ HT has a signal-plus-noise structure. The signal part is a mixture (linear combination) of smooth
features ϕT (θ) belonging to HT and continuously parametrized by a real parameter θ ∈ Θ ⊆ R. Let (Ω,G,P)
be a probability space, we note WT the additional noise process defined on this space and assumed to be
almost surely an element of LT . We denote by (ϕT (θ), θ ∈ Θ) the continuous dictionary formed by all the
features. For all z ∈ Z, we note Q?(z) the finite set of the parameters of the active features appearing
in Y (z). We assume that the unknown number of active features s in the observation Y is bounded by a
constant K, that is:

(1) K ≥ Card(
⋃
z∈Z
Q?(z)) := s.

In the following we make a slight abuse of notation by writing Q? instead of
⋃
z∈Z Q?(z).

We consider features ϕT (θ) that are non degenerate, i.e. for any θ ∈ Θ, ‖ϕT (θ)‖T is finite and non-
zero. Let us define the normalized function φT (θ) for θ ∈ Θ and its multivariate counterpart ΦT (ϑ) for
ϑ = (θ1, · · · , θK) ∈ ΘK by :

φT (θ) =
ϕT (θ)

‖ϕT (θ)‖T
and ΦT (ϑ) =

φT (θ1)
...

φT (θK)

 ·
We consider the model with unknown parameters B? in L2(ν,RK) and ϑ? in ΘK :

(2) Y = B?ΦT (ϑ?) +WT in LT .

In this work, we assume that the application B? : Z → RK is s− sparse that is,

1 ≤ s < K with s = Card(S?) and S? = {k, ‖B?k‖L2(ν) 6= 0 }.

We remark that the model (2) is an extension of the model described in [14], as the latter amounts to taking
ν as a Dirac measure. We gain in generality by letting the measure ν be any finite positive non-zero measure
on Z. By doing so, we can consider multiple mixture models.

Example 1.1 (Z = {1, · · · , n}). The framework presented above covers a large variety of multiple non-linear
regression models. Assume we observe n ∈ N random elements of a Hilbert space. Assume that each element
is a linear combination of features belonging to a continuous dictionary and is corrupted by a noise process.
We encompass this model by indexing the n random elements, setting Z as the set of indices {1, · · · , n} and
the measure ν as the counting measure on this set. The n observations in H are then (Y (i), i = 1, · · · , n).

We might be interested in associating to each observation Y (i) a score indicating, for example, the
reliability of the method of acquisition of the observed data. In this context, one can add the information
to the model by assigning weights ν(i) to each process Y (i) and average the prediction risk accordingly.
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Example 1.2 (Z is a continuum). By letting (Z,F , ν) be any measure space such that ν(Z) < +∞, we
can take Z as a compact interval of R and ν as the Lebesgue measure on Z. Hence, we generalize the
“Function-on-Scalar” models that have many applications including in genomics (see [4]) by allowing the
design matrix to be parametrized. The “Function-on-Scalar” models refer to regression models where the
linear coefficients depend on a time or spatial continuous parameter. Thus, the observation (Y (z), z ∈ Z)
are longitudinal data.

In order to perform signal reconstruction, we are interested in recovering the application B? with unknown
sparsity s restricted to its support, that is B?S? , and the associated parameters ϑ?S? of the nonlinear parametric
functions involved in the mixture model.

In order to recover the sparse applicationB? as well as the associated parameters ϑ?S? (up to a permutation)
we solve a regularized optimization problem with a real tuning parameter κ > 0 and p ∈ [1, 2]:

(3) (B̂, ϑ̂) ∈ argmin
B∈L2(ν,RK),ϑ∈ΘKT

1

2ν(Z)
‖Y −BΦT (ϑ)‖2LT + κ‖B‖`1,Lp(ν),

where for z 7→ B(z) = (B1(z), . . . , BK(z)) in L2(ν,RK):

‖B‖`1,Lp(ν) =

K∑
k=1

‖Bk‖Lp(ν).

The set ΘT on which the optimization of the non-linear parameters is performed is required to be a compact
interval and the function ΦT is continuous. When Z is finite, the existence of at least a solution is therefore
guaranteed. When Z is infinite (and p ∈ (1, 2]), we may use the following result whose proof is given in
Section A.1.

Proposition 1.3. Let p ∈ (1, 2]. Assume that the function θ 7→ φT (θ) is continuous. Then, the minimization
problem (3) over L2(Z,RK)×ΘK

T , where ΘT is a compact interval of R, admits at least one solution.

In the following, we shall assume that p ∈ [1, 2]. This will allow us to control norms of elements in the
dual space Lq(ν) of Lp(ν), where 1/p+ 1/q = 1, using that Lq(ν) ⊂ Lp(ν) as p ≤ q.

In this paper, we aim at quantifying the quality of the prediction of B?Φ(ϑ?) by B̂Φ(ϑ̂) for B̂ and ϑ̂ given
by (3), by providing an upper bound with high probability of the squared prediction error:

(4) R̂2
T =

1

ν(Z)

∥∥∥B?Φ(ϑ?)− B̂Φ(ϑ̂)
∥∥∥2

LT
.

Example 1.4. Let us set as an example Z = {1, · · · , n} and ν the counting measure
∑n
i=1 δi. Assume the

n observations belong to the Hilbert space L2(λ) for some measure λ (either discrete or continuous) on the
Borel sigma field of R. In this case, the squared prediction error becomes:

R̂2
T =

1

n

n∑
i=1

∥∥∥B?(i)Φ(ϑ?)− B̂(i)Φ(ϑ̂)
∥∥∥2

L2(λ)
.

1.2. Previous work. Reconstructing from observations (that are discrete or continuous-time processes)
signals that are linear combinations of features belonging to a continuous dictionary (ϕ(θ), θ ∈ Θ) has
applications in many fields such as spectrocopy ([15]), microscopy ([23]), super-resolution ([18]) or spike
deconvolution ([26]).

Most often, the Hilbert space HT , to which the observations belong, is assumed to be of finite dimension
and the dictionary of features is assumed finite of size K. Over the past two decades, the problem of retrieving
a sparse vector in the framework of high dimensional regression models (K � dim(HT )) has generated a large
number of works ([37], [7], [13], [16], [12] and references therein). The celebrated Lasso estimator, popularized
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by [37] and defined by an optimization problem composed of a data fidelity term and a `1 penalty, has been
extensively studied and has proven to be efficient. In addition, its convex formulation makes its resolution
easy to handle (see [5] for a resolution via fast iterative shrinkage-thresholding algorithms). Prediction
error bounds and estimation bounds with respect to the `2 norm have been established for the Lasso under
coherence assumptions on the finite dictionary. We refer to [38] for an overview of the coherence assumptions.
It turns out that these rates have been proven minimax optimal in [35]. This means that one cannot find
any estimator that achieves faster rates in expected value.

The prediction error bounds obtained for sparse high-dimensional linear models encompass the finite
dictionary setting. We consider in this paper continuous dictionaries. As a consequence, the problem of
recontruction is highly non-linear. It might be tempting to address this issue by discretizing the parameter
space Θ and getting back to a finite dictionary. However, recent papers have advocated that taking a
finite subfamily of a continuous dictionary and using a Lasso estimator to retrieve the linear coefficients of
the mixture lead to some issues. In particular, the number of active features in the mixture tends to be
overestimated, see [27].

A line of work has emerged around the reconstruction of signals that are mixtures of continuously
parametrized features by solving a regularized minimization problem over a space of measures. Indeed,
one can readily notice that a mixture of non-linear features

∑
k∈S? β

?
kφ(θ?k) can be written as the application

of the linear functional µ 7→
∫
φ(θ)µ(dθ) to the atomic measure µ? =

∑
k∈S? β

?
kδθ?k , where δx denotes a Dirac

measure located in x. The Beurling Lasso (or BLasso) introduced in [22] has proven to be efficient to retrieve
a sparse measure from its images through linear functionals. We stress that when dim(HT ) < +∞, there
exists a solution to the BLasso made up of at most dim(HT ) Dirac measures. We refer to [9] and [25] for
proofs of this result. For this reason, the BLasso has been used as a counterpart of the classical Lasso for
continuous dictionaries. We remark that when HT is infinite dimensional the BLasso may not have a priori
an atomic solution. It makes its solutions difficult to interpret in our context. That is why we prefer in this
paper to assume a bound K on the unknown number of features s in order to formulate (2). When only
one element of HT is observed (i.e. Z is reduced to a singleton and ν is a Dirac measure), this formulation
is equivalent to that of the BLasso restricted to the set of atomic measures of at most K atoms. Efficient
numerical methods to solve this problem are available such as modifications of the Frank-Wolfe algorithm
([23], [8]) or the Conic Gradient Particle Descent ([21]). We stress that these methods proceed by seeking a
solution that is atomic.

It has been shown that under the assumption of the existence of certificate functions, the BLasso retrieves
the exact number of features in a small noise regime ([18] for a specific dictionary and [26] in a more general
framework). Regarding prediction error bounds, the research has first focused on mixtures of features issued
from a dictionary of complex exponentials parametrized by their frequencies. Much progress has been done
in super-resolution using the BLasso with this specific dictionary, see [18], [17] in this direction. In [10], the
authors showed that the prediction error of the BLasso estimator in this specific case almost reached that
of the Lasso estimator provided the frequencies are well separated. They adapted previous results from [6]
and [36] for atomic norm denoising and they extended them to a more general case where the noise level
is unknown and needs to be estimated. The authors of the present paper considered in [14] the model (2)
when only one signal is considered (Z is a singleton and ν is a Dirac measure) and showed that when the
one-dimensional parameters of the features are well separated, one can build estimators that lead to a nearly
optimal prediction error bound. By nearly optimal, we mean that the prediction error bound obtained in
[14] is of the same order (up to a logarithmic factor) as the minimax bounds obtained in the finite dictionary
setting where only linear coefficients are to be retrieved. The result covers a large variety of dictionaries and
noises. Let us specify that the separation is expressed with respect to a Riemannian metric following the
insightful work of [34].
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1.3. Contributions. We extend the work of [14] to encompass the case of multiple mixture models. Indeed,
we let ν be any finite positive non-zero measure. In the framework of multiple high dimensional linear
regressions (`1, `p)-norm penalties have been used to retrieve sparsity patterns among the signals. These
penalties influence globally the estimations of the signals (B(i)Φ(ϑ?), i ∈ Z). Let us mention the (`1, `2)
mixed norm, used to define the Group-Lasso estimator introduced in [39] and that has received significant
attention since then (see, [32], [3], [20],[29]). It was shown in [31] that the reconstruction of signals via
the Group-Lasso estimator outperfom the reconstruction using the Lasso estimator when the signals share
some sparsity pattern. Let us mention the work of [30] that provides consistency results and prediction
error convergence rates for the general case (`1, `p) with p ∈ [1,+∞]. Estimators obtained from regularized
problems via mixed norms have been studied in the context of high dimensional multiple linear regression
models but little has been done for the non-linear extension considered in (2). It is therefore natural to find
counterpart estimators for the setting of continuous dictionaries. Let us highlight the work of [28] in which
an extension of the BLasso has been proposed in order to address multiple mixture models. The authors
extended the result of [26] to show exact support recovery results in the small noise regime. They used a
penalty that is a convex combination of mixed norms on measures. We remark that when applied to atomic
measures these norms reduce to the (`1, `1) and (`1, `2) norms on the weights of the Dirac measures.

In this paper, we prove a high-probability upper bound on the prediction error for estimators issued
from an optimization problem regularized by a mixed norm (`1, L

p(ν)) with p ∈ [1, 2] for a wide variety of
dictionaries in the general framework where ν can be any finite positive measure. We give refinements of
this result when the noise is assumed Gaussian and when the measure ν is discrete. These refined bounds
on the prediction error use tail bounds on suprema of Gaussian and χ2 processes. Our results rely on the
existence of certificate functions, see Section 4. We also give sufficient conditions for their construction.

1.4. Organization of the paper. In Section 2, we formulate assumptions on the model and set some
definitions. Section 3 presents the main results of this paper. We start by giving a high probability upper
bound on the prediction error in the general case where the measure ν can be any finite measure. Then,
we give refinements of this result when the measure ν is a finite weighted sum of Dirac measures and the
noise process is assumed Gaussian. In Section 4, we present the assumptions on certificate functions that
are used to state the high probability upper bound on the prediction error in Section 4.1. We give in
Section 4.2 sufficient conditions to construct such functions. Section 5 is dedicated to the proof of the high
probability upper bound on the prediction error in the most general framework and Sections 6-7 give proofs
for refinements of this result when ν is a finite sum of weighted Dirac measures and the noise is Gaussian.
Section 8 is dedicated to the proofs of the results stated in Section 4.2 on the existence of certificate functions.

1.5. Notation. We shall use for convenience the notation . and write for two real quantities a and b, a . b
if there exists a positive finite constant C independent of the parameters s,K, T and the measure ν such
that a ≤ C b.

We also write for two quantities a, b that a � b if a . b and b . a.

2. Assumptions on the model

In this section, we briefly set some definitions and assumptions that are presented and discussed in more
detail in [14, Sections 3, 4, 5].

2.1. Regularity and non-degeneracy assumptions on the features. Let be a fixed parameter T ∈ N.
The features (ϕT (θ), θ ∈ Θ) that form a continuous dictionary are elements of the Hilbert space (HT , 〈·, ·〉T ).
We shall integrate and differentiate those features with respect to their one-dimensional parameter belonging
to the interval Θ of R. To do so, we shall use the notions of Bochner integral and Fréchet derivative. We
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refer to [14, Section 3.1] for a short presentation of these objects. We recall that for any function f : Θ 7→ HT

differentiable at θ ∈ Θ, we have for all g ∈ HT that:

(5) ∂θ 〈f(θ), g〉T = 〈∂θf(θ), g〉T .

In addition, if f is Bochner integrable on Θ, then for all g ∈ HT , we have that:

(6)

∫
Θ

〈f(θ), g〉T dθ = 〈
∫

Θ

f(θ) dθ, g〉T .

We shall require the features to satisfy the following regularity assumption.

Assumption 2.1 (Smoothness of ϕT ). We assume that the function ϕT : Θ → HT is of class C3 and
‖ϕT (θ)‖T > 0 on Θ.

Assume that Assumption 2.1 holds. Recall that φT (θ) = ϕT (θ)/‖ϕT (θ)‖T for all θ ∈ Θ. We define the
continuous function:

(7) gT (θ) = ‖∂θφT (θ)‖2T .

It will be convenient to assume the non-degeneracy of the function gT .

Assumption 2.2 (Positivity of gT ). Assumption 2.1 holds and we have gT > 0 on Θ.

One can easily show that features are non-degenerate by checking that for any θ ∈ Θ the elements ϕT (θ)
and ∂θϕT (θ) of HT are linearly independent, see [14, Lemma 3.1] in this direction.

2.2. The kernel and its Riemannian derivatives. In this section, we introduce a function on Θ2, called
kernel, that will quantify the correlation between two features in the dictionary. We shall derive from this
kernel a Riemannian metric on the parameter space Θ following [34]. This metric will be in particular
invariant to a reparametrization of the parameter space.

2.2.1. Kernel space and associated Riemannian metric. We shall set a few bases on the notion of kernel and
refer to [14] for further details.

We call kernel a real-valued function defined on Θ2. Let K be a symmetric kernel of class C2 such that
the function gK defined on the one-dimensional and connected set Θ by:

(8) gK(θ) = ∂2
x,yK(θ, θ)

is positive and locally bounded, where ∂x (resp. ∂y) denotes the usual derivative with respect to the first
(resp. second) variable.

We derive from the kernel K the metric dK(θ, θ′) between θ, θ′ ∈ Θ by:

(9) dK(θ, θ′) = |GK(θ)−GK(θ′)|,

where GK is a primitive of
√
gK. We refer to [14, Remark 4.1] for details on the connection with Riemannian

metrics.

We shall need to differentiate the kernel K on the manifold (Θ, gK). We shall use the covariant derivatives
that generalize the classical directional derivative of vector fields on a manifold. Since we only consider the
case of a one-dimensional parameter space, the covariant derivatives reduce to simple expressions.

For a real-valued function F defined on Θ2, we say that F is of class C0,0 on Θ2 if it is continuous on Θ2,
and of class Ci,j on Θ2, with i, j ∈ N, as soon as: F is of class C0,0, and if i ≥ 1 then the function θ 7→ F (θ, θ′)
is of class Ci on Θ and its derivative ∂xF is of class Ci−1,j on Θ2, and if j ≥ 1 the function θ′ 7→ F (θ, θ′)
is of class Cj on Θ and its derivative ∂yF is of class Ci,j−1 on Θ2. For a real-valued symmetric function F
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defined on Θ2 of class Ci,j , we define the covariant derivatives Di,j;K[F ] of order (i, j) ∈ N2 recursively by

D0,0;K[F ] = F and for i, j ∈ N, assuming that gK is of class Cmax(i,j), and θ, θ′ ∈ Θ:

(10) Di+1,j;K[F ](θ, θ′) = gK(θ)
i
2 ∂θ

(
Di,j;K[F ](θ, θ′)

gK(θ)
i
2

)
and Di,j;K[F ](θ, θ′) = Dj,i;K[F ](θ′, θ).

In particular, we have D0,0;K[F ] = F , D1,0;K = ∂xF , D0,1;K = ∂yF and D1,1;K = ∂2
xyF . We shall also

consider the following modification of the covariant derivative, for i, j ∈ N:

(11) D̃i,j;K[F ](θ, θ′) =
Di,j;K[F ](θ, θ′)

gK(θ)i/2 gK(θ′)j/2
·

We have D̃1,0;K ◦ D̃0,1;K = D̃0,1;K ◦ D̃1,0;K and for i, j ∈ N, assuming that gK is of class Cmax(i,j):

D̃i,j;K =
(
D̃1,0;K

)i
◦
(
D̃0,1;K

)j
.

The definitions of covariant derivatives and their modifications cover the case of 1-dimensional functions
defined on Θ. For any smooth function f defined on Θ, we shall note Di;K[f ] (resp. D̃i;K[f ]) for Di,0;K[F ]

(resp. D̃i,0;K[F ]) where F : (θ, θ′) 7→ f(θ).

For i, j ∈ N, if K is of class Ci∨1,j∨1, then we consider the real-valued function defined on Θ2 by:

(12) K[i,j] = D̃i,j;K[K].

In particular, when K is of class C2, we have:

(13) K[0,0] = K and K[1,1](θ, θ) = 1.

2.2.2. The kernel associated to the dictionary of features. Let T ∈ N be fixed and assume that Assumption 2.2
holds. We associate to the dictionary of features (ϕT (θ), θ ∈ Θ) a kernel KT on Θ2 defined by:

(14) KT (θ, θ′) = 〈φT (θ), φT (θ′)〉T =
〈ϕT (θ), ϕT (θ′)〉T
‖ϕT (θ)‖T ‖ϕT (θ′)‖T

·

In the following, for an expression A we will often replace the notation AK∗ by A∗ where ∗ is T or ∞.
We remark that under Assumptions 2.1 and 2.2 the definitions (7) and (8) are consistent by Lemma [14,

Lemma 4.3]. Furthermore, we have that the kernel KT is of class C3,3 on Θ2 and for i, j ∈ {0, . . . , 3} and for
any θ, θ′ ∈ Θ:

(15) K[i,j]
T (θ, θ′) = 〈D̃i;T [φT ](θ), D̃j;T [φT ](θ′)〉T ,

(16) sup
Θ2

|K[0,0]
T | ≤ 1, K[0,0]

T (θ, θ) = 1, K[1,0]
T (θ, θ) = 0, K[2,0]

T (θ, θ) = −1 and K[2,1]
T (θ, θ) = 0.

In practice, the kernel KT may be difficult to handle. It might be convenient to approximate KT by a
kernel K∞ for which some assumptions will be easier to check, see [14, Section 8] in this direction. We
shall give some properties that an approximating kernel K∞ must verify. Then we shall define a quantity
measuring the precision of the approximation of KT by K∞ over some compact set ΘT ⊆ Θ.

Let us first define for a kernel K of class C3,3 the function on Θ:

(17) hK(θ) = K[3,3](θ, θ).

The following assumption gathers the properties that an approximating kernel K∞ must sastify.
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Assumption 2.3 (Properties of the asymptotic kernel K∞). The symmetric kernel K∞ defined on Θ2 is of
class C3,3, the function g∞ defined by (8) on Θ is positive and locally bounded (as well as of class C2), and

we have K∞(θ, θ) = −K[2,0]
∞ (θ, θ) = 1 for θ ∈ Θ. The set Θ∞ ⊆ Θ is an interval and we have:

(18) mg := inf
Θ∞

g∞ > 0, L3 := sup
Θ∞

h∞ < +∞, and Li,j := sup
Θ2
∞

|K[i,j]
∞ | < +∞ for all i, j ∈ {0, 1, 2}.

We stress that the interval Θ∞ is possibly unbounded contrary to the set ΘT which is compact.

Under assumption 2.3, we derive from the kernel K∞ the Riemannian metric d∞ as in (9). One can show
that the metrics dT and d∞ are strongly equivalent on the compact set Θ2

T . Indeed, we have:

(19)
1

ρT
d∞ ≤ dT ≤ ρT d∞,

where ρT is a finite positive constant defined by:

(20) ρT = max

(
sup
ΘT

√
gT
g∞

, sup
ΘT

√
g∞
gT

)
.

We then give an assumption on the quality of approximation of KT by K∞. We set:

(21) VT = max(V(1)
T ,V(2)

T ) with V(1)
T = max

i,j∈{0,1,2}
sup
Θ2
T

|K[i,j]
T −K[i,j]

∞ | and V(2)
T = sup

ΘT

|hT − h∞|.

Assumption 2.4 (Quality of the approximation). Let T ∈ N be fixed. Assumptions 2.2 and 2.3 hold, the
interval ΘT ⊂ Θ∞ is a compact interval, and we have:

VT ≤ L2,2 ∧ L3.

3. Main Results

3.1. General bound on the prediction error. The main goal of this paper is to bound the prediction
error (4) associated to the estimators defined in (3). We first give a bound that holds with a controled
probability in the general case where the penalty of the optimization problem (3) is the norm ‖·‖`1,Lp(ν) with

p ∈ [1, 2]. The bound will be expressed as a function of the tuning parameter κ, the sparsity s, the mass of
the measure ν and the parameter of the penalty p. It will stand on an event whose probability is bounded
from below by tails of distributions of random variables defined by taking the supremum over the compact
set ΘT and the norm ‖·‖Lq(ν) of real-valued processes indexed on Z ×ΘT of the form:

X(z, θ) = 〈WT (z), g(θ)〉T ,
for some smooth functions g : ΘT → HT related to the dictionary of features and where q is the conjugate
of p in the sense that 1/q + 1/p = 1.

The assumptions on the regularity of the dictionary, the regularity of the limit kernel and the proximity
to the limit kernel are the same as those from [14, Theorem 2.1]. Regarding the noise, we only require that
it belongs almost surely to Lq(ν,HT ). We highlight that the Theorem below is proven under the existence
of certificate functions. Those certificates generalize that of [14, Theorem 2.1]. (In particular, they reduce
to those in [14] when ν is a Dirac measure.) A construction of certificates has been proposed in [28] for
the case where ν is the counting measure. Our construction is slightly different and covers the general case
where ν can be any finite positive measure, see Remark 8.4. We shall give in Section 4.2 sufficient conditions
for their existence. It turns out that we can construct such certificates provided the elements of the set Q?
defined in (1) are pairwise separated with respect to a Riemannian metric. We remark that the separation
does not depend on the space (Z,F , ν). In particular, in the example where Z is a finite set of cardinal n,
increasing n does not improve or deteriorate the separation.

We state the main result of this paper that is proved in Section 5.
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Theorem 3.1. Let T ∈ N. Let be p ∈ [1, 2] and q ∈ [2,+∞] such that 1/p + 1/q = 1. When p = 1,
we assume that Z is finite. Assume we observe the random element Y of LT under the regression model
(2) with a noise WT belonging to Lq(ν,HT ) almost surely and unknown parameters B? ∈ L2(ν,RK) and
ϑ? = (θ?1 , · · · , θ?K) a vector with entries in ΘT (compact interval of R). Let us suppose that the following
assumptions hold :

(i) Regularity of the dictionary ϕT : The dictionary function ϕT satisfies the smoothness conditions
2.1 . The function gT satisfies the positivity condition 2.2.

(ii) Regularity of the limit kernel: The kernel K∞ and the functions g∞ and h∞, defined on an
interval Θ∞ ⊂ Θ, satisfy the smoothness conditions of Assumption 2.3.

(iii) Proximity to the limit kernel: The kernel KT defined from the dictionary is sufficiently close to
the limit kernel K∞ in the sense that Assumption 2.4 holds.

(iv) Existence of certificates: The non-empty set of unknown parameters Q? = {θ?k, k ∈ S?}, with
S? = {k, ‖B?k‖L2(ν) 6= 0 }, satisfies Assumptions 4.1 and 4.2 with the same r > 0.

Then, there exist finite positive constants C, C0 depending on r and on the kernel K∞ defined on Θ∞ such

that we have the prediction error bound of the estimators B̂ and ϑ̂ defined for a tuning parameter κ > 0 (in
(3)) given by:

(22)
1√
ν(Z)

∥∥∥B̂ΦT (ϑ̂)−B?ΦT (ϑ?)
∥∥∥
LT
≤ C0

√
s ν(Z)

1
p κ,

with probability larger than

(23) 1−
2∑
i=0

P (Mi > C κ ν(Z)) ,

where Mi is defined by:

(24) Mi = sup
θ∈ΘT

∥∥∥〈WT , φ
[i]
T (θ)

〉
T

∥∥∥
Lq(ν)

, for i = 0, 1, 2.

Remark 3.2 (On the choice of κ). We typically choose κ in (22) as small as possible giving a global bound
on the prediction risk small, such that the event on which the bound stands occurs with a sufficiently large
probability.

Remark 3.3 (On the dimension K). The bound K on the sparsity s does not appear neither in the upper
bound on the prediction error (22) nor in the lower bound on the probability (23). Thus, it can be taken
arbitrarily large. This was already the case in [14] where Z is a singleton and ν is a Dirac measure, see
Remark 2.4 therein.

3.2. Explicit bounds for Gaussian noise and finite number of signals. It is not straightforward to
establish tail bounds for the random variables Mi defined in Theorem 3.1. However, if the noise process for
fixed z in Z is centered Gaussian, for the cases p = q = 2 and p = 1 together with q = +∞, this can be
done using Rice formulae (see [2] for a complete overview of Rice formulae). We shall then deduce bounds
for arbitrary values of conjugate pairs (p, q) in [1, 2]× [2,∞] using interpolation inequalities.

We will give an explicit lower bound for the probability (23). The lower bound will depend on the
parameter T and the number of signals n = Card(Z) assumed to be finite here. Thus, we will be able to
give a convergence rate towards zero for the prediction error with respect to these parameters.

In order to use tail bounds for the random variables Mj from Theorem 3.1, we state additional assumptions
on the noise WT . As in [14], we make the following assumption on the noise process WT , where the decay
rate ∆T > 0 controls the noise variance decay as the parameter T grows and σ > 0 is the intrinsic noise
level.
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Assumption 3.1 (Admissible noise). Let T ∈ N. Assume that the set Z is finite. The processes (WT (z), z ∈
Z) are independent copies of a noise process wT . The noise process wT belongs to HT almost surely and,
there exist a noise level σ > 0 and a decay rate ∆T > 0 such that for all f ∈ HT the random variable
〈f, wT 〉T is a centered Gaussian random variable satisfying:

(25) Var (〈f, wT 〉T ) ≤ σ2 ∆T ‖f‖2T .

3.2.1. The case p = 2 and Z finite. We state a corollary of Theorem 3.1 for the specific case where ν is an
atomic measure composed of n atoms and the penalty of the optimization problem (3) is a mixed (`1, L

2(ν))
norm. The proof is given in Section 6.

We denote by |ΘT |dT the diameter of the interval ΘT with respect to the Riemannian metric dT associated
to the kernel KT and defined in (9).

Corollary 3.4. Let T ∈ N. We fix p = q = 2. We assume that Card(Z) = n < +∞ and that the measure ν
is ν =

∑
z∈Z azδz where δz denotes a Dirac measure located in z ∈ Z and (az, z ∈ Z) are non-negative real

numbers. Assume we observe the random element Y of LT under the regression model (2) with unknown
parameters B? in L2(ν,RK) (which can be identified with Rn×K) and ϑ? = (θ?1 , · · · , θ?K) a vector with entries
in ΘT , a compact interval of R, such that Points (i)-(iv) of Theorem 3.1 are satisfied and the noise process
WT satisfies Assumption 3.1 for a noise level σ > 0 and a decay rate for the noise variance ∆T > 0.

Then, there exist finite positive constants C0, C1, C2, depending on the kernel K∞ defined on Θ∞ and on
r such that for any τ > 1 and a tuning parameter:

κ ≥ C1σ

√
‖a‖`∞∆T n

ν(Z)2

(
1 +

√
1 +

log(τ)

n

)
,

where ‖a‖`∞ = maxz∈Z |az|, we have the following prediction error bound of the estimators B̂ and ϑ̂ defined

in (3):

(26)
1√
ν(Z)

∥∥∥B̂ΦT (ϑ̂)−B?ΦT (ϑ?)
∥∥∥
LT
≤ C0

√
s ν(Z)κ,

with probability larger than 1− C2
(

1
τ +

|ΘT |dT F (n)√
τ

)
with a sequence F (n) �

√
n e−n/2.

Remark 3.5 (Comparison to the Group-Lasso estimator). Assume that the Hilbert spaceHT = RT is endowed
with the Euclidean scalar product and Euclidean norm ‖·‖`2 . Let Z = {1, · · · , n} and let ν be the counting

measure on Z, i.e. ν =
∑n
k=1 δk. Notice that in this setting LT = L2(ν,HT ) is of finite dimension and can

be identified with Rn×T . Assume that the observation Y ∈ LT comes from the model (2) where for any
i ∈ {1, · · · , n}, WT (i) is a Gaussian vector in RT with independent entries of variance σ2. Assume also that
the Gaussian vectors (WT (i), 1 ≤ i ≤ n) are independent. Thus, Assumption 3.1 holds with an equality in
(25) and

∆T = 1.

We first consider that the parameters ϑ? are known. In this case, the model becomes the classical high-
dimensional multiple linear regression model and the Group-Lasso estimator B̂L can be used to estimate B?

under coherence assumptions on the finite dictionary made of the rows of the matrix Φ? = ΦT (ϑ?) ∈ RK×T
(see [7]). The authors of [31] showed that the prediction error associated to the Group-Lasso estimator
satisfies the bound:

(27)
1

nT

n∑
i=1

‖(B̂L(i)−B?(i))Φ?‖2`2 .
σ2 s

T

(
1 +

log(K)

n

)
,

with high probability, larger than 1−1/Kγ for some positive constant γ > 0. Furthermore, in the case where
B? is an unknown s-sparse application, ϑ? is known and Φ? verifies a coherence property, then lower bounds
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of order σ2 s(1 + log(K/s)/n)/T in expected value can be established. The non-asymptotic prediction lower
bounds for the prediction error given in [31] are for 2s < K:

inf
B̂

sup
B? s−sparse

E

[
1

nT

n∑
i=1

‖(B̂(i)−B?(i))Φ?‖2`2

]
≥ C · σ

2 s

T

(
1 +

log(K/s)

n

)
,

where the infinimum is taken over all the estimators B̂ (measurable functions of the obervation Y taking
their values in L2(ν,RK)) and for some constant C > 0 free of s, K, n and T .

When the linear coefficients B? and the parameters ϑ? are unknown, Corollary 3.4 gives an upper bound
for the prediction risk which is similar to that of the linear case. Consider the estimators from (3) with
p = 2. Assume that the Riemannian diameter of the set ΘT is bounded by a constant free of T . By squaring
(26) and then dividing it by T , we obtain from Corollary 3.4 with:

κ = C1σ
√

1

n

(
1 +

√
1 +

log(τ)

n

)
and τ = T γ for some given γ > 0,

that with high probability, larger than 1− C ′/T γ − C ′′F (n)/T γ/2:

(28)
1

nT

n∑
i=1

∥∥∥B̂(i)ΦT (ϑ̂)−B?(i)ΦT (ϑ?)
∥∥∥2

`2
.
σ2 s

T

(
1 +

log(T )

n

)
.

We identify two regimes depending on the ratio log(T )/n. Indeed, when log(T )/n � 1 the bound (28)

behaves as σ2 s log(T )
nT and stands with probability that converges towards 1 at the rate F (n)/T γ/2. On the

contrary, when log(T )/n � 1 the bound (28) is of order σ2 s
T and stands with probality that converges

towards 1 at the rate 1/T γ .

3.2.2. The case p = 1 and Z finite. We apply Theorem 3.1 to the particular case p = 1. It turns out that
for q = +∞, tail bounds for the random variables Mj with j = 0, 1, 2 can be established from Rice formulae
for smooth Gaussian processes. The following Corollary is proved in Section 7.

Corollary 3.6. Let T ∈ N. We fix p = 1, q = +∞. We assume that Card(Z) = n < +∞ and that the
measure ν is ν =

∑
z∈Z azδz where δz denotes a Dirac measure located in z ∈ Z and (az, z ∈ Z) are non-

negative real numbers. Assume we observe the random element Y of LT under the regression model (2) with
unknown parameters B? in L2(ν,RK) (which can be identified with Rn×K) and ϑ? = (θ?1 , · · · , θ?K) a vector
with entries in ΘT , a compact interval of R, such that Points (i)-(iv) of Theorem 3.1 are satisfied and the
noise process WT satisfies Assumption 3.1 for a noise level σ > 0 and a decay rate for the noise variance
∆T > 0.

Then, there exist finite positive constants C0, C3, C4, depending on the kernel K∞ defined on Θ∞ and on
r such that for any τ > 1 and a tuning parameter:

κ ≥ C3σ
√

∆T log(τ)/ν(Z),

we have the following prediction error bound of the estimators B̂ and ϑ̂ defined in (3):

(29)
1√
ν(Z)

∥∥∥B̂ΦT (ϑ̂)−B?ΦT (ϑ?)
∥∥∥
LT
≤ C0

√
s ν(Z)κ,

with probability larger than 1− C4 n
(
|ΘT |dT
τ
√

log τ
∨ 1
τ

)
.

Remark 3.7. When the measure ν is composed of one atom, that is n = 1. This result covers that of [14,
Theorem 2.1].
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Remark 3.8 (Comparison to other estimators). Let us set HT = RT , Z = {1, · · · , n}, ν the counting measure
and WT as in Remark 3.5 and assume that the Riemannian diameter of the set ΘT is bounded by a constant
free of T . We recall that in this case ∆T = 1. By considering the estimators built from the optimization
problem (3) with p = 1 and applying Corollary 3.6, we get with:

κ = C3σ
√

∆T log τ/n and τ = T γ/2 for some given γ > 1,

that, with probability, larger than 1− C n/T γ/2:

(30)
1

nT

n∑
i=1

∥∥∥B̂(i)ΦT (ϑ̂)−B?(i)ΦT (ϑ?)
∥∥∥2

`2
.
σ2 s log(T )

T
·

We note that this simultaneous estimation procedure gives the same result as estimating separately n signals
as in [14] under the assumption that each signal has sparsity s. Individual estimation can be better for those
signals with smaller sparsity than the global one we use here.

In Remark 3.5, we showed that by taking p = 2 in the optimization problem (3) defining the estimators B̂

and ϑ̂, we obtain the bound (28) for a well chosen tuning parameter κ. When n and T are sufficiently large,
we remark that the bound (30) is larger than the bound (28) established for the estimators from Corollary
3.4 and stands with a smaller probability.

3.2.3. Arbitrary value of p in [1,2]. For the cases p = 2 and p = 1 we established tail bounds for the random
variables Mi for i = 0, 1, 2 in Corollaries 3.4 and 3.6, respectively. We recall that these random variables are
obtained by taking the supremum over the set ΘT and the Lq(ν) norm of real-valued processes indexed on
Z ×ΘT . For the case p = 1, q = +∞ we used a Rice formula for suprema of smooth Gaussian processes, see
[14, Lemma A.2]. For the case p = q = 2 we used a Rice formula for suprema of chi-squared processes; see
Lemma A.1. Unfortunately, in the more general case where p ∈ [1, 2] and q ∈ [2,+∞], such formulae seem
out of reach. However, we may use the log-convexity of Lq-norms and use the controls we obtained for the
cases p = 1 and p = 2. Indeed for any f ∈ L∞(ν) and q ∈ [2,+∞], we have the inequality:

‖f‖Lq ≤ ‖f‖
2
q

L2‖f‖
q−2
q

L∞ .

Hence, we readily deduce the following inclusion for any bound M ≥ 0:

{‖f‖Lq > M} ⊂ {‖f‖L∞ > M} ∪ {‖f‖L2 > M}.

4. Certificates

We present the certificate functions whose existence is required in Theorem 3.1. Such functions were
introduced for exact reconstruction of signals, see [19], [18], [26]. Exact recovery results for the simultaneous
reconstruction of signals via the Group-BLasso were proved in [28] using an extension of the certificates from
[26]. In [34], sufficient conditions for the existence of certificate functions were proved for a wide variety of
dictionaries. The authors showed that certificates can be built provided the parameters of the features to be
retrieved are well separated with respect to a Riemannian metric. This result requires some assumptions on
the kernel associated to the dictionary. In particular, the kernel must be local concave on its diagonal, strictly
inferior to 1 outside the diagonal and smooth. Their construction was used in [14] to establish prediction
error bounds under similar assumptions on the dictionary but for a one-dimensional parameter space Θ.

In this paper, we extend the notion of certificates for our context of multiple reconstructions of signals,
following the work of [28]. Let us emphasize that we use a different contruction than [28], see Remark 8.4.
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4.1. Assumptions on the certificates. In this section, we introduce the assumptions on the certificates.
We will give later in Section 4.2 an explicit construction and sufficient conditions for these assumptions to
hold.

Let T ∈ N. We denote the closed ball centered at θ ∈ ΘT with radius r by:

BT (θ, r) = {θ′ ∈ ΘT , : dT (θ, θ′) ≤ r} ⊆ ΘT .

Let r > 0 and let Q? be a subset of ΘT of cardinal s. We call near region of Q? the union of balls⋃
θ?∈Q?

BT (θ?, r) and far region the set ΘT minus the near region: ΘT \
⋃

θ?∈Q?
BT (θ?, r).

Assumption 4.1 (Interpolating certificate). Let p, q ∈ [1,+∞] such that p ≤ q and 1/p+1/q = 1, let T ∈ N,
s ∈ N∗, r > 0 and Q? be a subset of ΘT of cardinal s. Suppose Assumptions 2.1 and 2.2 on the dictionary
(ϕT (θ), θ ∈ Θ) and Assumption 2.3 on K∞ hold. Suppose that dT (θ, θ′) > 2r for all θ, θ′ ∈ Q? ⊂ ΘT .
There exist finite positive constants CN , C

′
N , CF , CB with CF < 1, depending on r and K∞, such that for

any measurable application V : Z ×Q? → R such that for any θ? ∈ Q?, ‖V (·, θ?)‖Lq(ν) = 1, there exists an

element P ∈ Lq(ν,HT ) satisfying:

(i) For all θ? ∈ Q? and θ ∈ BT (θ?, r), we have ‖〈φT (θ), P 〉T ‖Lq(ν) ≤ 1− CN dT (θ?, θ)2.

(ii) For all θ? ∈ Q? and θ ∈ BT (θ?, r), we have ‖〈φT (θ), P 〉T − V (·, θ?)‖Lq(ν) ≤ C ′N dT (θ?, θ)2.

(iii) For all θ in ΘT , θ /∈
⋃

θ?∈Q?
BT (θ?, r) (far region), we have ‖〈φT (θ), P 〉T ‖Lq(ν) ≤ 1− CF .

(iv) We have ‖P‖LT ≤ CB
√
s ν(Z)

1
2p−

1
2q .

We call “interpolating certificate” the real-valued functions defined on Z ×Θ by (z, θ) 7→ 〈φT (θ), P (z)〉T
where P is an element of Lq(ν,HT ) satisfying Points (i)− (iv) from 4.1.

We emphazise the interpolating properties of those certificates by noticing that for any θ? ∈ Q? we have
from Point (ii) for ν-almost every z ∈ Z that:

〈φT (θ?), P (z)〉T = V (z, θ?).

In order to establish prediction error bounds another type of certificate functions having different inter-
polating properties will be needed, see [17], [36], [10] in this direction.

Assumption 4.2 (Interpolating derivative certificate). Let p, q ∈ [1,+∞] such that p ≤ q and 1/p+1/q = 1,
let T ∈ N, s ∈ N∗, r > 0 and Q? be a subset of ΘT of cardinal s. Suppose Assumption 2.1 and 2.2
on the dictionary (ϕT (θ), θ ∈ Θ) and Assumption 2.3 on K∞ hold. Suppose that dT (θ, θ′) > 2r for all
θ, θ′ ∈ Q? ⊂ ΘT . There exist finite positive constants cN , cF , cB depending on r and K∞ such that for any
measurable application V : Z × Q? → R such that for any θ? ∈ Q?, ‖V (·, θ?)‖Lq(ν) = 1, there exists an

element Q ∈ Lq(ν,HT ) satisfying:

(i) For all θ? ∈ Q? and θ ∈ BT (θ?, r), we have:

‖〈φT (θ), Q〉T − V (·, θ?) sign(θ − θ?) dT (θ, θ?)‖Lq(ν) ≤ cN dT (θ?, θ)2.

(ii) For all θ in ΘT and θ /∈
⋃

θ?∈Q?
BT (θ?, r) (far region), we have ‖〈φT (θ), Q〉T ‖Lq(ν) ≤ cF .

(iii) We have ||Q||LT ≤ cB
√
s ν(Z)

1
2p−

1
2q .

We call “interpolating derivative certificate” the real-valued functions defined on Z × Θ by (z, θ) 7→
〈φT (θ), Q(z)〉T where Q is an element of Lq(ν,HT ) satisfying Points (i)− (iii) from 4.2.

We remark that for any θ? ∈ Q? we deduce from Point (i) for ν-almost every z ∈ Z:

〈φT (θ?), Q(z)〉T = 0.

Let us remark that when ν is a Dirac measure, the norm ‖·‖Lq(ν) reduces to an absolute value and

Assumptions 4.1 and 4.2 correspond to Assumptions 6.1 and 6.2 of [14].
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In the following, we shall often write by a slight abuse of notation f(θ) for f(·, θ) when considering a
function f from Z ×Θ to R.

4.2. Construction of the certificates. We give in this section sufficient conditions for Assumptions 4.1
and 4.2 to hold. These assumptions rely on the existence of real-valued functions defined on Z × Θ called
certificates and of the form:

(z, θ) 7→ 〈φT (θ), P (z)〉T ,
where P is an element of Lq(ν,HT ) satisfying some properties.

We shall follow the construction from [34, Theorem 2] for interpolating certificates and generalize the
contruction of [17, Lemma 2.7] for interpolating derivative certificates. In [17, Lemma 2.7], the authors
consider certificates that are trigonometric polynomials whereas we are interested here in a more general
framework. Furthermore, we remark that the constructions aforementioned only cover the case where ν is a
Dirac measure whereas ν can be any finite positive measure in our framework.

Once built, we will then show that our certificates satisfy the properties required in Assumptions 4.1 and
4.2. The proofs of the results of this section will closely follow the proofs of [14, Propositions 7.4 and 7.5]
that cover the case where ν is a Dirac measure (i.e. only one signal is considered).

Similarly to [14], we shall consider bounded kernels locally concave on the diagonal. We shall also require
the kernels to be strictly less than 1 outside their diagonal. In order to state these properties clearly, we
define for T ∈ N̄ = N ∪ {∞} and r > 0:

εT (r) = 1− sup {|KT (θ, θ′)|; θ, θ′ ∈ ΘT such that dT (θ′, θ) ≥ r} ,(31)

νT (r) = − sup
{
K[0,2]
T (θ, θ′); θ, θ′ ∈ ΘT such that dT (θ′, θ) ≤ r

}
.(32)

The quantities εT (r) and νT (r) defined from the considered kernel KT and the set ΘT will have to be positive
for some r > 0. The positivity may be difficult to show when T ∈ N. In order to show the positivity of εT (r)
and νT (r), one can rather show the positivity of ε∞(r) and ν∞(r) derived from an approximating kernel
easier to handle and use [14, Lemma 7.1].

We define the set Θs
T,δ ⊂ Θs

T of vector of parameters of dimension s ∈ N∗ and separation δ > 0 as:

(33) Θs
T,δ =

{
(θ1, · · · , θs) ∈ Θs

T : dT (θ`, θk) > δ for all distinct k, ` ∈ {1, . . . , s}
}
.

Let us define for i, j = 0, 1, 2 (assuming the kernel KT is smooth enough) and ϑ = (θ1, . . . , θs) ∈ Θs
T the

s× s matrix:

(34) K[i,j]
T (ϑ) =

(
K[i,j]
T (θk, θ`)

)
1≤k,`≤s

.

Let I be the identity matrix of size s× s.
Using the convention inf ∅ = +∞, We define:

(35) δT (u, s) = inf
{
δ > 0 : AT,`∞(ϑ) ≤ u, ϑ ∈ Θs

T,δ

}
,

where:

(36) AT,`∞(ϑ) = max

(∥∥∥I −K[0,0]
T (ϑ)

∥∥∥
op,`∞

,
∥∥∥I −K[1,1]

T (ϑ)
∥∥∥

op,`∞
,
∥∥∥I +K[2,0]

T (ϑ)
∥∥∥

op,`∞
,
∥∥∥K[1,0]

T (ϑ)
∥∥∥

op,`∞
,∥∥∥K[0,1]

T (ϑ)
∥∥∥

op,`∞
,
∥∥∥K[1,2]

T (ϑ)
∥∥∥

op,`∞

)
,
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and ‖·‖op,`∞
denotes the operator norm associated to the sup-norm ‖·‖`∞ , that is for a matrix A ∈ Rs×s,

‖A‖op,`∞
= sup
x∈Rs,‖x‖`∞≤1

‖Ax‖`∞ .

We define quantities which depend on K∞, Θ∞ and on real parameters r > 0 and ρ ≥ 1:

(37)

H(1)
∞ (r, ρ) =

1

2
∧L2,0 ∧ L2,1 ∧

ν∞(ρr)

10
∧ ε∞(r/ρ)

10
,

H(2)
∞ (r, ρ) =

1

6
∧ 8 ε∞(r/ρ)

10(5 + 2L1,0)
∧ 8 ν∞(ρr)

9(2L2,0 + 2L2,1 + 4)
,

where the constants Li,j are defined in (18).
We give sufficient conditions for Assumption 4.1 to hold. The proof of the following result is given in

Section 8.1.

Proposition 4.1 (Interpolating certificate). Let T ∈ N, s ∈ N∗, ρ ≥ 1, r > 0 and p, q ∈ [1,+∞] such that
p ≤ q and 1/p+ 1/q = 1. We assume that:

(i) Regularity of the dictionary ϕT : Assumptions 2.1 and 2.2 hold.
(ii) Regularity of the limit kernel K∞: Assumption 2.3 holds, we have r ∈

(
0, 1/

√
2L2,0

)
, and also

ε∞(r/ρ) > 0 and ν∞(ρr) > 0.

(iii) Separation of the non-linear parameters: There exists u∞ ∈
(

0, H
(2)
∞ (r, ρ)

)
such that:

δ∞(u∞, s) < +∞.

(iv) Closeness of the metrics dT and d∞: We have ρT ≤ ρ.
(v) Proximity of the kernels KT and K∞:

VT ≤ H(1)
∞ (r, ρ) and (s− 1)VT ≤ H(2)

∞ (r, ρ)− u∞.

Then, with the positive constants:

(38) CN =
ν∞(ρr)

180
, C ′N =

5

8
L2,0 +

1

8
L2,1 +

1

2
, CB = 2 and CF =

ε∞(r/ρ)

10
≤ 1,

Assumption 4.1 holds (with the same r) for any subset Q? = {θ?i , 1 ≤ i ≤ s} such that for all θ 6= θ′ ∈ Q?:

dT (θ, θ′) > 2 max(r, ρT δ∞(u∞, s)).

We state a second result that gives sufficient conditions for Assumption 4.2 to hold. The proof is given in
Section 8.2.

Proposition 4.2 (Interpolating derivative certificate). Let T ∈ N, s ∈ N∗ and p, q ∈ [1,+∞] such that
p ≤ q and 1/p+ 1/q = 1. We assume that:

(i) Regularity of the dictionary ϕT : Assumptions 2.1 and 2.2 hold.
(ii) Regularity of the limit kernel K∞: Assumption 2.3 holds.

(iii) Separation of the non-linear parameters: There exists u′∞ ∈ (0, 1/6), such that:

δ∞(u′∞, s) < +∞.

(iv) Proximity of the kernels KT and K∞: We have:

VT ≤ 1 and (s− 1)VT + u′∞ ≤ 1/6.

Then, with the positive constants:

(39) cN =
1

8
L2,0 +

5

8
L2,1 +

7

8
, cB = 2 and cF =

5

4
L1,0 +

7

4
,
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Assumption 4.2 holds for any r > 0 and any subset Q? = {θ?i , 1 ≤ i ≤ s} such that for all θ 6= θ′ ∈ Q?:

dT (θ, θ′) > 2 max(r, ρT δ∞(u′∞, s)).

The assumptions of Proposition 4.1 (resp. 4.2) are identical to those of [14, Proposition 7.4 ] (resp. [14,
Proposition 7.5]). It is not surprising since those results are based on the same construction of certificates.
In order to build a certificate η : (z, θ) 7→ R satisfying Assumption 4.1 or 4.2, we shall build for every element
z ∈ Z certificate functions ηz(θ) 7→ R following the same construction as in [14] and set η(z, θ) = ηz(θ). The
functions ηz will be coupled through interpolated values on Q?.

5. Proof of Theorem 3.1

In this section, we shall prove Theorem 3.1. We closely follow the proof of [14, Theorem 2.1] and extend
it to the case of a measure ν that is not necessarily a Dirac measure. We decompose the risk over values of

estimated non-linear parameters θ̂` in a neighborhood of the true values θ?k and those which are far away.
Linear functionals of the noise depending on some θ ∈ ΘT appear in the bounds and we use tail bounds on
the suprema of these functionals over all possible values of θ.

Let us bound the prediction error

R̂T :=
1√
ν(Z)

∥∥∥B̂ΦT (ϑ̂)−B?ΦT (ϑ?)
∥∥∥
LT
.

The predicition error corresponds to the integration on Z of the prediction error studied in [14, Theorem
2.1].

By definition (3) of B̂ and ϑ̂ for the tuning parameter κ, we have:

(40)
1

2ν(Z)

∥∥∥Y − B̂ΦT (ϑ̂)
∥∥∥2

LT
+ κ‖B̂‖`1,Lp(ν) ≤

1

2ν(Z)
‖Y −B?ΦT (ϑ?)‖2LT + κ‖B?‖`1,Lp(ν).

We define the application Υ̂ from LT to R by:

Υ̂(F ) =
〈
B̂ΦT (ϑ̂)−B?ΦT (ϑ?), F

〉
LT

.

This gives, by rearranging terms and using the equation of the model Y = B?ΦT (ϑ?) +WT , that:

(41)
1

2
R̂2
T ≤

1

ν(Z)
Υ̂(WT ) + κ

(
‖B?‖`1,Lp(ν) − ‖B̂‖`1,Lp(ν)

)
.

Next, we shall expand the two terms on the right-hand side of (41). In the rest of the proof, we fix
r > 0 so that Assumptions 4.1 and 4.2 are verified for Q?. In particular, for all k 6= k′ in the support
S? = {k, ‖B?k‖L2(ν) 6= 0 } we have dT (θ?k, θ

?
k′) > 2r.

We give the definitions of the sets of indices Ŝ, S̃k(r) and S̃(r) for k ∈ S?:

- Ŝ =

{
` :
∥∥∥B̂`∥∥∥

Lp(ν)
6= 0

}
the support set of B̂ given by the optimization problem (3);

- S̃k(r) =
{
` ∈ Ŝ : dT (θ̂`, θ

?
k) ≤ r

}
the set of indices ` in the support of B̂ associated to the active

parametric functions having θ̂` close to the true parameter θ?k, for a fixed k in S?;

- S̃(r) =
⋃
k∈S? S̃k(r) the set of indices ` in the support of B̂ associated to the active parametric

functions having θ̂` close to any true parameter θ?k, for some k in S?.



SIMULTANEOUS OFF-THE-GRID LEARNING OF MIXTURES ISSUED FROM A CONTINUOUS DICTIONARY 17

Since the closed balls BT (θ?k, r) with k ∈ S? are pairwise disjoint, the sets S̃k(r), for k ∈ S?, are also pairwise

disjoint and one can write the following decomposition with S̃(r)c = {1, · · · ,K} \ S̃(r):

B̂ΦT (ϑ̂)−B?ΦT (ϑ?) =

K∑
k=1

B̂kφT (θ̂k)−
∑
k∈S?

B?kφT (θ?k)

=
∑

k∈S?,S̃k(r) 6=∅

∑
`∈S̃k(r)

B̂`φT (θ̂`) +
∑

k∈S̃(r)c

B̂kφT (θ̂k)−
∑
k∈S?

B?kφT (θ?k).

This decomposition groups the elements of the predicted mixture according to the proximity of the

estimated parameter θ̂` to a true underlying parameter θ?k to be estimated. We use a Taylor-type expansion
with the Riemannian distance dT for the function φT (θ) around the elements of Q?. By Assumption, the
function φT is twice continuously differentiable with respect to the variable θ and the function gT is positive

on ΘT . We recall that D̃i;T [φT ] = φ
[i]
T for i = 0, 1, 2. According to [14, Lemma 4.2], we have for any θ?k and

θ̂` in ΘT :

φT (θ̂`) = φT (θ?k) + sign(θ̂` − θ?k) dT (θ̂`, θ
?
k)φ

[1]
T (θ?k) + dT (θ̂`, θ

?
k)2

∫ 1

0

(1− s)φ[2]
T (γ(k`)

s ) ds,

where γ(k`) is a distance realizing geodesic path belonging to ΘT such that γ
(k`)
0 = θ?k, γ

(k`)
1 = θ̂` and

dT (θ̂`, θ
?
k) =

∫ 1

0
|γ̇(k`)
s |

√
gT (γ

(k`)
s )ds.

Hence we obtain:

(42) B̂ΦT (ϑ̂)−B?ΦT (ϑ?) =
∑
k∈S?

I0,k(r)φT (θ?k) +
∑
k∈S?

I1,k(r)φ
[1]
T (θ?k) +

∑
k∈S̃(r)c

B̂k φT (θ̂k)

+
∑
k∈S?

 ∑
`∈S̃k(r)

B̂` dT (θ̂`, θ
?
k)2

∫ 1

0

(1− s)φ[2]
T (γ(k`)

s ) ds

 ,

with

(43) I0,k(r) =

 ∑
`∈S̃k(r)

B̂`

−B?k and I1,k(r) =
∑

`∈S̃k(r)

B̂` sign(θ̂` − θ?k) dT (θ̂`, θ
?
k).

The functions I0,k(r) and I1,k(r) belong to L2(ν). We shall omit the dependence in r when there is no
ambiguity. In particular, we write I0,k(z) for I0,k(r)(z). Let us introduce some notations in order to bound
the different terms of the expansion above:

I0(r) =
∑
k∈S?

‖I0,k(r)‖Lp(ν) and I1(r) =
∑
k∈S?

‖I1,k(r)‖Lp(ν),(44)

I2,k(r) =
∑

`∈S̃k(r)

∥∥∥B̂`∥∥∥
Lp(ν)

dT (θ̂`, θ
?
k)2 and I2(r) =

∑
k∈S?

I2,k(r),(45)

I3(r) =
∑

`∈S̃(r)c

∥∥∥B̂`∥∥∥
Lp(ν)

=
∥∥∥B̂S̃(r)c

∥∥∥
`1,Lp(ν)

,(46)

where B̂S̃(r)c denotes the restriction of the vector-valued application B̂ to its components in the set of

indices S̃(r)c. We recall that we omit the dependence in r when there is no ambiguity. These quantities are
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generalizations of the real numbers Ii, where i = 0, · · · , 3, defined in the proof of [14, Theorem 2.1] as they
correspond here to sums of Lp(ν) norms instead of sums of absolute values.

We bound the difference ‖B?‖`1,Lp(ν) −
∥∥∥B̂∥∥∥

`1,Lp(ν)
by noticing that:

(47) ‖B?‖`1,Lp(ν) −
∥∥∥B̂∥∥∥

`1,Lp(ν)
=
∑
k∈S?

(
‖B?k‖Lp(ν) −

∑
`∈S̃k(r)

∥∥∥B̂`∥∥∥
Lp(ν)

)
−

∑
k∈S̃(r)c

∥∥∥B̂k∥∥∥
Lp(ν)

≤ I0.

In the next lemma, we give an upper bound of I0. Recall the constants C ′N and CF from Assumption 4.1.

Let f ∈ L2(ν), we define the application v : L2(ν)→ L2(ν) such that for any z ∈ Z:

(48) v(f)(z) =

sign(f(z)) |f(z)|p−1

‖f‖p−1
Lp(ν)

if ‖f‖Lp(ν) > 0,

ν(Z)−
1
q otherwise,

so that ‖v(f)‖Lq(ν) = 1.

Lemma 5.1. Under the assumptions of Theorem 3.1 and with the element P1 ∈ HT from Assumption 4.1
associated to the function V : Z ×Q? → R defined by:

(49) V (z, θ?k) = v(I0,k)(z),

we get that:

(50) I0 ≤ C ′NI2 + (1− CF )I3 + |Υ̂(P1)|.

Proof. We have ‖I0,k‖Lp(ν) = ‖I0,k‖pLp(ν)/‖I0,k‖
p−1
Lp(ν) and therefore:

I0 :=
∑
k∈S?

‖I0,k‖Lp(ν) =
∑
k∈S?

∫
V (z, θ?k)

 ∑
`∈S̃k(r)

B̂`(z)

−B?k(z)

 ν(dz).

Let P1 be an element of LT from Assumption 4.1 associated to the function V such that properties (i)−(iv)

therein hold. By adding and substracting
∑
k∈S?

∑
`∈S̃k(r)

〈
B̂`φT (θ̂`), P1

〉
LT

to I0 and using the property (ii)

satisfied by the element P1, that is, 〈φT (θ?k), P1(z)〉T = V (z, θ?k) for all k ∈ S? and ν-almost every z ∈ Z, we
obtain:

I0 =
∑
k∈S?

∑
`∈S̃k(r)

∫
B̂`(z)

(
V (z, θ?k)−

〈
φT (θ̂`), P1(z)

〉
T

)
ν(dz) + Υ̂(P1)−

∑
`∈S̃(r)c

〈
B̂`φT (θ̂`), P1

〉
LT

.

We deduce, using Hölder’s inequality, that:

I0 ≤
∑
k∈S?

∑
`∈S̃k(r)

∥∥∥B̂`∥∥∥
Lp(ν)

∥∥∥V (θ?k)−
〈
φT (θ̂`), P1

〉
T

∥∥∥
Lq(ν)

+ |Υ̂(P1)|+
∑

`∈S̃(r)c

∥∥∥B̂`∥∥∥
Lp(ν)

∥∥∥〈φT (θ̂`), P1

〉
T

∥∥∥
Lq(ν)

.

Notice that θ̂` /∈
⋃

k∈S?
BT (θ?k, r) for ` ∈ S̃(r)c. Then, by using the properties (ii) and (iii) from Assumption

4.1, we get that (50) holds with the constants C ′N and CF from Assumption 4.1. �

In the next lemma, we give an upper bound of I1. Recall the constants cN and cF from Assumption 4.2.
Recall the application v defined in (48).
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Lemma 5.2. Under the assumptions of Theorem 3.1 and with the element Q0 ∈ LT from Assumption 4.2
associated to the function V : Z ×Q? → R defined by:

(51) V (z, θ?k) = v(I1,k)(z),

we get that:

(52) I1 ≤ cNI2 + cF I3 + |Υ̂(Q0)|.

Proof. We have writing I1,k(z) for I1,k(r)(z):

I1 =
∑
k∈S?

‖I1,k‖Lp(ν) =
∑
k∈S?

∫
V (z, θ?k)I1,k(z)ν(dz).

Let Q0 be an element of LT from Assumption 4.2 associated to the function V such that proper-

ties (i) − (iii) therein hold. By adding and substracting
∑

`∈S̃(r)

〈
B̂`φT (θ̂`), Q0

〉
LT

=
〈
B̂ΦT (ϑ̂), Q0

〉
LT
−∑

`∈S̃(r)c

〈
B̂`φT (θ̂`), Q0

〉
LT

to I1 and using the triangle inequality, we obtain:

I1 ≤
∑
k∈S?

∑
`∈S̃k(r)

∫
|B̂`(z)|

∣∣∣V (z, θ?k) sign(θ̂` − θ?k) dT (θ̂`, θ
?
k)−

〈
φT (θ̂`), Q0(z)

〉
T

∣∣∣ ν(dz)

+
∑

`∈S̃(r)c

∣∣∣∣〈B̂`φT (θ̂`), Q0

〉
LT

∣∣∣∣+

∣∣∣∣〈B̂ΦT (ϑ̂), Q0

〉
LT

∣∣∣∣ .
The property (i) of Assumption 4.2 gives that 〈φT (θ?k), Q0(z)〉T = 0 for all k ∈ S? and ν−almost every
z ∈ Z. This implies that 〈B?ΦT (ϑ?), Q0〉LT = 0 . Then, by using the definition of I2 and I3 from (45)-(46)

and the properties (i) and (ii) of Assumption 4.2, we obtain:

I1 ≤ cNI2 + cF I3 +

∣∣∣∣〈B̂ΦT (ϑ̂), Q0

〉
LT

∣∣∣∣ = cNI2 + cF I3 + |Υ̂(Q0)|,

with the constants cN and cF from Assumption 4.2. �

We consider the following random variables for j = 0, 1, 2:

(53) Mj = sup
θ∈ΘT

∥∥∥〈WT , φ
[j]
T (θ)

〉
T

∥∥∥
Lq(ν)

.

By using the expansion (42), Hölder’s inequality and the bounds (52) and (50) for the second inequality,
we obtain:

|Υ̂(WT )| ≤ (I0 + I3)M0 + I1M1 + I2 2−1M2(54)

≤ (C ′NI2 + (2− CF )I3 + |Υ̂(P1)|)M0 + (cNI2 + cF I3 + |Υ̂(Q0)|)M1 + I2 2−1M2.(55)

At this point, one needs to bound I2 and I3. In order to do so, we bound from above and from below the
Bregman divergence DB defined by:

(56) DB = ‖B̂‖`1,Lp(ν) − ‖B?‖`1,Lp(ν) − Υ̂(P0),

where P0 is the element given by Assumption 4.1 associated to the function V given by:

(57) V (z, θ?k) = sign(B?k(z))
|B?k(z)|p−1

‖B?k‖
p−1
Lp(ν)

for all k ∈ S?.

The next lemma gives a lower bound of the Bregman divergence.
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Lemma 5.3. Under the assumptions of Theorem 3.1 and with the constants CN and CF of Assumption 4.1,
we get that:

(58) DB ≥ CNI2 + CF I3.

Proof. By definition (56) of DB we have:

DB =
∑
k∈Ŝ

(∥∥∥B̂k∥∥∥
Lp(ν)

−
〈
B̂kφT (θ̂k), P0

〉
LT

)
−
∑
k∈S?

(
‖B?k‖Lp(ν) − 〈B

?
kφT (θ?k), P0〉LT

)
.

By using the interpolating properties of P0 from Assumption 4.1 associated to V defined in (57), we have∑
k∈S?

‖B?k‖Lp(ν) − 〈B
?
kφT (θ?k), P0〉LT = 0. Hence, we deduce that:

DB =
∑
k∈Ŝ

∥∥∥B̂k∥∥∥
Lp(ν)

−
〈
B̂kφT (θ̂k), P0

〉
LT

≥
∑
k∈Ŝ

∥∥∥B̂k∥∥∥
Lp(ν)

−
∣∣∣∣〈B̂kφT (θ̂k), P0

〉
LT

∣∣∣∣
≥
∑
k∈Ŝ

∥∥∥B̂k∥∥∥
Lp(ν)

−
∥∥∥B̂k∥∥∥

Lp(ν)

∥∥∥〈φT (θ̂k), P0

〉
T

∥∥∥
Lq(ν)

≥
∑
`∈S̃(r)

∥∥∥B̂`∥∥∥
Lp(ν)

(
1−

∥∥∥〈φT (θ̂`), P0

〉
T

∥∥∥
Lq(ν)

)
+

∑
k∈S̃(r)c

∥∥∥B̂k∥∥∥
Lp(ν)

(
1−

∥∥∥〈φT (θ̂k), P0

〉
T

∥∥∥
Lq(ν)

)
.

Thanks to properties (i) and (iii) of Assumption 4.1 and the definitions (45) and (46) of I2 and I3, we obtain:

DB ≥
∑
k∈S?

∑
`∈S̃k(r)

CN

∥∥∥B̂`∥∥∥
Lp(ν)

dT (θ̂`, θ
?
k)2 +

∑
k∈S̃(r)c

CF

∥∥∥B̂k∥∥∥
Lp(ν)

≥ CNI2 + CF I3,

where the constants CN and CF are that of Assumption 4.1. �

We now give an upper bound of the Bregman divergence.

Lemma 5.4. Under the assumptions of Theorem 3.1, we have:

(59) κ ν(Z)DB ≤ I2
(
C ′NM0 + cNM1 + 2−1M2

)
+ I3 ((2− CF )M0 + cFM1)

+ |Υ̂(P1)|M0 + |Υ̂(Q0)|M1 + κ ν(Z) |Υ̂(P0)|.

Proof. Recall that Q? ⊂ ΘT . We deduce from (41) that:

κ(‖B̂‖`1,Lp(ν) − ‖B?‖`1,Lp(ν)) ≤
1

ν(Z)
Υ̂(WT )− 1

2
R̂2
T ≤

1

ν(Z)
Υ̂(WT ).

Together with (56), we obtain:

κDB ≤
1

ν(Z)
|Υ̂(WT )|+ κ|Υ̂(P0)|.

Then, use (55) to get (59). �

By combining the upper and lower bounds (58) and (59), we deduce that:

(60) I2

(
CN −

1

κ ν(Z)

(
C ′NM0 + cNM1 + 2−1M2

))
+ I3

(
CF −

1

κ ν(Z)
((2− CF )M0 + cFM1)

)
≤ 1

κ ν(Z)
|Υ̂(P1)|M0 +

1

κ ν(Z)
|Υ̂(Q0)|M1 + |Υ̂(P0)|.
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We define the events:

(61) Ai = {Mi ≤ C κ ν(Z)} , for i ∈ {0, 1, 2} and A = A0 ∩ A1 ∩ A2,

where:

C =
CF

2(2− CF + cF )
∧ CN

2(C ′N + cN + 2−1)
·

We get from Inequality (60), that on the event A:

(62) CNI2 + CF I3 ≤ 2C′
(
|Υ̂(P1)|+ |Υ̂(Q0)|+ |Υ̂(P0)|

)
with C′ = C ∨ 1.

By reinjecting (47), (55), (50) and (52) in (41) one gets:

1

2
R̂2
T ≤ I2

(
C ′NM0 + cNM1 + 2−1M2

ν(Z)
+ κC ′N

)
+ I3

(
(2− CF )M0 + cFM1

ν(Z)
+ κ(1− CF )

)
+ |Υ̂(P1)|

(
M0

ν(Z)
+ κ

)
+ |Υ̂(Q0)| M1

ν(Z)
.

Using (62), we obtain an upper bound for the prediction error on the event A:

(63) R̂2
T ≤ C κ (|Υ̂(P0)|+ |Υ̂(P1)|+ |Υ̂(Q0)|),

with

C = 4C′
(

1 +
C′

CN
(2C ′N + cN + 1) +

C′

CF
(3− 2CF + cF )

)
.

Using the Cauchy-Schwarz inequality and the definition of Υ̂, we get that for f ∈ LT :

(64) |Υ̂(f)| ≤ R̂T
√
ν(Z) ‖f‖LT .

Using Assumption 4.1 (iv) for P0 and P1, and Assumption 4.2 (iii) for Q0, we get:
(65)

‖P0‖LT ≤ CB
√
sν(Z)1/2p−1/2q, ‖P1‖LT ≤ CB

√
sν(Z)1/2p−1/2q and ‖Q0‖LT ≤ cB

√
sν(Z)1/2p−1/2q.

Plugging this in (63), we get that on the event A:

(66) R̂2
T ≤ C0 κR̂T

√
s ν(Z)

1
p with C0 = (cB + 2CB)C.

We obtain (22) on the event A defined in (61).

6. Proof of Corollary 3.4

This section is dedicated to the proof of Corollary 3.4. We shall apply Theorem 3.1 in the particular case
p = 2 and q = 2. Recall that the measure ν is a sum of n weighted Dirac measures. All the assumptions
of Theorem 3.1 are in force. We shall only give tail bounds for the quantities Mj with j = 0, 1, 2 defined in
(24).

For j = 0, 1, 2 and θ ∈ ΘT , we set Xj(θ) =
∥∥∥〈WT , φ

[j]
T (θ)

〉
T

∥∥∥
L2(ν)

. Notice that Mj = supΘT Xj and that

the process X2
j is a χ2 process.

We first consider j = 0. Using (13) and (15), we have that:

‖φT (θ)‖2T = 1 and
∥∥∥φ[1]

T (θ)
∥∥∥2

T
= K[1,1]

T (θ, θ) = 1.

We define two functions fn and gn on R by:

(67) fn(x) = e−x(1−2
√

n
x ) and gn(x) =

x
n
2

Γ(n2 )
e−x/2,
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where Γ denotes the gamma function. Notice that both functions are decreasing on [n,+∞).
We set:

A =
C2 ν(Z)2

σ2‖a‖`∞∆T
·

Recall Assumption 3.1 on the noise holds. We deduce from Lemma A.2 with C1 = C2 = 1 and u =
C2 κ2 ν(Z)2, that for κ ≥

√
(n+ 1)/A:

(68) P
(
M2

0 > C2 κ2 ν(Z)2
)
≤ fn

(
κ2A

)
+

4|ΘT |dT
2n/2

gn
(
κ2A

)
,

where |ΘT |dT denotes the diameter of the set ΘT with respect to the metric dT .

We consider j = 1. We have by (13) and (15) that:∥∥∥φ[1]
T (θ)

∥∥∥2

T
= 1 and

∥∥∥D̃1;T [φ
[1]
T ](θ)

∥∥∥2

T
=
∥∥∥φ[2]

T (θ)
∥∥∥2

T
= K[2,2]

T (θ, θ).

Recall L2,2 and VT are defined in (18) and (21). Since Assumptions 2.3 and 2.4 hold, we get that for θ ∈ ΘT :

K[2,2]
T (θ, θ) ≤ L2,2 + VT ≤ 2L2,2.

We deduce from Lemma A.2 with C1 = 1, C2 =
√

2L2,2 and u = C2 κ2 ν(Z)2, that for κ ≥
√

(n+ 1)/A:

(69) P
(
M2

1 > C2 κ2 ν(Z)2
)
≤ fn

(
κ2A

)
+

4
√

2L2,2 |ΘT |dT
2n/2

gn
(
κ2A

)
.

We consider j = 2. We have by (15) that:∥∥∥φ[2]
T (θ)

∥∥∥2

T
= K[2,2]

T (θ, θ) and
∥∥∥D̃1;T [φ

[2]
T ](θ)

∥∥∥2

T
=
∥∥∥φ[3]

T (θ)
∥∥∥2

T
= K[3,3]

T (θ, θ).

Recall the definition of the function h∞ from (17) and the constants L2,2, L3, VT defined in (18) and (21).
Using also Assumption 2.4 so that VT ≤ L2,2 ∧ L3, we get that for all θ ∈ ΘT :

K[2,2]
T (θ, θ) ≤ L2,2 + VT ≤ 2L2,2 and K[3,3]

T (θ, θ) ≤ L3 + VT ≤ 2L3.

We deduce from Lemma A.2 with C1 =
√

2L2,2, C2 =
√

2L3 and u = C2 κ2 ν(Z)2, that for

κ ≥
√

2L2,2 (n+ 1)/A,

we have:

(70) P
(
M2

2 > C2 κ2 ν(Z)2
)
≤ fn

(
κ2A

2L2,2

)
+

4
√
L3 |ΘT |dT√
L2,2 2n/2

gn

(
κ2A

2L2,2

)
.

Wet set:

(71) B =
C′21 ν(Z)2

σ2‖a‖`∞∆T
with C′1 =

√
C2

2L2,2 ∨ 1
·

We deduce from (68), (69) and (70) that for κ ≥
√

(n+ 1)/B:

(72)

2∑
j=0

P(Mj > C κ ν(Z)) ≤ 3

(
fn
(
κ2B

)
+
C′2|ΘT |dT

2n/2
gn
(
κ2B

))
,
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where the constant C′2 is finite positive and defined by:

C′2 = 4

(
1 ∨

√
2L2,2 ∨

√
L3√
L2,2

)
.

Recall that the functions fn and gn are decreasing on [n,+∞). We get the following asymptotically-
equivalent functions (up to a multiplicative constant) for fn(c n) and gn(c n) and some positive constant
c:

(73)
fn(c n) = e−n(c−2

√
c)

gn(c n)/2
n
2 � e−

n
2 (c−log(c)−1)+ 1

2 log(n) . e−
n
2 (c−log(c)−3/2) .

Indeed, we use that Γ(n/2) � e
n
2 log(n2 )−n2−

1
2 log(n). Thus, the constant c determines which of the two terms

fn(c n) and gn(c n)/2
n
2 is dominant.

By solving a second order inequality, we give a lower bound on the tuning parameter κ so that the first
right hand term of (72) is bounded by 1/τ for some τ > 1.

Indeed for τ > 1 and κ ≥
√

(n+ 1)/B

(
1 +

√
1 + log(τ)

n

)
we have:

fn(κ2B) ≤ 1

τ
·

We also have:

gn(κ2B) ≤ gn

n(1 +

√
1 +

log(τ)

n

)2
 ≤ gn (n) e−n/2 /

√
τ ,

where we used that gn is decreasing on [n,+∞) for the first inequality and that log(1+x) ≤ x for the second.
So that, we get:

(74)

2∑
j=0

P(Mj > C κ ν(Z)) ≤ 3

τ
+

3 C′2|ΘT |dT√
τ 2

n
2

gn (n) e−n/2 .

Then, by using (73), we deduce an asymptotical equivalence up to a multiplicative constant: F (n) :=
gn(n) e−n/2 /2n/2 � e−n/2+log(n)/2.

Finally, using the definition of B given in (71), when

κ ≥ C1σ

√
‖a‖`∞∆T n

ν(Z)2

(
1 +

√
1 +

log(τ)

n

)

we get by Theorem 3.1 that the bound (22) stands with probability larger than 1 − C2
(

1
τ +

|ΘT |dT F (n)√
τ

)
,

where:

C1 =
√

2/C′1 and C2 = 3(1 ∨ C′2).

This completes the proof of the corollary.

7. Proof of Corollary 3.6

In this section, we prove Corollary 3.6. We shall apply Theorem 3.1 in the particular case p = 1 and
q = +∞. Recall that the measure ν is a sum of n weighted Dirac measures. All the assumptions of
Theorem 3.1 are in force. We shall only give tail bounds for the quantities Mj with j = 0, 1, 2 defined by

Mj = supΘT Xj where Xj(θ) =
∥∥∥〈WT , φ

[j]
T (θ)

〉
T

∥∥∥
L∞(ν)

.
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Using Assumption 3.1, we get for any j = 0, 1, 2 that:

P(Mj > C κ ν(Z)) ≤
∑
z∈Z

P
(

sup
ΘT

〈
WT (z), φ

[j]
T (θ)

〉
T
> C κ ν(Z)

)
≤ nP

(
sup
ΘT

〈
wT , φ

[j]
T (θ)

〉
T
> C κ ν(Z)

)
.

We use [14, Lemma A.2] that establishes a tail bound for suprema of smooth Gaussian processes and similar

arguments as those developed in the proof of [14, Theorem 2.1] to get tail bounds on supΘT

〈
wT , φ

[j]
T (θ)

〉
T

for j = 0, 1, 2. We obtain for any τ > 1 and κ ≥ C3σ
√

∆T log τ/ν(Z) with C3 = 2
C
(
1 ∨

√
2L2,2

)
:

P
(

sup
ΘT

〈
wT , φ

[j]
T (θ)

〉
T
> C κ ν(Z)

)
≤ C′4

(
|ΘT |dT
τ
√

log τ
∨ 1

τ

)
,

where C′4 is a positive constant depending on r and K∞ defined in [14, Eq. (84)]. We get:

2∑
j=0

P(Mj > C κ ν(Z)) ≤ 3 C′4 n
(
|ΘT |dT
τ
√

log τ
∨ 1

τ

)
.

Therefore, we obtain by Theorem 3.1 that (22) stands with probability larger than 1−C4 n
(
|ΘT |dT
τ
√

log τ
∨ 1
τ

)
with C4 = 3 C′4 provided the tuning parameter in (3) satisfies κ ≥ C3σ

√
∆T log τ/ν(Z).

8. Proofs for the construction of certificates

This section is devoted to the proof of Propositions 4.1 and 4.2. We shall first introduce norms that will
be useful later in the proof. Then, we shall closely follow the proofs of [14, Propositions 7.4 and 7.5].

Let p, q ∈ [1,+∞] such that p ≤ q and 1/p+ 1/q = 1, let m,n ∈ N. We define a norm ‖·‖∗,q on Lq(ν,Rn)
by:

‖f‖∗,q = max
1≤k≤n

‖fk‖Lq(ν).

We shall also define a norm on any matrix A ∈ Rn×m by:

‖A‖op,∗,q = sup
f ∈ Lq(ν,Rm)
‖f‖∗,q ≤ 1

‖Af‖∗,q.

Recall the definition of the operator norm associated to the `∞ sup-norm defined for any matrix A ∈ Rn×m
by:

‖A‖op,`∞
= max

1≤k≤n

∑
1≤`≤m

|Ak,`|.

We have the following elementary result.

Lemma 8.1. We have the equality on matrix norms on Rn×m:

‖·‖op,`∞
= ‖·‖op,∗,q.

Proof. Let be A ∈ Rn×m. We have by definition and the triangle inequality for any f ∈ Lq(ν,Rm):

‖Af‖∗,q = max
1≤k≤n

∥∥∥∥∥
m∑
`=1

Ak,`f`

∥∥∥∥∥
Lq(ν)

≤ max
1≤k≤n

m∑
`=1

|Ak,`|‖f`‖Lq(ν).

Hence for any f ∈ Lq(ν,Rm) such that ‖f‖∗,q ≤ 1, we have:

‖Af‖∗,q ≤ max
1≤k≤n

∑
1≤`≤m

|Ak,`| = ‖A‖op,`∞
.

Therefore, we have the bound ‖A‖op,∗,q ≤ ‖A‖op,`∞
.
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Let us show that, in fact, we have an equality between those two norms. We set

k? = arg max
1≤k≤n

m∑
`=1

|Ak,`|

and we define f? so that for almost every z ∈ Z, f?(z) = ν(Z)−1/q(sign(Ak?,1), · · · , sign(Ak?,q)). We have
‖f‖∗,q = 1 and ‖Af‖∗,q = ‖A‖op,`∞

. Thus, we have ‖A‖op,∗,q ≥ ‖A‖op,`∞
. Therefore we obtain the equality

‖·‖op,`∞
= ‖·‖op,∗,q. �

Since the norm ‖·‖op,∗,q does not depend on q, we note ‖·‖op,∗ instead of ‖·‖op,∗,q.

Lemma 8.2. Let x ∈ Rm, A ∈ Rn×m and f ∈ Lq(ν,Rm). We have the following inequalities:∥∥x>f∥∥
Lq(ν)

≤ ‖x‖`1‖f‖∗,q and ‖Af‖∗,q ≤ ‖A‖op,∗‖f‖∗,q.

Proof. This is clear since
∥∥x>f∥∥

Lq(ν)
≤
∑m
`=1 |x`|‖f`‖Lq(ν) ≤ ‖x‖`1‖f‖∗,q.

�

For a function f : Z × Θ → R, we note for any z ∈ Z, f(z) (resp. any θ ∈ Θ, f(θ)) the function
f(z, ·) : θ 7→ f(z, θ) (resp. f(·, θ) : z 7→ f(z, θ)). The context in which we shall use this notation will be clear
so that there is no confusion.

8.1. Proof of Proposition 4.1(Construction of an interpolating certificate). Let T ∈ N and s ∈ N∗.
Recall Assumptions 2.2 (and thus 2.1 on the regularity of ϕT ) and 2.3 on the regularity of the asymptotic

kernel K∞ are in force. Let ρ ≥ 1, let r ∈
(
0, 1/

√
2L0,2

)
and u∞ ∈

(
0, H

(2)
∞ (r, ρ)

)
such that (ii), (iii), (iv)

and (v) of Proposition 4.1 hold. Recall the definitions (33) and (35) of Θs
T,δ and δ∞. By assumption

δ∞(u∞, s) is finite. Let ϑ? = (θ?1 , . . . , θ
?
s) ∈ Θs

T,(2ρT δ∞(u∞,s))∨(2r). We note Q? = {θ?i , 1 ≤ i ≤ s} the set of

cardinal s. Let V : Z × Q? → R such that for any θ? ∈ Q?, ‖V (θ?)‖Lq(ν) = 1. Let α, ξ ∈ Lq(ν,Rs). We

define the function Pα,ξ on Z as:

(75) Pα,ξ(z) =

s∑
k=1

αk(z)φT (θ?k) +

s∑
k=1

ξk(z) D̃1,T [φT ](θ?k),

which belongs to HT . Recall the definition (14) of the kernel KT . Using (15), we define the corresponding
certificate function on Z ×Θ by:

(76) ηα,ξ(z, θ) = 〈φT (θ), Pα,ξ(z)〉T =

s∑
k=1

αk(z)KT (θ, θ?k) +

s∑
k=1

ξk(z)K[0,1]
T (θ, θ?k).

Notice that the function η is twice continuously differentiable on Θ with respect to its second variable θ due
to Assumption 2.1. By Assumption 2.2 on the regularity of ϕT and the positivity of gT and (15), we get
that for almost every z ∈ Z the function θ 7→ ηα,ξ(z, θ) is of class C3 on Θ, and that:

(77) D̃1;T [ηα,ξ(z)](θ) =

s∑
k=1

αk(z)K[1,0]
T (θ, θ?k) +

s∑
k=1

ξk(z)K[1,1]
T (θ, θ?k).

We give a preliminary technical lemma. Set:

(78) Γ =

(
Γ[0,0] Γ[1,0]>

Γ[1,0] Γ[1,1]

)
, for Γ[i,j] = K[i,j]

T (ϑ?).

As we have V(T ) ≤ infΘ∞ g∞, by Lemma 7.3 of [14] we have that:

(79) Θs
T,ρT δ∞(u∞,s)

⊆ Θs
T,δT (uT (s),s)
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where uT (s) = u∞ + (s− 1)V1(T ). Hence we have:

(80) (θ?i , 1 ≤ i ≤ s) ∈ Θs
T,δT (uT (s),s).

We deduce from (35), (36), (80) and Lemma 8.1 that:
(81)∥∥∥I − Γ[0,0]

∥∥∥
op,∗
≤ uT (s),

∥∥∥I − Γ[1,1]
∥∥∥

op,∗
≤ uT (s),

∥∥∥Γ[1,0]
∥∥∥

op,∗
≤ uT (s) and

∥∥∥Γ[1,0]>
∥∥∥

op,∗
≤ uT (s).

We shall write for any z ∈ Z:

(82) V (z) = (V (z, θ?1), · · · , V (z, θ?s))>.

Lemma 8.3. Let be 1 ≤ p ≤ q ≤ +∞ such that 1/p + 1/q = 1. Let V : Z × Q? → R be a measurable
application such that for any θ? ∈ Q?, ‖V (·, θ?)‖Lq(ν) = 1. Assume that (81) holds. Assume also that

uT (s) < 1/2. Then, there exist α, ξ ∈ Lq(ν,Rs) such that:

ηα,ξ(z, θ
?
k) = V (z, θ?k) for 1 ≤ k ≤ s, for ν − almost every z,(83)

D̃1,T [ηα,ξ(z)](θ
?
k) = 0 for 1 ≤ k ≤ s, for ν − almost every z,(84)

and we have also that:

‖α‖∗,q ≤
1− uT (s)

1− 2uT (s)
, ‖ξ‖∗,q ≤

uT (s)

1− 2uT (s)
,
∥∥α− V ∥∥∗,q ≤ uT (s)

1− 2uT (s)
,

and

‖α‖∗,p ≤ ν(Z)1/p−1/q 1− uT (s)

1− 2uT (s)
, ‖ξ‖∗,p ≤ ν(Z)1/p−1/q uT (s)

1− 2uT (s)
,
∥∥α− V ∥∥∗,p ≤ ν(Z)1/p−1/q uT (s)

1− 2uT (s)
·

Remark 8.4. The construction of interpolating certificates is different from the one introduced in [28] where
ν is the counting measure and q = 2. Indeed, in [28] the application ξ is constant and α and ξ solve (83)

and ∇‖ηα,ξ(·, θ?k)‖2L2(ν) = 0 for 1 ≤ k ≤ s instead of (84).

Proof. Let z ∈ Z such that (83) and (84) are satisfied. By [14, Lemma 10.1], we obtain that:

α(z) = Γ−1
SCV (z) and ξ(z) = −[Γ[1,1]]−1Γ[1,0]Γ−1

SCV (z).

where ΓSC = Γ[0,0] − Γ[1,0]>[Γ[1,1]]−1Γ[1,0] and:

(85) ‖I − ΓSC‖op,∗ = ‖I − ΓSC‖op,`∞
≤ uT (s)

1− uT (s)
,
∥∥Γ−1

SC

∥∥
op,∗ =

∥∥Γ−1
SC

∥∥
op,`∞

≤ 1− uT (s)

1− 2uT (s)
·

We recall that if M is a matrix such that, ‖I −M‖op,∗ < 1, then M is non-singular, M−1 =
∑
i≥0

(I −M)i

and
∥∥M−1

∥∥
op,∗ ≤

(
1− ‖I −M‖op,∗

)−1

. Using (81), (85), the fact that
∥∥V ∥∥∗,q = 1 and Lemma 8.2, we get:

‖α‖∗,q ≤
∥∥Γ−1

SC

∥∥
op,∗

∥∥V ∥∥∗,q ≤ 1− uT (s)

1− 2uT (s)
,

‖ξ‖∗,q ≤
∥∥∥[Γ[1,1]]−1Γ[1,0]Γ−1

SC

∥∥∥
op,∗

∥∥V ∥∥∗,q ≤ ∥∥∥[Γ[1,1]]−1
∥∥∥

op,∗

∥∥∥Γ[1,0]
∥∥∥

op,∗

∥∥Γ−1
SC

∥∥
op,∗ ≤

uT (s)

1− 2uT (s)
,

∥∥α− V ∥∥∗,q ≤ ∥∥(Γ−1
SC − I)

∥∥
op,∗

∥∥V ∥∥∗,q ≤ ‖ΓSC − I‖op,∗
∥∥Γ−1

SC

∥∥
op,∗ ≤

uT (s)

1− 2uT (s)
·

Then use that for any f ∈ Lq(ν), we have

(86) ‖f‖Lp(ν) ≤ ν(Z)1/p−1/q‖f‖Lq(ν)

by Hölder’s inequality as p ≤ q, to obtain the upper bound on the norm ‖·‖∗,p. This finishes the proof. �
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We fix V : Z × Q? → R such that for any θ? ∈ Q? we have ‖V (θ?)‖Lq(ν) = 1 and we consider Pα,ξ and

ηα,ξ with α and ξ characterized by (83) and (84) from Lemma 8.3. Let e` ∈ Rs be the vector with all the
entries equal to zero but the `-th which is equal to 1.

Proof of (iii) from Assumption 4.1 with CF = ε∞(r/ρ)/10. Let θ ∈ ΘT such that dT (θ,Q?) > r (far
region). It is enough to prove that ‖ηα,ξ(θ)‖Lq(ν) ≤ 1−CF . Let θ?` be one of the elements of Q? closest to θ

in terms of the metric dT . Since ϑ? ∈ Θs
T,2ρT δ∞(u∞,s)

, we have, by the triangle inequality that for any k 6= `:

2ρT δ∞(u∞, s) < dT (θ?` , θ
?
k) ≤ dT (θ?` , θ) + dT (θ, θ?k) ≤ 2dT (θ, θ?k).

Hence, we have ϑ?`,θ ∈ Θs
T,ρT δ∞(u∞,s)

, where ϑ?`,θ denotes the vector ϑ? whose `-th coordinate has been

replaced by θ. Then, we obtain from Lemma 7.3 of [14] that Θs
T,ρT δ∞(u∞,s)

⊆ Θs
T,δT (uT (s),s) and thus:

(87) ϑ?`,θ ∈ Θs
T,δT (uT (s),s).

We denote by Γ`,θ (resp. Γ
[i,j]
`,θ ) the matrix Γ (resp. Γ[i,j]) in (78) where ϑ? has been replaced by ϑ?`,θ. Notice

the upper bounds (81) also hold for Γ`,θ because of (87). Recall we have that for any θ ∈ Θ, KT (θ, θ) = 1

and K[0,1]
T (θ, θ) = 0. Elementary calculations give with ηα,ξ from Lemma 8.3 that:

(88) ηα,ξ(z, θ) = e>`

(
Γ

[0,0]
`,θ − I

)
α(z) +KT (θ, θ?` )α`(z) + e>` Γ

[1,0]>
`,θ ξ(z) +K[0,1]

T (θ, θ?` )ξ`(z).

By taking the norm ‖·‖Lq(ν) in (88) and using the triangle inequality we get:

(89) ‖ηα,ξ(θ)‖Lq(ν) ≤
∥∥∥Γ

[0,0]
`,θ − I

∥∥∥
op,∗
‖α‖∗,q + ‖α‖∗,q|KT (θ, θ?` )|+

∥∥∥Γ
[1,0]>
`,θ

∥∥∥
op,∗
‖ξ‖∗,q + |K[0,1]

T (θ, θ?` )|‖ξ‖∗,q.

Since θ belongs to the “far region”, we have by definition of εT (r) given in (31) that:

(90) |KT (θ, θ?` )| ≤ 1− εT (r).

The triangle inequality and the definitions (21) of VT and (18) of L1,0 give:

(91) |K[0,1]
T (θ, θ?` )| ≤ L1,0 + VT .

Then, using (81) (which holds for Γ`,θ thanks to (87)), we get that:

‖ηα,ξ(θ)‖Lq(ν) ≤ 1− εT (r) +
uT (s)

1− 2uT (s)
(2 + L1,0 + VT ) .

Notice that the function r 7→ ε∞(r) is increasing. Since ρT ≤ ρ, we get by Lemma 7.1 of [14] that:

(92) εT (r) ≥ ε∞(r/ρT )− VT ≥ ε∞(r/ρ)− VT .

By assumption, we have uT (s) ≤ H(2)
∞ (r, ρ) ≤ 1/4. Hence, we have 1

1−2uT (s) ≤ 2. We also have VT ≤ 1/2 as

VT ≤ H(1)
∞ (r, ρ). Therefore, we get:

‖ηα,ξ(θ)‖Lq(ν) ≤ 1− ε∞(r/ρ) + VT + uT (s) (5 + 2L1,0) .

The assumption uT (s) ≤ H(2)
∞ (r, ρ) gives:

(93) uT (s) ≤ 8

10 (5 + 2L1,0)
ε∞(r/ρ)·

The assumption VT ≤ H
(1)
∞ (r, ρ) gives VT ≤ ε∞(r/ρ)/10. Hence, we have ‖ηα,ξ(θ)‖Lq(ν) ≤ 1 − ε∞(r/ρ)

10 .

Thus, Property (iii) from Assumption 4.1 holds with CF = ε∞(r/ρ)/10.

Proof of (i) from Assumption 4.1 with CN = ν∞(ρr)/180. Let θ ∈ ΘT such that dT (θ,Q?) ≤ r. Let
` ∈ {1, · · · , s} such that θ ∈ BT (θ?` , r) (“near region”). Thus, it is enough to prove that ‖ηα,ξ(θ)‖Lq(ν) ≤
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1−CN dT (θ?` , θ)
2. This will be done by using Lemma A.3 to obtain a quadratic decay on ηα,ξ from a bound

on its second Riemannian derivative.

Recall that the function ηα,ξ is twice continuously differentiable with respect to its second variable.

Differentiating (77) and using that K[2,0]
T (θ, θ) = −1 and K[2,1]

T (θ, θ) = 0, we deduce that for almost every
z ∈ Z:

(94) D̃2;T [ηα,ξ(z)](θ) = e>` (I + Γ
[2,0]
`,θ )α(z) +K[2,0]

T (θ, θ?` )e>` α(z) + e>` Γ
[2,1]
`,θ ξ(z) +K[2,1]

T (θ, θ?` )e>` ξ(z).

We get:

(95) D̃2;T [ηα,ξ(z)](θ)− V (z, θ?` )K[2,0]
T (θ, θ?` ) = e>` (I + Γ

[2,0]
`,θ )α(z) +K[2,0]

T (θ, θ?` )e>` (α(z)− V (z))

+ e>` Γ
[2,1]
`,θ ξ(z) +K[2,1]

T (θ, θ?` )e>` ξ(z).

The triangle inequality and the definition of VT give:

(96) |K[2,0]
T (θ, θ?` )| ≤ L2,0 + VT and |K[2,1]

T (θ, θ?` )| ≤ L2,1 + VT ,

where L2,0 and L1,2 are defined in (18). We deduce from (87), the definition of δT in (35) and (36) that:

(97)
∥∥∥I + Γ

[2,0]
`,θ

∥∥∥
op,∗
≤ uT (s) and

∥∥∥Γ
[2,1]
`,θ

∥∥∥
op,∗
≤ uT (s).

We deduce from (95) that:∥∥∥D̃2;T [ηα,ξ](θ)− V`(z)K[2,0]
T (θ, θ?` )

∥∥∥
Lq(ν)

≤ ‖α‖∗,q
∥∥∥I + Γ

[2,0]
`,θ

∥∥∥
op,∗

+
∥∥α− V ∥∥∗,q(L2,0 + VT )

+ ‖ξ‖∗,q

(∥∥∥Γ
[2,1]
`,θ

∥∥∥
op,∗

+ L2,1 + VT
)

≤ uT (s)

1− 2uT (s)
(1 + L2,0 + L2,1 + 2VT ).

By assumption, we have uT (s) ≤ H
(2)
∞ (r, ρ) ≤ 1/6. Hence, we have 1

1−2uT (s) ≤ 2. Furthermore, we have

by assumption that VT ≤ H(1)
∞ (r, ρ) ≤ 1/2 and uT (s) ≤ H(2)

∞ (r, ρ). In particular, we have:

uT (s) ≤ 8

9(2L2,0 + 2L2,1 + 4)
ν∞(ρr).

Therefore, we obtain:

(98)
∥∥∥D̃2;T [ηα,ξ](θ)− V (z, θ?` )K[2,0]

T (θ, θ?` )
∥∥∥
Lq(ν)

≤ 8

9
ν∞(ρr).

We now check that the hypotheses of Lemma A.3-(ii) hold in order to obtain a quadratic decay on
θ 7→ ‖ηα,ξ(θ)‖Lq(ν) from the bound (98). First recall that for almost every z ∈ Z, θ 7→ ηα,ξ(z, θ) is twice

continuously differentiable and have the interpolation properties (83). By the triangle inequality and since
by assumption VT ≤ L2,0, we have:

sup
Θ2
T

|K[2,0]
T | ≤ L2,0 + VT ≤ 2L2,0.

Then, Lemma 7.1 of [14] ensures that for any θ, θ′ in ΘT such that dT (θ, θ′) ≤ r we have:

−K[2,0]
T (θ, θ′) ≥ ν∞(rρT )− VT ≥ ν∞(ρr)− VT ≥

9

10
ν∞(ρr),
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where we used that the function r 7→ ν∞(r) is decreasing and ρT ≤ ρ for the second inequality and that

VT ≤ H(1)
∞ (r, ρ) ≤ ν∞(ρr)/10 for the last inequality.

Set δ = 8
9ν∞(ρr), ε = 9

10ν∞(ρr), L = 2L2,0. As r < L−
1
2 and δ < ε, we apply Lemma A.3-(ii) and get for

θ ∈ BT (θ?` , r):

‖ηα,ξ(θ)‖Lq(ν) ≤ 1− ν∞(ρr)

180
dT (θ, θ?` )2.

Proof of (ii) from Assumption 4.1 with C ′N = (5L2,0+L2,1+4)/8. Let θ ∈ ΘT such that dT (θ,Q?) ≤ r.
Let ` ∈ {1, · · · , s} such that θ ∈ BT (θ?` , r) (“near region”). We shall prove that ‖ηα,ξ(θ)− V (θ?` )‖Lq(ν) ≤
C ′N dT (θ?` , θ)

2.

Let us consider the function f : (z, θ) → ηα,ξ(z, θ) − V (z, θ?` ). We will bound
∥∥∥D̃2;T [f ](θ)

∥∥∥
Lq(ν)

on

BT (θ?` , r) and apply Lemma A.3-(i) on f to prove the the inequality of property (ii). Notice that for almost
every z ∈ Z, the map θ 7→ f(z, θ) is twice continuously differentiable. By construction, see (83), we have for

almost every z ∈ Z that D̃2;T [f(z)] = D̃2;T [ηα,ξ(z)], f(z, θ?` ) = 0 and D̃1;T [f(z)](θ?` ) = 0. We deduce from
(94) and the bounds (96) that:∥∥∥D̃2;T [f ](θ)

∥∥∥
Lq(ν)

≤ ‖α‖∗,q
∥∥∥I + Γ

[2,0]
`,θ

∥∥∥
op,∗

+ ‖α‖∗,q(L2,0 + VT ) + ‖ξ‖∗,q
∥∥∥Γ

[2,1]
`,θ

∥∥∥
op,∗

+ ‖ξ‖∗,q(L2,1 + VT ).

Using (97), and the bounds on α and ξ from Lemma 8.3, we get:∥∥∥D̃2;T [f ](θ)
∥∥∥
Lq(ν)

≤ 1− uT (s)

1− 2uT (s)
(L2,0 + VT + uT (s)) +

uT (s)

1− 2uT (s)
(L2,1 + VT + uT (s)).

Since uT (s) ≤ H(2)
∞ (r, ρ) ≤ 1/6 and VT ≤ H(1)

∞ (r, ρ) ≤ 1/2, we get:∥∥∥D̃2;T [f ](θ)
∥∥∥
Lq(ν)

≤ 5

4
L2,0 +

1

4
L2,1 + 1.

We get thanks to Lemma A.3-(i) on the function f that for any θ ∈ BT (θ?` , r):

‖ηα,ξ(θ)− V (θ?` )‖Lq(ν) ≤
1

8
(5L2,0 + L1,2 + 4) dT (θ, θ?` )2.

Proof of (iv) from Assumption 4.1 with CB = 2. Recall the definition of Pα,ξ in (75). Elementary

calculations give using the definitions of Γ[0,0] and Γ[1,1] in (78):

‖Pα,ξ‖2LT ≤ 2

∥∥∥∥∥
s∑

k=1

αk(z)φT (θ?k)

∥∥∥∥∥
2

LT

+ 2

∥∥∥∥∥
s∑

k=1

ξk(z)φ
[1]
T (θ?k)

∥∥∥∥∥
2

LT

= 2
∑

1≤k,`≤s

KT (θ?k, θ
?
` )

∫
αk(z)α`(z)ν(dz) + 2

∑
1≤k,`≤s

K[1,1]
T (θ?k, θ

?
` )

∫
ξk(z)ξ`(z)ν(dz)

≤ 2‖α‖∗,q‖α‖∗,p
∑

1≤k,`≤s

|KT (θ?k, θ
?
` )|+ 2‖ξ‖∗,q‖ξ‖∗,p

∑
1≤k,`≤s

|K[1,1]
T (θ?k, θ

?
` )|

≤ 2s ‖α‖∗,q‖α‖∗,p
∥∥∥Γ[0,0]

∥∥∥
op,∗

+ 2s ‖ξ‖∗,q‖ξ‖∗,p
∥∥∥Γ[1,1]

∥∥∥
op,∗

.

Using that ‖I‖op,∗ = 1 and (81), we get that:∥∥∥Γ[0,0]
∥∥∥

op,∗
≤ 1 + uT (s) and

∥∥∥Γ[1,1]
∥∥∥

op,∗
≤ 1 + uT (s).
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By assumption we have uT (s) ≤ H(2)
∞ (r, ρ) ≤ 1

6 . Using (86), we deduce that:

‖Pα,ξ‖2LT ≤ 2(1 + uT (s))
(1− uT (s))2 + uT (s)2

(1− 2uT (s))2
ν(Z)1/p−1/qs ≤ 4 s ν(Z)1/p−1/q.

This gives:

(99) ‖Pα,ξ‖LT ≤ 2
√
s ν(Z)1/2p−1/2q.

We proved that (i)-(iv) from Assumption 4.1 stand. By assumption we also have that for all θ 6= θ′ ∈
Q? : dT (θ, θ′) > 2 r, therefore Assumption 4.1 holds. This finishes the proof of Proposition 4.1.

8.2. Proof of Proposition 4.2 (Construction of an interpolating derivative certificate). This sec-
tion is devoted to the proof of Proposition 4.2. We shall closely follow the proof of [14, Proposition 7.5].

Let T ∈ N and s ∈ N∗. Recall Assumptions 2.2 (and thus 2.1 on the regularity of ϕT ) and 2.3 on the
regularity of the asymptotic kernel K∞ are in force. Let r > 0 and u′∞ ∈ (0, 1/6) such that (iii) and (iv)
of Proposition 4.2 hold. Recall the definitions (33) and (35) of Θs

T,δ and δ∞. By assumption δ∞(u′∞, s) is

finite. Let ϑ? = (θ?1 , . . . , θ
?
s) ∈ Θs

T,(2ρT δ∞(u′∞,s))∨(2r). We note Q? = {θ?i , 1 ≤ i ≤ s} the set of cardinal s.

Let V : Z × Q? → R be such that ‖V (θ?)‖Lq(ν) = 1 for any θ? ∈ Q?. Recall the notation V defined in

(82). Let α, ξ ∈ Lq(ν,Rs). We consider the real-valued function ηα,ξ defined on Z ×Θ by (76).

Recall the definition of VT from (21) and define u′T (s) = u′∞ + (s − 1)VT . Thanks to (79) and (80), we
get that (81) holds with uT (s) replaced by u′T (s).

Lemma 8.5. Let be 1 ≤ p ≤ q ≤ +∞ such that 1/p + 1/q = 1. Let V : Z × Q? → R be a measurable
application such that for any θ? ∈ Q?, ‖V (·, θ?)‖Lq(ν) = 1. Assume that we have (81) with uT (s) replaced

by u′T (s) < 1/2. Then, there exist α, ξ ∈ Lq(ν,Rs) such that:

ηα,ξ(z, θ
?
k) = 0 for 1 ≤ k ≤ s, for ν − almost every z,(100)

D̃1,T [ηα,ξ(z)](θ
?
k) = V (z, θ?k) for 1 ≤ k ≤ s, for ν − almost every z,(101)

and we also have:

(102) ‖α‖∗,q ≤
u′T (s)

1− 2u′T (s)
, ‖ξ‖∗,q ≤

1− u′T (s)

1− 2u′T (s)
,

and

(103) ‖α‖∗,p ≤ ν(Z)1/p−1/q u′T (s)

1− 2u′T (s)
, ‖ξ‖∗,p ≤ ν(Z)1/p−1/q 1− u′T (s)

1− 2u′T (s)
·

Proof. Let z ∈ Z such that (100) and (101) are satisfied. Using the notations from Section 8.1, we obtain
by [14, Lemma 10.2] that:

α(z) = −Γ−1
SCΓ[1,0]>[Γ[1,1]]−1V (z) and ξ(z) =

(
I + [Γ[1,1]]−1Γ[1,0]Γ−1

SCΓ[1,0]>
)

[Γ[1,1]]−1V (z).

Using (81), (85) and the fact that
∥∥V ∥∥∗,q = 1, we readily obtain (102). We then obtain the controls (103)

using (86).
�

We fix V : Z × Q? → R such that for any θ? ∈ Q? we have ‖V (θ?)‖Lq(ν) = 1 and we consider Pα,ξ and

ηα,ξ given by (75) and (76), with α and ξ given by Lemma 8.5.

Proof of (i) from Assumption 4.2 with cN = (L0,2 + L2,1 + 7)/8. We define the function f : (z, θ) 7→
ηα,ξ(z, θ)−V (z, θ?` ) sign(θ−θ?` )dT (θ, θ?` ) on Z×Θ. To prove the Property (i), we will bound

∥∥∥D̃2;T [f ](θ)
∥∥∥
Lq(ν)

on Θ and apply Lemma A.3-(i). Recall dT (θ, θ?` ) = |GT (θ)−GT (θ?` )| with GT a primitive of
√
gT , and thus
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f(z, θ) = ηα,ξ(z, θ)− V (z, θ?` )(GT (θ)−GT (θ?` )). We deduce that for ν-almost every z ∈ Z the function f is
twice continuously differentiable with respect to its second variable on Θ; and elementary calculations give
that D̃2;T [f(z)](θ) = D̃2;T [ηα,ξ(z)](θ) for any θ ∈ Θ and for ν-almost every z ∈ Z as D̃1;T [GT ] = 1 and

D̃2;T [GT ] = 0.
Let θ ∈ ΘT and let θ?` be one of the elements of Q? closest to θ in terms of the metric dT . Recall

the notations Γ`,θ (resp. Γ
[i,j]
`,θ ) and ϑ?`,θ defined after (87). Since for ν-almost every z ∈ Z we have

D̃2;T [f(z)] = D̃2;T [ηα,ξ(z)], we deduce from (94) that:∥∥∥D̃2;T [f ](θ)
∥∥∥
Lq(ν)

≤
∥∥∥I + Γ

[2,0]
`,θ

∥∥∥
op,∗
‖α‖∗,q + ‖α‖∗,q|K

[2,0]
T (θ, θ?` )|+ ‖ξ‖∗,q

∥∥∥Γ
[2,1]
`,θ

∥∥∥
op,∗

+ ‖ξ‖∗,q|K
[2,1]
T (θ, θ?` )|.

Notice that (87) holds with uT (s) replaced by u′T (s). Using (96) and (97) and the bounds (102) on α and ξ
from Lemma 8.5, we get:∥∥∥D̃2;T [f ](θ)

∥∥∥
Lq(ν)

≤ u′T (s)

1− 2u′T (s)
(L2,0 + VT + u′T (s)) +

1− u′T (s)

1− 2u′T (s)
(L2,1 + VT + u′T (s)).

By assumption, we have u′T (s) ≤ 1/6 and VT ≤ 1. Hence, we obtain:∥∥∥D̃2;T [f ](θ)
∥∥∥
Lq(ν)

≤ 1

4
L2,0 +

5

4
L2,1 +

7

4
·

Since we have for almost every z ∈ Z, f(z, θ?` ) = 0 and D̃1;T [f(z)](θ?` ) = D̃1;T [ηα,ξ(z)](θ
?
` )−V (z, θ?` ) = 0,

using Lemma A.3 (i), we get, with cN = (L2,0 + 5L2,1 + 7)/8:

‖ηα,ξ(θ)− V (θ?` ) sign(θ − θ?` ) dT (θ, θ?` )‖Lq(ν) = ‖f(θ)‖Lq(ν) ≤ cN dT (θ, θ?` )2.

Proof of (ii) from Assumption 4.2 with cF = (5L1,0 + 7)/4. Let θ ∈ ΘT , we shall prove that
‖ηα,ξ(θ)‖Lq(ν) ≤ cF . Let θ?` be one of the elements of Q? closest to θ in terms of the metric dT . We

deduce from (89) on the upper bound of ‖ηα,ξ(θ)‖Lq(ν), using (81), the inequality from (16), (91) and the

bounds (102) on α and ξ from Lemma 8.5 that:

‖ηα,ξ(θ)‖Lq(ν) ≤
u′T (s)

1− 2u′T (s)
(1 + u′T (s)) +

1− u′T (s)

1− 2u′T (s)
(L1,0 + VT + u′T (s)) .

Since u′T (s) ≤ 1/6 and VT ≤ 1, we obtain:

‖ηα,ξ(θ)‖Lq(ν) ≤
5

4
L1,0 +

7

4
·

Proof of (iii) from Assumption 4.2 with cB = 2. Using very similar arguments as in the proof of (99)
(taking care that the upper bound of the norms ‖·‖∗,q and ‖·‖∗,p of α and ξ are given by (102) and (103))

we also get ‖Pα,ξ‖LT ≤ 2
√
s ν(Z)1/2p−1/2q.

We proved that (i)-(ii) from Assumption 4.2 stand for any θ ∈ ΘT . Hence Assumption 4.2 holds for any
positive r such that for all θ 6= θ′ ∈ Q? : dT (θ, θ′) > 2 r. This finishes the proof of Proposition 4.2.
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Appendix A. Auxiliary Lemmas

In this section, we provide the proofs of the intermediate results.

A.1. Proof of Proposition 1.3. We prove the optimization problem (3) is well posed. Denote the objective
function of (3) by F (B, ϑ), that is the penalized risk. Then, we have:

inf
B∈L2(ν,RK),ϑ∈ΘKT

F (B, ϑ) ≤ F (0, ϑ?) =
1

2ν(Z)
‖Y ‖2LT .

By Minkowski inequality, we have that ‖·‖Lp(ν,RK) ≤ ‖·‖`1,Lp(ν). Indeed, we have for any B ∈ L2(ν,RK):

‖B‖Lp(ν,RK) :=

∥∥∥∥∥∥
(

K∑
k=1

B2
k

) 1
2

∥∥∥∥∥∥
Lp(ν)

≤

∥∥∥∥∥
K∑
k=1

|Bk|

∥∥∥∥∥
Lp(ν)

≤ ‖B‖`1,Lp(ν).

Therefore, the minimization of F over B can be restricted to the centered closed ball B0 in Lp(ν,RK) of radius

‖Y ‖2LT /(κ2ν(Z)). We recall that the space Lp(ν,RK) is a reflexive Banach space whose dual is Lq(ν,RK)

with 1/p + 1/q = 1, see [24, Theorem 1 p.98]. By Kakutani Theorem, the closed balls of Lp(ν,RK) are
therefore compact with respect to the weak topology, see [11, Theorem 3.17]. In particular (3) amounts to
minimizing F over the compact set B0 ×ΘK

T .

We show that the objective function is lower semi-continuous (lsc). Recall that a convex strongly continu-
ous (that is, continuous with respect to the strong topology) real valued function defined on a Banach space
is weakly lsc (that is, lsc with respect to the weak topology), see [11, Corollary 3.9]. For any B ∈ L2(ν,RK),
we have:

(104)

‖B‖`1,Lp(ν) ≤ K
1
q

(
K∑
k=1

‖Bk‖pLp(ν)

) 1
p

= K
1
q

(∫
‖B(z)‖p`pν(dz)

) 1
p

≤ K 1
2

(∫
‖B(z)‖p`2ν(dz)

) 1
p

= K
1
2 · ‖B‖Lp(ν,RK),

where we used Hölder’s inequality. We deduce that the function B 7→ ‖B‖`1,Lp(ν) is strongly continuous.

Since it is also convex, we get it is weakly lsc.

Recall the space (LT , ‖·‖LT ) is a Hilbert space, see [24, Section IV]. The function X 7→ ‖Y −X‖LT
defined on LT is weakly lsc as it is strongly continuous and convex. Then, since the function ϑ 7→ Φ(ϑ) is
continuous, we deduce that the function (B, ϑ) 7→ BΦ(ϑ) is continuous from Lp(ν,RK) × RK to LT with
respect to the product topology of the weak topology on Lp(ν,RK) and the usual topology on RK . Since
the composition of a continuous function by a lsc function is a lsc function, we deduce that the function
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(B, ϑ) 7→ ‖Y −BΦ(ϑ)‖LT is lsc (with respect to product topology of the weak topology on Lp(ν,RK) and

the usual topology on RK).

In conclusion, the objective function (B, ϑ) 7→ F (B, ϑ) is lsc (with respect to the product topology of the
weak topology on Lp(ν,RK) and the usual topology on RK). Then, we conclude using that a lsc function
on a compact set attains a minimum value, see [1, Theorem 2.43].

A.2. Tail bound for suprema of χ2 processes. We give a tail bound for suprema of weighted χ2 processes
indexed on an interval I ⊂ R.

Lemma A.1. Let I ⊂ R be a bounded interval. Assume that X = (X(θ), θ ∈ I) is a real centered Gaussian

process with Lipschitz sample paths. Consider the process Y =
n∑
i=1

X2
i where (Xi, 1 ≤ i ≤ n) are independent

copies of X. Then, for an arbitrary θ0 ∈ I and for all u > n supθ∈I Var(X(θ)), we have:
(105)

P
(

sup
I
Y > u

)
≤ e
− u

VarX(θ0)

(
1−2

√
nVarX(θ0)

u

)
+4

∫
I

√
Var(X ′(θ))

2n/2Γ(n/2)
√
u

(
u

Var(X(θ))

)(n+1)/2

e−
u

2Var(X(θ)) dθ.

Proof. Recall that I is a bounded interval. Hence, the process Y defined on I has Lipschitz sample paths.
Then, applying Inequality (122) from [14] to the process Y and taking the expectation, we get, with M =
supI Y , a = u > 0, b = u+ ε, ε > 0 and x0 = θ0:

(106)

∫ u+ε

u

P(M ≥ t) dt ≤ εP(Y (θ0) ≥ u) +

∫
I

E
[
|Y ′(θ)|1{u<Y (θ)<u+ε}

]
dθ.

The random variable Y (θ0) is a standard χ2 variable of degree n and therefore we have by [33, Lemma
11] for u > nVar(X(θ0)):

(107) P (Y (θ0) ≥ u) ≤ e
− u

Var(X(θ0))

(
1−2

√
nVar(X(θ0))

u

)
.

Notice that (107) trivially holds if Var(X(θ0)) = 0 as u > 0.
We now give a bound of the second term in the right-hand side of (106). Since (X ′i, Xi) are independent

Gaussian processes for i = 1, · · · , n, we can write for a given θ ∈ I:

X ′i(θ) = αθXi(θ) + βθGi,

where (Gi, 1 ≤ i ≤ n) are independent standard Gaussian random variables independent of the variables
(Xi(θ), 1 ≤ i ≤ n) and:

αθ =
E[X ′(θ)X(θ)]

Var(X(θ))
and β2

θ = Var(X ′(θ))− α2
θVar(X(θ)),

with the convention that αθ = 0 if Var(X(θ)) = 0. Since Y ′ = 2
n∑
i=1

X ′iXi a.e., we get that:

E
[
|Y ′(θ)|1{u<Y (θ)<u+ε}

]
≤ 2|αθ|E

[
Y (θ)1{u<Y (θ)<u+ε}

]
+ 2|βθ|E

[∣∣∣∣∣
n∑
i=1

Xi(θ)Gi

∣∣∣∣∣1{u<Y (θ)<u+ε}

]
.

Since the variables (Gi, 1 ≤ i ≤ n) and (Xi(θ), 1 ≤ i ≤ n) are independent, the variable Z =
n∑
i=1

Xi(θ)Gi

contidionally to the variables (Xi(θ), 1 ≤ i ≤ n) is a standard Gaussian random variable of variance Y (θ).
This implies that:

E

[∣∣∣∣∣
n∑
i=1

Xi(θ)Gi

∣∣∣∣∣1{u<Y (θ)<u+ε}

]
=

√
2

π
E
[√

Y (θ)1{u<Y (θ)<u+ε}

]
.
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We deduce that:

E
[
|Y ′(θ)|1{u<Y (θ)<u+ε}

]
≤ 2

(
|αθ|(u+ ε) +

√
2

π
|βθ|
√
u+ ε

)
P(u < Y (θ) < u+ ε),

The random variable Y (θ) is distributed as a χ2 variable and has a density:

pY (θ)(u) =
un/2−1

2n/2Γ(n/2)

(
1

Var(X(θ))

)n/2
e−

u
2Var(X(θ)) ,

where by convention pY (θ)(u) is taken equal to 0 if Var(X(θ)) = 0 and where Γ denotes the gamma function.
Letting ε goes to 0 in (106), using (107), the right continuity of the cdf of M and the monotonicity of the

density pY (θ)(u) of Y (θ) on [nVarX(θ),+∞[, we deduce that for u > n supθ∈I Var(X(θ)):

(108) P(M ≥ u) ≤ e
− u

VarX(θ0)

(
1−2

√
nVarX(θ0)

u

)
+2

∫
I

(
|αθ|u+

√
2

π
|βθ|
√
u

)
pY (θ)(u) dθ.

We now bound the second term of the right-hand side of (108) in two steps. Using that β2
θ ≤ Var(X ′(θ)),

we get that:

(109)

√
2

π
|βθ|
√
u pY (θ)(u) ≤ 1√

π

√
Var(X ′(θ))

2(n−1)/2Γ(n/2)
√
u

(
u

Var(X(θ))

)n/2
e−

u
2Var(X(θ)) .

Thanks to the Cauchy-Schwarz inequality, we get |αθ| ≤
√

Var(X ′(θ))/
√

Var(X(θ)). We get that:

(110) |αθ|u pY (θ)(u) ≤
√

Var(X ′(θ))

2n/2Γ(n/2)
√
u

(
u

Var(X(θ))

)(n+1)/2

e−
u

2Var(X(θ)) .

Notice that (109) and (110) hold also if Var(X(θ)) = 0. Using that
√

2
π + 1 ' 1.8 ≤ 2 and that

u ≥ supθ∈I Var(X(θ)), we deduce (105) from (108), (109) and (110). �

Recall the functions fn and gn defined by (67).

Lemma A.2. Let T ∈ N and n ∈ N∗ be fixed. Let be Z = {1, · · · , n}. Suppose that Assumptions 2.1 and
2.2 hold. Let h be a function of class C1 from ΘT to HT , with ΘT a sub-interval of Θ. Assume there exist
finite constants C1 and C2 such that for all θ ∈ ΘT :

(111) ‖h(θ)‖T ≤ C1 and
∥∥∥D̃1;T [h](θ)

∥∥∥
T
≤ C2.

Let (WT (z), z ∈ Z) be HT -valued noise processes such that Assumption 3.1 holds. Let a = (a1, · · · , an) be a
sequence of nonnegative real numbers.
Set for any z in the set Z of cardinal n, X(z) = (X(z, θ) = 〈h(θ),WT (z)〉T , θ ∈ Θ) and Y =

∑
z∈Z

azX(z)2.

Then, we have for u ≥ (n+ 1) ‖a‖`∞σ
2∆TC

2
1 :

(112) P
(

sup
θ∈ΘT

Y (θ) > u

)
≤ fn

(
u

σ2‖a‖`∞∆TC2
1

)
+

4C2 |ΘT |dT
C1 2n/2

gn

(
u

σ2‖a‖`∞∆TC2
1

)
,

where |ΘT |dT denotes the diameter of the interval ΘT with respect to the metric dT , ‖a‖`∞ = maxz∈Z |az|
and Γ denotes the classical gamma function.

Proof. First we notice that:

(113) P
(

sup
ΘT

Y > u

)
≤ P

(
sup
ΘT

Z > u/‖a‖`∞

)
,
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where Z =
∑
z∈Z

X(z)2. We shall apply Lemma A.1 to the process Z.

Recall that the Gaussian processes X(z) with z ∈ Z are independent with the same distribution as a
process denoted X = (X(θ), θ ∈ ΘT ). The process X has Lipschitz sample paths on ΘT and X ′(θ) =
〈∂θh(θ), wT 〉T for a.e. θ ∈ ΘT . By Assumption 3.1, we have for all θ ∈ ΘT and z ∈ Z:

(114) Var(X(θ)) ≤ σ2∆T ‖h(θ)‖2T ≤ σ
2∆TC

2
1 .

We first consider the case where ΘT = [θmin, θmax] is a compact interval with θmin < θmax. Then, according
to Lemma A.1, Inequality (105) holds with Y replaced by Z for u > nσ2∆TC

2
1 .

Notice that the function x 7→ x
n+1

2 e−x/2 is decreasing on [n + 1,+∞) and that the function x 7→
e−x(1−2

√
n
x ) is decreasing on [n,+∞). Then, plugging (114) in Inequality (105), we obtain for u >

(n+ 1)σ2∆TC
2
1 :

(115)
P
(

sup
ΘT

Z > u

)
≤ e
− u

σ2∆TC
2
1

(
1−2

√
nσ2∆TC

2
1

u

)

+
4

2n/2Γ(n/2)
√
u

(
u

σ2∆TC2
1

)(n+1)/2

e
− u

2σ2∆TC
2
1

∫
ΘT

√
Var(X ′(θ)) dθ.

There exists a geodesic γ : [0, 1] 7→ ΘT such that γ0 = θmin, γ1 = θmax and dT (θmin, θmax) =
∫ 1

0
|γ̇t|

√
gT (γt) dt.

Hence, a change of variable gives:

(116)

∫
ΘT

√
Var(X ′(θ)) dθ =

∫ 1

0

|γ̇t|

√
gT (γt) ·

Var(X ′(γt))

gT (γt)
dt.

By Assumption 3.1, we have for all θ ∈ ΘT :

Var(X ′(θ)))

gT (θ)
≤ σ2∆T

∥∥∥D̃1;T [h](θ)
∥∥∥2

T
≤ σ2∆TC

2
2 .

Using this bound in (116), we get:

(117)

∫
ΘT

√
Var(X ′(θ)) dθ ≤ C2 σ

√
∆T |ΘT |dT ,

where |ΘT |dT is the diameter of the interval ΘT with respect to the metric dT .
Combining (115), (117) and (113), we finally obtain (112) for ΘT a bounded closed interval. Then, use

monotone convergence and the continuity of Z to get (112) for any interval ΘT . �

A.3. Technical lemma. We consider functions η : Z × Θ 7→ R and bound the quantities ‖η(θ)‖Lq(ν) on

some regions of Θ under some assumptions on the second covariant derivative of η with respect to θ. The
following Lemma extends [34, Lemma 2]. The proof is similar, as the latter covers the case where ν is a
Dirac measure and ‖·‖Lq(ν) reduces to | · |.

Lemma A.3. Let q ∈ [1,+∞]. Suppose Assumption 2.2 holds. Consider a function η : Z ×Θ twice contin-
uously differentiable with respect to its second variable and θ0 ∈ ΘT .

(i) Assume that for ν-almost every z ∈ Z we have η(z, θ0) = 0 and D̃1;T [η(z)](θ0) = 0, and that there
exist δ > 0 and r > 0 such that for any θ ∈ BT (θ0, r) we have:

(118)
∥∥∥D̃2;T [η](θ)

∥∥∥
Lq(ν)

≤ δ.
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Then, we have ‖η(θ)‖Lq(ν) < (δ/2) dT (θ, θ0)2, for any θ ∈ BT (θ0, r).

(ii) Assume now that for ν-almost every z ∈ Z, η(z, θ0) = V (z) and D̃1;T [η(z)](θ0) = 0 where V ∈ Lq(ν)

with ‖V ‖Lq(ν) = 1. Assume there exists a finite positive constant L such that sup
θ0,θ∈ΘT

|K[0,2]
T (θ0, θ)| ≤ L

and there exist ε > 0 and r ∈ (0, L−
1
2 ) such that for any θ ∈ BT (θ0, r), −K[0,2]

T (θ0, θ) ≥ ε. Suppose
that for any θ ∈ BT (θ0, r) and δ < ε:

(119)
∥∥∥D̃2;T [η](θ)− VK[0,2]

T (θ0, θ)
∥∥∥
Lq(ν)

≤ δ.

Then, we have ‖η(θ)‖Lq(ν) ≤ 1− (ε−δ)
2 dT (θ, θ0)2, for any θ ∈ BT (θ0, r).
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