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Abstract— This paper deals with the robust control of fully-
actuated robots subject to joint position, velocity and accel-
eration bounds. Robotic systems are subject to disturbances,
which may arise from modeling errors, sensor noises or
communication delays. This work presents mathematical and
computational tools to ensure the robust satisfaction of joint
bounds in the control of robot manipulators. We consider a
system subject to bounded additive disturbances on the control
inputs, with constant joint position, velocity and acceleration
bounds. We compute the robust viability kernel, which is the
set of states such that, starting from any such state, it is
possible to avoid violating the constraints in the future, despite
the presence of disturbances. Then we develop an efficient
algorithm to compute the range of feasible accelerations that
allow the state to remain inside the robust viability kernel.
QOur derivation ensures the continuous-time robust satisfaction
of the joint bounds, while considering the discrete-time nature
of the control inputs. Tests are performed in simulation with
a single joint and a 6-DOF robot manipulator, demonstrating
the effectiveness of the proposed approach compared to other
state-of-the-art methods.

I. INTRODUCTION

One of the main challenges of robotic systems is the
fact that they are highly constrained. Robot joints typically
have bounded positions. Moreover, actuators have bounded
velocity, acceleration and torque/current. Velocity and ac-
celeration may be not directly bounded, but their limits
may be the consequence of other bounds, such as on the
motor current, or the gear-box torque. This work focuses
on the robust control of joints with constant bounds on
position, velocity and acceleration. Even though velocity and
acceleration bounds may be not constant, they are often
approximated by constant values [12, |16, (7, |9, |14, [2, |15].

An additional challenge is that these systems are subject to
disturbances, which may arise from modeling errors, sensor
noises, or communication delays. Therefore we tackle the
problem of robust control, considering bounded additive
disturbances on the system inputs. The non-robust version
of this problem has been already investigated in the lit-
erature [2) |3, [15]. Our main contribution is to extend the
algorithm of [3]], introducing robustness to bounded additive
disturbances on the control inputs.

A. Notation

Let us introduce our notation:

o A and V denote the logical quantifiers AND and OR.
o t €R" denotes time.
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« i€ N denotes discrete time steps.

« Ot is the time-step duration of the controller.

o w(t) is the disturbance in continuous-time systems,
while w; is the disturbance in discrete-time systems.

e q(t),4(t),¢(t) € R are the joint position, velocity and
acceleration at time f.

e qi=q(idt), ¢;=q(idt), G = (idr).

o ™", g™ are the joint position boundaries.

o " ¢M** are the maximum velocity and acceleration,
implying the assumption of symmetric velocity and

acceleration bounds

B. State of the art

Assuming a constant acceleration throughout each time
step, the future position g™ and velocity ¢ are functions of
the current acceleration §:

1
T =q+8tq+ - 8%
q qg+otq+ 5ol (1)
gT=q+6tg
A naive approach to bound accelerations is to compute the

maximum and minimum ¢ such that g™ and ¢ are within
their bounds:

. ; L, N 2 .
g S min ( qm(JX7 5( qmax _ q)’ ﬁ(qmax —q— 5tq)>

¢ = max <*6'1'max7 é(*qm“x —4), %(qmm —q9- 519))
This simple approach is unsatisfactory because the result-
ing bounds may be incompatible, leading to an unfeasible
problem [12]. Several improvements have been proposed.

A common approach [12, |16] is to use a larger value
of 8t in (2), which helps reducing the acceleration when
approaching a bound, but does not guarantee constraint
compatibility. Another approach [7[] is to bound velocities
with a hand-tuned linear function of the distance to the
position limit. While this is a sensible idea, this method
does not explicitly account for acceleration limits. Control
barrier functions provide a general framework for handling
constraints [11}13]]. However, these methods do not deal with
constraint conflicts, which are the key issue when considering
bounds on position and acceleration [[14].

Decre et al. [2] have been the first ones trying to provide
formal guarantees of constraint satisfaction. Their method
does not require any hand tuning, but it has two critical
issues. First, they assumed constant velocity throughout the
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'Our discussion can be easily extended to asymmetric veloc-
ity/acceleration bounds, but for the sake of clarity we prefer to focus on
symmetric bounds.



time step, so they do not bound the acceleration, but a
pseudo-acceleration, defined as (¢* — ¢§)/6t. Second, their
method may lead to conflicts between velocity and acceler-
ation limits when getting close to the position bounds. This
second issue was later addressed by Rubrecht et al. [14, |15].
However, they introduced some conservatism in the solution,
and they also dealt with pseudo-acceleration bounds.

The viability-based approach developed in [3] solved
the above-mentioned limitations. It is exact and does not
introduce any type of arbitrary conservatism. It assumes
constant acceleration between time steps, so it bounds the
real acceleration. However, it cannot deal with disturbances.
Our contribution is to develop a robust version of this
method.

The problem of robust constraint satisfaction has been
thoroughly investigated in the field of Robust Model Pre-
dictive Control (RMPC) [[10], with most work dealing with
linear discrete-time dynamical systems, subject to linear con-
strains [5, |6]. The system and the constraints considered in
this paper are linear, so we could apply methods from RMPC.
However, these methods can only guarantee the satisfaction
of the constraints in discrete time, meaning that violations
could still occur in-between time steps. Our method instead
guarantees that constraints be robustly satisfied in continuous
time, even though the control inputs can only be changed at
discrete time steps. Moreover, while RMPC methods typi-
cally rely on complex polytope projection techniques (e.g.
to compute Minkowski sums), which require the use of ad-
vanced (and often numerically brittle) software libraries [4]],
our approach boils down to a simple algebraic algorithm,
easy to implement and fast to execute.

II. PROBLEM STATEMENT
A. Feasible states

Considering a robot with joint position and acceleration
limits, the set of feasible states for a single joint is:

X={(q,9) eR*:¢"" < q<q"™,|g| <¢"™} 3

As previously stated, our control inputs are the joint accel-

erations, which are bounded: |¢| < §™**.

B. Disturbance definition

We assume our system is subject to bounded additive
disturbances on the inputs: w(¢) € [—w,w]. For the control
of real-world systems we use generally discrete-time models.
The disturbance in discrete time still holds the property of be-
ing bounded, w; € [—w, W], but it remains constant throughout
the whole time step i. Assuming constant acceleration and
constant disturbance through the time step, the discrete-time
dynamics are:

o1 .
gi+1 =qi+0tgi+ 5 6t2(4i+Wz‘)
Giv1 = qi + Ot (G; +w;)

“4)

Notice that w; does not influence the acceleration bounds: §
is the commanded acceleration, to which we add w.

C. Problem formulation

Finding the maximum and minimum accelerations such
that the state constraints can be satisfied in the future can be
formulated as an infinite-horizon optimal control problem:

go ™ = maximize o
40,4915+
2
subjectto q(idt+1t)=gqi+1tq¢i+ E(Qi +w;i)
q(i6t +1) = gi +1 (i + wi)
(q(iot+1),q(idt+1)) € X
|gi| < g™
(9(0),4(0)) fixed
Vi >0,V € [0,6t],Yw; € [—w, W]

(&)

The problem has an infinite number of constraints and
variables, therefore it cannot be solved directly.

III. PROBLEM SOLUTION

The concept of viability will help us reformulate prob-
lem (3). A state is defined as viable if starting from that state
there exists a sequence of control inputs that allows for the
satisfaction of all constraints in the future. Formally, a state
(¢(0),4(0)) belongs to the robust viability kernel ¥ if and
only if, using that state as initial conditions for problem (3,
the problem admits a solution. The main interest in the
introduction of the robust viability kernel ¥ is that ensuring
the existence of a feasible future trajectory (i.e., our original
problem) is equivalent to ensuring that the next state belongs
to 7. However, this definition of ¥ does not immediately
provide practical utility: verifying its membership amounts to
finding an infinite sequence of accelerations that results in a
feasible trajectory, which is too computationally demanding.
In the following, we derive an equivalent definition of ¥
that allows us to check membership easily. Thanks to this,
we reformulate the hard problem of satisfying the position-
velocity-acceleration limits as the simpler problem of ensur-
ing that the next state is viable.

A. Continuous time control

In the beginning, let us assume to deal with a continuous
system, in which ¢ and w can change at any instant. This
results in a set of viable states 7 that is a superset of the
previous one: ¥ C #C. It is obvious that a viable state is
also feasible, but not all the feasible states are viable. For
a given initial position gg, we can find the maximum initial
velocity qﬁ that allows us to satisfy the position limits in
the future:

4 (qo) = maximize go

40,4 (1)
subjectto dzi(;) =4(1)
WD _g0+w) g
(q(r),q(1)) € X
G(0)] < g™
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Fig. 1: Example of robust viability kernel with w =0 and

oo 1
with w = 3§™*.

In the case without disturbance the solution of this problem
is rather intuitive: the maximum initial velocity is such that,
if we constantly apply the maximum deceleration, we end up
exactly at ¢"* with zero velocity. Taking into account the
disturbance w(t), we can consider applying the maximum
deceleration —g™** and the maximum disturbance w: this
represents the worst case scenario because the deceleration

is reduced by the disturbance. So we can:

1) write the position trajectory for the maximum deceler-
ation and maximum disturbance ¢(r) = —G"* +w,

2) compute the time at which the velocity of this trajec-
tory is zero t* = go/(§"* —w),

3) compute the initial velocity such that ¢(t°) = ¢"*".

Following these steps we find:

an(q) = V/2(Gm —w)(gm — q) (7

Following the same steps, we can define also the minimum
velocity to ensure viability:

0} (q) = —\/2(§m %) (g — gmin) ®)
So the set ¥C of viable states can be written as:
Y ={(g,4): (@.9) €X, 40 (@) <4< dul@)} ©

This definition of ¢ allows us to check easily the viability of
a state by just verifying three inequalities. Fig. [1| shows how
the viability kernel varies with the presence of disturbances.

B. Discrete-time control

While in continuous time the acceleration and the distur-
bance can change at any instant, in discrete time they remain
constant for the whole time step. This means that if g reaches
q"** with zero velocity, in continuous-time control we can
immediately switch to zero also §. Instead, in discrete-time
control we must keep applying a constant deceleration for the
whole time step. Theoretically, this could lead to a violation
of the lower position-velocity bounds. Let us understand in
which cases this is possible. The worst case is represented by
the system reaching the state (go,4go) = (¢"**,0) a moment
after the beginning of the time step with the maximum

deceleration gy = —¢™** and the disturbance wy = —w that

increases the deceleration. The resulting deceleration is kept
for the whole time step, resulting in:

{ql — qznax70'55t2(éjmax+w)

10
g1 = —81(§™™ +) (10)

First of all, it is necessary that the value of §; does not
violate the lower velocity bound, so:

_q-max S _6t(éjmax+w) (11)
We can see this as a bound on w:
GMAX __ 84 Hmax
W< % (12)

After the first time step the joint is approaching the lower
position bound with velocity ¢;. To ensure that the lower
bound is not going to be reached, we must reach ¢ > 0.

Therefore we must apply maximum acceleration ¢, = ",
while the worst-case disturbance that can occur is w; = —w,
which decreases the acceleration.
G2 = 1+ 6t(§" —w)
After the substitution of g;,q; from (I0) we get:
g2 = ¢ —0.581% (§" 4 2w) (14)
gr = —261w

Due to the disturbances the velocity is still negative, so

we apply again maximum acceleration g, = ", with
disturbance wy = —w, and analyze in first place the resulting
velocity:

g3 = 61 (§"" —3w) 15)

After 3 time steps the velocity could be positive, depending
on the value of w. In the following we are going to assume
that this is the case. This is not necessary, but it is reasonable
because it results in a rather large upper bound for w:

1
St(g" =3w) >0 = w< géjm‘”‘ (16)

The assumption of a positive ¢ after 3 time steps implies
assuming that disturbances are not greater than one third of
the maximum acceleration. It would be possible to deal with
greater values of w considering a change of velocity sign
after a higher number of time steps, but we do not think
this is necessary in practice. Analyzing the ¢ trajectory in
continuous time in the third time step we can calculate the
time when the velocity is null, i.e. the time when the position
reaches its minimum value.

@3(t) = +1(d"™ —w) =0

—q 20tw
t:"i = t:,.iwzto

qmax — w qmax _ ‘/T}

a7

We can now substitute 7y in the position equation and obtain
the minimum value of the trajectory. This value is defined as
g and represents the maximum value of the lower bound
such that we can neglect the fact that the controller operates
in discrete time.



52w?

48tw (
y qmax — W

6]3(10) £ Qdiscr = 42 — G — W6lW

6']""‘” . W)
(18)
min discr:

The lower bound ¢™" must be less than or equal to ¢

=2

Qdiscr = qmax - 6t2 <qmax +2w+ qrmz‘;(v_w) Z qmin (19)

2
max min .max _ w
q —q > 512 (q + 2w+ qmax_w> (20)

As expected, (20) is equal to the expression found in [3]
when the disturbance w = 0. Now we want to find the
maximum value of w that satisfies , which is a second-
order polynomial of w. We express the maximum disturbance
as a percentage of ¢ (i.e. w = ag"®, with o € RT), and
substituting it in (20) we get:

a<o Vo> o

7 k2 + Gmaxq” £ \/(k2 4 c']'maxqr)Z _ 4k2(c']'maxqr _ k2)
- 2k?2

o2 )
21
where we have defined:

k& G5,

r A _max _ _min

q9 =9 q (22)

We can simplify these bounds because the bound of «
imposed by can be stricter than both a;>. At the same
time, negative alpha values are not admissible. First, notice
that o > 0.5 because its numerator is the sum of k2 and
a positive value (the square root plus §"*¢q"), while its
denominator is 2k2. Since o > 0.5, and we assumed that
o< %, we can discard the range & > o, and consider only
the range [0, min(o, 1/3)] Another bound on & comes from

the velocity constraint (12):

o < q-max _ 5tqmux N

< g 2 (23)

We have now considered all the contributions to define our
final range for the allowable o:

1
ac {O,min <a1,3,a3>}

If o belongs to this range, then we can neglect that the
controller works in discrete time. This greatly simplifies the
problem, and we expect this assumption to be verified in
most practical cases. Therefore, in the following we will
assume that robust viability kernels in discrete time and
continuous time coincide: ¥ = ¥C.

(24)

C. Reformulation in terms of viability

We have now obtained a formulation of ¥ so we can
reformulate problem (@)). Starting from the current state
(¢(0),4(0)) € ¥ we need to compute the maximum value
of g such that:

1) the next state (¢(d¢),4(0t)) € ¥,
2) the entire trajectory leading to the next state belongs
to the feasible set X.

The first condition alone is not sufficient, similarly to what
happens in (I7), because the trajectory between two viable
states may violate a constraint. We can reformulate (3)) as:

Go™ = maximize §
q

subjectto  g(0)=¢q, ¢(0)=4

2

() =q+14+5(G+w)

q

4(1) =q+1(G+w)
(q(t),4(t)) € 7
dm (a(81)) < 4(81) < dy(a(1))
gl < g™

vt € [0, 61],Yw € [—w, W]

(25)

This problem is much simpler than the previous one: it
has a single variable instead of an infinite sequence, and its
constraints concern only the trajectory in the [0, 6¢] interval,
rather than in [0,e]. However, problem (23) is still hard
to solve because the constraints are infinitely many and
nonlinear. In the next three subsections we reformulate the
inequality constraints of problem ([25). Each one will give us
a lower and an upper bound on ¢, which we will combine
in Section

D. Position inequalities
The position bounds of (23) are:

¢ < g1+ %tz(qdrw) < @™ Yt €[0,8t],Yw € [—w, W]

(26)
To be robust we need to guarantee the constraint satisfaction
for the worst-case disturbance, which is w for the upper
bound and —w for the lower bound:

. 1
q" < q+tg+ 5tz(ij—w) v € (0,81
(27)

1
q-+1q+ 517G +w) < ¢

Let us focus on the upper bound, and introduce a new
variable y £ G+ Ww:

vt € [0, 61

g4+ %tzy < " Vit € [0, 8] (28)
In this form, the constraint is equivalent to the associated
constraint for the nominal case (i.e., assuming w = 0). This
means that we can use the algorithm developed in [3]] (Alg.[T)
to compute an upper bound for ¥, and then convert it to a
bound on § by simply subtracting w from it. Similarly, for the
lower position limit we can define a new variable y £ §— 1w,
compute its lower bound using the algorithm for the nominal
case [3]], and finally convert it to a bound on § by adding w
to it. The computation is summarized in Alg. [I]

E. Velocity inequalities
The velocity trajectory is a line and so we need to verify

only that the bounds are satisfied for r = dt:

|G+ 8t(G+w)| < g™ Yw € [—w, W] (29)



Since w is the worst-case disturbance for the upper bound,
rearranging (29) we obtain:

4" —q

G< 5 w (30)
As for the position inequalities, considering the disturbance
boils down to simply subtracting w to the acceleration limit
computed without disturbance. This analysis stands also for
the lower bound, so we can write both bounds as:

_ smax __ - smax __ s -

1 1
— P< i< — _ 31
&( q q)+w§q§5t(q q)—w (€29)

F. Viability inequalities

Let us consider the upper bound of the viability inequality.
q(81) < V/2(§m —w) (g —g(81))  Ywe [-w, ]
(32)

Assuming a worst-case disturbance, which for the upper
bound is w, we get:

g+01(G+w) < \/2(qmax —w)(g"* —gq—8tg—0.581%(G+w))
(33)
This constraint is clearly nonlinear in ¢, but we can derive
an algorithm to reformulate it as a simple upper bound. First,
since ¢ always appears together with w, we can introduce a
new variable y £ -+ and rewrite B3) as:

G+ 81y < \J2(gme — W) (g — g~ 814 0.58%7)  (34)

Since the right-hand-side (RHS) of (34) is a square root, it
is always positive, so if the left-hand-side (LHS) is negative
(34) is always satisfied:

4 a1
—= 35
5 7 (35

Instead if the LHS is positive we can square both sides:

g+0ry<0 & y< -

1
(@87 < 2q - w) (7 g B1q - 33°7) G0

This can be reformulated as a}/z +by+c <0, with:

a= 6t
b =25tq+ 812 (§" —w)
= ¢ =2(§" —Ww)(g"" — g — 84)
If A=b*>—4ac >0 this parabola is equal to zero in two
points > and 3 (which coincide if A = 0):
A —b—VA —b+VA
B 0
a 2a

Since a > 0 by definition, the inequality (36) is satisfied for
Y <y< 7. If instead A <O then the parabola is always
positive and there exists no value of y that satisfies (36).
Putting it all together we can rewrite (34) as:

r<n) v [(r>mAAZ0)A(p<r<n)]

We can now analyze the different scenarios depending on
the values of 71,7 and ;3. Here we have only three possible
orders because by definition p» < 3. The case 71 < < %3

(37

[I>

73 (38)

(39)

Algorithm 1 accBoundsFromPosLimits

Require: ¢,q,q™",q"*, 8,
G < —q/ 6t
B —4*/(2(q"™ —q))
Gy 2(¢" —q—8t4)/(81%)
@ q*/(2(g—q™™)
5 7 2(q"" —q—614)/(81%)
if ¢§>0 then
..LB ..
G g3
if qg’[ > q’lw then
GU8 g
10: else

GUB min(éj’}”, q’z"’)
else

GUB q§4
if 43 < qllw then
15: GrB
else

G- < max(gY, %)

return { §*8 +w,V8 —w }

Algorithm 2 accBoundsFromViability

Require: g,q,q"", q"™>,§">, 8t,w
a < 612
b <+ 6t(2g+ ("™ —w)or)
¢ ¢ =2(g" =) (¢" ™ — g — 81 q)
Y —q/0t
5: A< b* —4ac
if A>0 then
B max(y1,(~b+VA)/(2a))
else
e
10: b+ 28t G — (§" —w)St?
c— 622 —Z(Qm“x—w)(q+6tq—q’”i’1)
A < b? —4dac
if A>0 then
78 min(n, (~b— VA)/(2a))
15: else
Y en
.4V} < {704, /% 7}
return { 8 gV

results in a disconnected set of feasible accelerations, which
is impossible because ¥ is connected. In the other two cases
the bound is simply given by the maximum between 7y; and
Y. Finally, we can convert these bounds on Y to bounds
on ¢ by simply subtracting w from them. Repeating the
same analysis for the lower bound, we get the computation
summarized by Alg.

G. Final Algorithm

To conclude, we need to take into account all the bounds in
a unique algorithm, which is summarized by Alg. 3l Fig.



Algorithm 3 Compute Joint Acceleration Bounds

Algorithm 4 Dealing with non-viable states

Require: q’q7qmt'rz7qmax’q~max’c~1~max7 St w
B % [070’0’-q‘max}
10,00, "
(q B[0], ¢ U [0]) «+ accBoundsFromPosLimits(...)
G (1] < (—gm — )51+
5 401 (g7 =) /81 —w

(G*[2],3VB[2]) + accBoundsFromViability(...)
return {max(c’jLB), min(GY8)}

q.maz 3
4
(jmin
Gmin Gmax
Fig. 2: Feasible state space for ¢"™* = —g™" = 0.5 rad,

¢"* =2 rad/s, " =10 rad/s?, 8t =0.1 s, and w = gqmwf
Reglon 0 represents the unreachable space, while region 1
represents the space that is not viable. In each of the other
four regions, a different acceleration upper bound dominates
the others. In region 2 it is the one coming from the position
inequality (26). In region 3 it is the one coming from the
velocity inequality (3I). In region 4 it is the acceleration
upper bound §™*. In region 5 it is the one coming from the
viability inequality (32).

shows the state space divided in regions based on which
acceleration upper bound dominates the others.

IV. TESTS

This section analyzes the behavior of two robotic systems
using the proposed algorithm to ensure the robust satisfaction
of joint limits. First, we test our method on a single joint, and
then on the 6 degree-of-freedom robot Baxter. We represent
the maximum disturbance at joint j as w; = g}, where
47 is the maximum acceleration at joint j. We compare our
method against i) the naive method described in Section [[-]
and ii) the non-robust viability method from [3]. In all
our tests we have verified that the conditions derived in
Section [lII-B| regarding the equivalence of discrete-time
and continuous-time viability, were satisfied. The Python
implementation of the presented algorithms can be found at
https://github.com/ErikZan/Robust-Joints-bounds-guaranteel

1) Dealing with non-viable states: When the state is
outside the viability kernel ¥/, the robust and non-robust
viability algorithms may give inconsistent acceleration limits.
Our main concern in these cases is to reach ¥, which these
algorithm may fail doing. Therefore, when a violation occurs
we compute the acceleration bounds using Alg. {4, which is

Require: q’ q7 qmin7 qmax7 qmax’ qlnax7 5t7 w
if IsStateViable(...) == False then
if (G>0Ag>4¢") VvV q>q¢™ then

(G2,GY8) = (g™, =" ™)
else
5 (qLB’ qUB) (q-max7 qmax)
return{g-?, Y%}

g"ax
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Fig. 3: Single joint, non-robust viability approach, random
disturbance.

based on the following reasoning.

o If ¢ >0 and g > ¢™™" set = —§™* to stop the joint as
soon as possible.

o If g > g™ set G = —g™*" to re-enter the viability kernel
as soon as possible.

o If ¢ <0 and g < g™ set §=¢™"* to stop the joint as
soon as possible.

o If g < ¢™" set § = ™™ to re-enter the viability kernel
as soon as possible.

A. Single joint

This section deals with a single-joint robot. In these tests
we try to reach the upper position bound without exceeding
it or violating the velocity limit. The values used for this test
are: =2 rad, ¢"" = —2 rad, ¢"™ =5 rad/s, §"* = 10
rad/sz, O0r = 0.1 s. In the first test we always apply to the
joint the maximum acceleration allowed (as computed by the
algorithms). The system is subject to a uniformly-distributed
random disturbance w;. Fig. [3] shows that with the non-
robust viability approach the position bound is violated—
even though by a small amount—and the joint oscillates
close to ¢™*. Fig. 4] shows instead that with the robust
viability approach the joint never reaches ¢”**, but it comes
close to it and then slightly fluctuates.

In the second test, shown in Fig. [5 and Fig. [6] the
maximum disturbance w is always applied. With the robust
method the joint comes closer to the limit than it did in
the previous test (Fig. {), and then it starts oscillating. These
oscillations are to be expected due to the discrete-time nature
of the controller, and it was also observed in [3]]. The non-
robust method instead clearly violates the constraint.
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Fig. 5: Single joint, non-robust viability approach, worst-case
disturbance w.
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Fig. 6: Single joint, robust viability approach, worst-case
disturbance w.

B. 6-DoF Baxter robot

For these tests the joints have to reach an unfeasible
position: ¢?. In particular, we set g¢ for the first joint, referred
from now on as joint 0, 0.5 rad above its upper limit. The
desired acceleration is computed with a PD control law.

G =kp(q" —q) —kpg (40)

where kp,kp € RT. The resulting acceleration (@0) is sat-
urated (if needed) based on the limits computed by the
specified algorithm. The values used in this test are kp =
1000, kp = 2+/kp, and 8¢ = 0.05 s. The applied disturbance w
is the maximum for each joint, corresponding to w = %éjm“x .

Fig. [7] shows that the naive method leads to a violation of
both velocity and position constraints for joint 0, as expected.
Also, the amplitude of fluctuations around ¢™** is strongly
dependent on the values of k,,kp.
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Fig. [8] shows the results obtained with the non-robust
viability algorithm. First the joint violates the velocity limit,
and so the control chosen with Alg. [ tries to lead the
joint again in the viability kernel. This generates velocity
fluctuations in the first part of the plot. Later, the joint
violates the position bound, even though the violation is
smaller with respect to the naive method.

Fig. [0 shows that with the robust viability algorithm the
bounds are not violated, but the oscillations on acceleration
in the final part are greater than in the naive or non-robust
case. This behavior was expected, as it was documented
also for the case without disturbance in the non-robust
algorithm [3].



V. CONCLUSIONS AND FUTURE WORK

This paper focused on the robust control of robot ma-
nipulators subject to joint position, velocity and acceler-
ation bounds. The problem had already been tackled in
the literature [3], but without considering the presence
of disturbances. This was a severe limitation because all
physical systems are subject to some degree of uncertainty
coming from, for instance, modeling errors, sensor noise and
communication delays. Therefore, we have developed a new
approach that can guarantee the satisfaction of the constraints
despite the presence of bounded additive disturbances on the
joint accelerations. The results obtained in simulation on a
single joint and on the 6-degree-of-freedom Baxter robot arm
show better performance with respect to other state-of-the-
art methods, with our method being the only one capable
of consistently ensuring constraint satisfaction. Moreover,
the presented approach has similar computational complexity
with respect to [3]], making it easily usable for real-world
applications. Nonetheless, this challenging problem is still
far from being completely solved.

Even though the developed approach is exact (i.e. tight)
for the case of bounded additive disturbances, one could
prefer to model disturbances using random variables [8]. The
stochastic approach to uncertainty modeling could indeed
result in a less conservative behaviors, and thus improve
performance. Moreover, joint acceleration bounds typically
depend on the state, because they are induced by motor
current bounds. Considering this dependence introduces a
nonlinearity in the problem (either in the dynamics or in
the constraints), making the computation of the viability
kernel extremely challenging, even for the nominal (non-
robust) case [1]]. Finding computationally tractable methods
to approximate these sets in the nonlinear setting is still an
open problem, and an interesting direction for future work.
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