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ABSTRACT

This paper presents a multilevel Fast Iterative Soft Thresh-
olding Algorithm (FISTA), based on the use of the Moreau
envelope to build the correction brought by the coarse mod-
els, which is easy to compute when the explicit form of the
proximal operator of the considered functions is known. This
approach is supported by strong theoretical guarantees: we
prove both the rate of convergence and the convergence of the
iterates to a minimum in the convex case, an important result
for ill-posed problems. We evaluate our approach on image
restoration problems and we show that it outperforms classi-
cal FISTA for large-scale images.

Index Terms— multilevel optimization, inertial methods,
image restoration, proximal methods.

1. INTRODUCTION

Many problems in signal and image processing involve min-
imising a sum of a data fidelity term f and a regularization
function g, formally:

min
x∈H

F (x) := f(x) + g(x) (1)

where H is a real Hilbert space (H = RN in the following),
f : H → (−∞,+∞] and g : H → (−∞,+∞] belong
to Γ0(H) the class of convex, lower semi-continuous, and
proper functions. Moreover, f is assumed to be differentiable
with gradient Lf -Lipschitz and F is supposed to be coercive.

In the context of restoration, we aim to recover a good
quality image from a degraded image z = Ax̄+ϵ, where A ∈
RN×N models a linear degradation operator and ϵ stands for
the additive noise. To solve this ill-posed problem, we gen-
erally consider a regularized least squares formulation, where
we denote g the regularization function allowing us to choose
the properties that we wish to impose on the solution. A usual
choice is to apply the l1-norm on the coefficients raised by
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a linear transformation W ∈ RK×N (wavelets, frames, dic-
tionary, . . . ), thus promoting the sparsity of the solution [2].
Given a regularization parameter λ > 0, the associated mini-
mization problem reads:

x̂ ∈ Argmin
x∈RN

1

2
∥Ax− z∥22 + λ∥Wx∥1. (2)

Many algorithms have been proposed in the literature to esti-
mate x̂ (cf. [3–6]). They suffer from the significant increase
in computational time with the dimension. Preconditioning
techniques can be investigated but generally require strong as-
sumptions for the choice of the preconditioning matrix (e.g.,
diagonal matrix) leading to limited gains. For the solution
of large-scale problems with smooth objective function, it is
possible to take advantage of the local structure of the optimi-
sation problem (cf. [7] or [8]).

In this paper, we focus on a different family of ap-
proaches, the multilevel schemes, which exploit different
resolutions of the same problem. In such methods the ob-
jective function is approximated by a sequence of functions
defined on reduced dimensional spaces (coarser spaces).The
descent step is thus calculated at coarser levels with minimal
cost and then projected to the fine levels.

These approaches have been mainly studied for the solu-
tion of partial differential equations (PDEs), in which f and
g are supposed to be differentiable [9, 10], but recently this
idea has also been exploited in [11–13] to define multilevel
forward-backward proximal algorithms applicable to problem
(1) in the case where g is non differentiable.

In this paper we propose a variant of these methods,
which we call MMFISTA for Moreau Multilevel FISTA pro-
viding a multilevel alternative to inertial strategies such as
FISTA [14, 15]. Our framework relies on the Moreau enve-
lope for the definition of smooth coarse approximations of g,
which can be easily constructed when the proximal operator
of g is known in explicit form. Furthermore, we show under
mild assumptions that the convergence guarantees of FISTA
hold for MMFISTA, in particular the convergence of the it-
erates, an important result for ill-posed problems and, to our
knowledge, never established for multilevel inertial proximal
methods.

The paper is organized as follows. In Section 2, we recall
the main principles of FISTA. Then, we describe MMFISTA.



In Section 3, we present its convergence guarantees. Finally,
in Section 4, we present numerical results to confirm the good
behaviour of MMFISTA in an image restoration context.

2. MULTILEVEL FISTA

FISTA – Among the numerous algorithms designed to solve a
minimization problem of the form (1), the most standard strat-
egy is FISTA [14], which relies on forward-backward itera-
tions and extrapolation steps, such that, for every k = 0, 1, . . .

xk+1 = proxτg(yk − τk∇f(yk)) (3)

yk+1 = xk+1 + αk(xk+1 − xk) (4)

where x0 = y0 and αk = tk−1
tk+1

for all k ≥ 1. Choos-

ing tk =
(
k+a−1

a

)
where a > 2 [15, Definition 3.1] and

τ ∈ (0, L−1
f ) ensures various convergence guarantees (see

[15, Theorem 3.5 and 4.1]). We will denote these conditions
(AD) in the following.
Multilevel framework – The multilevel framework exploits
a hierarchy of objective functions, which are representations
of F at different resolutions and alternate minimization be-
tween these objective functions (following a V cycle proce-
dure [9]). Without loss of generality and for the sake of clar-
ity, we consider the two-level case: we index by h (resp. H)
all quantities defined at the fine (resp. coarse) level. We thus
define Fh := F : RNh → (−∞,+∞] the objective func-
tion at the fine level where Nh = N , involving fh := f
and gh := g. Its approximation at the coarse level is de-
noted FH : RNH → (−∞,+∞] where NH < Nh, which
involves fH and gH . We also define transfer information
operators: a linear operator IHh : RNh → RNH that sends
information from the fine level to the coarse level, and con-
versely IhH : RNH → RNh that sends information from the
coarse level back to the fine level. It is classical to choose
IhH = η(IHh )T , with η > 0.

In a multilevel scheme, we improve the intermediate iter-
ate yhk by performing iterations at the coarse level: yhk is pro-
jected to the coarse level with IHh (5a), a sequence (xH

k,ℓ)ℓ∈N
is defined (where k represents the current iteration at the fine
level and ℓ indexes the iterations at the coarse level) such
that: xH

k,ℓ+1 = ΦH
k,ℓ(x

H
k,ℓ), with ΦH

k,ℓ any operator such that
FH(xH

k,m) ≤ FH(xH
k,0) for some m > 0. This yields after

m iterations at the coarse level (5b) to a step being brought
back at the fine level (5c). Then, the generic iteration k of a
multilevel method reads :

xH
k,0 = IHh yhk (5a)

xH
k,m = ΦH

k,m−1 ◦ .. ◦ ΦH
k,0(x

H
k,0) (5b)

ȳhk = yhk + τ̄h,kI
h
H

(
xH
k,m − xH

k,0

)
(5c)

xh
k+1 = proxτhgh

(ȳhk − τh∇fh(ȳ
h
k )) (5d)

yhk+1 = xh
k+1 + αh,k(x

h
k+1 − xh

k) (5e)

By taking xH
k,m = xH

k,0 one recovers the standard FISTA it-
eration. To ensure that the correction term xH

k,m − xH
k,0, once

projected from coarse level to fine level, induces a decrease
of Fh, we need to appropriately choose :

• the coarse model FH ,

• the minimization scheme ΦH .

Coarse model FH – The coarse iterations are built using
the Moreau envelope of gh and of its coarse approximation
gH . The Moreau envelope provides a natural choice to extend
ideas coming from the classical smooth case [10] to proximal
gradient methods because of its smoothness and its expres-
sion involving the proximity operator. We first recall that for
γ > 0 and g being a convex, lower semi-continuous, and
proper function of H in (−∞,+∞], its Moreau envelope,
denoted γg, is the convex, continuous, real-valued function
defined by

γg = inf
y∈H

g(y) + (1/2γ)∥ · −y∥2, (6)

which can be expressed explicitly with proxγg [16, Remark
12.24]. The gradient of γg is γ−1-lipschitz and such that
(Prop. 12.30 in [16])

∇(γg) = γ−1(Id − proxγg). (7)

The coarse model FH is defined as

FH(xH) = fH(xH) + gH(xH) + ⟨vH,k, xH⟩ (8)

where
vH,k =IHh

(
∇fh(y

h
k ) +∇(γhgh)(y

h
k )
)

− (∇fH(xH
k,0) +∇(γHgH)(xH

k,0)). (9)

The third term in (8) is added to enforce the first order coher-
ence between a smoothed coarse objective function

FH,γH
(xH) = fH(xH) + γHgH(xH) + ⟨vH,k, xH⟩ (10)

and a smoothed fine objective function Fh,γh
[12] near xH

k,0:

∇FH,γH
(xH

k,0) = IHh ∇Fh,γh
(yhk ). (11)

The choice of the smoothing parameters γh and γH will be
discussed in Section 4. This condition ensures that if xH

k,m −
xH
k,0 is a descent direction for FH,γH

at xH
k,0, then IhH(xH

k,m −
xH
k,0) is a descent direction for Fh,γh

as well:

⟨IhH(xH
k,m − xH

k,0),∇Fh,γh
(xh

k)⟩ ≤ 0.

According to properties of the Moreau envelope and the prin-
ciples developed in [17], if xH

k,m − xH
k,0 is a descent direction

for FH,γH
, we obtain

Fh(y
h
k + τ̄h,kI

h
H(xH

k,m − xH
k,0)) ≤ Fh(y

h
k ) + βγh



where τ̄h,k controls that the update is not too big and where
β > 0 depends on gh. This ensures that Fh is decreasing up
to a constant βγh (which can be made arbitrarily small) after
a use of the coarse models. Now we show how to enforce the
decrease of FH,γH

.
Minimization operator ΦH – At the coarse level we can
decide to consider either the non-smooth approximation
(8) of the objective function or the smoothed version (10).
Both cases lead to a decrease in FH,γH

: indeed, taking the
Moreau envelope of gH in FH(xH

k,m) ≤ FH(xH
k,0) yields

FH,γH
(xH

k,m) ≤ FH,γH
(xH

k,0). The two cases are linked by
the same choice of the correction term to ensure the coherence
between the two levels (9). We consider here three different
strategies :

1. Gradient steps on the smoothed FH,γH
:

ΦH
S = (Id − τH(∇(fH + γHgH) + vH))

2. Proximal gradient steps on the non-smooth FH :
ΦH

FB = proxτHgH (Id − τH(∇fH + vH)).

3. FISTA steps on the non-smooth FH with the previous
proximal gradient step and where αH,k,ℓ follows (AD)
conditions. Noted ΦH

FISTA in the following.

Practical considerations – Our algorithm is based on a
simple construction of FH and vH,k, as long as the com-
putation of the associated proximal operator has an explicit
form, which is a rather reasonable assumption. Our method
is sketched in Algorithm 1. The step length at both levels
can be selected either by fixing a value below the threshold
guaranteeing convergence, defined by the Lipschitz constants
associated to the considered functions when they are known,
or by a linear search to guarantee it. To ensure the con-
vergence of the iterates, we impose at most p uses of the
coarse models FH (one use corresponds to a full V-scheme
cycle), which is also recommended to significantly improve
the computation time (cf. Section 4).

3. CONVERGENCE OF THE ITERATES

Provided that we use the coarse models a finite number of
times, we can prove the convergence of the iterates to a min-
imizer of F = Fh and that the rate of convergence remains
O(1/k2). First, we consider the sequence of corrections from
the coarse models.
Lemma 1. Let Lf,h and Lf,H the Lipschitz constants of fh
and fH , respectively. Let τh, τH,k ∈ (0,+∞) the step sizes
taken at fine and coarse levels, respectively. Assume that
supk τH,k < (Lf,H)−1 and that τh < L−1

fh
and denote τ̂h =

supk τ̄h,k. The sequence (chk)k∈N in H generated by Algo-
rithm 1 defined by :

chk = ∇fh(y
h
k )−∇fh(ȳ

h
k ) + (τh)

−1τ̄hI
h
H(xH

k,m − xH
k,0)

if a coarse correction is used at iteration k and chk = 0 other-
wise, is such that

∑
k∈N k∥chk∥ < +∞.

Algorithm 1: MMFISTA
Data: xh

0 , ϵh, γ,m, p > 0, th,0 = 1, a > 2, k = 0, r = 0

while ∥xh
k+1 − xh

k∥ > ϵh do
if r < p then

r = r + 1
xH
k,0 = yH

k,0 = IHh yh
k

vH,k = IHh ∇Fh,γh(y
h
k )−∇FH,γH (xH

k,0)
for ℓ = 0 . . .m− 1 do

yH
k,ℓ+1 = ΦH

k,ℓ(x
H
k,ℓ)

xH
k,ℓ+1 = yH

k,ℓ+1 + αH
k,ℓ(y

H
k,ℓ+1 − yH

k,ℓ)

end
Set τ̄h,k > 0, ȳh

k = yh
k + τ̄h,kI

h
H(xH

k,m − xH
k,0)

xh
k+1 = proxτhgh

(ȳh
k − τh∇fh(ȳ

h
k ))

else
xh
k+1 = proxτhgh

(yh
k − τh∇fh(y

h
k ))

end
thk =

(
k+a−1

a

)
, αh

k =
thk−1

th,k+1

yh
k+1 = xh

k+1 + αh
k(x

h
k+1 − xh

k)

end

The proof of this lemma is based on the fact that if the num-
ber of coarse corrections is finite, we only need to construct
bounded sequences at coarse level so that IhH(xH

k,m − xH
k,0) is

also bounded.
From this result we deduce the following theorem :

Theorem 1. Consider Algorithm 1, suppose that for all k ∈
N∗, thk in Eqs. (3) and (4) satisfy (AD) conditions [15]. Sup-
pose moreover that the assumptions of Lemma 1 hold. Then :

• The sequence (k2
(
Fh(x

h
k)− Fh(x

∗)
)
)k∈N belongs to

ℓ∞(N).
• The sequence (xh

k)k∈N given by Algorithm 1 weakly
converges to a minimizer of Fh.

Proof. We combine [15, Theorem 3.5, 4.1, and Corollary 3.8]
with Lemma 1 to prove the desired result.

4. RESULTS

We numerically illustrate the performance of our algorithm in
the context of image restoration.
Dataset and degradation – We consider large images of size
2048 × 2048, yielding N = (2J)2 ≃ 4 × 106 with J = 11.
The linear degradation operator Ah is constructed with HNO
[18] as a Kroenecker product with Neumann boundary con-
ditions and we add a Gaussian noise (see the legend of Fig.1
for details). In all tests, the regularization parameter λh was
chosen by a grid search, in order to maximize the Signal-to-
Noise-Ratio (SNR) of x̂ obtained with FISTA at convergence.
Also, we initialise x0 with the Wiener filtering of z.
Multilevel architecture – We use a 5-levels hierarchy: from
2048× 2048 (J = 11) to 128× 128 (indexed by J − 4). We
choose IHh as the low scale projection on a symlet wavelet



Noise \ Blur (a) size(blur) = [40, 40], σ(blur) = 7.3 (b) size(blur) = [88, 88], σ(blur) = 16

(1) σ = 0.01

FISTA CPU time 16 28 42 161 401 17 30 42 148 421

ΦH,S −20 • −22 • +1 • +1 • −1 • −51 • −44 • −18 • +4 • −1 •

ΦH,FB −19 • −19 • +5 • +2 • +1 • −50 • −42 • −15 • +6 • +1 •

ΦH
FISTA −51 • −32 • −4 • +2 • +1 • −50 • −42 • −35 • +8 • +1 •

(2) σ = 0.04

FISTA CPU time 14 22 34 108 220 15 25 34 122 315

ΦH,S −22 • −10 • −1 • −1 • −1 • −29 • −25 • −18 • +3 • +1 •

ΦH,FB −22 • −10 • −1 • +1 • −1 • −42 • −31 • −16 • +5 • +2 •

ΦH
FISTA −21 • −12 • −10 • −1 • −2 • −42 • −31 • −22 • +7 • +2 •

Table 1: For each degradation : the first line of each subtable represents the computation time (in sec) needed by FISTA to reach 5, 2, 1, 0.1
and 0.01% of the distance ∥Fh(xh,0) − Fh(xh,∗)∥. Then for each type of minimization algorithm at coarse level, we display the CPU time
relative to FISTA (12) (in %) for the best configuration with a colored bullet : p = 1 • and p = 2 •. In all cases : m = 5. SNR of z : (1a)
11.05 (1b) 9.64 (2a) 11.03 (2b) 9.63. SNR of xh,300 computed by MMFISTA : (1a) 12.71 (1b) 11.02 (2a) 12 (2b) 10.6.

with 10 vanishing moments and IhH = 1
4 (I

H
h )T . We then con-

struct fH with the blurring matrix AH = IHh AhI
h
H (which

is never used explicitly due to the properties of the Kroe-
necker product [12, 18]). Thus fh = 1

2∥Ahxh − zh∥2 and
fH = 1

2∥AHxH−IHh zh∥2. The penalty term gh = ∥Whxh∥1
is defined using a full wavelet decomposition over J levels,
we construct gH = ∥WHxH∥1 with a decomposition over
J − 1 up to J − 4 levels, with λH = λh/4. The Moreau en-
velope parameter associated with gH is set to γH = 1.1 while
γh is set to 1, but both values do not seem to be critical here.
Visual result – We display the restored image x̂ and the con-
vergence curves as a function of the iterations and the CPU
time for one case in Fig.1. For clarity, we only display the
behaviour of the method with ΦH

FISTA.
Performance assessment – We measure Time(MMFISTA),
the CPU time needed to reach a threshold of 5, 2, 1, 0.1 and
0.01% of the distance ∥Fh(x

h
0 ) − Fh(x̂)∥, with x̂ computed

beforehand by FISTA, and we compare it to Time(FISTA).
We tested the performance for several values of m, and among
our numerous numerical experiments, m = 5 at the different
coarse levels appears to be a good compromise whatever the
noise and blur levels. We report in Tab.1, the quantity:

Time(MMFISTA) − Time(FISTA)
Time(FISTA)

× 100, (12)

for m = 5 at every coarse levels. In this table we evaluate:
− Impact of p. In our numerical experiments we only con-
sider p = 1 (•) or p = 2 (•) uses of the coarse models, per-
formed at the beginning of the iterative process. They allow
to quickly determine the low frequencies components of the
solution at the fine level. The choice of p depends on the
sought accuracy. For rough approximation (e.g. 5%), fixing
p = 1 is a good choice, while p = 2 seems better for finer ap-
proximations (e.g. thresholds set to 2%). When very precise
approximation is wanted (e.g. threshold below 1%), the use
of a multilevel strategy does not pay off, even if it does not
degrade performance.
− Impact of noise and blur level. For all methods acceleration
increases significantly as the blur gets worse. Moreover, as
the noise decreases, the improvement obtained with ΦH

FISTA

increases, compared to others ΦH .
The main conclusion is that with a few coarse correc-

tions, our method can significantly accelerate the achievement
of coarse solution accuracies, while it stays competitive with
FISTA for high precision approximations.

z xFISTA
h,2 z xFISTA

h,2

xMMFISTA
h,300 xMMFISTA

h,2 xMMFISTA
h,300 xMMFISTA

h,2

5 10 15 20

10
-2

10
-1

10
0

0 5 10 15 20 25 30

10
-2

10
-1

10
0

FISTA

 
H,FISTA

, p=1, m=5

 
H,FISTA

, p=2, m=5

Fig. 1: Top : From left to right : Original 2048×2048 image1x , (first row)
zoom of the degraded image z for a noise with σ = 0.01 and a Gaussian blur
of size 40× 40 and 7.3 standard deviation and of xh,2 computed by FISTA.
(second row) zoom of xh,2 and xh,300 computed by MMFISTA. Bottom:
(left) Evolution of Fh versus iterations for MMFISTA with ΦH

FISTA for
p = 1, 2, m = 5 ; (right) Same for CPU time (in sec). λh = 1.7× 10−4.

5. CONCLUSION

We have proposed a convergent multilevel FISTA method for
image restoration that reaches coarse approximations of the
optimal solution in a much smaller CPU time than FISTA and
that is well suited to large images. A future research perspec-
tive is to extend this approach to other proximal algorithmic
schemes and to study/or improve the associated convergence
rates. We also want to investigate the influence of the infor-
mation transfer operators, which remains an open question.

1A close-up of leaves in Glacier National Park, Montana taken by Ansel
Adams in the 1930s
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